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Abstract

At the core of the seminal Graph Minor Theory of
Robertson and Seymour is a powerful structural theorem
capturing the structure of graphs excluding a fixed minor.
This result is used throughout graph theory and graph al-
gorithms, but is existential. We develop a polynomial-
time algorithm using topological graph theory to decom-
pose a graph into the structure guaranteed by the theorem:
a clique-sum of pieces almost-embeddable into bounded-
genus surfaces. This result has many applications. In par-
ticular, we show applications to developing many approx-
imation algorithms, including a 2-approximation to graph
coloring, constant-factor approximations to treewidth and
the largest grid minor, combinatorial polylogarithmic-
approximation to half-integral multicommodity flow, subex-
ponential fixed-parameter algorithms, and PTASs for many
minimization and maximization problems, on graphs ex-
cluding a fixed minor.

1. Introduction

The deepest and likely the most important work in graph
theory is the Graph Minor Theory developed by Robertson
and Seymour in a series of over 20 papers spanning over 20
years. Our goal is to make this work algorithmic.

The heart of the Graph Minor Theory is a decomposi-
tion theorem [46, Theorem 1.3] capturing the structure of
all graphs excluding a fixed minor. At a high level, the the-
orem says that every such graph can be decomposed into
a collection of graphs each of which can “almost” be em-
bedded into a bounded-genus surface, combined in a tree
structure. The main result of this paper is a polynomial-
time algorithm to compute such a decomposition, which we
show has extensive algorithmic applications.

Most of the Graph Minor Theory consists of existen-
tial results, and some of the proofs are nonconstructive. A

∗MIT Computer Science and Artificial Intelligence Laboratory, 32 Vas-
sar Street, Cambridge, MA 02139, USA.{edemaine,hajiagha}@mit.edu

†Graduate School of Information Sciences, Tohoku University, Ara-
maki aza Aoba 09, Aoba-ku Sendai, Miyagi 980-8579, Japan. kkeniti@
dais.is.tohoku.ac.jp

classic example is the celebrated proof of Wagner’s Con-
jecture [47], which can be stated as follows: every minor-
closed graph property (preserved under taking of minors)
is characterized by a finite set of forbidden minors. The
proof of this theorem uses the decomposition theorem men-
tioned above, as well as transfinite induction, and gives lit-
tle insight into the finitely many forbidden minors which
are proved to exist. Indeed, there is a mathematical sense in
which any proof of this result must be nonconstructive [29].

Essentially the only explicitly algorithmic part of the
Graph Minor Theory is a polynomial-time algorithm for
testing the existence of fixed minors [44] which, combined
with the proof of Wagner’s Conjecture, implies the ex-
istence of a polynomial-time algorithm for deciding any
minor-closed graph property. This consequence has been
used to show the existence of polynomial-time algorithms
for several graph problems, some of which were not previ-
ously known to be decidable [28]. However, these algorith-
mic results (except the minor test) are nonconstructive: we
know that efficient algorithms exist, but do not know what
they are. The difficulty is in determining the finite set of
forbidden minors: we lack “a means of identifying the ele-
ments of the set, the cardinality of the set, or even the order
of the largest graph in the set” [28].

Algorithms forH-minor-free graphs for a fixed graphH
have been studied extensively; see e.g. [8, 31, 9, 35, 37]. In
particular, it is generally believed that several algorithms for
planar graphs can be generalized toH-minor-free graphs
for any fixedH [31, 35, 37]. The decomposition theo-
rem provides the key insight into why this might be pos-
sible: first extend an algorithm for planar graphs to han-
dle bounded-genus graphs, then extend it to handle graphs
“almost-embeddable” into bounded-genus surfaces, and fi-
nally extend it to handle tree decompositions into such
graphs. However, such an approach requires an algorithm
to construct the decomposition. This paper provides such an
algorithm, a key stepping stone for constructing algorithms
for H-minor-free graphs.

In its existential form, the graph-minor decomposition
theorem has already been used to obtain many combinato-
rial results and the existence of many efficient algorithms,
despite being published only recently. Grohe [30] proves
the existence of PTASs for minimum vertex cover, min-
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imum dominating set, and maximum independent set in
H-minor-free graphs. This theorem is existential not be-
cause the algorithm requires a decomposition (though its
existence is used in the analysis), but because the algo-
rithm relies on efficient detection of minor-closed properties
(which exists but is nonconstructive as mentioned above).
We can modify the algorithm to rely instead on the de-
composition, and therefore our work makes this result con-
structive. The bidimensionality theory, developed in the se-
ries [21, 19, 14, 15, 12, 16, 13, 20, 18, 17], uses the decom-
position theorem to develop subexponential fixed-parameter
algorithms and PTASs for a broad class of problems inH-
minor-free graphs. In [12] a subexponential fixed-parameter
algorithm, with running time2O(

√
k)nO(1), is developed for

minimum dominating set and minimum vertex cover inH-
minor-free graphs. This algorithm is conditioned on having
the decomposition, and thus our decomposition algorithm
removes this condition, resulting in a truly constructive re-
sult. In [18] aparameter-treewidth boundis established,
bounding the treewidth by a small function (usually the
square-root) of the optimal solution value for many prob-
lems in generalH-minor-free graphs and even more prob-
lems in apex-minor-free graphs. Combined with bounded-
treewidth algorithms, this bound results in many subexpo-
nential fixed-parameter algorithms, and with further ideas
these results can be extended to PTASs [17]. In [16] it is
shown that every minor-closed graph family with bounded
local treewidth (apex-minor-free graphs) in fact has lin-
ear local treewidth, again using the decomposition theo-
rem. This result vastly improves the running time of sev-

eral PTASs based on Baker’s approach (from222O(1/ε)

nO(1)

to 2O(1/ε)nO(1)). Other applications of the decomposition
theorem include extensions of graph-minor results to count-
ably infinite graphs [23], and the existence of a clique minor
whose size is linear in the connectivity of the graph [6].

