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Abstract classic example is the celebrated proof of Wagner's Con-
jecture [47], which can be stated as follows: every minor-
At the core of the seminal Graph Minor Theory of closed graph property (preserved under taking of minors)
Robertson and Seymour is a powerful structural theoremis characterized by a finite set of forbidden minors. The
capturing the structure of graphs excluding a fixed minor. proof of this theorem uses the decomposition theorem men-
This result is used throughout graph theory and graph al- tioned above, as well as transfinite induction, and gives lit-
gorithms, but is existential. We develop a polynomial- tle insight into the finitely many forbidden minors which
time algorithm using topological graph theory to decom- are proved to exist. Indeed, there is a mathematical sense in
pose a graph into the structure guaranteed by the theorem:which any proof of this result must be nonconstructive [29].
a clique-sum of pieces almost-embeddable into bounded- Essentially the only explicitly algorithmic part of the
genus surfaces. This result has many applications. In par-Graph Minor Theory is a polynomial-time algorithm for
ticular, we show applications to developing many approx- testing the existence of fixed minofs[44] which, combined
imation algorithms, including a 2-approximation to graph with the proof of Wagner's Conjecture, implies the ex-
coloring, constant-factor approximations to treewidth and istence of a polynomial-time algorithm for deciding any
the largest grid minor, combinatorial polylogarithmic- minor-closed graph property. This consequence has been
approximation to half-integral multicommodity flow, subex- used to show the existence of polynomial-time algorithms
ponential fixed-parameter algorithms, and PTASs for many for several graph problems, some of which were not previ-
minimization and maximization problems, on graphs ex- ously known to be decidable [28]. However, these algorith-
cluding a fixed minor. mic results (except the minor test) are nonconstructive: we
know that efficient algorithms exist, but do not know what
they are. The difficulty is in determining the finite set of
1. Introduction forbidden minors: we lack “a means of identifying the ele-
ments of the set, the cardinality of the set, or even the order

The deepest and likely the most important work in graph of thle Ia.rghest ?raph n the fse‘t” [28] hs f fixed
theory is the Graph Minor Theory developed by Robertson Algorithms o_rH-mlnor—_ ree.grap ? ora |xec g’r:alﬁﬁ
and Seymour in a series of over 20 papers spanning over 2¢'ave been studied extensively; see e.0. [8. B1.19. 35, 37]. In
years. Our goal is to make this work algorithmic. particular, it is generally believed that several algorithms for

The heart of the Graph Minor Theory is a decomposi- planar graphs can be generalizedHeminor-free graphs
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tion theorem|[45, Theorem 1.3] capturing the structure of for any f|.xed Hh B&’ 3.‘" 32 . The geccr)]mpo§|tr|]on theo-
all graphs excluding a fixed minor. At a high level, the the- rem Prqwdes the key Insigt tinto why this might be pos-
orem says that every such graph can be decomposed inté'ble' first extend an algorithm for planar graphs to han-

a collection of graphs each of which can “almost” be em- dle bounded-genus graphs, then extend it to handle graphs

bedded into a bounded-genus surface, combined in a tree@MOSt-embeddable” into bounded-genus surfaces, and fi-

structure. The main result of this paper is a polynomial- nally extend it to handle tree decomposi_tions into SQCh
time algorithm to compute such a decomposition, which we 9raPhs. However, such an approach requires an algorithm
show has extensive algorithmic applications. to construct the decomposition. This paper provides such an

Most of the Graph Minor Theory consists of existen- ?lg(};'thm’ a If<ey stepprllng stone for constructing algorithms
tial results, and some of the proofs are nonconstructive. A or fi-minor-iree grapns. ) .
In its existential form, the graph-minor decomposition
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imum dominating set, and maximum independent set in showing the power of our main decomposition result. An
H-minor-free graphs. This theorem is existential not be- existential version of this result was shown by DeVos et
cause the algorithm requires a decomposition (though itsal. [22] using a complicated, and not obviously construc-
existence is used in the analysis), but because the algotive, approach; here we show that a much simpler, and con-
rithm relies on efficient detection of minor-closed properties structive, solution is possible using known results from an
(which exists but is nonconstructive as mentioned above).earlier paper of Grohé [30]. Even for the case: 2, the re-

We can modify the algorithm to rely instead on the de- sultis very interesting: everff-minor-free graph is just the
composition, and therefore our work makes this result con-“sum” of two bounded-treewidth graphs. In fact this case
structive. The bidimensionality theory, developed in the se- is an algorithmic solution to a conjecture of Thomlas! [50].
ries [21/19] 14, 15,12, 16, 13,]20,/18] 17], uses the decom-This case also immediately leads to simple constant-factor
position theorem to develop subexponential fixed-parameterapproximation algorithm for almost every problem solv-
algorithms and PTASs for a broad class of problem#&/in able on bounded-treewidth graphs, and by turdinglative
minor-free graphs. 1[12] a subexponential fixed-parameterto 1/¢, we often obtain a PTAS. We give general results
algorithm, with running tim@O(\/DnO(l), is developed for ~ providing PTASs for a variety of minimum and maximiza-
minimum dominating set and minimum vertex coverAin tion problems, essentially providing a generalized Baker’s
minor-free graphs. This algorithm is conditioned on having approach that applies to alf-minor-free graphs, not just
the decomposition, and thus our decomposition algorithm apex-minor-free (or planar) graphs [3) 24]. Our approxima-
removes this condition, resulting in a truly constructive re- tions to treewidth and grid minors exploit the minimax rela-
sult. In [18] aparameter-treewidth bouni$ established,  tion between these two quanties, leading to a combinatorial
bounding the treewidth by a small function (usually the “primal-dual” type algorithm. This approach also leads us
square-root) of the optimal solution value for many prob- to efficient combinatorial algorithms for constructing half-
lems in generall -minor-free graphs and even more prob- integral multicommodity flows that are at most a polyloga-
lems in apex-minor-free graphs. Combined with bounded- rithmic factor away from the optimal fractional multicom-
treewidth algorithms, this bound results in many subexpo- modity flow.

