6 The Smith Canonical Form

6.1 Equivalence of Polynomial Matrices

DEFINITION 6.1

A matrix $P \in M_{n \times n}(F[x])$ is called a **unit** in $M_{n \times n}(F[x])$ if $\exists Q \in M_{n \times n}(F[x])$ such that

$$PQ = I_n.$$

Clearly if P and Q are units, so is PQ.

THEOREM 6.1

A matrix $P \in M_{n \times n}(F[x])$ is a unit in $M_{n \times n}(F[x])$ if and only if det P = c, where $c \in F$ and $c \neq 0$.

proof

"only if". Suppose P is a unit. Then $PQ = I_n$ and

$$\det PQ = \det P \, \det Q = \det I_n = 1.$$

However det P and det Q belong to F[x], so both are in fact non-zero elements of F.

"if". Suppose $P \in M_{n \times n}(F[x])$ satisfies det P = c, where $c \in F$ and $c \neq 0$. Then

$$P \operatorname{adj} P = (\det P)I_n = cI_n$$

Hence $PQ = I_n$, where $Q = c^{-1} \operatorname{adj} P \in M_{n \times n}(F[x])$. Hence P is a unit in $M_{n \times n}(F[x])$.

EXAMPLE 6.1

$$P = \begin{bmatrix} 1+x & -x \\ x & 1-x \end{bmatrix} \in M_{2\times 2}(F[x]) \text{ is a unit, as det } P = 1.$$

THEOREM 6.2

Elementary row matrices in $M_{n \times n}(F[x])$ are units:

- (i) E_{ij} : interchange rows *i* and *j* of I_n ;
- (ii) $E_i(t)$: multiply row *i* of I_n by $t \in F$, $t \neq 0$;
- (iii) $E_{ij}(f)$: add f times row j of I_n to row $i, f \in F[x]$.

In fact det $E_{ij} = -1$; det $E_i(t) = t$; det $E_{ij}(f) = 1$. Similarly for elementary column matrices in $M_{n \times n}(F[x])$:

$$F_{ij}, F_i(t), F_{ij}(f).$$

REMARK: It follows that a product of elementary matrices in $M_{n \times n}(F[x])$ is a unit. Later we will be able to prove that the converse is also true.

DEFINITION 6.2

Let $A, B \in M_{m \times n}(F[x])$. Then A is equivalent to B over F[x] if units $P \in M_{m \times m}(F[x])$ and $Q \in M_{n \times n}(F[x])$ exist such that

$$PAQ = B.$$

THEOREM 6.3

Equivalence of matrices over F[x] defines an equivalence relation on $M_{m \times n}(F[x])$.

6.1.1 Determinantal Divisors

DEFINITIONS 6.1

Let $A \in M_{m \times n}(F[x])$. Then for $1 \le k \le \min(m, n)$, let $d_k(A)$ denote the gcd of all $k \times k$ minors of A.

 $d_k(A)$ is sometimes called the k^{th} determinantal divisor of A. Note: $gcd(f_1, \ldots, f_n) \neq 0 \Leftrightarrow$ at least one of f_1, \ldots, f_n is non-zero.

 $\rho(A)$, the **determinantal rank** of A, is defined to be the largest integer r for which there exists a non-zero $r \times r$ minor of A.

THEOREM 6.4

For $1 \leq k \leq \rho(A)$, we have $d_k(A) \neq 0$. Also $d_k(A)$ divides $d_{k+1}(A)$ for $1 \leq k \leq \rho(A) - 1$.

proof

Let $r = \rho(A)$. Then there exists an $r \times r$ non-zero minor and hence $d_r(A) \neq 0$. Then because each $r \times r$ minor is a linear combination over F[x] of $(r-1) \times (r-1)$ minors of A, it follows that some $(r-1) \times (r-1)$ minor of A is also non-zero and hence $d_{r-1}(A) \neq 0$; also $d_{r-1}(A)$ divides each minor of size r - 1 and consequently divides each minor of size r; hence $d_{r-1}(A)$ divides $d_r(A)$, the gcd of all minors of size r. This argument can be repeated with r replaced by r - 1 and so on.

