

 MPASM™ to MPLAB® XC8 PIC® Assembler Migration

Guide

Notice to Customers

All documentation becomes dated and this manual is no exception. Microchip tools and documentation are constantly
evolving to meet customer needs, so some actual dialogs and/or tool descriptions can differ from those in this
document. Please refer to our web site (https://www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page
number. The numbering convention for the DS number is “DSXXXXXA,” where “XXXXX” is the document number
and “A” is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB® IDE online help. Select the Help menu,
and then Topics to open a list of available online help files.

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 1

http://www.microchip.com

Table of Contents

Notice to Customers...1

1. Preface..5

1.1. Conventions Used in This Guide..5
1.2. Recommended Reading...6
1.3. Document Revision History..6

2. Introduction... 7

2.1. File Types...7
2.2. Command-line Options...8
2.3. Relocatable Code...8

3. Expressions and Operators...9

3.1. Constants and Radices.. 9
3.2. Labels...9
3.3. File Register Address Masking...10
3.4. Operators..11

4. Assembler Directives.. 13

4.1. Access_ovr Directive..15
4.2. Badram and Badrom Directives... 15
4.3. Bankisel Directive...16
4.4. Banksel Directive..16
4.5. Cblock Directive... 16
4.6. Code Directive..16
4.7. Code_pack Directive.. 17
4.8. __config Directive...17
4.9. Config Directive..18
4.10. Constant Directive..18
4.11. Da Directive..18
4.12. Data Directive...19
4.13. Db Directive..19
4.14. De Directive..19
4.15. #define Directive...20
4.16. Dt Directive...20
4.17. Dtm Directive..21
4.18. Dw Directive... 21
4.19. Else Directive... 22
4.20. End Directive..22
4.21. Endc Directive.. 22
4.22. Endm Directive...22
4.23. Endw Directive... 22
4.24. Equ Directive..22
4.25. Error Directive.. 23
4.26. Errorlevel Directive...23
4.27. Exitm Directive... 23

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 2

4.28. Expand Directive.. 23
4.29. Extern Directive..23
4.30. Fill Directive..23
4.31. Global Directive..24
4.32. Idata Directive.. 24
4.33. Idata_acs Directive...24
4.34. If Directive.. 25
4.35. Ifdef Directive... 26
4.36. Ifndef Directive... 26
4.37. #include Directive...26
4.38. List Directive...27
4.39. Local Directive..28
4.40. Macro Directive.. 28
4.41. Maxram and Maxrom Directives...28
4.42. Messg Directive..28
4.43. Noexpand Directive..29
4.44. Nolist Directive... 29
4.45. Org Directive.. 29
4.46. Page Directive..29
4.47. Pagesel Directive... 29
4.48. Pageselw Directive...29
4.49. Processor Directive.. 30
4.50. Radix Directive... 30
4.51. Res Directive..30
4.52. Set Directive...30
4.53. Space Directive.. 31
4.54. Subtitle Directive.. 31
4.55. Title Directive..31
4.56. Udata Directive...31
4.57. Udata_acs Directive... 31
4.58. Udata_ovr Directive..32
4.59. Udata_shr Directive..33
4.60. #define Directive...33
4.61. Variable Directive... 33
4.62. While Directive... 33

5. Linking...35

5.1. Reserving memory... 35
5.2. Placing Psects into Memory...35

The Microchip Website...37

Product Change Notification Service..37

Customer Support.. 37

Product Identification System...38

Microchip Devices Code Protection Feature.. 38

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 3

Legal Notice... 39

Trademarks.. 39

Quality Management System... 39

Worldwide Sales and Service...40

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 4

1. Preface

1.1 Conventions Used in This Guide
The following conventions may appear in this documentation:

Table 1-1. Documentation Conventions

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or dialog “Save project before build”

Underlined, italic text with right
angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

N‘Rnnnn A number in verilog format, where
N is the total number of digits, R is
the radix and n is a digit.

4‘b0010, 2‘hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier New font:

Plain Courier New Sample source code #define START
Filenames autoexec.bat
File paths c:\mcc18\h
Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-
Bit values 0, 1
Constants 0xFF, ‘A’

Italic Courier New A variable argument file.o, where file can be any valid
filename

Square brackets [] Optional arguments mcc18 [options] file [options]
Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [, var_name...]
Represents code supplied by user void main (void)

{ ...
}

Preface

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 5

1.2 Recommended Reading
This guide is for customers who have MPASM projects and who wish to migrate them to the MPLAB XC8 PIC
assembler. The following Microchip documents are available and recommended as supplemental reference
resources.

MPLAB® XC8 PIC Assembler User's Guide
This user’s guide describes the use and features of the MPLAB XC8 PIC Assembler.

MPLAB® XC8 PIC Assembler Guide For Embedded Engineers
This guide is a getting started guide, describing example projects and commonly used coding sequences used by the
MPLAB XC8 PIC assembler. Use this guide if you need to develop new projects using the assembler.

MPLAB® XC8 C Compiler Release Notes for PIC MCU
For the latest information on changes and bug fixes to this assembler, read the Readme file in the docs subdirectory
of the MPLAB XC8 installation directory.

Development Tools Release Notes
For the latest information on using other development tools, read the tool-specific Readme files in the docs
subdirectory of the MPLAB X IDE installation directory.

1.3 Document Revision History

Revision A (March 2020)
• Initial release of this document.

Preface

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 6

2. Introduction
This guide highlights the source code and build changes that might be required should you decided to migrate a
project from the Microchip MPASM™ assembler (MPASM) to the MPLAB® XC8 PIC Assembler (PIC Assembler).

The majority of the changes required when migrating a project will be to assembler directives. Instruction sequences
typically do not require alteration, although some instruction operand expressions might require the use of different
operators or syntax.

A migrated project will almost certainly produce a hex file that differs to one produced from the original MPASM
project built with the MPASM assembler. When building with the PIC Assembler, objects and code might be linked at
different addresses, meaning that different address operands will be used with instructions, and different bank and
page selection sequences might be present. Instruction sequences, however, should remain unchanged, as no
optimizations or code transformations are performed by the PIC Assembler.

You can use the PIC Assembler from within the MPLAB X IDE. Projects dedicated to this tool can be created and will
use their own set of options displayed in the project's properties.

See the MPLAB® XC8 PIC Assembler User's Guide for full information on how to use the assembler and for more
detailed information on the assembler's directives and language. A separate MPLAB® XC8 PIC Assembler Guide for
Embedded Engineers document contains code and build option examples and getting started information.

2.1 File Types
The source file extensions used by the PIC Assembler differ to those used by MPASM.

Use a .s extension (lower case) for assembly source files. Use .S (upper case) for assembly source files that must
be preprocessed before being passed to the assembler, or alternatively, use the -xassembler-with-cpp option to
request that source files be preprocessed regardless of their extension.

A list of common file extension equivalents is shown in the table below.

Table 2-1. Equivalent File Extensions

MPASM File Extension File type PIC Assembler Equivalent

.asm Assembly source file .s or .S

.inc Include (header) file .inc

.hex HEX file output .hex

.o Object file .o

.lib Library archive .a

As output, the PIC Assembler will produce a .hex and .elf file, each with the same basename as the first source
file listed on the command line. If you are building from within the MPLAB X IDE, the files' basename will be the
project name. Note that Hexmate, which is often run by the driver, can create a log file with a .hxl extension. Do not
confuse this file with MPASM split hex files, which also use this extension.

Object files are the intermediate file format used by the assembler, but note that the format of MPASM and PIC
Assembler object files are very different. The PIC Assembler cannot read object files created by MPASM, so these
cannot be included in PIC Assembler projects. Instead, include into the project the migrated original source code from
which the MPASM object files were built.

Library archives created with the archiver, xc8-ar, should use a .a extension. Library archives may be passed to
the assembler on the command line. Although these archives may contain any mix of p-code or object modules, only
the object modules will be searched by the assembler. Note that the format of MPASM and PIC Assembler library
archives are very different. The PIC Assembler cannot read library files created by MPASM, so these cannot be
included in PIC Assembler projects. Instead, include into the project the migrated original source code from which the
MPASM libraries were built.