nential fixed-parameter algorithms, and with further ideas A significant approximation result in this paper is a 2-
these results can be extended to PTASS [17].1n [16] it is approximation algorithm for minimum graph coloring (also
shown that every minor-closed graph family with bounded known as minimum chromatic number) iif-minor-free
local treewidth (apex-minor-free graphs) in fact has lin- graphs. Graph coloring is one of the hardest problems
ear local treewidth, again using the decomposition theo-to approximate: in general graphs, it is inapproximable
rem. This result vastly improves the running time of sev- within n'~¢ for anye > 0, unless ZPP = NF_[26]. Even
eral PTASS based on Baker's approach (fﬁ)(l/€>no(1) for S—colorable graphz, 1'[4he Ob((le)st approximation algorithm
to 20(1/)30(1)) " Other applications of the decomposition achieves a factor a(n /1*1g%Y'n) [B]. In planar graphs,
theorem include extensions of graph-minor results to count-the problem ist/3-approximable, and that is the best pos-
ably infinite graphs[23], and the existence of a clique minor SiPIe unless P = NP, essentially because all planar graphs

whose size is linear in the connectivity of the graph [6]. &€ 4-colorable. In contrast/-minor-free graphs (or even
bounded-genus graphs) are r@¢l)-colorable for a con-

We believe that our algorithmic decomposition is a use- stantindependent i (or genus), and the best previous ap-
ful tool for developing efficient algorithms ol -minor-free proximation comes from a simp@(|V (H)|/1g |V (H)|)-
graphs. One analogy might be to algorithms for construct- approximation following from an algorithm that guarantees
ing a tree decomposition in a graph of small treewidth, or a coloring withO(|V (H)|/lg |V (H)|) colors.
even constructing a planar embedding of a planar graph. This problem has close connections to Hadwiger’s con-
In addition to the applications listed above (using previous jecture, one of the major unsolved problems in graph theory,
work), we demonstrate several algorithmic results that build which can be stated as follows: evel+minor-free graph
upon our algorithmic decomposition theorem: polynomial- has a vertex coloring witfi/ (H)|—1 colors. Hadwiger[33]
time approximation schemes for any problem satisfying a posed this problem in 1943, and proved the conjecture for
few simple conditions, approximations to treewidth, ap- |V (H)| < 4. The casdV(H)| = 5 is equivalent to the
proximations to finding the largest grid minor, approx- four-color theorem([52], and therefore also truel[2, 1, 38].
imations to half-integral flow relative to fractional flow, The caséV (H)| = 6 was proved by Robertson, Seymour,
and approximations to graph coloring. For the approxi- and Thomas/[39], also using the four-color theorem. All
mation schemes and approximate graph coloring, we de-casegV (H)| > 7 remain unsolved. The best general upper
velop another powerful algorithmic decomposition: every bound is that every/-minor-free graph has a vertex color-
H-minor-free graph can be decomposed into any constanting with O(|V (H)|+/lg |V (H)|) colors, which follows im-
numberk of pieces such that anyy — 1 of the pieces has mediately from bounds on the average degree of a vertex
bounded treewidth (where the bound dependg/cendk). in an H-minor-free graph; see, e.g., [36,/51]. Thus, Had-
The proof of this decomposition result is relatively simple, winger’s conjecture is not resolved even up to constant fac-



tors, and the conjecture itself is only a worst-case bound. Inif T = (I, F') is a path. Thepathwidthof a graphG, de-
contrast, our 2-approximation algorithm gives the best col- notedpw(G), is the minimum width over all possible path
oring, up to constant factors, for any specifiégeminor-free decompositions ofs.

graph (as opposed to the worst case). Furthermore, the re- Third, we need a basic notion of embedding; see,
sult is algorithmic, and the approach is conceptually simple e.g., [43[7]. In this paper, aambeddingefers to a2-cell
with our decomposition results in hand. embeddingi.e., a drawing of the vertices and edges of the

This paper is organized as follows. We start in Section graph as points and arcs in a surface such that every face
[2 with a formal description of the graph-minor decomposi- (region outlined by edges) is homeomorphic to a disk. A
tion theorem for which we give an algorithm. Then we de- noosen such an embedding is a simple closed curve on the
scribe several applications of our decomposition algorithm surface that meets the graph only at vertices. [€ngthof
in Sectior| B. Sectiof|4 gives an overview of the main in- a noose is the number of vertices it visits. Tepresenta-
gredients in our decomposition algorithm, while the details tivity or face-widthof an embedded graph is the length of
of our algorithm are relegated to the full paper (available on the shortest noose that cannot be contracted to a point on
the authors’ homepages). the surface.