THEOREM 6.5

Let $A, B \in M_{m \times n}(F[x])$. Then if A is equivalent to B over F[x], we have

(i) $\rho(A) = \rho(B) = r;$

(ii) $d_k(A) = d_k(B)$ for $1 \le k \le r$.

proof

Suppose PAQ = B, where P and Q are units. First consider PA. The rows of PA are linear combinations over F[x] of the rows of A, so it follows that each $k \times k$ minor of PA is a linear combination of the $k \times k$ minors of A. Similarly each column of (PA)Q is a linear combinations over F[x] of the columns of PA, so it follows that each $k \times k$ minor of B = (PA)Q is a linear combination over F[x] of the k × k minor of F[x] of the $k \times k$ minor of A.

It follows that all minors of B with size $k > \rho(A)$ must be zero and hence $\rho(B) \le \rho(A)$. However B is equivalent to A, so we deduce that $\rho(A) \le \rho(B)$ and hence $\rho(A) = \rho(B)$.

Also $d_k(B)$ is a linear combination over F[x] of all $k \times k$ minors of Band hence of all $k \times k$ minors of A. Hence $d_k(A)|d_k(B)$ and by symmetry, $d_k(B)|d_k(A)$. Hence $d_k(A) = d_k(B)$ if $1 \le k \le r$.

6.2 Smith Canonical Form

THEOREM 6.6 (Smith canonical form)

Every non-zero matrix $A \in M_{m \times n}(F[x])$ with $r = \rho(A)$ is equivalent to a matrix of the form

D =	$\begin{bmatrix} f_1 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ f_2 \end{array}$	· · · ·	0 0	· · · ·	$\begin{array}{c} 0 \\ 0 \end{array}$	
	: 0	: 0	:	$\vdots \\ f_r$:	: 0	= PAQ
	: 0	: 0	:	: 0	••. ••.	: 0	

where $f_1, \ldots, f_r \in F[x]$ are monic, $f_k | f_{k+1}$ for $1 \le k \le r-1$, P is a product of elementary row matrices, and Q is a product of elementary column matrices.

DEFINITION 6.3

The matrix D is said to be in **Smith canonical form**.

proof

This is presented in the form of an algorithm which is in fact used by CMAT to find unit matrices P and Q such that PAQ is in Smith canonical form.

Our account is based on that in the book "Rings, Modules and Linear Algebra," by B. Hartley and T.O. Hawkes.

We describe a sequence of elementary row and column operations over F[x], which when applied to a matrix A with $a_{11} \neq 0$ either yields a matrix C of the form

$$C = \begin{bmatrix} f_1 & 0 \cdots 0 \\ 0 & & \\ \vdots & C^* \\ 0 & & \end{bmatrix}$$

where f_1 is monic and divides every element of C^* , or else yields a matrix B in which $b_{11} \neq 0$ and

$$\deg b_{11} < \deg a_{11}. \tag{28}$$

Assuming this, we start with our non-zero matrix A. By performing suitable row and column interchanges, we can assume that $a_{11} \neq 0$. Now repeatedly perform the algorithm mentioned above. Eventually we must reach a matrix of type C, otherwise we would produce an infinite strictly decreasing sequence of non-negative integers by virtue of inequalities of type (28).

On reaching a matrix of type C, we stop if $C^* = 0$. Otherwise we perform the above argument on C^* and so on, leaving a trail of diagonal elements as we go.

Two points must be made:

- (i) Any elementary row or column operation on C^* corresponds to an elementary operation on C, which does not affect the first row or column of C.
- (ii) Any elementary operation on C^* gives a new C^* whose new entries are linear combinations over F[x] of the old ones; consequently these new entries will still be divisible by f_1 .

Hence in due course we will reach a matrix D which is in Smith canonical form.

