
6 The Smith Canonical Form

6.1 Equivalence of Polynomial Matrices

DEFINITION 6.1
A matrix P ∈ Mn×n(F [x]) is called a unit in Mn×n(F [x]) if ∃ Q ∈

Mn×n(F [x]) such that
PQ = In.

Clearly if P and Q are units, so is PQ.

THEOREM 6.1
A matrix P ∈Mn×n(F [x]) is a unit in Mn×n(F [x]) if and only if detP =

c, where c ∈ F and c 6= 0.

proof
“only if”. Suppose P is a unit. Then PQ = In and

detPQ = detP detQ = det In = 1.

However detP and detQ belong to F [x], so both are in fact non–zero ele-
ments of F .

“if”. Suppose P ∈ Mn×n(F [x]) satisfies detP = c, where c ∈ F and
c 6= 0. Then

P adjP = (detP )In = cIn.

Hence PQ = In, where Q = c−1 adjP ∈ Mn×n(F [x]). Hence P is a unit in
Mn×n(F [x]).

EXAMPLE 6.1

P =
[

1 + x −x
x 1− x

]
∈M2×2(F [x]) is a unit, as detP = 1.

THEOREM 6.2
Elementary row matrices in Mn×n(F [x]) are units:

(i) Eij : interchange rows i and j of In;

(ii) Ei(t): multiply row i of In by t ∈ F, t 6= 0;

(iii) Eij(f): add f times row j of In to row i, f ∈ F [x].

In fact detEij = −1; detEi(t) = t; detEij(f) = 1.
Similarly for elementary column matrices in Mn×n(F [x]):

Fij , Fi(t), Fij(f).
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Remark: It follows that a product of elementary matrices in Mn×n(F [x])
is a unit. Later we will be able to prove that the converse is also true.

DEFINITION 6.2
Let A, B ∈ Mm×n(F [x]). Then A is equivalent to B over F [x] if units

P ∈Mm×m(F [x]) and Q ∈Mn×n(F [x]) exist such that

PAQ = B.

THEOREM 6.3
Equivalence of matrices over F [x] defines an equivalence relation on
Mm×n(F [x]).

6.1.1 Determinantal Divisors

DEFINITIONS 6.1

Let A ∈ Mm×n(F [x]). Then for 1 ≤ k ≤ min (m, n), let dk(A) denote the
gcd of all k × k minors of A.

dk(A) is sometimes called the kth determinantal divisor of A.
Note: gcd (f1, . . . , fn) 6= 0⇔ at least one of f1, . . . , fn is non–zero.

ρ(A), the determinantal rank of A, is defined to be the largest integer r
for which there exists a non–zero r × r minor of A.

THEOREM 6.4
For 1 ≤ k ≤ ρ(A), we have dk(A) 6= 0. Also dk(A) divides dk+1(A) for

1 ≤ k ≤ ρ(A)− 1.

proof
Let r = ρ(A). Then there exists an r × r non–zero minor and hence

dr(A) 6= 0. Then because each r× r minor is a linear combination over F [x]
of (r−1)× (r−1) minors of A, it follows that some (r−1)× (r−1) minor of
A is also non–zero and hence dr−1(A) 6= 0; also dr−1(A) divides each minor
of size r − 1 and consequently divides each minor of size r; hence dr−1(A)
divides dr(A), the gcd of all minors of size r. This argument can be repeated
with r replaced by r − 1 and so on.

THEOREM 6.5
Let A, B ∈ Mm×n(F [x]). Then if A is equivalent to B over F [x], we

have

(i) ρ(A) = ρ(B) = r;
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(ii) dk(A) = dk(B) for 1 ≤ k ≤ r.

proof
Suppose PAQ = B, where P and Q are units. First consider PA. The

rows of PA are linear combinations over F [x] of the rows of A, so it follows
that each k × k minor of PA is a linear combination of the k × k minors of
A. Similarly each column of (PA)Q is a linear combinations over F [x] of
the columns of PA, so it follows that each k × k minor of B = (PA)Q is a
linear combination over F [x] of the k× k minors of PA and consequently of
the k × k minors of A.