At a high level, the deep decomposition theorem of
Robertson and Seymolr [46, Theorem 1.3] says that, for ev-
ery graphH, everyH-minor-free graph can be expressed as
a “tree structure” of pieces, where each piece is a graph that

This section describes the Robertson-Seymour decom-—an be drawn in a surface in whidh cannot be drawn, ex-
position theorem characterizing the structurefbiminor- cept for a bounded number of “apex” vertices and a bounded
free graphs, which we make algorithmic in this paper. number of “local areas of non-planarity” called “vortices”.

First we define the basic notion of minor. Given an edge Here the bounds depend only &h To make this theorem

2. Graph Minor Decomposition Theorem

e = {v,w} in a graphG, the contractionof e in G is the
result of identifying vertices» andw in G and removing
all loops and duplicate edges. A graph obtained by a
sequence of such edge contractions starting f€vm said
to be acontractionof G. A graph H is a minor of G if

H is a subgraph of some contraction@f A graph class
C is minor-closedif any minor of any graph ir€ is also a
member of. A minor-closed graph clagsis H-minor-free
if H ¢ C. More generally, we use the terni/“minor-free”

precise, we need to define each of the notions in quotes.
Each piece in the decomposition ish-almost-
embeddable” in a bounded-genus surface whkrés
a constant depending on the excluded mikbr Roughly
speaking, a grapty is h-almost embeddable a surfaceS
if there exists a seX of size at most of vertices, called
apex verticeor apices such thatz — X can be obtained
from a graphG, embedded inS by attaching at most
graphs of pathwidth at most to G, within & faces in

to refer to any minor-closed graph class that excludes somean orderly way. More precisely, a grah is h-almost

fixed graphH.

embeddablen S if there exists a vertex seX of size at

Second we define the basic notion of treewidth, intro- most 4 (the apices such thatG — X can be written as
duced by Robertson and Seymour![40]. To define this no-Gy U G, U - -- U Gy, where
tion, first we consider a representation of a graph as a tree,

called a tree decomposition. Preciselifese decomposition
of agraphG = (V, E) is a pair(T, x) in whichT = (I, F)
is a tree andy = {x; | ¢ € I} is a family of subsets of
V(G) such that

L Uierxi =V;

2. for each edge = {u,v} € FE, there exists am € I
such that both. andv belong toy;; and

3. forallv € V, the setof node§i € I | v € x;} forms
a connected subtree Bt

To distinguish between vertices of the original grd@pland

1. Gy has an embedding ifi;
2. the graphs7;, calledvortices are pairwise disjoint;

3. there are faces’,..., I}, of Gy in S, and there are
pairwise disjoint diskd),, ..., Dy in S, such that for
t=1,.. .,h, D, C F; andUi = V(Go) N V(Gl) =
V(Go) N D;; and

4. the graphG; has a path decompositidiB,,)..cy, of
width less thark, such that. € B, forall uw € U;. The
setsB,, are ordered by the ordering of their indices
as points along the boundary cycle of facen Gj.

An h-almost embeddable graphapex-freaf the setX of

vertices ofT" in the tree decomposition, we call vertices of apices is empty.

T nodesand their corresponding;’s bags The width of

the tree decomposition is the maximum size of a bag in

minus 1. Thetreewidthof a graphG, denotedtw(G), is

The pieces of the decomposition are combined accord-
ing to “clique-sum” operations, a notion which goes back
to characterizations ak’3 3-minor-free andi;-minor-free

the minimum width over all possible tree decompositions graphs by Wagnef [52] and serves as an important tool in

of G. A tree decomposition is calledmath decomposition

the Graph Minor Theory. Suppoge, andG, are graphs



with disjoint vertex sets and lét > 0 be an integer. For
i=1,2,letW; C V(G,) form a clique of sizé: and letG;,
be obtained fronG; by deleting some (possibly no) edges
from the induced subgrapf;[WW;] with both endpoints in
W;. Consider a bijection : W; — W5, We define &-sum
G of Gy andGy, denoted byG = G i G2 or simply by
G = G ® Gs, to be the graph obtained from the union of
G, andGY, by identifyingw with h(w) for all w € W;. The
images of the vertices d¥/; andW, in G; @ G2 form the
join set Note that each vertex of G has a corresponding
vertex inGy or Gy or both. Also,® is not a well-defined
operator: it can have a set of possible results.

Now we can finally state a precise form of the decompo-
sition theorem:

Theorem 2.1 [46, Theorem 1.3For every graphH, there
exists an integet > 0 depending only of¥/ (H)| such that
every H-minor-free graph can be obtained by at mast
sums of graphs that are-almost-embeddable in some sur-
faces in whichH cannot be embedded.

In particular, if H is fixed, any surface in whiclif can-

Proof: By Theorenj 2.p, everyf-minor-free graph can be
written as a clique sun, @& P, @ --- & P, of h-almost-
embeddable graphB,, P, ..., P, such that theth clique
sum(P & P& -4 P;)® P41 hasjoin set/;; contained
in the setX;; of apices in piecé; .