We now detail the sequence of elementary operations mentioned above. Case 1. $\exists a_{1j}$ in row 1 with a_{11} not dividing a_{1j} . Then

$$a_{1j} = a_{11}q + b,$$

by Euclid's division theorem, where $b \neq 0$ and $\deg b < \deg a_{11}$. Subtract q times column 1 from column j and then interchange columns 1 and j. This yields a matrix of type B mentioned above.

Case 2. $\exists a_{i1}$ in column 1 with a_{11} not dividing a_{i1} . Proceed as in Case 1, operating on rows rather than columns, again reaching a matrix of type *B*. Case 3. Here a_{11} divides every element in the first row and first column. Then by subtracting suitable multiples of column 1 from the other columns, we can replace all the entries in the first row other than a_{11} by 0. Similarly for the first column. We then have a matrix of the form

$$E = \begin{bmatrix} e_{11} & 0 \cdots & 0 \\ 0 & & \\ \vdots & E^* \\ 0 & & \end{bmatrix}.$$

If e_{11} divides every element of E^* , we have reached a matrix of type C. Otherwise $\exists e_{ij}$ not divisible by e_{11} . We then add row i to row 1, thereby reaching Case 1.

EXAMPLE 6.2

(of the Smith Canonical Form)

$$A = \left[\begin{array}{cc} 1+x^2 & x \\ x & 1+x \end{array} \right]$$

We want D = PAQ in Smith canonical form. So we construct the augmented matrix

	worl	k on rows	5	work on columns			
		\downarrow			\downarrow		
	1	0	$1 + x^2$	x	$1 \ 0$		
	0	1	x	1+x	$0 \ 1$		
$R_1 \to R_1 - xR_2 \Rightarrow$	1	-x	1	$-x^{2}$	1 0		
	0	1	x	1+x	0 1		
$C_2 \to C_2 + x^2 C_1 \Rightarrow$	1	-x	1	0	$1 x^2$		
	0	1	x	$1 + x + x^3$	0 1		
$R_2 \to R_2 - xR_1 \Rightarrow$	1	-x	1	0	$1 \ x^2$		
	-x	$1 + x^2$	0	$1 + x + x^3$	$0 \ 1$		
		\uparrow		\uparrow	\uparrow		
		P		D	Q		

Invariants are $f_1 = 1$, $f_2 = 1 + x + x^3$. Note also

$$f_1 = d_1(A), \qquad f_2 = \frac{d_2(A)}{d_1(A)}.$$

6.2.1 Uniqueness of the Smith Canonical Form

THEOREM 6.7

Every matrix $A \in M_{m \times n}(F[x])$ is equivalent to precisely one matrix is Smith canonical form.

proof Suppose A is equivalent to a matrix B in Smith canonical form. That is,

$$B = \begin{bmatrix} f_1 & & \\ & \ddots & \\ & & f_r \\ \hline & & 0 & 0 \end{bmatrix} \text{ and } f_1 \mid f_2 \mid \cdots \mid f_r.$$

Then $r = \rho(A)$, the determinantal rank of A. But if $1 \le k \le r$,

$$d_k(A) = d_k(B) = f_1 f_2 \dots f_k$$

and so the f_i are uniquely determined by

$$f_1 = d_1(A)$$

$$f_2 = \frac{d_2(A)}{d_1(A)}$$

$$\vdots$$

$$f_r = \frac{d_r(A)}{d_{r-1}(A)}$$

6.3 Invariant factors of a polynomial matrix

DEFINITION 6.4

The polynomials f_1, \ldots, f_r in the Smith canonical form of A are called the **invariant factors** of A^{3}

Note: CMAT calls the invariant factors of xI - B, where $B \in M_{n \times n}(F)$, the "similarity invariants" of B.

We next find these similarity invariants. They are

$$\underbrace{1,1,\ldots,1}_{n-s}, d_1,\ldots,d_s$$

where d_1, \ldots, d_s are what earlier called the invariant factors of T_B .

 $^{{}^{3}}$ **NB.** This is a slightly different, though similar, form of "invariant factor" to that we met a short while ago.