Introduction

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 7

The PIC Assembler does not support the generation of cross reference files. The MPASM assembler produces these
files (.xrf extension), which can be used to obtain listings of program symbols. When using the PIC Assembler, all
the symbols used by a module are shown in the assembly list file associated with that module. All program-wide
global symbols are also shown in the map file.

2.2 Command-line Options
Some of the command-line options used with MPASM have equivalents in the PIC Assembler.

All PIC Assembler options begin with either a dash, -, or double dash, --. The options are case sensitive.

The MPASM command-line options and their PIC Assembler equivalents are shown in the table below.

Table 2-2. Equivalent Command-line Options

MPASM Option Purpose PIC Assembler Equivalent

? or h Display help --help
ahex-format Specify hex file output and format Use -g to specify the type of hex file;

code is always relocatable

c Control case sensitivity No equivalent

dlabel[=value] Define textual substitution The preprocessor feature controlled
by -Dmacro=text is similar

e Specify error file No equivalent

l or l+ Enable listing file -Wa,-a
l path Specify listing file path No equivalent

m Enable macro expansion No equivalent

o Enable object file and specify path No equivalent

pdevice Specify target device -mcpu=device
q Quiet mode No equivalent

rradix Specify default radix No equivalent

s Show progress window No equivalent

t Set tab size No equivalent

wvalue Specify messages output -w, see also -mwarn.

x Enable cross reference file and
specify path

No equivalent

y Specify PIC18 instruction set -misa=[std|xinst]

2.3 Relocatable Code
The MPLAB XC8 PIC Assembler package includes a linker, hlink, and always builds code in a manner that is
referred to by MPASM documentation as relocatable code. That is to say that the PIC Assembler produces
relocatable object modules that can be linked with other modules or archive libraries to form the final program image.

Typically, you always run the PIC Assembler through the entire build sequence, so that a final image of your project is
produced, but you can, if required, stop the build process before the link step by using the -c option. This results in
an object file output, which must later be linked (together with other object modules or library archives, if required) to
form the final program image.

Introduction

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 8

3. Expressions and Operators
The operands of instructions and assembler directives are represented and evaluated differently in the PIC
Assembler compared with MPASM.

3.1 Constants and Radices
The default radix for constants in the PIC Assembler is different to that used by MPASM, and the radix specifiers
used by each assembler are different.

Without any radix specifier or directive, numeric constants in the PIC Assembler are interpreted as decimal values.
Such values would be interpreted as hexadecimal in MPASM. Use the RADIX hex directive in migrated assembly
code to ensure that the default radix assumed by the PIC Assembler matches that used by MPASM.

The MPASM radix specifiers and the equivalent specifiers used by the PIC Assembler are tabulated below.

Table 3-1. Equivalent Constants Radix Specifiers

MPASM Constant Forms Radix PIC Assembler Equivalent

B'binary_digits' Binary binary_digitsB
O'octal_digits' Octal octal_digits[O|o|Q|q]
D'decimal_digits'
or .decimal_digits

Decimal decimal_digits[D|d|nothing]

H'hexadecimal_digits' or
0xhexadecimal_digits

Hexadecimal 0hexadecimal_digits[H|h] or
0xhexadecimal_digits

A'character' or 'character' ASCII 'character'

Note that the binary digits suffix (B) used by the PIC Assembler must be in upper case to avoid confusion with
temporary labels. Hexadecimal values must always begin with a zero, 0.

The following example shows the PIC Assembler's radix specifiers in use.
movlw 10110011B ;binary value
movlw 72q ;octal value
movlw 34 ;decimal value
movlw 04Fh ;hexadecimal value
movlw 'b' ;ASCII value

3.2 Labels
The PIC Assembler is more strict than MPASM regarding the definition of labels.

A label is a symbolic alias that is assigned a value equal to the current location within the current psect. This
assignment is typically performed by the linker.

In the PIC Assembler, a label definition consists of any valid assembly identifier followed by a colon, :. In MPASM,
the colon is option. When migrating, you must add colons to any label in MPASM code that does not already use one.

Label identifiers used by the PIC Assembler are always case sensitive.

A label identifier can contain any number of characters drawn from the alphabetics, numerics, and the special
characters: dollar, $; question mark, ?; and underscore, _. The first character of an identifier cannot be numeric. A
identifier cannot have the same name as any of the assembler directives, keywords, or psect flags. A label definition
can appear on a line by itself or it can be positioned to the left of an instruction or assembler directive.

The following shows the definition of valid and unique labels in the PIC Assembler.

An_identifier:
 movlw 55

Expressions and Operators

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 9

an_identifier: movlw 0AAh
an_identifier1: DW 0x1234
?$_12345:
 return

3.3 File Register Address Masking
It is recommended that you mask all addresses used by PIC file register instructions whose operand represents a
bank offset.

The value of a label (for example the label of an object in RAM) is always the full address of where the label was
positioned in memory. Most PIC instructions that operate on a file register require only the offset within a bank to be
specified as the file register operand. The upper bits of the address, which indicate the bank number, must be
removed. The PIC Assembler will issue a fixup overflow error (for symbolic operands) or warning (for absolute
operands) should it detect that there is superfluous bank information in a file register address operand.

There are two common ways that you can mask the address operand.

• Mask out the bank information from the address using a bitwise AND (& operator), typically using the
BANKMASK() macro.

• Mask out the bank information from the address using a bitwise XOR (^ operator).

The mask value used by both these methods will vary between device, as the device families have different sized
banks.

Shown below are the compositions of an address for each device family. They all consist of a bank value, b, and an
offset into that bank, o. As indicated, a Baseline device, which has data banks 0x20 bytes in size, has an address
comprised of 5 bits of bank offset and the bank value consuming the remaining upper bits. (All the bits of the bank
information shown might not be implemented by every device). So, for example, the Baseline address 0x65 (binary
bit pattern 0110 0101) is the address of the byte residing at bank offset 5 in bank 3. By comparison, a PIC18 device
has 8 bits of bank offset and the remainder being the bank value.
Address decomposition (b: bank value, o: bank offset)
bit position: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Baseline: b b b b b b b b b b b o o o o o
Mid-range: b b b b b b b b b o o o o o o o
PIC18: b b b b b b b b o o o o o o o o

To remove the bank value from an address using an AND, use a mask with a 1 in each bit position that corresponds
to the bank offset, zeros elsewhere. For example on PIC18 devices, the mask would be 0xFF; on Mid-range devices,
this would be 0x7F; and Baseline, 0x1F. The BANKMASK() macro, available once you include <xc.inc>, can
perform the mask using the correct values, based on the selected device. Its use is shown in the following example.
#include <xc.inc>

copy:
 BANKSEL (src) ;select the bank of src
 movf BANKMASK(src),w ;move from src, masking the address
 BANKSEL (dst) ;select the bank of dst
 movwf BANKMASK(dst) ;move to dst, masking the address

Alternatively, using an XOR operation to mask the address gives you the opportunity to perform additional checks
that ensure your assumptions about the location of objects are correct. You should XOR the address with a value that
will clear the expected bank value but leave the bank offset unchanged. Such a value will have zeros in the bank
offset locations and specify the bit pattern of the bank in which the object should be located as the bank value. So, for
example, XOR the address operand with the mask 0x100 on PIC18 devices if the operand is assumed to be an
object in bank 1; XOR with 0x300 if it meant to be an operand in bank 3. On Mid-range devices, XOR with 0x80 for
bank 1 objects; 0x180 for bank 3 objects. On Baseline devices, XOR with 0x20 for bank 1 objects; 0x60 for bank 3
objects etc. In the following Mid-range example, an error will produced if src is not in bank 1 or if dst is not in bank
2.
#include <xc.inc>

copy:
 BANKSEL (src) ;select the bank of src

Expressions and Operators

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 10

 movf src^080h,w ;move from src (in bank 1)
 BANKSEL (dst) ;select the bank of dst
 movwf dst^0100h ;move to dst (in bank 2)

You can also XOR the address operand with a symbolic value. In the following Mid-range example, the programmer
has now assumed that scr and dst used in the previous example are in the same bank, and so only one bank
selection sequence is present to reduce the code size and speed up execution. An XOR can be performed using
these two symbols to ensure that this assumption is valid. In the last instruction, the expression src&0FF80h obtains
the bank value for src. This value is then XORed with the full address of dst.

