6 The Smith Canonical Form

6.1 Equivalence of Polynomial Matrices

DEFINITION 6.1

A matrix $P \in M_{n \times n}(F[x])$ is called a unit in $M_{n \times n}(F[x])$ if $\exists Q \in$ $M_{n \times n}(F[x])$ such that

$$
P Q=I_{n} .
$$

Clearly if P and Q are units, so is $P Q$.

THEOREM 6.1

A matrix $P \in M_{n \times n}(F[x])$ is a unit in $M_{n \times n}(F[x])$ if and only if $\operatorname{det} P=$ c, where $c \in F$ and $c \neq 0$.
proof
"only if". Suppose P is a unit. Then $P Q=I_{n}$ and

$$
\operatorname{det} P Q=\operatorname{det} P \operatorname{det} Q=\operatorname{det} I_{n}=1 .
$$

However $\operatorname{det} P$ and $\operatorname{det} Q$ belong to $F[x]$, so both are in fact non-zero elements of F.
"if". Suppose $P \in M_{n \times n}(F[x])$ satisfies $\operatorname{det} P=c$, where $c \in F$ and $c \neq 0$. Then

$$
P \operatorname{adj} P=(\operatorname{det} P) I_{n}=c I_{n} .
$$

Hence $P Q=I_{n}$, where $Q=c^{-1}$ adj $P \in M_{n \times n}(F[x])$. Hence P is a unit in $M_{n \times n}(F[x])$.

EXAMPLE 6.1
$P=\left[\begin{array}{cc}1+x & -x \\ x & 1-x\end{array}\right] \in M_{2 \times 2}(F[x])$ is a unit, as $\operatorname{det} P=1$.

THEOREM 6.2

Elementary row matrices in $M_{n \times n}(F[x])$ are units:
(i) $E_{i j}$: interchange rows i and j of I_{n};
(ii) $E_{i}(t)$: multiply row i of I_{n} by $t \in F, t \neq 0$;
(iii) $E_{i j}(f)$: add f times row j of I_{n} to row $i, f \in F[x]$.

In fact $\operatorname{det} E_{i j}=-1 ; \operatorname{det} E_{i}(t)=t ; \operatorname{det} E_{i j}(f)=1$.
Similarly for elementary column matrices in $M_{n \times n}(F[x])$:

$$
F_{i j}, F_{i}(t), F_{i j}(f)
$$

REMARK: It follows that a product of elementary matrices in $M_{n \times n}(F[x])$ is a unit. Later we will be able to prove that the converse is also true.

DEFINITION 6.2

Let $A, B \in M_{m \times n}(F[x])$. Then A is equivalent to B over $F[x]$ if units $P \in M_{m \times m}(F[x])$ and $Q \in M_{n \times n}(F[x])$ exist such that

$$
P A Q=B
$$

THEOREM 6.3

Equivalence of matrices over $F[x]$ defines an equivalence relation on $M_{m \times n}(F[x])$.

6.1.1 Determinantal Divisors

DEFINITIONS 6.1

Let $A \in M_{m \times n}(F[x])$. Then for $1 \leq k \leq \min (m, n)$, let $d_{k}(A)$ denote the gcd of all $k \times k$ minors of A.
$d_{k}(A)$ is sometimes called the $k^{\text {th }}$ determinantal divisor of A.
Note: $\operatorname{gcd}\left(f_{1}, \ldots, f_{n}\right) \neq 0 \Leftrightarrow$ at least one of f_{1}, \ldots, f_{n} is non-zero.
$\rho(A)$, the determinantal rank of A, is defined to be the largest integer r for which there exists a non-zero $r \times r$ minor of A.

THEOREM 6.4

For $1 \leq k \leq \rho(A)$, we have $d_{k}(A) \neq 0$. Also $d_{k}(A)$ divides $d_{k+1}(A)$ for $1 \leq k \leq \rho(A)-1$.
proof
Let $r=\rho(A)$. Then there exists an $r \times r$ non-zero minor and hence $d_{r}(A) \neq 0$. Then because each $r \times r$ minor is a linear combination over $F[x]$ of $(r-1) \times(r-1)$ minors of A, it follows that some $(r-1) \times(r-1)$ minor of A is also non-zero and hence $d_{r-1}(A) \neq 0$; also $d_{r-1}(A)$ divides each minor of size $r-1$ and consequently divides each minor of size r; hence $d_{r-1}(A)$ divides $d_{r}(A)$, the gcd of all minors of size r. This argument can be repeated with r replaced by $r-1$ and so on.