LEMMA 6.1

The Smith canonical form of $xI_n - C(d)$ where d is a monic polynomial of degree n is

diag
$$(\underbrace{1,\ldots,1}_{n-1},d).$$

proof Let $d = x^n + a_{n-1}x^{n-1} + \dots + a_0 \in F[x]$, so

$$xI_n - C(d) = \begin{bmatrix} x & 0 & & a_0 \\ -1 & x & \cdots & & a_1 \\ 0 & -1 & & a_2 \\ \vdots & \ddots & & \vdots \\ & & & x & a_{n-2} \\ 0 & & \cdots & -1 & x + a_{n-1} \end{bmatrix}$$

Now use the row operation

$$R_1 \to R_1 + xR_2 + x^2R_3 + \dots + x^{n-1}R_n$$

to obtain

$$\begin{bmatrix} 0 & 0 & & d \\ -1 & x & \cdots & a_1 \\ 0 & -1 & & a_2 \\ \vdots & \ddots & \vdots \\ & & & x & a_{n-2} \\ 0 & & \cdots & -1 & x + a_{n-1} \end{bmatrix}$$

(think about it!) and then column operations

$$C_2 \to C_2 + xC_1, \dots, C_{n-1} \to C_{n-1} + xC_{n-2}$$

and then

$$C_n \to C_n + a_1 C_1 + a_2 C_2 + \dots + a_{n-2} C_{n-2} + (x + a_{n-1}) C_{n-1}$$

yielding

$$\begin{bmatrix} 0 & 0 & \dots & 0 & d \\ -1 & 0 & & & 0 \\ 0 & -1 & & & \\ & & \ddots & & \vdots \\ 0 & & \dots & -1 & 0 \end{bmatrix}.$$

126

Trivially, elementary operations now form the matrix

diag
$$(\underbrace{1,\ldots,1}_{n-1},d).$$

THEOREM 6.8

Let $B \in M_{n \times n}(F)$. Then if the invariant factors of B are d_1, \ldots, d_s , then the invariant factors of $xI_n - B$ are

$$\underbrace{1,\ldots,1}_{n-s}, d_1, d_2, \ldots, d_s.$$

proof There exists non-singular $P \in M_{n \times n}(F)$ such that

$$P^{-1}BP = \bigoplus_{k=1}^{s} C(d_k).$$

Then

$$P^{-1}(xI_n - B)P = xI_n - \bigoplus_{k=1}^s C(d_k)$$
$$= \bigoplus_{k=1}^s (xI_{m_k} - C(d_k)) \quad \text{where } m_k = \deg d_k.$$

But by the lemma, each $xI_{m_k} - C(d_k)$ is equivalent over F[x] to diag $(1, \ldots, 1, d_k)$ and hence $xI_n - B$ is equivalent to

$$\bigoplus_{k=1}^{s} \operatorname{diag}(1, \dots, 1, d_k) \sim \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & d_1 & & \\ & & & & \ddots & \\ & & & & & d_s \end{bmatrix}.$$

EXAMPLE 6.3

Find the invariant factors of

$$B = \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 1 & 1 & 2 \end{bmatrix} \in M_{4 \times 4}(\mathbb{Q})$$

by finding the Smith canonical form of $xI_4 - B$. Solution:

$$xI_4 - B = \begin{bmatrix} x - 2 & 0 & 0 & 0 \\ 1 & x - 1 & 0 & 0 \\ 0 & 1 & x & 1 \\ -1 & -1 & -1 & x - 2 \end{bmatrix}$$

We start off with the row operations

$$\begin{array}{rccc} R_1 & \rightarrow & R_1 - (x-2)R_2 \\ R_1 & \leftrightarrow & R_2 \\ R_4 & \rightarrow & R_4 + R_1 \end{array}$$

and get

$$(\text{column ops.}) \Rightarrow \begin{bmatrix} 1 & x-1 & 0 & 0 \\ 0 & -(x-1)(x-2) & 0 & 0 \\ 0 & 1 & x & 1 \\ 0 & x-2 & -1 & x-2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -(x-1)(x-2) & 0 & 0 \\ 0 & 1 & x & 1 \\ 0 & -(x-1)(x-2) & 0 & 0 \\ 0 & x-2 & -1 & x-2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & x & 1 \\ 0 & -(x-1)(x-2) & 0 & 0 \\ 0 & x-2 & -1 & x-2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & x & 1 \\ 0 & 0 & x(x-1)(x-2) & (x-1)(x-2) \\ 0 & 0 & -1-x(x-2) & 0 \\ = -(x-1)^2 \} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & x(x-1)(x-2) & (x-1)(x-2) \\ 0 & 0 & -(x-1)^2 & 0 \end{bmatrix} .$$