We believe that our algorithmic decomposition is a use-
ful tool for developing efficient algorithms onH-minor-free
graphs. One analogy might be to algorithms for construct-
ing a tree decomposition in a graph of small treewidth, or
even constructing a planar embedding of a planar graph.
In addition to the applications listed above (using previous
work), we demonstrate several algorithmic results that build
upon our algorithmic decomposition theorem: polynomial-
time approximation schemes for any problem satisfying a
few simple conditions, approximations to treewidth, ap-
proximations to finding the largest grid minor, approx-
imations to half-integral flow relative to fractional flow,
and approximations to graph coloring. For the approxi-
mation schemes and approximate graph coloring, we de-
velop another powerful algorithmic decomposition: every
H-minor-free graph can be decomposed into any constant
numberk of pieces such that anyk − 1 of the pieces has
bounded treewidth (where the bound depends onH andk).
The proof of this decomposition result is relatively simple,

showing the power of our main decomposition result. An
existential version of this result was shown by DeVos et
al. [22] using a complicated, and not obviously construc-
tive, approach; here we show that a much simpler, and con-
structive, solution is possible using known results from an
earlier paper of Grohe [30]. Even for the casek = 2, the re-
sult is very interesting: everyH-minor-free graph is just the
“sum” of two bounded-treewidth graphs. In fact this case
is an algorithmic solution to a conjecture of Thomas [50].
This case also immediately leads to simple constant-factor
approximation algorithm for almost every problem solv-
able on bounded-treewidth graphs, and by tuningk relative
to 1/ε, we often obtain a PTAS. We give general results
providing PTASs for a variety of minimum and maximiza-
tion problems, essentially providing a generalized Baker’s
approach that applies to allH-minor-free graphs, not just
apex-minor-free (or planar) graphs [3, 24]. Our approxima-
tions to treewidth and grid minors exploit the minimax rela-
tion between these two quanties, leading to a combinatorial
“primal-dual” type algorithm. This approach also leads us
to efficient combinatorial algorithms for constructing half-
integral multicommodity flows that are at most a polyloga-
rithmic factor away from the optimal fractional multicom-
modity flow.

A significant approximation result in this paper is a 2-
approximation algorithm for minimum graph coloring (also
known as minimum chromatic number) inH-minor-free
graphs. Graph coloring is one of the hardest problems
to approximate: in general graphs, it is inapproximable
within n1−ε for any ε > 0, unless ZPP = NP [26]. Even
for 3-colorable graphs, the best approximation algorithm
achieves a factor ofO(n3/14 lgO(1) n) [5]. In planar graphs,
the problem is4/3-approximable, and that is the best pos-
sible unless P = NP, essentially because all planar graphs
are 4-colorable. In contrast,H-minor-free graphs (or even
bounded-genus graphs) are notO(1)-colorable for a con-
stant independent ofH (or genus), and the best previous ap-
proximation comes from a simpleO(|V (H)|

√
lg |V (H)|)-

approximation following from an algorithm that guarantees
a coloring withO(|V (H)|

√
lg |V (H)|) colors.

This problem has close connections to Hadwiger’s con-
jecture, one of the major unsolved problems in graph theory,
which can be stated as follows: everyH-minor-free graph
has a vertex coloring with|V (H)|−1 colors. Hadwiger [33]
posed this problem in 1943, and proved the conjecture for
|V (H)| ≤ 4. The case|V (H)| = 5 is equivalent to the
four-color theorem [52], and therefore also true [2, 1, 38].
The case|V (H)| = 6 was proved by Robertson, Seymour,
and Thomas [39], also using the four-color theorem. All
cases|V (H)| ≥ 7 remain unsolved. The best general upper
bound is that everyH-minor-free graph has a vertex color-
ing with O(|V (H)|

√
lg |V (H)|) colors, which follows im-

mediately from bounds on the average degree of a vertex
in an H-minor-free graph; see, e.g., [36, 51]. Thus, Had-
winger’s conjecture is not resolved even up to constant fac-



tors, and the conjecture itself is only a worst-case bound. In
contrast, our 2-approximation algorithm gives the best col-
oring, up to constant factors, for any specifiedH-minor-free
graph (as opposed to the worst case). Furthermore, the re-
sult is algorithmic, and the approach is conceptually simple
with our decomposition results in hand.

This paper is organized as follows. We start in Section
2 with a formal description of the graph-minor decomposi-
tion theorem for which we give an algorithm. Then we de-
scribe several applications of our decomposition algorithm
in Section 3. Section 4 gives an overview of the main in-
gredients in our decomposition algorithm, while the details
of our algorithm are relegated to the full paper (available on
the authors’ homepages).

2. Graph Minor Decomposition Theorem

This section describes the Robertson-Seymour decom-
position theorem characterizing the structure ofH-minor-
free graphs, which we make algorithmic in this paper.

First we define the basic notion of minor. Given an edge
e = {v, w} in a graphG, thecontractionof e in G is the
result of identifying verticesv andw in G and removing
all loops and duplicate edges. A graphH obtained by a
sequence of such edge contractions starting fromG is said
to be acontractionof G. A graphH is a minor of G if
H is a subgraph of some contraction ofG. A graph class
C is minor-closedif any minor of any graph inC is also a
member ofC. A minor-closed graph classC isH-minor-free
if H /∈ C. More generally, we use the term “H-minor-free”
to refer to any minor-closed graph class that excludes some
fixed graphH.

Second we define the basic notion of treewidth, intro-
duced by Robertson and Seymour [40]. To define this no-
tion, first we consider a representation of a graph as a tree,
called a tree decomposition. Precisely, atree decomposition
of a graphG = (V,E) is a pair(T, χ) in whichT = (I, F )
is a tree andχ = {χi | i ∈ I} is a family of subsets of
V (G) such that

1.
⋃

i∈I χi = V ;

2. for each edgee = {u, v} ∈ E, there exists ani ∈ I
such that bothu andv belong toχi; and

3. for all v ∈ V , the set of nodes{i ∈ I | v ∈ χi} forms
a connected subtree ofT .