THEOREM 6.5

Let $A, B \in M_{m \times n}(F[x])$. Then if A is equivalent to B over $F[x]$, we have
(i) $\rho(A)=\rho(B)=r$;
(ii) $d_{k}(A)=d_{k}(B)$ for $1 \leq k \leq r$.
proof
Suppose $P A Q=B$, where P and Q are units. First consider $P A$. The rows of $P A$ are linear combinations over $F[x]$ of the rows of A, so it follows that each $k \times k$ minor of $P A$ is a linear combination of the $k \times k$ minors of A. Similarly each column of $(P A) Q$ is a linear combinations over $F[x]$ of the columns of $P A$, so it follows that each $k \times k$ minor of $B=(P A) Q$ is a linear combination over $F[x]$ of the $k \times k$ minors of $P A$ and consequently of the $k \times k$ minors of A.

It follows that all minors of B with size $k>\rho(A)$ must be zero and hence $\rho(B) \leq \rho(A)$. However B is equivalent to A, so we deduce that $\rho(A) \leq \rho(B)$ and hence $\rho(A)=\rho(B)$.

Also $d_{k}(B)$ is a linear combination over $F[x]$ of all $k \times k$ minors of B and hence of all $k \times k$ minors of A. Hence $d_{k}(A) \mid d_{k}(B)$ and by symmetry, $d_{k}(B) \mid d_{k}(A)$. Hence $d_{k}(A)=d_{k}(B)$ if $1 \leq k \leq r$.

6.2 Smith Canonical Form

THEOREM 6.6 (Smith canonical form)

Every non-zero matrix $A \in M_{m \times n}(F[x])$ with $r=\rho(A)$ is equivalent to a matrix of the form

$$
D=\left[\begin{array}{cccccc}
f_{1} & 0 & \cdots & 0 & \cdots & 0 \\
0 & f_{2} & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & f_{r} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0
\end{array}\right]=P A Q
$$

where $f_{1}, \ldots, f_{r} \in F[x]$ are monic, $f_{k} \mid f_{k+1}$ for $1 \leq k \leq r-1, P$ is a product of elementary row matrices, and Q is a product of elementary column matrices.

DEFINITION 6.3

The matrix D is said to be in Smith canonical form.
proof
This is presented in the form of an algorithm which is in fact used by Cmat to find unit matrices P and Q such that $P A Q$ is in Smith canonical form.

Our account is based on that in the book "Rings, Modules and Linear Algebra," by B. Hartley and T.O. Hawkes.

We describe a sequence of elementary row and column operations over $F[x]$, which when applied to a matrix A with $a_{11} \neq 0$ either yields a matrix C of the form

$$
C=\left[\begin{array}{ccc}
f_{1} & 0 \cdots 0 \\
0 & & \\
\vdots & C^{*} \\
0 &
\end{array}\right]
$$

where f_{1} is monic and divides every element of C^{*}, or else yields a matrix B in which $b_{11} \neq 0$ and

$$
\begin{equation*}
\operatorname{deg} b_{11}<\operatorname{deg} a_{11} \tag{28}
\end{equation*}
$$

Assuming this, we start with our non-zero matrix A. By performing suitable row and column interchanges, we can assume that $a_{11} \neq 0$. Now repeatedly perform the algorithm mentioned above. Eventually we must reach a matrix of type C, otherwise we would produce an infinite strictly decreasing sequence of non-negative integers by virtue of inequalities of type (28).

On reaching a matrix of type C, we stop if $C^{*}=0$. Otherwise we perform the above argument on C^{*} and so on, leaving a trail of diagonal elements as we go.

Two points must be made:
(i) Any elementary row or column operation on C^{*} corresponds to an elementary operation on C, which does not affect the first row or column of C.
(ii) Any elementary operation on C^{*} gives a new C^{*} whose new entries are linear combinations over $F[x]$ of the old ones; consequently these new entries will still be divisible by f_{1}.