First we label the vertices of each pieEewith k + 1
labels such that any of the labels from the same piece in-
duce a graph of treewidth at mas} .. Thelabel setqsets
of vertices with the same label) thus form a partition of the
desired type for each pied@. Let X; denote the apex set
in piece P;. By [30, Proposition 10],P; — X; has linear
local treewidth for fixedH , say withf(¢) = ¢-¢q. We run a
bread-first search from some root vertexand assign the
label to each vertex to be the distance betweepandv
modulok + 1. The union of any label sets is the disjoint
union of subgraphs aP; — X; each consisting of at mokt
breadth-first layers of?; — X;. By [30, Lemma 16], each
of these subgraphs, and therefore the union, has treewidth
at mostck. We can assign labels to the apicésarbitrarily
(as prescribed later) and increase the treewidths by an addi-
tive constant:. Therefore the treewidth of arlylabel sets

not be embedded has bounded genus. Thus, the summandithin P; is at mostk+h < (c+h)k, sowe sety = c+h.

in the theorem aré-almost-embeddable in bounded-genus
surfaces.
As stated in[[2R], the proof of this theorem in [46] in fact

Suppose by induction thd@, ® P, ®- - - @ P; has a label-
ing with k41 labels such that anlylabel sets induce a graph
of treewidth at mosty k. We have already proved the base

establishes a stronger result (which also follows from our case ofi = 1. We merge the labelings ¢t @ P, & - - - ® P;

proof and algorithm):

Theorem 2.2 The clique-sum decomposition of Theorem
[2.3, written asG; & G, @ --- & Gy, has the additional
property that the join set of each clique-sum betwégre
G>®---®G,;_1 andG; is a subset of the apices ;. Fur-
thermore, the join set of each cliqgue-sum involving pi&ge

and P, by preferring the former labeling for any vertex
in the join setJ;;,. Because/;;1 C X1, this labeling
of J;41 is just a particular choice for the arbitrary labeling
of X;,1. By [19, Lemma 3], for any two graph§’ and
G", tw(G' & G") < max{tw(G’),tw(G")}. Thus, the
treewidth of anyj label setsiPy $ Po® -+ - P;) ® Pi11

is at most the maximum of the treewidth of théabel sets

contains at most three vertices from the bounded-genus pariyithin P, ¢ P, & - - - @ P; and the treewidth of thg label

of G]

The main result of this paper is a polynomial-time algo-

rithm to find the decomposition guaranteed by Thedrern 2.2.

3. Algorithmic Applications of Graph-Minor
Decomposition

3.1. Partition into Bounded-Treewidth Graphs

First we generalize layerwise decomposition fHF
minor-free graphs, previously developed by Baker for
planar graphs[]3] and by Eppstein for apex-minor-free
graphs([24].

Theorem 3.1 For a fixed graphH, there is a constanty
such that, for any integek > 1 and for everyH-minor-
free graphG, the vertices of7 (or the edges ofy) can be
partitioned intok + 1 sets such that any of the sets induce
a graph of treewidth at mosty k. Furthermore, such a
partition can be found in polynomial time.

sets withinP; ;. The latter is at mosty k as argued above,
and the former is at mosty £ by the induction hypothesis.
Therefore the label sets form the desired patrtition.

We can obtain an edge partition in parallel to a vertex
partition by a similar inductive construction. First we as-
sign the label of each edge i — X; to be the label of
the endpoint closest to the roat in the vertex labeling of
P, — X,. To each remaining edge iR;, with one or both
endpoints inX;, we assign the label of an endpoint i
(choosing the endpoint arbitrarily if there is a choice). As
before, the treewidth of anylabel sets within?; is at most
cgk. Then we combine these labelings as follows. Suppose
by induction thatP, & P, & --- & P; has a vertex and an
edge labeling withk 4 1 labels such that ank vertex label
sets or any: edge label sets induce a graph of treewidth at
mostcy k. We have already proved the base case-6f1.

We merge the vertex labelings &f & P, & --- @ P; and
P,y as before (and thus we obtain the same vertex label-
ing as before). We merge the edge labelings as follows:
whenever an edge iR;; has exactly one endpoint in the
join setJ;. 1, we use the the inductive label assigned to that



endpoint byP; & P, @ P;; and whenever an edge has both 1. there is a polynomial-time algorithm solving on
endpoints in the join sef;,;, we use the inductive label graphs of bounded treewidth;

assigned to the edge byy & P» ¢ P;. This labeling is a
particular decision for the arbitrary choices made by edges
with both endpoints inX;,; 2 J;11. Thus, every edge

connectingJi 41 t0 Pipq — Jit is assigned the label of 3 given a partition of the vertices (respectively, edges)

2. the value of the optimal solution fét never increases
when removing vertices (respectively, edges); and

the endpoint inJ;1;. Let L be the set of all vertices that of a graph( into two sets, a solution to each of the
have one of the desirekl labels. We claim that the sub- induced subgraphs @ can be merged in polynomial
graph of(Py & P, & --- & F;) & Pi1q induced by anye time into a solution foiG of value at most: times the
edge label sets is itself a clique-sum of two graphs with sum of the two solution values.

join setJ;.1 N L. (In this subgraph, any vertex i1

assigned the excluded label has no incident edges connecfcor any fixed H, there is a polynomial-time(2«)-

ingto P; 1 — J;+1, SO we can remove this vertex froRy ; approximation algorithm for problen® in H-minor-free

and J;.1 in the clique-sum, and the remaining vertices in graphs.

the join set form a clique.) The two summed graphs have ) )

treewidth at mosty; k by induction, and thus the clique-sum ~ See the full paper for this and other omitted proofs.

has treewidth at most; k. Therefore the label sets form the From Theorerfi 3]3 we obtain eaSy1)-approximations

desired partition. for many graph problems. For some problems (such as
The construction of the label sets runs in linear time 9raph coloring) this is the best result known, while for some

given the decomposition from Theordm]2.2, for a polyno- such problems PTASs are possible. For example, Theorem
mial overall time bound. o [3.3 gives a 4-approximation for minimum color sum, but

below we obtain a PTAS.
Next we develop a PTAS for many of these minimization
Approximate coloring. Applying Theoren] 3]1 fok = problems.
2, and because minimum graph coloring can be solved op-
timally in graphs of bounded treewidth, we obtain the fol- Theorem 3.4 Suppose a minimization problef satisfies

lowing important theorem: the following properties:

Theorem 3.2In  H-minor-free graphs, there is a 1. there is a polynomial-time algorithm solving on

polynomial-time 2-approximation for minimum graph graphs of bounded treewidth;

coloring. 2. given a partition of the vertices (respectively, edges) of
This approximation factor is near optimal because min- agraph( into two sets5; and.Ss,

imum graph coloring is hard to approximate better than (a) there are solution&’, and F, to P on the induced

4/3 even in planar graphs. The f.aCtOI" |mpr.0\./es over a subgraphs[S;] (e.g.,F; = OPT(G)N S;) such

trivial O(|V (H)[/1g|V (H)|)-approximation arising from that the total value of the two solutions is at most

aoO(|[V(H)|v/1g |V(H)|)—cploring that follows from aver- the optimal solution value faf; and

age degree bounds iHH-minor-free graphs [36, 51]. Our (b) given solutions forG[S:] and G[Ss] can be

technique can be generalized to obtain approximation algo-
rithms for many graph problems, as developed in the fol-
lowing sections.

The same technigue as coloring can be applied to many
other problems. An example of a maximization problem
is the notoriouddensek-subgraphproblem, for which the
best approximation known 9 (n!/3~¢) [27]. We obtain a

merged in polynomial time into a solution f6r

of value at most+« times the first solution value
plus1/« times the second solution value, for any
0 < a < 1. (This condition is satisfied in par-
ticular if the merged solution value is at most the
sum of the two solution values.)

2-approximation forf-minor-free graphs. For any fixedH and any0 < ¢ < 1, there is a polynomial-
time (1 4 ¢)-approximation algorithm for problen® in H-

3.2. Approximation Algorithms for Minimization minor-free graphs.

Problems
Proof: We apply Theorerh 31 with + 1 = 4/22 to obtain
We start with a simple but very general constant-factor @ Partition of a given graply into setsSy, Sy, . . ., Sy-+1 Of

approximation, which in some cases (such as minimum Vertices or edges. L&; be the subgraph af induced by

graph coloring) is near optimal: S1US; U+ U8y USipg U--- U Sy EachG; has
bounded treewidth and thus we can compute the optimal so-

Theorem 3.3 Suppose a minimization problen® on lution OPT(G;) in polynomial time. Similarly,G[S;] has

graphs has the following properties: bounded treewidth, and we can compute its optimal solution



OPT(G[S;]) in polynomial time. The approximation algo-
rithm mergesOPT(G;) and OPT(G[S;]) with a = ¢/2,
for eachi, and returns the best such solution.

By repeated application of Property 2(a), there is a solu-
tion F; to P on each induced subgragh.S;] such that the
total value of these solutions is at ma3PT(G). Thus,
for somei, F; has weight at mosOPT(G)/(k + 1).
Therefore, OPT(G[S;]) < OPT(G)/(k + 1). Also,
by Property 2(a),OPT(G;) < OPT(G). The value
of the constructed merged solution for this valueidg
(1 + a) OPT(G;) + (1/a) OPT(G[S;]) which is at most
(1+a)OPT(G)+ (1/a)OPT(G)/(k+1) = (1 + a+
(1/a)/(k+1)) OPT(G) = (1+¢) OPT(G) by our choices
of a andk + 1. O

This resultis very general and applies to a wide variety of
problems to which Baker’s approach applies, such as verte
cover. One particularly interesting application is the well-
studied variation of graph coloring calledinimum color
sum[4l,26,[34], where the goal is to find a (vertex or edge)
coloring with positive integers with minimum total value.
We can use the bounded-treewidth algorithm of Haldon
and Kortsarz[[34], and the merging strategy of introducing
each color from the second solution after each groupy of
colors from the first solution.

Corollary 3.5 There is a PTAS for minimum color sum (of
vertices or edges) o -minor-free graphs.

A linear kernelizationof a minimization problem on
weighted graphs is a polynomial-time algorithm that, given
a weighted graplds, constructs a weighted graghf such
that OPT(G’) < OPT(G), OPT(G’) is at leasts times
the total weight of the vertices (respectively, edgesj-af
and any solution forG’ can be converted in polynomial
time to a solution forG with value larger by at most
OPT(G) — OPT(G").

Theorem 3.6 Suppose that a minimization problefhhas

a linear kernelization, can be solved in polynomial time on
graphs of bounded treewidth, and the value of the optima
solution for P never increases when removing vertices (re-
spectively, edges). Also suppose that, given a partition of
the vertices (respectively, edges) of a grapimto two sets

S; and S,, and given a solution fo&[S; ], we can compute

in polynomial time a solution fo' of value at most + «
times the solution value fa#[S,] plus1/«a times the total
weight ofSs, for any0 < a < 1. (This condition is satis-
fied in particular if the solution value fofs is at most the
solution value forG[S;] plus O(1) times the total weight

of G[S,].) For any fixedH and any0 < ¢ < 1, there is a
polynomial-timg(1 + ¢)-approximation algorithm for prob-
lem P in H-minor-free graphs.

This theorem can also be applied to minimum color
sum, without kernelization becaus¥®T(G) > |V(G)|,

using the constant average degree bound (for fikEd

of [36,[51] to colorG[S;] with O(1) colors, and using the
same bounded-treewidth algorithm and merging technique
as above.