#include <xc.inc>

copy:
 BANKSEL (src) ;select the bank of src
 movf BANKMASK(src),w ;move from src, masking the address
 movwf dst^(src&0FF80h) ;move to dst, which should be in the same bank as src

If scr and dst in the above code are subsequently linked in the same bank, then the XOR of the bits representing
their bank values will be 0, effectively masking the bank value from the operand address to the movwf instruction. If
src and dst are instead linked into different banks, the XOR will yeild non-zero bits in bank value that will trigger an
error, thus confuting the programmer's assumption and preventing the code from failing at runtime. This is a case
where it does not matter what bank these objects are in, but they must both be in the same bank for the code to
execute correctly.

You must not mask any address used as the operand to an instruction that accepts a full address, such as the movff
or movffl instruction. Address making is not required if the object is in bank 0 (since its bank value will already be
0); however, it is good practice to mask all address operands.

3.4 Operators
The operators defined by the PIC Assembler can be used in most expressions. Unlike those in MPASM, the PIC
Assembler operators have no operator precedence and they all have left-to-right associativity. You may need to use
parentheses when migrating complex expressions to ensure they are evaluated as they would have been in MPASM.

The MPASM operators and their PIC Assembler equivalents are tabulated below.

Table 3-2. Equivalent Operators

MPASM Operator Purpose PIC Assembler Equivalent

$ Current/Return program counter $
(Left parenthesis (
) Right parenthesis)
! Logical compliment (NOT) No equivalent

- Negation (2's compliment) -
~ Complement not
low Low address byte low
high High address byte high
upper Upper address byte low highword
* Multiplication *
/ Division /
% Modulus %
+ Addition +
- Subtraction -

Expressions and Operators

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 11

...........continued
MPASM Operator Purpose PIC Assembler Equivalent

<< Left shift << or shl
>> Right shift >> or shr
>= Greater than or equal >= or ge
> Greater than > or gt
< Less than < or lt
<= Less than or equal <= or le
== Equality = or eq
!= Inequality <> or ne
& Bitwise AND & or and
^ Bitwise XOR ^
| Bitwise OR |
&& Logical AND No equivalent

|| Logical OR No equivalent

= Assignment No equivalent

+= Assignment addition No equivalent

-= Assignment subtraction No equivalent

*= Assignment multiplication No equivalent

/= Assignment division No equivalent

%= Assignment modulus No equivalent

<<= Assignment left shift No equivalent

>>= Assignment right shift No equivalent

&= Assignment logical AND No equivalent

|= Assignment logical OR No equivalent

^= Assignment logical XOR No equivalent

++ Increment No equivalent

-- Decrement No equivalent

Expressions and Operators

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 12

4. Assembler Directives
Some MPASM assembler directives have equivalents in the MPLAB XC8 PIC Assembler; however, other MPASM
directives must be adapted to a new syntax or replaced with an alternate sequence of directives.

The following table shows each MPASM directive and the best PIC Assembler equivalent. These directives and their
equivalents are discussed in more detail in the sections that follow. Note that there can be subtle differences in the
behavior of what appear to be identical directives, and this could lead to unexpected program behavior. It is
recommended that you compare the directive description in the MPLAB® XC8 PIC Assembler User's Guide with that
in your MPASM documentation to ensure that your migrated code will work as expected in all situations.

Table 4-1. Equivalent Directives

MPASM Directive PIC Assembler Replacement

ACCESS_OVR A psect with the ovrld flag set

__BADRAM and __BADROM No replacement

BANSISEL The instruction sequence to write indirect access
registers

BANKSEL The BANKSEL directive (no change required)

CBLOCK Consider the SET/EQU directives, or DS.

CODE The code psect or similar

CODE_PACK The code psect or similar

__CONFIG The CONFIG directive with appropriate settings and
values

CONFIG The CONFIG directive with appropriate settings and
values

CONSTANT The EQU directive

DA Consider the DB or IRPC directives

DATA Consider the DW directive

DB The DB directive

DE Consider the DB directive inside a suitable psect

#DEFINE The #define preprocessor directive

DT The IRP directive

DTM The IRP directive

DW The DW or DB directive

ELSE The ELSE directive (no change required)

END The END directive (no change required)

ENDC No replacement

ENDM The ENDM directive (no change required)

ENDW No replacement

EQU The EQU directive (no change required)

ERROR The ERROR directive

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 13

...........continued
MPASM Directive PIC Assembler Replacement

ERRORLEVEL Consider the -w driver option

EXITM No replacement

EXPAND The EXPAND directive (no change required)

EXTERN The EXTRN directive (note different spelling)

FILL Consider the --fill driver option

GLOBAL The GLOBAL directive (no change required)

IDATA A psect with the initial values in program memory and
another reserving space for the data objects

IDATA_ACS A psect with the initial values in program memory and
another reserving space for the data objects

IF The IF directive (no change required)

IFDEF Consider the #ifdef preprocessor directive

IFNDEF Consider the #ifndef preprocessor directive

#INCLUDE The #include preprocessor directive

LIST The LIST directive or consider alternate assembler
options

LOCAL The LOCAL directive (no change required)

MACRO The MACRO directive (no change required)

__MAXRAM and __MAXROM No replacement

MESSG The MESSG directive (no change required)

NOEXPAND The NOEXPAND directive (no change required)

NOLIST The NOLIST directive (no change required)

ORG Consider the ORG directive

PAGE No replacement

PAGESEL The PAGESEL directive (no change required)

PAGESELW Consider the PAGESEL directive

PROCESSOR The PROCESSOR directive (no change required)

RADIX The RADIX directive (no change required)

RES Consider the DS directive

SET The SET directive (no change required)

SPACE The SPACE directive (no change required)

SUBTITLE The SUBTITLE directive (no change required)

TITLE The TITLE directive (no change required)

UDATA The udata_bankn psect or similar

UDATA_ACS The udata_acs psect or similar

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 14

...........continued
MPASM Directive PIC Assembler Replacement

UDATA_OVR A psect with the ovrld flag set

UDATA_SHR A psect with the ovrld flag set

#UNDEFINE The #undefine preprocessor directive

VARIABLE Consider the SET directive

WHILE Consider the REPT directive

4.1 Access_ovr Directive
On PIC18 devices, the MPASM ACCESS_OVR directive declares the beginning of a section of overlaid data in Access
Bank RAM.

Suggested Replacement
Define a psect with the ovrld flag set. Associate the psect with the access bank linker class, COMRAM to have it
linked somewhere in the PIC18's Access Bank.

The example following shows objects placed into the myData psect, which is used in two different modules (file 1 and
file 2). The PSECT directive uses the same psect name, ovrld flag (to indicate that the psects will be overlaid), and
space=1 flag (to indicate the psects will reside in the data space memory). The psects are associated with the PIC18
COMRAM linker class, which defines the Access Bank memory, so once overlaid, myData will appear anywhere in the
memory defined by this class.

;file 1
PSECT myData,space=1,ovrld,class=COMRAM
zero:
 DS 1
 ;leave a 1-byte gap for another object here
 ORG 2
two:
 DS 1

;file 2
PSECT myData,space=1,ovrld,class=COMRAM
 ORG 1
one:
 DS 1

Note that the contributions to an overlaid psect are concatenated in each module, but the psects from each module
are then overlaid at link time. When the above example is built, the labels will appear in memory in the order zero,
one, two.

The ORG directive in the above example has allowed the psects' content to interleave. If this directive had not been
used in file 1, the space associated with the label zero and the label one would overlap, and these objects would
appear at the same address. Such code is legal and may be desired in some applications.

Overlaid psects can be linked into any RAM area, not just the Access bank, and this construct will work on any device
with the selection of a suitable linker class.

4.2 Badram and Badrom Directives
The MPASM __BADRAM and __BADROM directives along with the __MAXRAM and __MAXROM directives specifies file
register address ranges that should be flagged as being invalid should they be used by code.

Suggested Replacement
There is no replacement for these directives.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 15

Using the -mreserve driver option will restrict linker classes to the desired memory ranges. If you only use symbols
defined in psects placed into those classes, invalid memory areas will be avoided.

The_RAMSIZE and _ROMSIZE preprocessor macros are also available and indicate the largest data and program
memory space address available with the selected target device.