To distinguish between vertices of the original graphG and
vertices ofT in the tree decomposition, we call vertices of
T nodesand their correspondingχi’s bags. The width of
the tree decomposition is the maximum size of a bag inχ
minus1. The treewidthof a graphG, denotedtw(G), is
the minimum width over all possible tree decompositions
of G. A tree decomposition is called apath decomposition

if T = (I, F ) is a path. Thepathwidthof a graphG, de-
notedpw(G), is the minimum width over all possible path
decompositions ofG.

Third, we need a basic notion of embedding; see,
e.g., [43, 7]. In this paper, anembeddingrefers to a2-cell
embedding, i.e., a drawing of the vertices and edges of the
graph as points and arcs in a surface such that every face
(region outlined by edges) is homeomorphic to a disk. A
noosein such an embedding is a simple closed curve on the
surface that meets the graph only at vertices. Thelengthof
a noose is the number of vertices it visits. Therepresenta-
tivity or face-widthof an embedded graph is the length of
the shortest noose that cannot be contracted to a point on
the surface.

At a high level, the deep decomposition theorem of
Robertson and Seymour [46, Theorem 1.3] says that, for ev-
ery graphH, everyH-minor-free graph can be expressed as
a “tree structure” of pieces, where each piece is a graph that
can be drawn in a surface in whichH cannot be drawn, ex-
cept for a bounded number of “apex” vertices and a bounded
number of “local areas of non-planarity” called “vortices”.
Here the bounds depend only onH. To make this theorem
precise, we need to define each of the notions in quotes.

Each piece in the decomposition is “h-almost-
embeddable” in a bounded-genus surface whereh is
a constant depending on the excluded minorH. Roughly
speaking, a graphG is h-almost embeddablein a surfaceS
if there exists a setX of size at mosth of vertices, called
apex verticesor apices, such thatG − X can be obtained
from a graphG0 embedded inS by attaching at mosth
graphs of pathwidth at mosth to G0 within h faces in
an orderly way. More precisely, a graphG is h-almost
embeddablein S if there exists a vertex setX of size at
most h (the apices) such thatG − X can be written as
G0 ∪G1 ∪ · · · ∪Gh, where

1. G0 has an embedding inS;

2. the graphsGi, calledvortices, are pairwise disjoint;

3. there are facesF1, . . . , Fh of G0 in S, and there are
pairwise disjoint disksD1, . . . , Dh in S, such that for
i = 1, . . . , h, Di ⊂ Fi andUi := V (G0) ∩ V (Gi) =
V (G0) ∩Di; and

4. the graphGi has a path decomposition(Bu)u∈Ui
of

width less thanh, such thatu ∈ Bu for all u ∈ Ui. The
setsBu are ordered by the ordering of their indicesu
as points along the boundary cycle of faceFi in G0.

An h-almost embeddable graph isapex-freeif the setX of
apices is empty.

The pieces of the decomposition are combined accord-
ing to “clique-sum” operations, a notion which goes back
to characterizations ofK3,3-minor-free andK5-minor-free
graphs by Wagner [52] and serves as an important tool in
the Graph Minor Theory. SupposeG1 andG2 are graphs



with disjoint vertex sets and letk ≥ 0 be an integer. For
i = 1, 2, let Wi ⊆ V (Gi) form a clique of sizek and letG′

i

be obtained fromGi by deleting some (possibly no) edges
from the induced subgraphGi[Wi] with both endpoints in
Wi. Consider a bijectionh : W1 → W2. We define ak-sum
G of G1 andG2, denoted byG = G1 ⊕k G2 or simply by
G = G1 ⊕ G2, to be the graph obtained from the union of
G′

1 andG′
2 by identifyingw with h(w) for all w ∈ W1. The

images of the vertices ofW1 andW2 in G1⊕k G2 form the
join set. Note that each vertexv of G has a corresponding
vertex inG1 or G2 or both. Also,⊕ is not a well-defined
operator: it can have a set of possible results.

Now we can finally state a precise form of the decompo-
sition theorem:

Theorem 2.1 [46, Theorem 1.3]For every graphH, there
exists an integerh ≥ 0 depending only on|V (H)| such that
everyH-minor-free graph can be obtained by at mosth-
sums of graphs that areh-almost-embeddable in some sur-
faces in whichH cannot be embedded.

In particular, if H is fixed, any surface in whichH can-
not be embedded has bounded genus. Thus, the summands
in the theorem areh-almost-embeddable in bounded-genus
surfaces.

As stated in [22], the proof of this theorem in [46] in fact
establishes a stronger result (which also follows from our
proof and algorithm):

Theorem 2.2 The clique-sum decomposition of Theorem
2.1, written asG1 ⊕ G2 ⊕ · · · ⊕ Gk, has the additional
property that the join set of each clique-sum betweenG1 ⊕
G2⊕· · ·⊕Gi−1 andGi is a subset of the apices inGi. Fur-
thermore, the join set of each clique-sum involving pieceGj

contains at most three vertices from the bounded-genus part
of Gj .

The main result of this paper is a polynomial-time algo-
rithm to find the decomposition guaranteed by Theorem 2.2.

3. Algorithmic Applications of Graph-Minor
Decomposition

3.1. Partition into Bounded-Treewidth Graphs

First we generalize layerwise decomposition forH-
minor-free graphs, previously developed by Baker for
planar graphs [3] and by Eppstein for apex-minor-free
graphs [24].

Theorem 3.1 For a fixed graphH, there is a constantcH

such that, for any integerk ≥ 1 and for everyH-minor-
free graphG, the vertices ofG (or the edges ofG) can be
partitioned intok +1 sets such that anyk of the sets induce
a graph of treewidth at mostcHk. Furthermore, such a
partition can be found in polynomial time.