3.3. Approximation Algorithms for Maximization
Problems

In this section we develop PTASs for a broad class of
maximization problems. A graph propertyis hereditary
if every induced subgraph of a graph with the property also
has the property. Thenaximum (weighted) induced sub-
graph problemfor a graph propertyr, MISP(r), is to find
the largest (maximum-weight) set of vertices in a graph
G that induce a subgraph with property similarly, the

YEMISP(r) problem is to find the largest (maximum-weight)

set of edges that induce a subgraph with properand

the hereditary property of is in terms of edges instead of
vertices). Examples of MISP-type problems include find-
ing the maximum induced subgraph that is chordal, acyclic,
without cycles of a specified length, without edges (inde-
pendent set), of maximum degree> 1, bipartite, a clique,

or planar[53]. Yannakakis [53] has shown that these ex-
amples of MISP are all NP-complete, and for all except the
last example, NP-complete even when restricted to planar
graphs[[53]. Another interesting example is maximum cut,
which is equivalent to EMISR() wherer is the property of
the graph being bipartite; our PTAS for this problem is an
interesting complement to the polynomial-time algorithm
for maximum cut in planar graphs [32].

Theorem 3.7 For any hereditary graph propertyr that
can be solved in polynomial time on graphs of bounded
treewidth, for any graphH, and for anye > 0, there

is a polynomial-timg1 + ¢)-approximation algorithm for
MISP(@r) and EMISPf) on H-minor-free graphs.

This result generalizes results of Chenl[11] & 3-
minor-free andK5-minor-free graphs, Demaine et al. [19]
for single-crossing-minor-free graphs, and Gradhe [30] for
independent set.

Our approach can also obtain a PTAS feaximump-
matching[3], where the goal is to find the maximum num-
ber of vertex-disjoint induced subgraphs isomorphic to a
fixed graphP. This problem includes the special cases of
maximum triangle matching and maximum tile salvage.

3.4. Subexponential Fixed-Parameter Algorithms

The newly developing theory of bidimensional graph
problems, developed in a series of papérs [21] 18] 14, 15,
12,[16,[13) 20/ 18, 17], provides general techniques for
designing efficient fixed-parameter algorithms and approx-
imation algorithms for NP-hard graph problems in broad
classes of graphs. This theory applies to graph problems



that arebidimensionalin the sense that (1) the solution G in [18], and in [18, Lemmas 4.1-4.5] it is shown that
value fork x k “grid-like” graphs grows withk, typically tw(B;) = O(tw(G)) for all ¢ andtw(B;) = Q(tw(G)) for
asQ(k?), and (2) the solution value only goes down when somei. Therefore for approximating treewidth it suffices to
contracting edges and optionally when deleting edges. Ex-compute the treewidth of eadB;, and then take the max-
amples of such problems include feedback vertex set, vertexmum. Of course, this process is complicated by requiring
cover, minimum maximal matching, face cover, a series of an actual tree decomposition, not just the value of treewidth.
vertex-removal parameters, dominating set, edge dominat- To compute a tree decomposition of the bounded-genus
ing set, R-dominating set, connected dominating set, con- graph B; of width O(tw(B;)), we find a minimum-length
nected edge dominating set, connectediominating set,  noncontractible noose using the algorithm|df [7]. Byl[12,
and unweighted TSP tour (a walk visiting all vertices). Lemma A.1], if a bounded-genus graph has face-width

Bidimensional problems are divided intontraction- then it has af2(w) x Q(w) grid minor, and thus in partic-
bidimensionaland minor-bidimensionaproblems accord-  ular it has treewidtif)(w). Thus the (minimum) length of
ing to whether the solution value only goes down when the noncontractible noose, which is the face-widttBgfis
deleting edges. The bidimensionality theory obtains subex-O(tw(B;)). We remove all vertices from the noose, reduc-
ponential fixed-parameter algorithms, with typical run- ing the genus of the graph ly and possibly disconnecting
ning time 20(Vk)pO() ' for minor-bidimensional prob-  the graph. We call each connected componergdaced
lems in all Z-minor-free graphs [12] and for contraction- graph Now we repeat this process by, in each round, find-
bidimensional problems in all apex-minor-free graphs. ing and removing a minimum-length noncontractible noose
However, the only subexponential fixed-parameter algo- in each reduced graph that is not already planar. The pro-
rithm for a contraction-bidimensional problem on general cess stops when all reduced graphs are planar. Because we
H-minor graphs is a complicated algorithm for dominating only remove vertices, the treewidth of each reduced graph is
set and several variants [12], and this algorithm assumesat mosttw(5;). Now we can apply a 1.5-approximation for
that the Robertson-Seymour decomposition is given. minimum-width tree decomposition on planar graphs [49]

Our algorithm for Theorenfi 2,2 fills this gap, provid- t0 obtain a tree decomposition of each reduced graph with
ing a fundamental building block for future development Width O(tw(B;)).

of subexponential fixed-parameter algorithmssminor- Now we reverse the noose-removal process, in each
free graphs. In particular, we obtain the following result round adding the removed nooses from each of the reduced
from [12, Theorem 4.4]: graphs, and recombining the reduced graphs in the reverse

order as before. We combine the tree decompositions by
Theorem 3.8 For any fixedH, there is an algorithm that  placing all vertices of the added nooses into all bags of the

finds a dominating set of size at mésh a givenH -minor- incident reduced graphs. Because each reduced graph is in-

free graph in2OWk),0(1) time. cident to at most one noose during a round, and each noose
has lengthO(tw(B;)), this addition increases the width of

3.5. Approximating Treewidth the tree decomposition b@(tw(B;)) during each round.

The number of rounds is at most the gepusd B;, because
the genus of each reduced graph reduced by at ledst-
ing each round of noose removal. Therefore we obtain a tree
decomposition of3; of width O((g + 1) tw(B;)). Because
g < h, this width isO(h tw(B;)) = O(tw(B;)).