#define DEST 0x7D0
PSECT text,CLASS=code,reloc=2 ;for PIC18 devices
;for other devices: PSECT text,class=CODE,delta=2
storeIt:
 movlw 66
#if DEST > _ROMSIZE
#error "destination out of bounds"
#endif
 BANKSEL (DEST)
 movwf BANKMASK(DEST)
 return

4.3 Bankisel Directive
On Mid-range devices only, the MPASM BANKISEL directive generates bank selection code appropriate for indirect
access of the register address specified by its argument.

Suggested Replacement
There is no equivalent directive in the PIC Assembler.

Replace this directive with instructions that setup the registers associated with indirect access as required for the
code following. Consult your device data sheet for the registers involved with indirect access.

4.4 Banksel Directive
The MPASM BANKSEL directive generates bank selection code appropriate for the label specified as the argument.

Suggested Replacement
No change is necessary; continue to use the BANKSEL assembler directive.

This directive is case-insensitive, can be used with any device, and works with numeric or symbolic operands. Note
that it may generate more than one instruction, so should not be used immediately following any test-and-skip
instruction.
 movlw 66
 BANKSEL input
 movwf BANKMASK(input)

4.5 Cblock Directive
The MPASM CBLOCK directive generates group of labels with sequential addresses.

Suggested Replacement
There is no equivalent directive in the PIC Assembler.

Explicitly define the required symbols using the SET or EQU directives. If there is to be storage associated with each
label, instead define labels followed by a DS directive in a suitable psect .

4.6 Code Directive
The MPASM CODE directive starts a section containing program code.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 16

Suggested Replacement
Use the predefined code psect, or a create a similar psect, ensuring the flags are suitable for a section containing
executable code on the target device. If the psects must be padded to a multiple of a certain size, use the ALIGN
directive after the code you place inside the psect.

All program code must be placed in a psect (or section) using the PSECT directive. The PIC Assembler provides the
code psect once you include <xc.inc>. You can use this psect without having to specify any psect flags, for
example:
PSECT code
;place code for any device here

Alternatively, you can define your own psect with any name and suitable psect flags. The psect's space flag must be
0, to indicate that the psect should be positioned in program memory; however, this is the default value. Typically, you
would use the class flag to assign the psect to the CODE linker class, which is also predefined by the driver, so that
the psect will be positioned somewhere in the memory associated with this class without you having to specify any
linker options. You could also position this psect at a particular address using the linker's -p option, passed to the
linker from the driver's -Wl option.

For PIC18 devices, set the psect's reloc flag to be 2, to indicate that the psect contents must be aligned on even
addresses. Use the default delta value of 1. For example:

PSECT myText,reloc=2,class=CODE
;PIC18 code goes here

For all other devices, use the default reloc flag value of 1, but set the delta value to be 2, to indicate that the
device uses (16-bit) word addressable program memory. For example:

PSECT myText,delta=2,class=CODE
;Baseline/Mid-range code goes here

You can add more content to the same psect later in the source file by using the PSECT directive with the psect's
name, but you do not need to repeat the psect flags. You could, for example, concatenate more content to the psects
defined above by using:
PSECT myText
;more content goes here

4.7 Code_pack Directive
The MPASM CODE_PACK directive starts a section containing program code that will not be padded to an even
length.

Suggested Replacement
Use the predefined code psect, or a create a similar psect, ensuring the flags are suitable for a section containing
executable code on the target device.

See 4.6 Code Directive for more information and examples.

4.8 __config Directive
The MPASM __CONFIG directive sets the device's configuration bits.

Suggested Replacement
Use the CONFIG directive and setting-value pairs relevant to your target device and application. See 4.9 Config
Directive.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 17

4.9 Config Directive
The MPASM CONFIG directive sets the device's configuration bits.

Suggested Replacement
The PIC Assembler's CONFIG directive is a direct replacement, but ensure that the settings and values used with the
directive are correct for your device.

This directive can be used for all devices. The following example shows the different ways it can be used to program
individual configuration bits, a configuration word as a whole, or ID location values.
; PIC18F67K22
; VREG Sleep Enable bit : Enabled
; LF-INTOSC Low-power Enable bit : LF-INTOSC in High-power mode during Sleep
; SOSC Power Selection and mode Configuration bits : High Power SOSC circuit selected
; Extended Instruction Set : Enabled
config RETEN = ON, INTOSCSEL = HIGH, SOSCSEL = HIGH, XINST = ON

; Alternatively, set the entire word
config CONFIG1L = 0x5D

; IDLOC @ 0x200000
config IDLOC0 = 0x15

See the MPLAB® XC8 PIC Assembler User's Guide for full information on this directive.

4.10 Constant Directive
The MPASM CONSTANT directive declares a symbol whose initial value cannot be changed.

Suggested Replacement
Use the PIC Assembler's EQU directive, for example:

threshold EQU 0xFF

4.11 Da Directive
The MPASM DA directive packs each sequence of two ASCII characters within a string into a 14-bit word in program
memory.

Suggested Replacement
The PIC Assembler's DB directive inside a suitable psect performs a similar function, but note that packed strings are
not supported by the PIC assembler and that each character will appear as a full byte in memory.

Consider placing the IRPC and/or DB directives in the data psect that is provided once you include <xc.inc>, for
example:
#include <xc.inc>

PSECT data
myString:
 IRPC char,ABC
 DB ’char’
 ENDM

but note that each character will consume one entire byte of memory.

Alternatively, you can define your own psect and allocate it to program memory. Ensure that the psect's space flag is
set to 0 (the default value). It can be assigned an address by associating it with a suitable linker class (e.g. CONST for

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 18

PIC18 devices, or STRCODE for other devices), or by explicitly positioning the psect using the linker's -P option
(accessible from the driver using the -Wl option), as in the following PIC18 example.

PSECT romData,space=0,class=CONST
myString:
 DB ’A’, 'B', 'C'

4.12 Data Directive
The MPASM DATA directive initializes one or more words of program memory with data.

Suggested Replacement
There is no direct replacement for this directive; however, the PIC Assembler's DW directive performs a similar
function. See 4.18 Dw Directive for more information and examples.

4.13 Db Directive
The MPASM DB directive places bytes into program memory.

Suggested Replacement
The PIC Assembler's DB directive inside a suitable psect performs a similar function, but there are some differences
in its operation.

This directive places the value of its operands as bytes into the current psect. String literal operands are not
supported, but as shown in the example below, you may use characters and multiple comma-separated operands.

With PIC18 devices, each byte specified will consume one byte pf program memory. With Mid-range devices, there
will be one byte stored in each program word, with the upper bits of that word left as zeros. To have data
encapsulated into retlw instructions, use retlw instructions instead of this directive (see the example in the 4.16
Dt Directive).

You can use the data psect to hold the values defined. This psect is predefined once you include <xc.inc>. For
example:
PSECT data
symbols:
 DB 76h
 DB 'A', -23

Alternatively, you can define your own psect and allocate it to program memory. Ensure that the psect's space flag is
set to 0 (the default value). It can be assigned an address by associating it with a suitable linker class (e.g. CONST for
PIC18 devices, or STRCODE for other devices), or by explicitly positioning the psect using the linker's -P option
(accessible from the driver using the -Wl option), as in the following PIC18 example.

PSECT romData,space=0,class=CONST
symbols:
 DB 76h
 DB 'A', -23

4.14 De Directive
The MPASM DE directive places words into EEPROM.

Suggested Replacement
The PIC Assembler's DW directive inside a suitable psect performs a similar function.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 19

You can use the edata psect to hold the values defined. This psect is predefined once you include <xc.inc>. For
example:

PSECT edata
 DW 9700h
 DW 'r', -48

Alternatively, you can define your own psect and allocate it to EEPROM. Ensure that the psect's space flag is set to
0 (the default value) for PIC18 devices, or set to 3 for any other devices that support EEPROM. The psect can be
assigned an address by associating it with the EEDATA linker class, or by explicitly positioning the psect using the
linker's -P option (accessible from the driver using the -Wl option), as in the following Mid-range example.

PSECT eepromData,space=3,class=CONST
symbols:
 DW 76h
 DW 'A', -23

4.15 #define Directive
The MPASM #DEFINE directive defines textual replacement for a macro.

Suggested Replacement
As assembly source files can be preprocessed, the #define preprocessor directive (case sensitive) can be used as
a direct replacement for this assembler directive, as shown in the example below.