Proof: By Theorem 2.2, everyH-minor-free graph can be
written as a clique sumP1 ⊕ P2 ⊕ · · · ⊕ P` of h-almost-
embeddable graphsP1, P2, . . . , P` such that theith clique
sum(P1⊕P2⊕· · ·⊕Pi)⊕Pi+1 has join setJi+1 contained
in the setXi+1 of apices in piecePi+1.

First we label the vertices of each piecePi with k + 1
labels such that anyk of the labels from the same piece in-
duce a graph of treewidth at mostcHk. Thelabel sets(sets
of vertices with the same label) thus form a partition of the
desired type for each piecePi. Let Xi denote the apex set
in piecePi. By [30, Proposition 10],Pi − Xi has linear
local treewidth for fixedH, say withf(q) = c · q. We run a
bread-first search from some root vertexri, and assign the
label to each vertexv to be the distance betweenri andv
modulok + 1. The union of anyk label sets is the disjoint
union of subgraphs ofPi −Xi each consisting of at mostk
breadth-first layers ofPi − Xi. By [30, Lemma 16], each
of these subgraphs, and therefore the union, has treewidth
at mostck. We can assign labels to the apicesXi arbitrarily
(as prescribed later) and increase the treewidths by an addi-
tive constanth. Therefore the treewidth of anyk label sets
within Pi is at mostck+h ≤ (c+h)k, so we setcH = c+h.

Suppose by induction thatP1⊕P2⊕· · ·⊕Pi has a label-
ing withk+1 labels such that anyk label sets induce a graph
of treewidth at mostcHk. We have already proved the base
case ofi = 1. We merge the labelings ofP1⊕P2⊕· · ·⊕Pi

andPi+1 by preferring the former labeling for any vertex
in the join setJi+1. BecauseJi+1 ⊆ Xi+1, this labeling
of Ji+1 is just a particular choice for the arbitrary labeling
of Xi+1. By [19, Lemma 3], for any two graphsG′ and
G′′, tw(G′ ⊕ G′′) ≤ max{tw(G′), tw(G′′)}. Thus, the
treewidth of anyj label sets in(P1⊕P2⊕· · ·⊕Pi)⊕Pi+1

is at most the maximum of the treewidth of thej label sets
within P1 ⊕ P2 ⊕ · · · ⊕ Pi and the treewidth of thej label
sets withinPi+1. The latter is at mostcHk as argued above,
and the former is at mostcHk by the induction hypothesis.
Therefore the label sets form the desired partition.

We can obtain an edge partition in parallel to a vertex
partition by a similar inductive construction. First we as-
sign the label of each edge inPi − Xi to be the label of
the endpoint closest to the rootri, in the vertex labeling of
Pi − Xi. To each remaining edge inPi, with one or both
endpoints inXi, we assign the label of an endpoint inXi

(choosing the endpoint arbitrarily if there is a choice). As
before, the treewidth of anyk label sets withinPi is at most
cHk. Then we combine these labelings as follows. Suppose
by induction thatP1 ⊕ P2 ⊕ · · · ⊕ Pi has a vertex and an
edge labeling withk + 1 labels such that anyk vertex label
sets or anyk edge label sets induce a graph of treewidth at
mostcHk. We have already proved the base case ofi = 1.
We merge the vertex labelings ofP1 ⊕ P2 ⊕ · · · ⊕ Pi and
Pi+1 as before (and thus we obtain the same vertex label-
ing as before). We merge the edge labelings as follows:
whenever an edge inPi+1 has exactly one endpoint in the
join setJi+1, we use the the inductive label assigned to that



endpoint byP1 ⊕ P2 ⊕ Pi; and whenever an edge has both
endpoints in the join setJi+1, we use the inductive label
assigned to the edge byP1 ⊕ P2 ⊕ Pi. This labeling is a
particular decision for the arbitrary choices made by edges
with both endpoints inXi+1 ⊇ Ji+1. Thus, every edge
connectingJi+1 to Pi+1 − Ji+1 is assigned the label of
the endpoint inJi+1. Let L be the set of all vertices that
have one of the desiredk labels. We claim that the sub-
graph of(P1 ⊕ P2 ⊕ · · · ⊕ Pi) ⊕ Pi+1 induced by anyk
edge label sets is itself a clique-sum of two graphs with
join set Ji+1 ∩ L. (In this subgraph, any vertex inJi+1

assigned the excluded label has no incident edges connect-
ing toPi+1−Ji+1, so we can remove this vertex fromPi+1

andJi+1 in the clique-sum, and the remaining vertices in
the join set form a clique.) The two summed graphs have
treewidth at mostcHk by induction, and thus the clique-sum
has treewidth at mostcHk. Therefore the label sets form the
desired partition.

The construction of the label sets runs in linear time
given the decomposition from Theorem 2.2, for a polyno-
mial overall time bound. 2

Approximate coloring. Applying Theorem 3.1 fork =
2, and because minimum graph coloring can be solved op-
timally in graphs of bounded treewidth, we obtain the fol-
lowing important theorem:

Theorem 3.2 In H-minor-free graphs, there is a
polynomial-time 2-approximation for minimum graph
coloring.

This approximation factor is near optimal because min-
imum graph coloring is hard to approximate better than
4/3 even in planar graphs. The factor improves over a
trivial O(|V (H)|

√
lg |V (H)|)-approximation arising from

a O(|V (H)|
√

lg |V (H)|)-coloring that follows from aver-
age degree bounds inH-minor-free graphs [36, 51]. Our
technique can be generalized to obtain approximation algo-
rithms for many graph problems, as developed in the fol-
lowing sections.

The same technique as coloring can be applied to many
other problems. An example of a maximization problem
is the notoriousdensek-subgraphproblem, for which the
best approximation known isO(n1/3−ε) [27]. We obtain a
2-approximation forH-minor-free graphs.