Next we show how to add the vortices backBg form-
ing a new graphB;, while preserving the tree decompo-
sition. LetU; = {u},u?,...,u""} be the cyclically or-
dered vertices of; at which a vortex was attached but
replaced by a cycle. For eaclf that occurs in bag3

Theorem 3.10 For any fixedH, there is a polynomial-time ~ IN the tree decomposition oB;, we add to3 the cor-
O(1)-approximation algorithm for computing a tree decom- esponding bagds,; from the path decomposition of vor-
position of minimum width in aZ-minor-free graph. texGY/. The resulting bags form a tree decompositioB)f
because{u}, u?,...,u]"} are connected in a path iB;.
Proof: The algorithm proceeds as follows. First we By charging the< h + 1 added vertices to the occur-
compute the decomposition @ from Theoren] 22 into  rence ofu] that triggered the addition, each bag increases
a clique-sumP; & P, @ --- P, of h-almost-embeddable in size by a factor at mosi + 1 for each of theh vor-
graphs. For eacl®;, we form a bounded-genus grajph tices. Thus the width of this tree decompositionif is
by starting from the bounded-genus part/@f(excluding O(h?*tw(B;)) = O(tw(B:)),
all apices and vortices), and forming a cycle on the vertices  Itis easy to add the apices back®g: simply place each
that attached to each vortex. This graph is referred to asapex in every bag. The width of the tree decomposition in-

The algorithm of this section and the next essentially
form a kind of combinatorial primal-dual algorithm, in
which we effectively use the following minimax relation be-
tween minimum treewidth and maximum grid minors:

Theorem 3.9 [18] For any fixed graphi, everyH-minor-
free graph of treewidthv has anQ(w) x Q(w) grid as a
minor.



creases by at moat Now we have a tree decomposition of
the original pieces’; of width O(tw(B;)) = O(tw(F;)).

Second we construct the approximation graphof each
summand in the clique-sum decomposition. Byi[18, Lem-

We combine these tree decompositions according to themas 4.1-4.5], eacH; is a minor ofG andmax; tw(4;) =
cligue-sum decomposition. For each clique-sum between®(tw(G)). Thus it suffices to find an approximately largest

two graphs, we find a bag in each decomposition contain-

k x k grid minor in eachA4;, and return the largest such

ing all nodes of the join set (such a bag must exist becauseminor, to find an approximately largektx & grid minor
the join set forms a clique), and then we connect the treein G.
nodes of these two bags by adding an edge, connecting the For eachA;, we compute the shortest noncontractible

two tree decompositions. The width of the resulting decom-
position is the maximum of the widths of the two given tree

noose using the algorithm afl[7], whose length is the face-
width of A;. If the face-width ofA; is at leastw(A4;)/(g +

decompositions. Therefore we obtain a tree decomposition1), whereg is the genus of4;, then by [12, Lemma A.1],

of width O(max; tw(P;)) = O(tw(Q)). O

Recently, a noncombinatorial approach based on lin-
ear programming has been developed to obtaiOéh)-
approximation to treewidth i -minor-free graphs [25].

3.6. Approximating Grid Minors

The primal-dual nature of the algorithm from the pre-
vious section allows us to construct grid minors as fol-
lows. The following result improves the fixed-parameter
algorithm of Robertson and Seymolr [44] for constructing
k x k grid minors for fixedk, to the case of arbitrary in
H-minor-free graphs.

Theorem 3.11 For any fixedH, there is a polynomial-time
O(1)-approximation algorithm for computing the maximum
k x k grid minor in an H-minor-free graph.

Our construction uses an important concept from the
existential result relating treewidth and grid minars|[18].
Consider a grapliz decomposed into a clique-sufy @

Py @ --- P, of almost-embeddable graphs. Thpprox-
imation graph A; of the almost-embeddable gragh is
formed from the bounded-genus part@f(thus excluding
all apices and vortices) by (a) removing all vertices in the
bounded-genus part that were attached to vortices, (b) re
moving all virtual edges (edges iR; that are not inG),

and (c) replacing some of these edges as follows. For eack&

cligue sum involvingP; with the property that the join set

W contains at least two vertices not already removed (note

that there can be at most three such vertices), we do the fol
lowing: (i) if W contains exactly two vertices not already

removed, we add an edge between these two vertices; (ii) if
W contains three vertices not already removed and there

is more than one cligue sum whose join set contains thes
three vertices, we add a triangle of edges between the
three vertices; (iii) ifi contains three vertices not already

removed and there is only one cligue sum whose join set

contains these three vertices, we add a new verteside

the virtual triangle they form on the surface and then add an

edge connecting to each of the three vertices.

Proof: The algorithm proceeds as follows. First we com-
pute the decomposition aff according to Theorerp 3.2.