All the usual preprocessor features associated with macro replacement are available. Ensure the assembly source
file uses a .S extension so that it will be preprocessed by the assembler.

#define SUMSP(a, b) (a+2*b)
PSECT code
process:
 movlw SUMSP(5, 3)
 movwf volume
 ...

4.16 Dt Directive
The MPASM DT directive creates a table of retlw instructions.

Suggested Replacement
The PIC Assembler's IRP directive inside a suitable psect performs a similar task.

The IRP directive works like a macro. The block of code terminated by an ENDM token is output once for each value
specified after the argument name. Any occurrence of the name argument inside the definition is replaced with the
value being processed.

You can use the data psect to hold the values defined. This psect is predefined once you include <xc.inc>. For
example:

PSECT data
symbols:
IRP number,48,65h,6Fh
 retlw number
ENDM

This would expand to:

PSECT data
symbols:
 retlw 48

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 20

 retlw 65h
 retlw 6Fh

Alternatively, you can define your own psect and allocate it to program memory. Ensure that the psect's space flag is
set to 0 (the default value). It can be assigned an address by associating it with a suitable linker class (e.g. CONST for
PIC18 devices, or STRCODE for other devices), or by explicitly positioning the psect using the linker's -P option
(accessible from the driver using the -Wl option), as in the following PIC18 example.

PSECT romData,space=0,class=CONST
symbols:
IRP number,48,65h,6Fh
 retlw number
ENDM

4.17 Dtm Directive
The MPASM DTM directive creates a table of movlw instructions.

Suggested Replacement
The PIC Assembler's IRP directive inside a suitable psect performs a similar task.

See 4.16 Dt Directive for more information and examples.

4.18 Dw Directive
The MPASM DW directive places words into program memory.

Suggested Replacement
The PIC Assembler's DW directive inside a suitable psect performs a similar function, but there are some differences
in its operation.

This directive places the value of its operands as 16-bit words into the current psect. For PIC18 devices, each
operand will consume two addresses (bytes). For other devices, the assembler will attempt to place the entire
operand value into one program memory word, but the program memory of these devices are less than 2 bytes wide,
so the value may be truncated. Typically, data is stored in the program memory of these devices using retlw
instructions that store each byte in separate memory locations.

String literal operands are not supported with this directive, but as shown in the example below, you may use
characters and multiple comma-separated operands.

You can use the data psect to hold the values defined. This psect is predefined once you include <xc.inc>. For
example:

PSECT data
modifiers:
 DW 1354h
 DW 's', -23

Alternatively, you can define your own psect and allocate it to program memory. Ensure that the psect's space flag is
set to 0 (the default value). It can be assigned an address by associating it with a suitable linker class (e.g. CONST for
PIC18 devices, or STRCODE for other devices), or by explicitly positioning the psect using the linker's -P option
(accessible from the driver using the -Wl option), as in the following PIC18 example.

PSECT myData,space=0,class=CONST
modifiers:
 DW 1354h
 DW 's', -23

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 21

4.19 Else Directive
The MPASM ELSE directive provides an alternative block of assembly code to build should the IF directive condition
evaluate to false.

Suggested Replacement
The PIC Assembler's ELSE directive is a direct replacement for this directive.

See 4.34 If Directive for examples.

4.20 End Directive
The MPASM END directive indicates the end of the program's source code.

Suggested Replacement
The PIC Assembler's END directive performs the same task.

Use of the END directive is optional. Once encountered, the assembler will assume there are no more lines of input,
and even blank lines after an END directive will trigger an error.

The program's start label should be specified as an argument to one of these directives to prevent an assembler
warning.

 ...
 return
 END startMain ;the end of the program, folks

4.21 Endc Directive
The MPASM ENDC directive terminates a CBLOCK directive.

Suggested Replacement
There is no direct replacement for this directive.

4.22 Endm Directive
The MPASM ENDM directive terminates a macro definition.

Suggested Replacement
The PIC Assembler's ENDM directive is direct replacement.

See 4.40 Macro Directive for examples.

4.23 Endw Directive
The MPASM ENDW directive terminates a WHILE directive.

Suggested Replacement
There is no direct replacement for this directive. See 4.62 While Directive for alternatives.

4.24 Equ Directive
The MPASM EQU directive equates a value with a symbol.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 22

Suggested Replacement
The PIC Assembler's EQU directive is a direct replacement for this directive.

There must be no prior definition of the symbol used with EQU.

4.25 Error Directive
The MPASM ERROR directive generates a user-defined error message.

Suggested Replacement
The PIC Assembler's ERROR directive is a direct replacement for this directive.

4.26 Errorlevel Directive
The MPASM ERRORLEVEL directive controls which assembler messages are printed.

Suggested Replacement
The -w driver option can be used to suppress all warning messages produced by the assembler. Consider also the -
mwarn option, which can restrict warnings to the specified level of severity.

4.27 Exitm Directive
The MPASM EXITM directive forces a premature exit from the macro.

Suggested Replacement
There is no replacement for this directive.

4.28 Expand Directive
The MPASM EXPAND directive requests that assembler macros be expanded in the listing file.

Suggested Replacement
The PIC Assembler's EXPAND directive is a direct replacement for this directive.

4.29 Extern Directive
The MPASM EXTERN directive links a symbol with a symbol globally defined in another module.

Suggested Replacement
The PIC Assembler's EXTRN directive (note the subtle difference in spelling) is a direct replacement for this directive.

An error will be issued if you use this directive with a symbol that was defined in the current module.

4.30 Fill Directive
The MPASM FILL directive fills memory with the specified value.

Suggested Replacement
The PIC Assembler's --fill driver option can be used to perform a similar task. See the MPLAB® XC8 PIC
Assembler User's Guide for details of how this feature is used.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 23

4.31 Global Directive
The MPASM GLOBAL directive declares symbols that may be shared by code in other modules.

Suggested Replacement
The PIC Assembler's GLOBAL directive is a direct replacement for this directive.

In other modules, you may use either GLOBAL or EXTRN to link in with the symbols declared by this directive.

4.32 Idata Directive
The MPASM IDATA directive creates a section for objects that must be initialised.

Suggested Replacement
Use any of the PIC Assembler's directives that can reserve space in a suitable data memory psect, and collate the
initial values in a separate psect placed in program memory.

The following PIC18 example reserves the runtime memory for the variables in bank 1 and places the initial values
for these variables in program memory. Assembler-provided psects were used in this example, but you can define
you own suitable psects, if required.

#include <xc.inc>
;define space for the variables in RAM
PSECT udata_bank1
vars:
input:
 DS 2
output:
 DS 1

;place the initial values for the above in a matching order in program memory
PSECT data
iValues:
 DW 55AAh
 DB 67h

Your application will need to provide code that copies the initial values to the reserved data memory space, as shown
in the following example which copies the values at iValues to vars.

PSECT text,class=CODE
copy0:
 movlw low (iValues)
 movwf tblptrl
 movlw high(iValues)
 movwf tblptrh
 movlw low highword(iValues)
 movwf tblptru
 tblrd*+
 movff tablat, vars+0
 tblrd*+
 movff tablat, vars+1
 tblrd*+
 movff tablat, vars+2
 return

When copying larger amounts of data, consider using a loop and FSR register to indirectly write to the variables in
data memory.

4.33 Idata_acs Directive
The MPASM IDATA_ACS directive creates a section for PIC18 access bank objects that must be initialised.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 24

Suggested Replacement
Use any of the PIC Assembler's directives that can reserve space in a suitable data memory psect, and collate the
initial values in a separate psect placed in program memory.

The following PIC18 example reserves the runtime memory for the variables in the Access Bank and places the initial
values for these variables in program memory. Assembler-provided psects were used in this example, but you can
define you own suitable psects, if required.

#include <xc.inc>
;define space for the variables in RAM
PSECT udata_acs
vars:
input:
 DS 2
output:
 DS 1

;place the initial values for the above in a matching order in program memory
PSECT data
iValues:
 DW 55AAh
 DB 67h

Your application will need to provide code that copies the initial values to the reserved data memory space, as shown
in the following example which copies the values at iValues to vars.