3.2. Approximation Algorithms for Minimization
Problems

We start with a simple but very general constant-factor
approximation, which in some cases (such as minimum
graph coloring) is near optimal:

Theorem 3.3 Suppose a minimization problemP on
graphs has the following properties:

1. there is a polynomial-time algorithm solvingP on
graphs of bounded treewidth;

2. the value of the optimal solution forP never increases
when removing vertices (respectively, edges); and

3. given a partition of the vertices (respectively, edges)
of a graphG into two sets, a solution to each of the
induced subgraphs ofG can be merged in polynomial
time into a solution forG of value at mostα times the
sum of the two solution values.

For any fixed H, there is a polynomial-time(2α)-
approximation algorithm for problemP in H-minor-free
graphs.

See the full paper for this and other omitted proofs.
From Theorem 3.3 we obtain easyO(1)-approximations

for many graph problems. For some problems (such as
graph coloring) this is the best result known, while for some
such problems PTASs are possible. For example, Theorem
3.3 gives a 4-approximation for minimum color sum, but
below we obtain a PTAS.

Next we develop a PTAS for many of these minimization
problems.

Theorem 3.4 Suppose a minimization problemP satisfies
the following properties:

1. there is a polynomial-time algorithm solvingP on
graphs of bounded treewidth;

2. given a partition of the vertices (respectively, edges) of
a graphG into two setsS1 andS2,

(a) there are solutionsF1 andF2 toP on the induced
subgraphsG[Si] (e.g.,Fi = OPT(G)∩Si) such
that the total value of the two solutions is at most
the optimal solution value forG; and

(b) given solutions forG[S1] and G[S2] can be
merged in polynomial time into a solution forG
of value at most1+α times the first solution value
plus1/α times the second solution value, for any
0 < α ≤ 1. (This condition is satisfied in par-
ticular if the merged solution value is at most the
sum of the two solution values.)

For any fixedH and any0 < ε ≤ 1, there is a polynomial-
time(1 + ε)-approximation algorithm for problemP in H-
minor-free graphs.

Proof: We apply Theorem 3.1 withk + 1 = 4/ε2 to obtain
a partition of a given graphG into setsS1, S2, . . . , Sk+1 of
vertices or edges. LetGi be the subgraph ofG induced by
S1 ∪ S2 ∪ · · · ∪ Si−1 ∪ Si+1 ∪ · · · ∪ Sk+1. EachGi has
bounded treewidth and thus we can compute the optimal so-
lution OPT(Gi) in polynomial time. Similarly,G[Si] has
bounded treewidth, and we can compute its optimal solution



OPT(G[Si]) in polynomial time. The approximation algo-
rithm mergesOPT(Gi) andOPT(G[Si]) with α = ε/2,
for eachi, and returns the best such solution.

By repeated application of Property 2(a), there is a solu-
tion Fi to P on each induced subgraphG[Si] such that the
total value of these solutions is at mostOPT(G). Thus,
for some i, Fi has weight at mostOPT(G)/(k + 1).
Therefore, OPT(G[Si]) ≤ OPT(G)/(k + 1). Also,
by Property 2(a),OPT(Gi) ≤ OPT(G). The value
of the constructed merged solution for this value ofi is
(1 + α)OPT(Gi) + (1/α) OPT(G[Si]) which is at most
(1 + α) OPT(G) + (1/α) OPT(G)/(k + 1) = (1 + α +
(1/α)/(k+1))OPT(G) = (1+ε) OPT(G) by our choices
of α andk + 1. 2

This result is very general and applies to a wide variety of
problems to which Baker’s approach applies, such as vertex
cover. One particularly interesting application is the well-
studied variation of graph coloring calledminimum color
sum[4, 26, 34], where the goal is to find a (vertex or edge)
coloring with positive integers with minimum total value.
We can use the bounded-treewidth algorithm of Halldórsson
and Kortsarz [34], and the merging strategy of introducing
each color from the second solution after each group of1/α
colors from the first solution.

Corollary 3.5 There is a PTAS for minimum color sum (of
vertices or edges) onH-minor-free graphs.

A linear kernelizationof a minimization problem on
weighted graphs is a polynomial-time algorithm that, given
a weighted graphG, constructs a weighted graphG′ such
that OPT(G′) ≤ OPT(G), OPT(G′) is at leastβ times
the total weight of the vertices (respectively, edges) ofG′,
and any solution forG′ can be converted in polynomial
time to a solution forG with value larger by at most
OPT(G)−OPT(G′).

Theorem 3.6 Suppose that a minimization problemP has
a linear kernelization, can be solved in polynomial time on
graphs of bounded treewidth, and the value of the optimal
solution forP never increases when removing vertices (re-
spectively, edges). Also suppose that, given a partition of
the vertices (respectively, edges) of a graphG into two sets
S1 andS2, and given a solution forG[S1], we can compute
in polynomial time a solution forG of value at most1 + α
times the solution value forG[S1] plus1/α times the total
weight ofS2, for any0 < α ≤ 1. (This condition is satis-
fied in particular if the solution value forG is at most the
solution value forG[S1] plus O(1) times the total weight
of G[S2].) For any fixedH and any0 < ε ≤ 1, there is a
polynomial-time(1+ε)-approximation algorithm for prob-
lemP in H-minor-free graphs.

This theorem can also be applied to minimum color
sum, without kernelization becauseOPT(G) ≥ |V (G)|,

using the constant average degree bound (for fixedH)
of [36, 51] to colorG[S2] with O(1) colors, and using the
same bounded-treewidth algorithm and merging technique
as above.