Hence in due course we will reach a matrix D which is in Smith canonical form.

We now detail the sequence of elementary operations mentioned above. Case 1. $\exists a_{1 j}$ in row 1 with a_{11} not dividing $a_{1 j}$. Then

$$
a_{1 j}=a_{11} q+b,
$$

by Euclid's division theorem, where $b \neq 0$ and $\operatorname{deg} b<\operatorname{deg} a_{11}$. Subtract q times column 1 from column j and then interchange columns 1 and j. This yields a matrix of type B mentioned above.

Case 2. $\exists a_{i 1}$ in column 1 with a_{11} not dividing $a_{i 1}$. Proceed as in Case 1, operating on rows rather than columns, again reaching a matrix of type B. Case 3. Here a_{11} divides every element in the first row and first column. Then by subtracting suitable multiples of column 1 from the other columns, we can replace all the entries in the first row other than a_{11} by 0 . Similarly for the first column. We then have a matrix of the form

$$
E=\left[\begin{array}{ccc}
e_{11} & 0 \cdots 0 \\
0 & & \\
\vdots & E^{*} \\
0 & &
\end{array}\right]
$$

If e_{11} divides every element of E^{*}, we have reached a matrix of type C. Otherwise $\exists e_{i j}$ not divisible by e_{11}. We then add row i to row 1 , thereby reaching Case 1.

EXAMPLE 6.2

(of the Smith Canonical Form)

$$
A=\left[\begin{array}{cc}
1+x^{2} & x \\
x & 1+x
\end{array}\right]
$$

We want $D=P A Q$ in Smith canonical form. So we construct the augmented matrix

Invariants are $f_{1}=1, f_{2}=1+x+x^{3}$. Note also

$$
f_{1}=d_{1}(A), \quad f_{2}=\frac{d_{2}(A)}{d_{1}(A)}
$$

6.2.1 Uniqueness of the Smith Canonical Form

THEOREM 6.7

Every matrix $A \in M_{m \times n}(F[x])$ is equivalent to precisely one matrix is Smith canonical form.
proof Suppose A is equivalent to a matrix B in Smith canonical form. That is,

$$
B=\left[\begin{array}{ccc|c}
f_{1} & & & \\
& \ddots & & 0 \\
& & f_{r} & \\
\hline & 0 & & 0
\end{array}\right] \text { and } f_{1}\left|f_{2}\right| \cdots \mid f_{r} \text {. }
$$

Then $r=\rho(A)$, the determinantal rank of A. But if $1 \leq k \leq r$,

$$
d_{k}(A)=d_{k}(B)=f_{1} f_{2} \ldots f_{k}
$$

and so the f_{i} are uniquely determined by

$$
\begin{aligned}
f_{1} & =d_{1}(A) \\
f_{2} & =\frac{d_{2}(A)}{d_{1}(A)} \\
& \vdots \\
f_{r} & =\frac{d_{r}(A)}{d_{r-1}(A)} .
\end{aligned}
$$

6.3 Invariant factors of a polynomial matrix

DEFINITION 6.4

The polynomials f_{1}, \ldots, f_{r} in the Smith canonical form of A are called the invariant factors of $A .{ }^{3}$
Note: Cmat calls the invariant factors of $x I-B$, where $B \in M_{n \times n}(F)$, the "similarity invariants" of B.

We next find these similarity invariants. They are

$$
\underbrace{1,1, \ldots, 1}_{n-s}, d_{1}, \ldots, d_{s}
$$

where d_{1}, \ldots, d_{s} are what earlier called the invariant factors of T_{B}.

[^0]
LEMMA 6.1

The Smith canonical form of $x I_{n}-C(d)$ where d is a monic polynomial of degree n is

$$
\operatorname{diag}(\underbrace{1, \ldots, 1}_{n-1}, d)
$$

proof Let $d=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in F[x]$, so

$$
x I_{n}-C(d)=\left[\begin{array}{ccccc}
x & 0 & & & a_{0} \\
-1 & x & \cdots & & a_{1} \\
0 & -1 & & & a_{2} \\
& \vdots & \ddots & & \vdots \\
& & & x & a_{n-2} \\
0 & & \cdots & -1 & x+a_{n-1}
\end{array}\right]
$$