PSECT text,class=CODE
copy0:
 movlw low (iValues)
 movwf tblptrl
 movlw high(iValues)
 movwf tblptrh
 movlw low highword(iValues)
 movwf tblptru
 tblrd*+
 movff tablat, vars+0
 tblrd*+
 movff tablat, vars+1
 tblrd*+
 movff tablat, vars+2
 return

When copying larger amounts of data, consider using a loop and FSR register to indirectly write to the variables in
data memory.

4.34 If Directive
The MPASM IF directive begins a conditional block of assembly code.

Suggested Replacement
The PIC Assembler's IF directive is a direct replacement for this directive.

The operand must be an absolute expression and if non-zero, then the code following the IF up to the next matching
ELSE, ELSIF or ENDIF will be assembled. If the operand is zero, then the code up to the next matching ELSE or
ENDIF will not be output. At an ELSE, the sense of the conditional compilation will be inverted, while an ENDIF will
terminate the conditional assembly block.

The following shows the directive being used to include one of two calls into the output.
IF DEMO
 call demo_mode
ELSE
 call play_mode
ENDIF

Assembly code in both true and false cases is always scanned and interpreted, but the machine code corresponding
to the instructions is output only if the condition matches. This implies that assembler directives (e.g., EQU) will be

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 25

processed regardless of the state of the condition expression, and so, should not be used inside an IF - ENDIF
construct.

Although the MPASM assembler allows you to use a #IF form of this directive, note that it is still an assembler
directive. The PIC Assembler's #if directive is a preprocessor directive, hence will be looking at the result of a
preprocessor expression (potentially using preprocessor symbols), not an assembler expression (potentially using
assembler symbols). If you migrate your code to use the preprocessor directive, ensure that you also examine the
expressions involved, defining as required the equivalent preprocessor macros using either the#define directive or
-D option.

4.35 Ifdef Directive
The MPASM IFDEF directive begins a conditional block of assembly code.

Suggested Replacement
As assembly source files can be preprocessed, the #ifdef preprocessor directive can be used as a replacement for
this directive. Ensure the assembly source file uses a .S extension so that it will be preprocessed by the assembler.
For example:
#ifdef DBG
 movf state,w
 call diag
#endif

Although the MPASM assembler allows you to use a #IFDEF form of this directive, note that it is still an assembler
directive. The PIC Assembler's #ifdef directive is a preprocessor directive, hence will be looking for the definition of
a preprocessor symbol, not an assembler symbol. If you migrate your code to use the preprocessor directive, ensure
that you also define as required the equivalent preprocessor macros using either the#define directive or -D option.

4.36 Ifndef Directive
The MPASM IFNDEF directive begins a conditional block of assembly code.

Suggested Replacement
As assembly source files can be preprocessed, the PIC Assembler #ifndef preprocessor directive can be used as
a replacement for this directive, as shown in the example below. Ensure the assembly source file uses a .S
extension so that it will be preprocessed by the assembler. For example:
#ifndef RUNMODE
 movf state,w
 call diag
#endif

Although the MPASM assembler allows you to use a #IFNDEF form of this directive, note that it is still an assembler
directive. The PIC Assembler's #ifndef directive is a preprocessor directive, hence will be looking for the definition
of a preprocessor symbol, not an assembler symbol. If you migrate your code to use the preprocessor directive,
ensure that you also define as required the equivalent preprocessor macros using either the#define directive or -D
option.

4.37 #include Directive
The MPASM #include directive is textually replaced with the specified file.

Suggested Replacement
As assembly source files can be preprocessed, the PIC Assembler's #include preprocessor directive can be used
as a direct replacement for this directive, as shown in the example below.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 26

The search for filenames enclosed in angle brackets will be in the standard header locations. The search for quoted
filenames will be in the current working directory first, then the standard header locations. Ensure the assembly
source file uses a .S extension so that it will be preprocessed by the assembler.

#include <xc.inc>
#include "buttons.inc"

Alternatively, the PIC Assembler's INCLUDE "file" directive can be used as a replacement. No search paths are
used. If the file to be included is not in the current working directory, the full path to the file must be specified with the
directive. This directive cannot be used to include header files that contain preprocessor directives, so you cannot, for
example use it to include <xc.inc>.

INCLUDE "buttons.inc"

4.38 List Directive
The MPASM LIST directive enables and controls content in the listing file.

Suggested Replacement
The PIC Assembler's LIST options directive performs many of the functions of this directive, as shown in Table
4-2.

Table 4-2. Equivalent List Options

MPASM List Option Purpose Suggested PIC Assembler
Replacement

b=nnn Set tabs spaces No replacement available

c=nnn Set column width c=nnn
f=format Set the hex file format Use the -g driver option

free Use free-format parser No replacement available

fixed Use fixed-format parser No replacement available

mm=[on|off] Print memory map in listing Use the -msummary option to print
memory usage to the console

n=nnn Set lines per page n=nnn
p=device Select device p=device
pe=type Select device and enable PIC18

extended instruction mode
Use the -mcpu option in conjunction
with the -misa option

r=radix Set source code radix Use the RADIX assembler directive

st=[on|off] Print symbol table in listing No replacement available, but a
symbol table is always produced in
the listing

t=[on|off] Truncate listing lines t=[on|off]
w=[0|1|2] Set message level Use the -w option to suppress

warnings

x=[on|off] Enable macro expansion x=[on|off]

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 27

4.39 Local Directive
The MPASM LOCAL directive defines a local label inside a macro.

Suggested Replacement
The PIC Assembler's LOCAL directive is direct replacement. Separate multiple label names with a comma

4.40 Macro Directive
The MPASM MACRO directive defines a macro.

Suggested Replacement
The PIC Assembler's MACRO directive is direct replacement.

Within a macro definition, the & character can be used to permit the concatenation of macro arguments with other
text, but is removed in the actual expansion. For example:

loadPort MACRO port, value
 movlw value
 movwf PORT&port
ENDM

will load PORTA if port is A when called, etc. The special meaning of the & token in macros implies that you must
only use the and form of the bitwise AND operator.

A comment can be suppressed within the expansion of a macro by opening the comment with two semicolons, ;;.

When invoking a macro, the argument list must be comma-separated. If it is desired to include a comma (or other
delimiter such as a space) in an argument then angle brackets < and > can be used to quote.

If an argument is preceded by a percent sign, %, that argument will be evaluated as an expression and passed as a
decimal number, rather than as a string. This is useful if evaluation of the argument inside the macro body would yield
a different result.

The nul operator can be used within a macro to test a macro argument, for example:

IF nul arg3 ;argument was not supplied.
...
ELSE ;argument was supplied
...
ENDIF

4.41 Maxram and Maxrom Directives
The MPASM __maxram and __maxrom directives, along with the __badram and __badrom directives specifies file
register address ranges that should be flagged as being invalid should they be used by code.

Suggested Replacement
There is no replacement for these directives.

See 4.2 Badram and Badrom Directives for more information.

4.42 Messg Directive
The MPASM MESSG directive generates a user-defined advisory message.

Suggested Replacement
The PIC Assembler's MESSG directive is a direct replacement for this directive.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 28

4.43 Noexpand Directive
The MPASM NOEXPAND directive requests that assembler macros not be expanded in the listing file.

Suggested Replacement
The PIC Assembler's NOEXPAND directive is a direct replacement for this directive.

4.44 Nolist Directive
The MPASM NOLIST directive enables and controls content in the listing file.

Suggested Replacement
The PIC Assembler's NOLIST directive is a direct replacement this directive.

4.45 Org Directive
The MPASM ORG directive sets the initial location counter for subsequent code to be the specified address.

Suggested Replacement
The PIC Assembler's ORG directive performs a similar task to this directive, but there are some differences in its
operation.

The ORG directive changes the value of the location counter within the current psect to be that specified. This means
that the address set by the ORG directive is relative to the base address of the psect, which is typically not determined
until link time. For example, using ORG 0100h inside a psect that is ultimately linked to address 0x2000 will move the
location counter to address 0x2100. Only if the psect in which this directive is placed is absolute (uses the abs flag)
and overlaid (ovrld flag) will the location counter be moved to the absolute address specified.

The ORG directive is seldom needed in programs. To have code or data located at a particular address, place it in a
unique psect and have the linker position that psect at the required location.

4.46 Page Directive
The MPASM PAGE directive inserts a page eject into the listing file.

Suggested Replacement
There is no direct replacement for this directive.

4.47 Pagesel Directive
The MPASM PAGESEL directive generates page selection code appropriate for the label specified as the argument.