3.3. Approximation Algorithms for Maximization
Problems

In this section we develop PTASs for a broad class of
maximization problems. A graph propertyπ is hereditary
if every induced subgraph of a graph with the property also
has the property. Themaximum (weighted) induced sub-
graph problemfor a graph propertyπ, MISP(π), is to find
the largest (maximum-weight) set of vertices in a graph
G that induce a subgraph with propertyπ; similarly, the
EMISP(π) problem is to find the largest (maximum-weight)
set of edges that induce a subgraph with propertyπ (and
the hereditary property ofπ is in terms of edges instead of
vertices). Examples of MISP-type problems include find-
ing the maximum induced subgraph that is chordal, acyclic,
without cycles of a specified length, without edges (inde-
pendent set), of maximum degreer ≥ 1, bipartite, a clique,
or planar [53]. Yannakakis [53] has shown that these ex-
amples of MISP are all NP-complete, and for all except the
last example, NP-complete even when restricted to planar
graphs [53]. Another interesting example is maximum cut,
which is equivalent to EMISP(π) whereπ is the property of
the graph being bipartite; our PTAS for this problem is an
interesting complement to the polynomial-time algorithm
for maximum cut in planar graphs [32].

Theorem 3.7 For any hereditary graph propertyπ that
can be solved in polynomial time on graphs of bounded
treewidth, for any graphH, and for anyε > 0, there
is a polynomial-time(1 + ε)-approximation algorithm for
MISP(π) and EMISP(π) onH-minor-free graphs.

This result generalizes results of Chen [11] forK3,3-
minor-free andK5-minor-free graphs, Demaine et al. [19]
for single-crossing-minor-free graphs, and Grohe [30] for
independent set.

Our approach can also obtain a PTAS formaximumP -
matching[3], where the goal is to find the maximum num-
ber of vertex-disjoint induced subgraphs isomorphic to a
fixed graphP . This problem includes the special cases of
maximum triangle matching and maximum tile salvage.

3.4. Subexponential Fixed-Parameter Algorithms

The newly developing theory of bidimensional graph
problems, developed in a series of papers [21, 19, 14, 15,
12, 16, 13, 20, 18, 17], provides general techniques for
designing efficient fixed-parameter algorithms and approx-
imation algorithms for NP-hard graph problems in broad
classes of graphs. This theory applies to graph problems



that arebidimensionalin the sense that (1) the solution
value fork × k “grid-like” graphs grows withk, typically
asΩ(k2), and (2) the solution value only goes down when
contracting edges and optionally when deleting edges. Ex-
amples of such problems include feedback vertex set, vertex
cover, minimum maximal matching, face cover, a series of
vertex-removal parameters, dominating set, edge dominat-
ing set,R-dominating set, connected dominating set, con-
nected edge dominating set, connectedR-dominating set,
and unweighted TSP tour (a walk visiting all vertices).

Bidimensional problems are divided intocontraction-
bidimensionaland minor-bidimensionalproblems accord-
ing to whether the solution value only goes down when
deleting edges. The bidimensionality theory obtains subex-
ponential fixed-parameter algorithms, with typical run-
ning time 2O(

√
k)nO(1), for minor-bidimensional prob-

lems in allH-minor-free graphs [12] and for contraction-
bidimensional problems in all apex-minor-free graphs.
However, the only subexponential fixed-parameter algo-
rithm for a contraction-bidimensional problem on general
H-minor graphs is a complicated algorithm for dominating
set and several variants [12], and this algorithm assumes
that the Robertson-Seymour decomposition is given.

Our algorithm for Theorem 2.2 fills this gap, provid-
ing a fundamental building block for future development
of subexponential fixed-parameter algorithms onH-minor-
free graphs. In particular, we obtain the following result
from [12, Theorem 4.4]:

Theorem 3.8 For any fixedH, there is an algorithm that
finds a dominating set of size at mostk in a givenH-minor-
free graph in2O(

√
k)nO(1) time.

3.5. Approximating Treewidth

The algorithm of this section and the next essentially
form a kind of combinatorial primal-dual algorithm, in
which we effectively use the following minimax relation be-
tween minimum treewidth and maximum grid minors:

Theorem 3.9 [18] For any fixed graphH, everyH-minor-
free graph of treewidthw has anΩ(w) × Ω(w) grid as a
minor.

Theorem 3.10 For any fixedH, there is a polynomial-time
O(1)-approximation algorithm for computing a tree decom-
position of minimum width in anH-minor-free graph.

Proof: The algorithm proceeds as follows. First we
compute the decomposition ofG from Theorem 2.2 into
a clique-sumP1 ⊕ P2 ⊕ · · ·Pk of h-almost-embeddable
graphs. For eachPi, we form a bounded-genus graphBi

by starting from the bounded-genus part ofPi (excluding
all apices and vortices), and forming a cycle on the vertices
that attached to each vortex. This graph is referred to as

G̃ in [18], and in [18, Lemmas 4.1–4.5] it is shown that
tw(Bi) = O(tw(G)) for all i andtw(Bi) = Ω(tw(G)) for
somei. Therefore for approximating treewidth it suffices to
compute the treewidth of eachBi, and then take the max-
imum. Of course, this process is complicated by requiring
an actual tree decomposition, not just the value of treewidth.

To compute a tree decomposition of the bounded-genus
graphBi of width O(tw(Bi)), we find a minimum-length
noncontractible noose using the algorithm of [7]. By [12,
Lemma A.1], if a bounded-genus graph has face-widthw,
then it has anΩ(w) × Ω(w) grid minor, and thus in partic-
ular it has treewidthΩ(w). Thus the (minimum) length of
the noncontractible noose, which is the face-width ofBi, is
O(tw(Bi)). We remove all vertices from the noose, reduc-
ing the genus of the graph by1, and possibly disconnecting
the graph. We call each connected component areduced
graph. Now we repeat this process by, in each round, find-
ing and removing a minimum-length noncontractible noose
in each reduced graph that is not already planar. The pro-
cess stops when all reduced graphs are planar. Because we
only remove vertices, the treewidth of each reduced graph is
at mosttw(Bi). Now we can apply a 1.5-approximation for
minimum-width tree decomposition on planar graphs [49]
to obtain a tree decomposition of each reduced graph with
width O(tw(Bi)).