It follows that all minors of B with size k > ρ(A) must be zero and hence
ρ(B) ≤ ρ(A). However B is equivalent to A, so we deduce that ρ(A) ≤ ρ(B)
and hence ρ(A) = ρ(B).

Also dk(B) is a linear combination over F [x] of all k × k minors of B
and hence of all k × k minors of A. Hence dk(A)|dk(B) and by symmetry,
dk(B)|dk(A). Hence dk(A) = dk(B) if 1 ≤ k ≤ r.

6.2 Smith Canonical Form

THEOREM 6.6 (Smith canonical form)
Every non–zero matrix A ∈Mm×n(F [x]) with r = ρ(A) is equivalent to

a matrix of the form

D =



f1 0 · · · 0 · · · 0
0 f2 · · · 0 · · · 0
...

...
...

...
...

...
0 0 · · · fr · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 · · · 0


= PAQ

where f1, . . . , fr ∈ F [x] are monic, fk|fk+1 for 1 ≤ k ≤ r−1, P is a product of
elementary row matrices, and Q is a product of elementary column matrices.

DEFINITION 6.3
The matrix D is said to be in Smith canonical form.

proof
This is presented in the form of an algorithm which is in fact used by

Cmat to find unit matrices P and Q such that PAQ is in Smith canonical
form.
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Our account is based on that in the book “Rings, Modules and Linear
Algebra,” by B. Hartley and T.O. Hawkes.

We describe a sequence of elementary row and column operations over
F [x], which when applied to a matrix A with a11 6= 0 either yields a matrix
C of the form

C =


f1 0 · · · 0
0
...
0

C∗


where f1 is monic and divides every element of C∗, or else yields a matrix
B in which b11 6= 0 and

deg b11 < deg a11. (28)

Assuming this, we start with our non–zero matrix A. By performing suitable
row and column interchanges, we can assume that a11 6= 0. Now repeatedly
perform the algorithm mentioned above. Eventually we must reach a ma-
trix of type C, otherwise we would produce an infinite strictly decreasing
sequence of non–negative integers by virtue of inequalities of type (28).

On reaching a matrix of type C, we stop if C∗ = 0. Otherwise we perform
the above argument on C∗ and so on, leaving a trail of diagonal elements as
we go.

Two points must be made:

(i) Any elementary row or column operation on C∗ corresponds to an
elementary operation on C, which does not affect the first row or
column of C.

(ii) Any elementary operation on C∗ gives a new C∗ whose new entries
are linear combinations over F [x] of the old ones; consequently these
new entries will still be divisible by f1.

Hence in due course we will reach a matrix D which is in Smith canonical
form.

We now detail the sequence of elementary operations mentioned above.
Case 1. ∃ a1j in row 1 with a11 not dividing a1j . Then

a1j = a11q + b,

by Euclid’s division theorem, where b 6= 0 and deg b < deg a11. Subtract q
times column 1 from column j and then interchange columns 1 and j. This
yields a matrix of type B mentioned above.
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Case 2. ∃ ai1 in column 1 with a11 not dividing ai1. Proceed as in Case 1,
operating on rows rather than columns, again reaching a matrix of type B.
Case 3. Here a11 divides every element in the first row and first column.
Then by subtracting suitable multiples of column 1 from the other columns,
we can replace all the entries in the first row other than a11 by 0. Similarly
for the first column. We then have a matrix of the form

E =


e11 0 · · · 0
0
...
0

E∗

 .
If e11 divides every element of E∗, we have reached a matrix of type C.
Otherwise ∃ eij not divisible by e11. We then add row i to row 1, thereby
reaching Case 1.