Suggested Replacement
The PIC Assembler's PAGESEL directive is a direct replacement for this directive.

4.48 Pageselw Directive
The MPASM PAGESELW directive generates page selection code (using WREG as an intermediate register)
appropriate for the label specified as the argument.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 29

Suggested Replacement
The PIC Assembler's PAGESEL directive performs a similar function but will never use WREG to adjust page
selection bits. The output page selection code will perform bit operations on the bits that must be toggled.

4.49 Processor Directive
The MPASM PROCESSOR directive sets the device type.

Suggested Replacement
The PIC Assembler's PROCESSOR directive is a direct replacement for this directive.

The device must be selected using the -mcpu driver option, but this directive may be used to ensure that the source
code is built for the intended device. An error will be generated if the device specified by this directive clashes with
that set by the option.

4.50 Radix Directive
The MPASM RADIX directive sets the radix for constants specified in the assembly source.

Suggested Replacement
The PIC Assembler's RADIX directive is a direct replacement for this directive.

4.51 Res Directive
The MPASM RES directive reserves memory by advancing the location counter.

Suggested Replacement
The PIC Assembler's DS directive has a similar function, but there are some differences in its operation.

The DS directive advances the location counter, allowing memory to be allocated to a label defined before the
directive. Typically it is used inside psects linked to the data space, providing a mechanism to reserve memory for
variables, as in the following example.
PSECT udata_bank0
input:
 DS 2 ;allocate 2 bytes for input
output:
 DS 4 ;allocate 4 bytes for output

If the directive is used in a psect assigned to program memory (space=0 flag), it will move the location counter, but
not place anything in the HEX file output.

The address units of this directive are determined by context, in particular, the delta and bit flag values associated
with the psect in which it resides. If the delta flag is set to 1, then the directive moves the location counter forward
by the specified number of bytes; if it is 2, it moves it forward by 16-bit words, etc. When the bit flag is used, the
allocation units are bits.

4.52 Set Directive
The MPASM SET directive equates a value with a symbol.

Suggested Replacement
The PIC Assembler's SET directive is a direct replacement for this directive.

The symbol can be redefined without error.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 30

4.53 Space Directive
The MPASM SPACE directive inserts blank lines into the assembly listing file.

Suggested Replacement
The PIC Assembler's SPACE assembler directive is a direct replacement for this directive.

4.54 Subtitle Directive
The MPASM SUBTITLE directive specifies the listing file subtitle string.

Suggested Replacement
The PIC Assembler's SUBTITLE assembler directive is a direct replacement for this directive.

4.55 Title Directive
The MPASM TITLE directive specifies the listing file title string.

Suggested Replacement
The PIC Assembler's TITLE assembler directive is a direct replacement for this directive.

4.56 Udata Directive
The MPASM UDATA directive creates a section for objects that are uninitialised..

Suggested Replacement
Use the predefined udata_bankn psect, where n represents the bank number in which the psect should reside, or a
create a similar psect, ensuring the flags are suitable for a section containing variables on the target device.

The PIC Assembler provides the udata_bankn psect once you include <xc.inc>. You can use this psect without
having to specify any psect flags, for example:

#include <xc.inc>

PSECT udata_bank1
;data goes here

Alternatively, you can define your own psect with any name and suitable psect flags. The psect's space flag must be
1, to indicate that the psect should be positioned in data memory. Typically, you would use the class flag to assign
the psect to one of the BANKN linker classes, where N represents the bank number for which the class defines. These
classes are also predefined by the driver, so that the psect will be positioned somewhere in the memory associated
with the specified class without you having to specify any linker options. You could also position this psect at a
particular address using the linker's -p option, passed to the linker from the driver's -Wl option. For example:

PSECT myData,space=1,class=BANK1
;data goes here

4.57 Udata_acs Directive
For PIC18 devices, the MPASM UDATA_ACS directive creates a section for Access bank objects that are
uninitialised..

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 31

Suggested Replacement
Use the predefined udata_acs psect or a create a similar psect, ensuring the flags are suitable for a section
containing Access bank variables on the PIC18 device.

The PIC Assembler provides the udata_acs psect once you include <xc.inc>. You can use this psect without
having to specify any psect flags, for example:

#include <xc.inc>

PSECT udata_acs
;data goes here

Alternatively, you can define your own psect with any name and suitable psect flags. The psect's space flag must be
1, to indicate that the psect should be positioned in data memory. Typically, you would use the class flag to assign
the psect to one of the COMRAM linker classes, which is also predefined by the driver, so that the psect will be
positioned somewhere in the memory associated with the specified class without you having to specify any linker
options. You could also position this psect at a particular address using the linker's -p option, passed to the linker
from the driver's -Wl option. For example:

PSECT myData,space=1,class=COMRAM
;data goes here

4.58 Udata_ovr Directive
For Baseline and Mid-range devices, the MPASM UDATA_OVR directive creates an overlaid section for objects that
are uninitialised.

Suggested Replacement
Define a psect with the ovrld flag set. Associate the psect with the access bank linker class, COMMON to have it
linked somewhere in the common memory on Baseline or Mid-range devices.

The example following shows objects placed into the myData psect, which is used in two different modules (file 1 and
file 2). The PSECT directive uses the same psect name, ovrld flag (to indicate that the psects will be overlaid), and
space=1 flag (to indicate the psects will reside in the data space memory). The psects are associated with the
COMMON linker class, which defines the common memory, so once overlaid, myData will appear anywhere in the
memory defined by this class.

;file 1
PSECT myData,space=1,ovrld,class=COMMON
zero:
 DS 1
 ;leave a 1-byte gap for another object here
 ORG 2
two:
 DS 1

;file 2
PSECT myData,space=1,ovrld,class=COMMON
 ORG 1
one:
 DS 1

Note that the contributions to an overlaid psect are concatenated in each module, but the psects from each module
are then overlaid at link time. When the above example is built, the labels will appear in memory in the order zero,
one, two.

The ORG directive in the above example has allowed the psects' content to interleave. If this directive had not been
used in file 1, the space associated with the label zero and the label one would overlap, and these objects would
appear at the same address. Such code is legal and may be desired in some applications.

Overlaid psects can be linked into any RAM area, not just common memory. This construct will work on any device
with the selection of a suitable linker class.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 32

4.59 Udata_shr Directive
On Baseline and Mid-range devices, the MPASM UDATA_SHR directive creates a section for unbanked objects that
are uninitialised.

Suggested Replacement
Use the predefined udata_shr psect or a create a similar psect, ensuring the flags are suitable for a section
containing variables on the Baseline or Mid-range device.

The PIC Assembler provides the udata_shr psect once you include <xc.inc>. You can use this psect without
having to specify any psect flags, for example:

#include <xc.inc>

PSECT udata_shr
;data goes here

Alternatively, you can define your own psect with any name and suitable psect flags. The psect's space flag must be
1, to indicate that the psect should be positioned in data memory. Typically, you would use the class flag to assign
the psect to one of the COMMON linker classes, which is also predefined by the driver, so that the psect will be
positioned somewhere in the memory associated with the specified class without you having to specify any linker
options. You could also position this psect at a particular address using the linker's -p option, passed to the linker
from the driver's -Wl option. For example:

PSECT myData,space=1,class=COMMON
;data goes here

4.60 #define Directive
The MPASM #define directive defines textual replacement for a macro.

Suggested Replacement
As assembly source files can be preprocessed, the PIC Assembler's #define preprocessor directive can be used as
a direct replacement for this directive, as shown in the example below. All the usual preprocessor features associated
with macro replacement are available with this directive.

Ensure the assembly source file uses a .S extension so that it will be preprocessed by the assembler.

#define SUMSP(a, b) (a+2*b)
PSECT text,class=CODE
process:
 movlw SUMSP(5, 3)
 movwf volume

4.61 Variable Directive
The MPASM VARIABLE directive creates a variable set to be a value.

Suggested Replacement
There is no replacement for this directive, but the PIC Assembler's SET directive performs a similar task.

The SET directive associates a value with a symbol. Although the symbol's value can be redefined using another SET
directive without error, it is not possible to perform operations on the symbol's value in other way.

4.62 While Directive
The MPASM WHILE directive loops over a block of assembly code while some condition is true.

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 33

Suggested Replacement
There is no replacement for this directive, but the PIC Assembler's REPT directive performs a similar task.