Now we reverse the noose-removal process, in each
round adding the removed nooses from each of the reduced
graphs, and recombining the reduced graphs in the reverse
order as before. We combine the tree decompositions by
placing all vertices of the added nooses into all bags of the
incident reduced graphs. Because each reduced graph is in-
cident to at most one noose during a round, and each noose
has lengthO(tw(Bi)), this addition increases the width of
the tree decomposition byO(tw(Bi)) during each round.
The number of rounds is at most the genusg of Bi, because
the genus of each reduced graph reduced by at least1 dur-
ing each round of noose removal. Therefore we obtain a tree
decomposition ofBi of width O((g + 1) tw(Bi)). Because
g ≤ h, this width isO(h tw(Bi)) = O(tw(Bi)).

Next we show how to add the vortices back toBi, form-
ing a new graphB′

i, while preserving the tree decompo-
sition. Let Ui = {u1

i , u
2
i , . . . , u

mi
i } be the cyclically or-

dered vertices ofBi at which a vortex was attached but
replaced by a cycle. For eachuj

i that occurs in bagB
in the tree decomposition ofBi, we add toB the cor-
responding bagBuj

i
from the path decomposition of vor-

texG′′
i . The resulting bags form a tree decomposition ofB′

i

because{u1
i , u

2
i , . . . , u

mi
i } are connected in a path inBi.

By charging the≤ h + 1 added vertices to the occur-
rence ofuj

i that triggered the addition, each bag increases
in size by a factor at mosth + 1 for each of theh vor-
tices. Thus the width of this tree decomposition ofB′

i is
O(h2 tw(Bi)) = O(tw(Bi)),

It is easy to add the apices back toB′
i: simply place each

apex in every bag. The width of the tree decomposition in-



creases by at mosth. Now we have a tree decomposition of
the original piecesPi of width O(tw(Bi)) = O(tw(Pi)).
We combine these tree decompositions according to the
clique-sum decomposition. For each clique-sum between
two graphs, we find a bag in each decomposition contain-
ing all nodes of the join set (such a bag must exist because
the join set forms a clique), and then we connect the tree
nodes of these two bags by adding an edge, connecting the
two tree decompositions. The width of the resulting decom-
position is the maximum of the widths of the two given tree
decompositions. Therefore we obtain a tree decomposition
of width O(maxi tw(Pi)) = O(tw(G)). 2

Recently, a noncombinatorial approach based on lin-
ear programming has been developed to obtain anO(1)-
approximation to treewidth inH-minor-free graphs [25].

3.6. Approximating Grid Minors

The primal-dual nature of the algorithm from the pre-
vious section allows us to construct grid minors as fol-
lows. The following result improves the fixed-parameter
algorithm of Robertson and Seymour [44] for constructing
k × k grid minors for fixedk, to the case of arbitraryk in
H-minor-free graphs.

Theorem 3.11 For any fixedH, there is a polynomial-time
O(1)-approximation algorithm for computing the maximum
k × k grid minor in anH-minor-free graph.

Our construction uses an important concept from the
existential result relating treewidth and grid minors [18].
Consider a graphG decomposed into a clique-sumP1 ⊕
P2 ⊕ · · ·Pk of almost-embeddable graphs. Theapprox-
imation graphAi of the almost-embeddable graphPi is
formed from the bounded-genus part ofPi (thus excluding
all apices and vortices) by (a) removing all vertices in the
bounded-genus part that were attached to vortices, (b) re-
moving all virtual edges (edges inPi that are not inG),
and (c) replacing some of these edges as follows. For each
clique sum involvingPi with the property that the join set
W contains at least two vertices not already removed (note
that there can be at most three such vertices), we do the fol-
lowing: (i) if W contains exactly two vertices not already
removed, we add an edge between these two vertices; (ii) if
W contains three vertices not already removed and there
is more than one clique sum whose join set contains these
three vertices, we add a triangle of edges between these
three vertices; (iii) ifW contains three vertices not already
removed and there is only one clique sum whose join set
contains these three vertices, we add a new vertexv inside
the virtual triangle they form on the surface and then add an
edge connectingv to each of the three vertices.

Proof: The algorithm proceeds as follows. First we com-
pute the decomposition ofG according to Theorem 2.2.

Second we construct the approximation graphAi of each
summand in the clique-sum decomposition. By [18, Lem-
mas 4.1–4.5], eachAi is a minor ofG andmaxi tw(Ai) =
Θ(tw(G)). Thus it suffices to find an approximately largest
k × k grid minor in eachAi, and return the largest such
minor, to find an approximately largestk × k grid minor
in G.

For eachAi, we compute the shortest noncontractible
noose using the algorithm of [7], whose length is the face-
width of Ai. If the face-width ofAi is at leasttw(Ai)/(g +
1), whereg is the genus ofAi, then by [12, Lemma A.1],
we can construct anΩ(tw(Ai/(g+1))×Ω(tw(Ai/(g+1))
grid minor. Otherwise, we remove the vertices of the non-
contractible noose, decreasing the treewidth ofAi by at
mosttw(Ai)/(g + 1). The resulting graphA′

i may be dis-
connected, buttw(A′

i) is the maximum treewidth among
the connected components. We recurse on each connected
component, and return the largest grid minor found. At the
base of the recursion, we have a planar graph: we com-
pute a branch decomposition of minimum widthw [49]
and from that we compute anΩ(w) × Ω(w) grid minor
using the algorithm implicit in the proof of [48, Theo-
rem 6.2]. The recursion has depth at mostg because each
noose removal decreases the genus by at least1. Thus
some graph in a leaf of the recursion has treewidth at least
tw(Ai) − g tw(Ai)/(g + 1) = tw(Ai)/(g + 1), so it has
branchwidthΩ(tw(Ai)/(g + 1)) = Ω(tw(Ai)). 2

3.7. Half-Integral Versus Fractional Multicommod-
ity Flow

Chekuri, Khanna, and Shephard [10] proved that, for
planar graphs, the gap between the optimal half-integral
multicommodity flow and the optimal fractional multicom-
modity flow is at most a polylogarithmic factor. Further-
more, they gave a combinatorial algorithm for construct-
ing a polylogarithmic-approximate multicommodity flow
in planar graphs. Both the bound on the gap and the
combinatorial algorithm are based on the existence of an
Ω(w)× Ω(w) grid minor in a planar graph of treewidthw;
the algorithm essentially constructs such a grid minor.