EXAMPLE 6.2
(of the Smith Canonical Form)

A =
[

1 + x2 x
x 1 + x

]
We wantD = PAQ in Smith canonical form. So we construct the augmented
matrix

work on rows work on columns
↓ ↓

1 0 1 + x2 x 1 0
0 1 x 1 + x 0 1

R1 → R1 − xR2 ⇒ 1 −x 1 −x2 1 0
0 1 x 1 + x 0 1

C2 → C2 + x2C1 ⇒ 1 −x 1 0 1 x2

0 1 x 1 + x+ x3 0 1
R2 → R2 − xR1 ⇒ 1 −x 1 0 1 x2

−x 1 + x2 0 1 + x+ x3 0 1
↑ ↑ ↑
P D Q

Invariants are f1 = 1, f2 = 1 + x+ x3. Note also

f1 = d1(A), f2 =
d2(A)
d1(A)

.
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6.2.1 Uniqueness of the Smith Canonical Form

THEOREM 6.7
Every matrix A ∈Mm×n(F [x]) is equivalent to precisely one matrix is

Smith canonical form.

proof Suppose A is equivalent to a matrix B in Smith canonical form.
That is,

B =


f1

. . .
fr

0

0 0

 and f1 | f2 | · · · | fr.

Then r = ρ(A), the determinantal rank of A. But if 1 ≤ k ≤ r,

dk(A) = dk(B) = f1f2 . . . fk

and so the fi are uniquely determined by

f1 = d1(A)

f2 =
d2(A)
d1(A)

...

fr =
dr(A)
dr−1(A)

.

6.3 Invariant factors of a polynomial matrix

DEFINITION 6.4
The polynomials f1, . . . , fr in the Smith canonical form of A are called

the invariant factors of A.3

Note: Cmat calls the invariant factors of xI −B, where B ∈Mn×n(F ), the
“similarity invariants” of B.

We next find these similarity invariants. They are

1, 1, . . . , 1︸ ︷︷ ︸
n−s

, d1, . . . , ds

where d1, . . . , ds are what earlier called the invariant factors of TB.
3NB. This is a slightly different, though similar, form of “invariant factor” to that we

met a short while ago.
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LEMMA 6.1
The Smith canonical form of xIn − C(d) where d is a monic polynomial

of degree n is

diag (1, . . . , 1︸ ︷︷ ︸
n−1

, d).

proof Let d = xn + an−1x
n−1 + · · ·+ a0 ∈ F [x], so

xIn − C(d) =



x 0 a0

−1 x · · · a1

0 −1 a2
...

. . .
...

x an−2

0 · · · −1 x+ an−1


.

Now use the row operation

R1 → R1 + xR2 + x2R3 + · · ·+ xn−1Rn

to obtain 

0 0 d
−1 x · · · a1

0 −1 a2
...

. . .
...

x an−2

0 · · · −1 x+ an−1


(think about it!) and then column operations

C2 → C2 + xC1, . . . , Cn−1 → Cn−1 + xCn−2

and then

Cn → Cn + a1C1 + a2C2 + · · ·+ an−2Cn−2 + (x+ an−1)Cn−1

yielding 
0 0 . . . 0 d
−1 0 0
0 −1

. . .
...

0 · · · −1 0

 .
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Trivially, elementary operations now form the matrix

diag (1, . . . , 1︸ ︷︷ ︸
n−1

, d).

THEOREM 6.8
Let B ∈Mn×n(F ). Then if the invariant factors of B are d1, . . . , ds, then

the invariant factors of xIn −B are

1, . . . , 1︸ ︷︷ ︸
n−s

, d1, d2, . . . , ds.

proof There exists non-singular P ∈Mn×n(F ) such that

P−1BP =
s⊕

k=1

C(dk).

Then

P−1(xIn −B)P = xIn −
s⊕

k=1

C(dk)

=
s⊕

k=1

(xImk − C(dk)) where mk = deg dk.

But by the lemma, each xImk − C(dk) is equivalent over F [x] to
diag (1, . . . , 1, dk) and hence xIn −B is equivalent to

s⊕
k=1

diag (1, . . . , 1, dk) ∼



1
. . .