Now use the row operation

$$
R_{1} \rightarrow R_{1}+x R_{2}+x^{2} R_{3}+\cdots+x^{n-1} R_{n}
$$

to obtain

$$
\left[\begin{array}{ccccc}
0 & 0 & & & d \\
-1 & x & \cdots & & a_{1} \\
0 & -1 & & & a_{2} \\
& \vdots & \ddots & & \vdots \\
& & & x & a_{n-2} \\
0 & & \cdots & -1 & x+a_{n-1}
\end{array}\right]
$$

(think about it!) and then column operations

$$
C_{2} \rightarrow C_{2}+x C_{1}, \ldots, C_{n-1} \rightarrow C_{n-1}+x C_{n-2}
$$

and then

$$
C_{n} \rightarrow C_{n}+a_{1} C_{1}+a_{2} C_{2}+\cdots+a_{n-2} C_{n-2}+\left(x+a_{n-1}\right) C_{n-1}
$$

yielding

$$
\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & d \\
-1 & 0 & & & 0 \\
0 & -1 & & & \\
& & \ddots & & \vdots \\
0 & & \cdots & -1 & 0
\end{array}\right]
$$

Trivially, elementary operations now form the matrix

$$
\operatorname{diag}(\underbrace{1, \ldots, 1}_{n-1}, d) .
$$

THEOREM 6.8

Let $B \in M_{n \times n}(F)$. Then if the invariant factors of B are d_{1}, \ldots, d_{s}, then the invariant factors of $x I_{n}-B$ are

$$
\underbrace{1, \ldots, 1}_{n-s}, d_{1}, d_{2}, \ldots, d_{s}
$$

proof There exists non-singular $P \in M_{n \times n}(F)$ such that

$$
P^{-1} B P=\bigoplus_{k=1}^{s} C\left(d_{k}\right)
$$

Then

$$
\begin{aligned}
P^{-1}\left(x I_{n}-B\right) P & =x I_{n}-\bigoplus_{k=1}^{s} C\left(d_{k}\right) \\
& =\bigoplus_{k=1}^{s}\left(x I_{m_{k}}-C\left(d_{k}\right)\right) \quad \text { where } m_{k}=\operatorname{deg} d_{k}
\end{aligned}
$$

But by the lemma, each $x I_{m_{k}}-C\left(d_{k}\right)$ is equivalent over $F[x]$ to $\operatorname{diag}\left(1, \ldots, 1, d_{k}\right)$ and hence $x I_{n}-B$ is equivalent to

$$
\bigoplus_{k=1}^{s} \operatorname{diag}\left(1, \ldots, 1, d_{k}\right) \sim\left[\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & & d_{1} & & \\
& & & & \ddots & \\
& & & & & d_{s}
\end{array}\right]
$$

EXAMPLE 6.3

Find the invariant factors of

$$
B=\left[\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 \\
1 & 1 & 1 & 2
\end{array}\right] \in M_{4 \times 4}(\mathbb{Q})
$$

by finding the Smith canonical form of $x I_{4}-B$.

Solution:

$$
x I_{4}-B=\left[\begin{array}{cccc}
x-2 & 0 & 0 & 0 \\
1 & x-1 & 0 & 0 \\
0 & 1 & x & 1 \\
-1 & -1 & -1 & x-2
\end{array}\right]
$$

We start off with the row operations

$$
\begin{aligned}
& R_{1} \rightarrow R_{1}-(x-2) R_{2} \\
& R_{1} \leftrightarrow R_{2} \\
& R_{4} \rightarrow R_{4}+R_{1}
\end{aligned}
$$

and get

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & x-1 & 0 & 0 \\
0 & -(x-1)(x-2) & 0 & 0 \\
0 & 1 & x & 1 \\
0 & x-2 & -1 & x-2
\end{array}\right]} \\
& \text { (column ops.) } \Rightarrow\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array} \begin{array}{llll}
-(x-1)(x-2) & 0 & 0 \\
\hline & 1 & x & 1 \\
x-2 & -1 & x-2
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & x & 1 \\
0 & -(x-1)(x-2) & 0 & 0 \\
0 & x-2 & -1 & x-2
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & x & 1 \\
0 & 0 & x(x-1)(x-2) & (x-1)(x-2) \\
0 & 0 & -1-x(x-2) & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & x(x-1)(x-2) & (x-1)(x-2) \\
0 & 0 & -(x-1)^{2} & 0
\end{array}\right] \text {. }
\end{aligned}
$$