Now, for brevity, we work just on the 2×2 block in the bottom right corner:

$$\Rightarrow \begin{bmatrix} (x-1)(x-2) & x(x-1)(x-2) \\ 0 & -(x-1)^2 \end{bmatrix}$$

$$C_{2} \to C_{2} - xC_{1} \Rightarrow \begin{bmatrix} (x-1)(x-2) & 0\\ 0 & -(x-1)^{2} \end{bmatrix}$$

$$R_{1} \to R_{1} + R_{2} \Rightarrow \begin{bmatrix} (x-1)(x-2) & (x-1)^{2}\\ 0 & -(x-1)^{2} \end{bmatrix}$$

$$C_{2} \to C_{2} - C_{1} \Rightarrow \begin{bmatrix} (x-1)(x-2) & x-1\\ 0 & -(x-1)^{2} \end{bmatrix}$$

$$C_{1} \leftrightarrow C_{2} \Rightarrow \begin{bmatrix} x-1 & (x-1)(x-2)\\ -(x-1)^{2} & 0 \end{bmatrix}$$

$$C_{2} \to C_{2} - (x-2)C_{1} \Rightarrow \begin{bmatrix} x-1 & 0\\ -(x-1)^{2} & (x-2)(x-1)^{2} \end{bmatrix}$$

$$R_{2} \to R_{2} + (x-1)R_{1} \Rightarrow \begin{bmatrix} x-1 & 0\\ 0 & (x-2)(x-1)^{2} \end{bmatrix}$$

and here we stop, as we have a matrix in Smith canonical form. Thus

$$xI_4 - B \sim \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & x-1 & \\ & & & (x-1)^2(x-2) \end{bmatrix}$$

so the invariant factors of B are the non-trivial ones of $xI_4 - B$, i.e.

(x-1) and $(x-1)^2(x-2)$.

Also, the elementary divisors of B are

$$(x-1), (x-1)^2$$
 and $(x-2)$

so the Jordan canonical form of B is

$$J_2(1) \oplus J_1(1) \oplus J_1(2).$$

THEOREM 6.9

Let $A, B \in M_{n \times n}(F)$. Then A is similar to B

$$\Leftrightarrow xI_n - A \text{ is equivalent to } xI_n - B$$

$$\Leftrightarrow xI_n - A \text{ and } xI_n - B \text{ have the same}$$

Smith canonical form.

 proof

 \Rightarrow Obvious. If $P^{-1}AP = B, P \in M_{n \times n}(F)$ then

$$P^{-1}(xI_n - A)P = xI_n - P^{-1}AP$$
$$= xI_n - B.$$

 \Leftarrow If $xI_n - A$ and $xI_n - B$ are equivalent over F[x], then they have the same invariant factors and so have the same non-trivial invariant factors. That is, A and B have the same invariant factors and hence are similar.

Note: It is possible to start from $xI_n - A$ and find $P \in M_{n \times n}(F)$ such that

$$P^{-1}AP = \bigoplus_{k=1}^{s} C(d_k)$$

where

 $P_1(xI_n - B)Q_1 = \text{diag}(1, \dots, 1, d_1, \dots, d_s).$

(See Perlis, Theory of matrices, p. 144, Corollary 8–1 and p. 137, Theorem 7–9.)

THEOREM 6.10

Every unit in $M_{n \times n}(F[x])$ is a product of elementary row and column matrices.

PROOF: Problem sheet 7, Question 12.