1
d1

. . .
ds


.

EXAMPLE 6.3
Find the invariant factors of

B =


2 0 0 0
−1 1 0 0

0 −1 0 −1
1 1 1 2

 ∈M4×4(Q)
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by finding the Smith canonical form of xI4 −B.
Solution:

xI4 −B =


x− 2 0 0 0

1 x− 1 0 0
0 1 x 1
−1 −1 −1 x− 2


We start off with the row operations

R1 → R1 − (x− 2)R2

R1 ↔ R2

R4 → R4 +R1

and get 
1 x− 1 0 0
0 −(x− 1)(x− 2) 0 0
0 1 x 1
0 x− 2 −1 x− 2



(column ops.) ⇒


1 0 0 0
0 −(x− 1)(x− 2) 0 0
0 1 x 1
0 x− 2 −1 x− 2



⇒


1 0 0 0
0 1 x 1
0 −(x− 1)(x− 2) 0 0
0 x− 2 −1 x− 2



⇒


1 0 0 0
0 1 x 1
0 0 x(x− 1)(x− 2) (x− 1)(x− 2)
0 0 −1− x(x− 2)

{= −(x− 1)2}
0



⇒


1 0 0 0
0 1 0 0
0 0 x(x− 1)(x− 2) (x− 1)(x− 2)
0 0 −(x− 1)2 0

 .
Now, for brevity, we work just on the 2×2 block in the bottom right corner:

⇒
[

(x− 1)(x− 2) x(x− 1)(x− 2)
0 −(x− 1)2

]
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C2 → C2 − xC1 ⇒
[

(x− 1)(x− 2) 0
0 −(x− 1)2

]
R1 → R1 +R2 ⇒

[
(x− 1)(x− 2) (x− 1)2

0 −(x− 1)2

]
C2 → C2 − C1 ⇒

[
(x− 1)(x− 2) x− 1

0 −(x− 1)2

]
C1 ↔ C2 ⇒

[
x− 1 (x− 1)(x− 2)
−(x− 1)2 0

]
C2 → C2 − (x− 2)C1 ⇒

[
x− 1 0
−(x− 1)2 (x− 2)(x− 1)2

]
R2 → R2 + (x− 1)R1 ⇒

[
x− 1 0

0 (x− 2)(x− 1)2

]
and here we stop, as we have a matrix in Smith canonical form. Thus

xI4 −B ∼


1

1
x− 1

(x− 1)2(x− 2)


so the invariant factors of B are the non-trivial ones of xI4 −B, i.e.

(x− 1) and (x− 1)2(x− 2).

Also, the elementary divisors of B are

(x− 1), (x− 1)2 and (x− 2)

so the Jordan canonical form of B is

J2(1)⊕ J1(1)⊕ J1(2).

THEOREM 6.9
Let A,B ∈Mn×n(F ). Then A is similar to B

⇔ xIn −A is equivalent to xIn −B
⇔ xIn −A and xIn −B have the same

Smith canonical form.

proof
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⇒ Obvious. If P−1AP = B, P ∈Mn×n(F ) then

P−1(xIn −A)P = xIn − P−1AP

= xIn −B.

⇐ If xIn −A and xIn −B are equivalent over F [x], then they have the
same invariant factors and so have the same non-trivial invariant fac-
tors. That is, A and B have the same invariant factors and hence are
similar.

Note: It is possible to start from xIn −A and find P ∈Mn×n(F ) such that

P−1AP =
s⊕

k=1

C(dk)

where
P1(xIn −B)Q1 = diag (1, . . . , 1, d1, . . . , ds).

(See Perlis, Theory of matrices, p. 144, Corollary 8–1 and p. 137, Theorem
7–9.)

THEOREM 6.10
Every unit in Mn×n(F [x]) is a product of elementary row and column

matrices.

Proof: Problem sheet 7, Question 12.
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