Now, for brevity, we work just on the 2×2 block in the bottom right corner:

$$
\Rightarrow\left[\begin{array}{cc}
(x-1)(x-2) & x(x-1)(x-2) \\
0 & -(x-1)^{2}
\end{array}\right]
$$

$$
\begin{aligned}
C_{2} \rightarrow C_{2}-x C_{1} & \Rightarrow\left[\begin{array}{cc}
(x-1)(x-2) & 0 \\
0 & -(x-1)^{2}
\end{array}\right] \\
R_{1} \rightarrow R_{1}+R_{2} & \Rightarrow\left[\begin{array}{cc}
(x-1)(x-2) & (x-1)^{2} \\
0 & -(x-1)^{2}
\end{array}\right] \\
C_{2} \rightarrow C_{2}-C_{1} & \Rightarrow\left[\begin{array}{cc}
(x-1)(x-2) & x-1 \\
0 & -(x-1)^{2}
\end{array}\right] \\
C_{1} \leftrightarrow C_{2} & \Rightarrow\left[\begin{array}{cc}
x-1 & (x-1)(x-2) \\
-(x-1)^{2} & 0
\end{array}\right] \\
C_{2} \rightarrow C_{2}-(x-2) C_{1} & \Rightarrow\left[\begin{array}{cc}
x-1 & 0 \\
-(x-1)^{2} & (x-2)(x-1)^{2}
\end{array}\right] \\
R_{2} \rightarrow R_{2}+(x-1) R_{1} & \Rightarrow\left[\begin{array}{cc}
x-1 & 0 \\
0 & (x-2)(x-1)^{2}
\end{array}\right]
\end{aligned}
$$

and here we stop, as we have a matrix in Smith canonical form. Thus

$$
x I_{4}-B \sim\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & x-1 & \\
& & & (x-1)^{2}(x-2)
\end{array}\right]
$$

so the invariant factors of B are the non-trivial ones of $x I_{4}-B$, i.e.

$$
(x-1) \text { and }(x-1)^{2}(x-2) .
$$

Also, the elementary divisors of B are

$$
(x-1),(x-1)^{2} \text { and }(x-2)
$$

so the Jordan canonical form of B is

$$
J_{2}(1) \oplus J_{1}(1) \oplus J_{1}(2) .
$$

THEOREM 6.9

Let $A, B \in M_{n \times n}(F)$. Then A is similar to B

$$
\begin{aligned}
& \Leftrightarrow x I_{n}-A \text { is equivalent to } x I_{n}-B \\
& \Leftrightarrow x I_{n}-A \text { and } x I_{n}-B \text { have the same } \\
& \quad \text { Smith canonical form. }
\end{aligned}
$$

proof
\Rightarrow Obvious. If $P^{-1} A P=B, P \in M_{n \times n}(F)$ then

$$
\begin{aligned}
P^{-1}\left(x I_{n}-A\right) P & =x I_{n}-P^{-1} A P \\
& =x I_{n}-B
\end{aligned}
$$

\Leftarrow If $x I_{n}-A$ and $x I_{n}-B$ are equivalent over $F[x]$, then they have the same invariant factors and so have the same non-trivial invariant factors. That is, A and B have the same invariant factors and hence are similar.

Note: It is possible to start from $x I_{n}-A$ and find $P \in M_{n \times n}(F)$ such that

$$
P^{-1} A P=\bigoplus_{k=1}^{s} C\left(d_{k}\right)
$$

where

$$
P_{1}\left(x I_{n}-B\right) Q_{1}=\operatorname{diag}\left(1, \ldots, 1, d_{1}, \ldots, d_{s}\right)
$$

(See Perlis, Theory of matrices, p. 144, Corollary 8-1 and p. 137, Theorem 7-9.)

THEOREM 6.10

Every unit in $M_{n \times n}(F[x])$ is a product of elementary row and column matrices.

Proof: Problem sheet 7, Question 12.

[^0]: ${ }^{3}$ NB. This is a slightly different, though similar, form of "invariant factor" to that we met a short while ago.