The block of code following REPT and terminated by ENDM is output a number of times, based on the directive's
argument.

The following example shows a shift instruction that will be performed 4 times.
REPT 4
 rlncf mask,f
ENDM

Assembler Directives

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 34

5. Linking
The linker is always invoked when building projects using the PIC Assembler, unless you stop the build prematurely
by using the -c option. The linker must be executed to obtain a final program image to download to your hardware.

The linker is controlled by its own set of options. These options include those that specify the memory arrangement of
the device. Linker scripts are not and cannot be used.

You do not need to run the linker explicitly to specify or change the linker options. Several pic-as driver options
indirectly control the linker, and the -Wl, driver option can be used to pass through linker options directly to the
linker. This option also allows you to override some of the default options issued to the linker by the driver.

5.1 Reserving memory
You can make memory unavailable for your code and data by using the -mreserve driver option. Alternatively, you
can also use the -mram and -mrom options to do the same thing. For example -mreserve=ram@100:103 will
remove the range 100-103h in data memory. You could also use -mram=default,-100-103. To reserve program
memory, use for example, -mreserve=rom@1800-1fff or -mrom=default,-1800-1fff..

When reserving memory, it is removed from all of the linker classes that include that memory range, and thus this
memory will not be used by any psect placed into those classes. Memory reservations will not affect any psect that
has been linked to an absolute address, nor those placed relative to other psects. To move those, you must change
the linker option that places them in that location.

5.2 Placing Psects into Memory
All code and objects must be placed in a psect (program section), which is just a way of grouping together parts of a
program under the psect’s name. All psects are allocated memory by the linker, after which, the values for any labels
defined in those psects can be determined.

When placing a psect into memory, the linker performs the first of the following operations which matches the
situation.

• If the psect specifies the abs flag, it is placed at address 0 in the memory space indicated by the psect's space
flag, or the program memory (default) space if no space has been specified.

• If a -p linker option references the psect name, the psect is placed at the location specified by that option in the
memory space indicated by the psect's space flag, or the program memory (default) space if no space has
been specified.

• If the psect is associated with a linker class, the psect is placed at any free location in the address ranges
defined by that class.

• If the psect specifies a space number, it is placed at a free location in that memory space (Not recommended).
• The psect is placed in a free location in the program memory (default) space (Not recommended).

Some situations are illegal, for example if you use a -p option to place a psect that also uses the abs flag, then an
error will be issued. It is recommended that psects are always linked using the abs flag, using a -p option, or via a
linker class (the first three of the above methods). If the linker has to position a psect with no guidance from the user
(the last two of the above methods), a warning similar to,(526) psect "wanderer" not specified in -P
option (first appears in "not_right.o"), will be emitted.

In most cases, psects can be linked anywhere in a suitable address range that is dictated by the device. For
example, most executable code can be placed anywhere in program memory, or at least anywhere in a program
memory page. Data objects can usually be placed anywhere in a data bank. In this case, the easiest way to have
these psects linked is to associate them with a linker class. If you are using a psect provided by the PIC Assembler,
then these are already associated with a suitable linker class and you do not need to specify any linker options to
have them correctly linked. In the following example,
PSECT udata_bank1
myVar:
 DS 2

Linking

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 35

the udata psect has already been associated with the RAM linker class and will be linked anywhere in free memory
associated with that class.

If you have created your own psect, you can associate it with any of the existing linker classes provided by the PIC
Assembler by using the class flag with the psect definition. In the following example, a psect has been created by
the programmer to use instead of udata.

PSECT machData,space=1,class=MDATA
myVar:
 DS 2

This psect uses a new class, MDATA, which will need to be defined by a linker option. To do that, use, for example,
the driver option, -Wl,-AMDATA=050h-05fh, which passes the -A linker option directly to the linker and which will
associate the specified address range with the MDATA class.

There are, however, times when a psect must be placed at a specific address. The reset vector code is one good
example, as are interrupt routines. In this case, you will need to use a -p linker option to place the psect at the
desired location. This might be as simple as providing an absolute address, for example using the driver option -
Wl,-pInterrupt=08h to place the psect called Interrupt at address 8, but there are more advanced usages of
this option.

Check the MPLAB® XC8 PIC Assembler User's Guide for full details concerning the psects and linker classes
provided by the PIC Assembler, as well as the linker and driver options mentioned in this section.

Linking

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 36

The Microchip Website
Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files
and information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: http://www.microchip.com/support

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 37

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Product Identification System
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. X /XX XXX

PatternPackageTemperature
Range

Device

[X](1)

Tape and Reel
Option

-

Device: PIC16F18313, PIC16LF18313, PIC16F18323, PIC16LF18323

Tape and Reel Option: Blank = Standard packaging (tube or tray)

T = Tape and Reel(1)

Temperature Range: I = -40°C to +85°C (Industrial)

E = -40°C to +125°C (Extended)

Package:(2) JQ = UQFN

P = PDIP

ST = TSSOP

SL = SOIC-14

SN = SOIC-8

RF = UDFN

Pattern: QTP, SQTP, Code or Special Requirements (blank otherwise)

Examples:

• PIC16LF18313- I/P Industrial temperature, PDIP package
• PIC16F18313- E/SS Extended temperature, SSOP package

Note: 
1. Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering

purposes and is not printed on the device package. Check with your Microchip Sales Office for package
availability with the Tape and Reel option.

2. Small form-factor packaging options may be available. Please check http://www.microchip.com/packaging for
small-form factor package availability, or contact your local Sales Office.

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 38

http://www.microchip.com/packaging

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with
your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-5884-5

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,
DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit http://www.microchip.com/quality.

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 39

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
http://www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. User Guide DS-50002973A-page 40

http://www.microchip.com/support
http://www.microchip.com

	Notice to Customers
	Table of Contents
	1. Preface
	1.1. Conventions Used in This Guide
	1.2. Recommended Reading
	1.3. Document Revision History

	2. Introduction
	2.1. File Types
	2.2. Command-line Options
	2.3. Relocatable Code

	3. Expressions and Operators
	3.1. Constants and Radices
	3.2. Labels
	3.3. File Register Address Masking
	3.4. Operators

	4. Assembler Directives
	4.1. Access_ovr Directive
	4.2. Badram and Badrom Directives
	4.3. Bankisel Directive
	4.4. Banksel Directive
	4.5. Cblock Directive
	4.6. Code Directive
	4.7. Code_pack Directive
	4.8. __config Directive
	4.9. Config Directive
	4.10. Constant Directive
	4.11. Da Directive
	4.12. Data Directive
	4.13. Db Directive
	4.14. De Directive
	4.15. #define Directive
	4.16. Dt Directive
	4.17. Dtm Directive
	4.18. Dw Directive
	4.19. Else Directive
	4.20. End Directive
	4.21. Endc Directive
	4.22. Endm Directive
	4.23. Endw Directive
	4.24. Equ Directive
	4.25. Error Directive
	4.26. Errorlevel Directive
	4.27. Exitm Directive
	4.28. Expand Directive
	4.29. Extern Directive
	4.30. Fill Directive
	4.31. Global Directive
	4.32. Idata Directive
	4.33. Idata_acs Directive
	4.34. If Directive
	4.35. Ifdef Directive
	4.36. Ifndef Directive
	4.37. #include Directive
	4.38. List Directive
	4.39. Local Directive
	4.40. Macro Directive
	4.41. Maxram and Maxrom Directives
	4.42. Messg Directive
	4.43. Noexpand Directive
	4.44. Nolist Directive
	4.45. Org Directive
	4.46. Page Directive
	4.47. Pagesel Directive
	4.48. Pageselw Directive
	4.49. Processor Directive
	4.50. Radix Directive
	4.51. Res Directive
	4.52. Set Directive
	4.53. Space Directive
	4.54. Subtitle Directive
	4.55. Title Directive
	4.56. Udata Directive
	4.57. Udata_acs Directive
	4.58. Udata_ovr Directive
	4.59. Udata_shr Directive
	4.60. #define Directive
	4.61. Variable Directive
	4.62. While Directive

	5. Linking
	5.1. Reserving memory
	5.2. Placing Psects into Memory

	The Microchip Website
	Product Change Notification Service
	Customer Support
	Product Identification System
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