As mentioned by Chekuri et al. [10], the existence of
an Ω(w) × Ω(w) grid minor in anH-minor-free graph of
treewidthw (Theorem 3.9) can be used to generalize the
bound on the gap between half-integral and fractional mul-
ticommodity flows. However, so far, this result is just exis-
tential. Using our constant-factor approximation algorithm
from Theorem 3.11 for finding the largest grid minor, we
can extend the combinatorial algorithm as well:

Theorem 3.12 For any fixedH, there is a polynomial-time
algorithm computing a half-integral multicommodity flow in
a givenH-minor-free graph that is within a polylogarithmic
factor of the optimal fractional multicommodity flow.



Chekuri et al. [10] also gave a combinatorial proof of
the result that, for planar graphs, the gap between the maxi-
mum flow and the minimum cut in product multicommodity
flow (and thus uniform multicommodity flow) instances is
at most a constant factor. The latter result was proved be-
fore by Klein, Plotkin, and Rao forH-minor-free graphs
using primal-dual methods [35], and has many applications
in embeddings ofH-minor-free graphs. Again our algo-
rithm from Theorem 3.11 for finding grids inH-minor-free
graphs enables us to make this existential result algorith-
mic and construct such a multicommodity minimum cut in
polynomial time.

4. Overview of Our Decomposition Algorithm

At a high level, our algorithm follows the proof of The-
orem 2.1, in [46, Theorem 1.3]. However, we skip several
of the existential steps in favor of a more algorithmic ap-
proach.

The proof of Theorem 2.1 splits into two main compo-
nents: handling each term in the clique-sum, and putting
these terms together. Both components are difficult. The
first component uses another deep structural theorem about
H-minor-free graphs. This theorem is described in [46,
Theorem 3.1], and it is used, e.g., in the proof of Wagner’s
Conjecture [47]. Roughly, if we eliminate the “tree struc-
ture” of clique sums in Theorem 2.1, and concentrate on
the internal structure of one of the “nodes” of the tree, the
local structure ofG has a large “wall” (ak-wall is a par-
ticular subdivision of ak × k grid) and, up to3-cuts, it is
h-almost-embeddable into some surface in whichH cannot
be embedded, except that we cannot bound the pathwidth
of vortices. The second component uses a nontrivial tree-
decomposition theorem [42, Theorem 11.1].

We sketch how to obtain the structure in the first compo-
nent. If the treewidth of the graph is small, the problem is
relatively easy, so we focus on the case of large treewidth.
The main result of [48] says that there exists a functionf(k)
such that, if the treewidth of a graphG is at leastf(k), then
G has ak × k grid minor. For our algorithmic purposes,
we shall use ak-wall instead of ak × k grid-minor. By a
theorem of [44], we can detect ak-wall if one exists.

We guess the correct setX of at mosth apex vertices (by
trying all possible choices). ThenG − X is apex-freeh-
almost-embeddable in some surface in whichH cannot be
embedded, except that we cannot bound the width of vor-
tices. Also we can find a large wallH0.

Similar to the existential proof of Robertson and Sey-
mour, our goal is to make a sequence of pairs(Hi,Σi) such
that, at each stage, we increase the genus at the cost of sac-
rificing a small amount of the wallHi, while keeping the
large face-width. Our initial pair is(H0,Σ0) whereΣ0 is
the sphere. Every graph with high face-width that can be
drawn in a surface in whichH can also be drawn has an

H-minor, by the result of [41]. Hence the genus-increasing
process stops inO(|H|2) steps or so.

How does the rest of the graph attach toHi? It turns
out that, except for a bounded number of disks which be-
come vortices, the rest of the graph is just attached to disks
of Hi and drawn in these disks up to3-cuts. Hence the re-
maining challenge is to find the structure of how the rest of
the graph attaches to these disks ofHi. There are three in-
gredients that we need to detect: (1) How to find a handle?
(2) How to find a crosscap? (3) How to find a vortex? By the
deep thereoms [46, Theorem 8.1] and [45, Theorem 1.1], it
turns out that, if there is a handle, then there must be a large
“jump” in (Hi,Σi). Also, if there is no jump, then [45, The-
orem 1.1] says that crosscaps and vortices are contained in
small (bounded-diameter) disks of(Hi,Σi). We use these
properties to efficiently detect handles, crosscaps, and vor-
tices.

In the second component, we suppose that we can al-
ready detectG ash-almost-embeddable in some surface in
whichH cannot be embedded, except that we cannot bound
the pathwidth of vortices. Now our goal is to translate this
into the structure of Theorem 2.1 [46, Theorem 1.3]. This
translation can be done by using the highly nontrivial theo-
rem [42, Theorem 11.3]. Roughly, suppose we are given the
structure of [46, Theorem 3.1]. If some bag in one vortex
has large treewidth, then we repeatedly apply the algorithm
of [46, Theorem 3.1] to this bag until there is no large bag
in the resulting structure. [42, Theorem 11.3] gurantees that
we can control the location of a bounded number of ver-
tices in the resulting structure of this bag. This means that
we can obtain the structure of [46, Theorem 3.1] in such a
way that the specified vertex set is always contained in the
set of apex vertices. This property allows us to extend the
tree decomposition, and the resulting tree decompostion is
the desired structure.

Acknowledgments. We thank Neil Robertson, Paul Sey-
mour, and Robin Thomas for many helpful discussions
about graph minors.
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