-

we can construct af(tw(A;/(g+1)) x Q(tw(A;/(g+1))

grid minor. Otherwise, we remove the vertices of the non-
contractible noose, decreasing the treewidthAgfby at
mosttw(A4;)/(g + 1). The resulting graptl; may be dis-
connected, butw(A;}) is the maximum treewidth among
the connected components. We recurse on each connected
component, and return the largest grid minor found. At the
base of the recursion, we have a planar graph: we com-
pute a branch decomposition of minimum width [49]

and from that we compute af(w) x Q(w) grid minor
using the algorithm implicit in the proof of [48, Theo-
rem 6.2]. The recursion has depth at mgdtecause each
noose removal decreases the genus by at leasThus
some graph in a leaf of the recursion has treewidth at least
tw(A4;) — gtw(A;)/(g +1) = tw(A4;)/(g + 1), so it has
branchwidth)(tw(A4;)/(g + 1)) = Q(tw(A;)). |

3.7. Half-Integral Versus Fractional Multicommod-
ity Flow

Chekuri, Khanna, and Shephaid [10] proved that, for
planar graphs, the gap between the optimal half-integral
multicommodity flow and the optimal fractional multicom-
modity flow is at most a polylogarithmic factor. Further-
more, they gave a combinatorial algorithm for construct-
ing a polylogarithmic-approximate multicommodity flow
in planar graphs. Both the bound on the gap and the
ombinatorial algorithm are based on the existence of an
Q(w) x Q(w) grid minor in a planar graph of treewidib;
the algorithm essentially constructs such a grid minor.

As mentioned by Chekuri et al._[10], the existence of
an Q(w) x Q(w) grid minor in anH-minor-free graph of
(Theoren{ 3.9) can be used to generalize the
bound on the gap between half-integral and fractional mul-

treewidthw

Seticommodity flows. However, so far, this result is just exis-
Sential. Using our constant-factor approximation algorithm
from Theoren] 3.111 for finding the largest grid minor, we

can extend the combinatorial algorithm as well:

Theorem 3.12 For any fixedH, there is a polynomial-time
algorithm computing a half-integral multicommodity flow in
a givenH -minor-free graph that is within a polylogarithmic

factor of the optimal fractional multicommodity flow.



Chekuri et al.[[10] also gave a combinatorial proof of H-minor, by the result of[41]. Hence the genus-increasing
the result that, for planar graphs, the gap between the maxiprocess stops i®(|H|?) steps or so.
mum flow and the minimum cut in product multicommodity How does the rest of the graph attachAg? It turns
flow (and thus uniform multicommodity flow) instances is out that, except for a bounded number of disks which be-
at most a constant factor. The latter result was proved be-come vortices, the rest of the graph is just attached to disks
fore by Klein, Plotkin, and Rao fof-minor-free graphs  of H; and drawn in these disks up 3ecuts. Hence the re-
using primal-dual methods [85], and has many applicationsmaining challenge is to find the structure of how the rest of
in embeddings of/-minor-free graphs. Again our algo- the graph attaches to these diskshf There are three in-
rithm from Theoren 3.71 for finding grids iH-minor-free gredients that we need to detect: (1) How to find a handle?
graphs enables us to make this existential result algorith-(2) How to find a crosscap? (3) How to find a vortex? By the
mic and construct such a multicommodity minimum cut in deep thereoms$ [46, Theorem 8.1] and [45, Theorem 1.1], it
polynomial time. turns out that, if there is a handle, then there must be a large
“jump”in (H;,%;). Also, if there is no jump, then [45, The-
orem 1.1] says that crosscaps and vortices are contained in
small (bounded-diameter) disks @ff;,>;). We use these
properties to efficiently detect handles, crosscaps, and vor-

At a high level, our algorithm follows the proof of The- tices.
orem[2.1, inl[46, Theorem 1.3]. However, we skip several  In the second component, we suppose that we can al-
of the existential steps in favor of a more algorithmic ap- ready detect: ash-almost-embeddable in some surface in
proach. which H cannot be embedded, except that we cannot bound

The proof of Theorerfi 2J1 splits into two main compo- the pathwidth of vortices. Now our goal is to translate this
nents: handling each term in the cliqgue-sum, and puttinginto the structure of Theorem 2/1 146, Theorem 1.3]. This
these terms together. Both components are difficult. Thetranslation can be done by using the highly nontrivial theo-
first component uses another deep structural theorem aboutem [42, Theorem 11.3]. Roughly, suppose we are given the
H-minor-free graphs. This theorem is described[inl [46, structure of[[46, Theorem 3.1]. If some bag in one vortex
Theorem 3.1], and it is used, e.g., in the proof of Wagner’s has large treewidth, then we repeatedly apply the algorithm
Conjecturel[[4/7]. Roughly, if we eliminate the “tree struc- of [46, Theorem 3.1] to this bag until there is no large bag
ture” of clique sums in Theorefn 2.1, and concentrate onin the resulting structurel. [42, Theorem 11.3] gurantees that
the internal structure of one of the “nodes” of the tree, the we can control the location of a bounded number of ver-
local structure ofG' has a large “wall” (ak-wall is a par- tices in the resulting structure of this bag. This means that
ticular subdivision of & x & grid) and, up ta3-cuts, it is we can obtain the structure of [46, Theorem 3.1] in such a
h-almost-embeddable into some surface in whitlkannot way that the specified vertex set is always contained in the
be embedded, except that we cannot bound the pathwidthset of apex vertices. This property allows us to extend the
of vortices. The second component uses a nontrivial tree-tree decomposition, and the resulting tree decompostion is
decomposition theorern [42, Theorem 11.1]. the desired structure.

We sketch how to obtain the structure in the first compo-
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