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Introduction

ICF (Logic for Computable Functions) is a
proof generating system consisting of an inter—
active programming language ML (MetaLanguage) for
conducting proofs in PPA (Polymorphic Predicate
r—calculus), a deductive calculus suitable for the
formalisation of reasoning about recursively
defined functions, in particular about the syntax,
semantics and implementations of many programming
languages. PPA is an enrichment (in respect of
type structure and expressive power) of an extended
r—calculus due to Dana Scott and is fully discussed
elsewhere [ 22] . The purposes of this paper are
(a) to illustrate the features of ML which make

it of general interest in language design
quite independently of its use for machine
assisted formal proof,

(b) to illustrate ML applied to PPA, in
encoding interesting proof-finding-and-
perfoming procedures, and

(c) to convey a methodology for controlled semi-

automatic proof.

We avoid formal description; we hope that our
examples and discussion will achieve these purposes
more clearly. A complete description of ML, and

its use with PP}, exists as a technical report [9].

The implementation (using LISP on a DEC 10

*This work was supported by the Science Research
Council of Great Britain under grant number
B/RG/48175.
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computing system) of ML and PP) began over three
for about two years the
system has been usable, and its development is now
Recently it has been used in

various studies concerning formal semantics:

years ago at Edinburgh;

virtually complete.

theorems about data structures, recursion removal,
direct versus continuation semantics, and other

topics.

The need for and design of ML is based on
experience with an earlier system at Stanford
[17, 18] . In that system, beyond the ability to
direct it to execute a basic inference (e.g. beta
conversion, or transitivity of equivalence), the
user could

(a) invoke simplification with respect to a set
of equivalences specified by him,

(b) adopt a goal-directed proof style, gener-
ating subgoals by built-in tactics based
upon the inference rules and simplification,
and

(c) use theorems previously proved.

These facilities were enough to enable several
non-trivial case studies to be tackled [1,23,24,341
but further use of the system became increasingly
limited by the fixed, and rather primitive, nature
of its repertoire of commands (rather like using
an interactive assembly language - and one without
a proper subroutine feature at that: = in which
one is working all the time at top-level). Proofs
often contained many instances of a few patterns of
inference which one would like to express as
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derived inference rules or - in the goal-directed

style - as derived tactics or strategies.

Our present point of view is that neither a
straightforward proof-checker (laborious and repet-
itive to use) nor an autamatic theorem-prover
(inefficient because of general search) is satis-
factory. What is required is a framework in which
a user can both design his own partial proof
strategies (where he can find them) and execute
We
believe also that, although formal proofs are imp-

single steps of proof (where he needs to).

ortant and should be retrievable, it is pragmatic-
ally more convincing to achieve clear expression of
proof strategy; the latter entails that the way in
which the strategy is built from sub-strategies

should be evident in its expression.

In other words, we're not so concerned with
checking or generating proofs as with performing
proofs. Thus, we don't normally store or display
proofs but only the results of them - i.e. theorems.
These form an abstract type on which the only
allowed operations are the inference rules of PPA ;
this ensures that a well-typed program cannot
perform faulty proofs (it may not prove the theorem
expected but the result will be a theorem!}. If
extra security or formal proof-checking is desired,
full proofs are easily generated - only minor
changes in the implementation of the abstract type
for theorems would be required.

The principal aims then in designing ML were
to make it impossible to prove non-theorems yet
easy to program strategies for performing proofs.
A strategy - or recipe for proof - could be some-
thing like "induction on f and g , followed by
assuming antecedents and doing case analysis, all
This is

imprecise - analysis of what cases? - what kind of

interleaved with simplification".

induction, etc, etc. — but these in turn may well
be given by further recipes, still in the same
style. The point is that such strategies appear
to be built fram simpler ones (which we call
tactics rather than strategies) by a number of
general operations in fairly regular ways; we
call these operations tacticals by analogy with

functionals.

For programming tactics and tacticals, and

more generally for manipulation of PPX in finding
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proofs, the following ingredients in ML were soon
found to be expedient (almost necessary) : the
ability to handle higher order functions, a rigorous
but flexible type structure, a mechanism for gen-
erating and trapping failures, and an abstract
syntactic representation of the object language

PPX .
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Outline of ML.

ML is a higher-order functional programming
language in the tradition of ISWIM [15], PAL [83],
POP2 [6] and GEDANKEN [261, but differs princip-
ally in its handling of failure and, more so, of
types.
though expressions may have side-effects because

It is an expression-based language,

of the presence of assignment (the expression
"x:=e" has as value the value of e , and also
gives x this value). An important expression
"let x = e in e'", which binds x
to the value of e throughout e' ;

forms of declaration are

construct is
alternative

"let £f(x,v,...) = e

for defining functions, "letrec f(x,y,...) = e
for defining functions recursively, "letref x = e"

for declaring and initializing assignable variables,
and generalizations Of these forms for similtaneous

declarations.

Another important expression construct is
"e ? e'" (read "e or else e'"), whose value is the
value of e unless e generates a failure, in which
case it is the value of e'. The system generates
certain failures autcmatically, and the user may
generate his own with the expression "fail", or

the expression "failwith e" where the value of e



is a token which identifies the kind of failure;
a generalization of the form "e ? e'" can be used
to trap only certain failure tokens (kinds of
failure).
types; tokens are just symbol strings.
current application of ML, the use of failure as a

The type token is one of ML's basic
In our

dynamic escape and escape-trapping mechanism facil-
itates a natural programming style for camposing
tactics and strategies which are usually inapplic—
able to certain goals.

As hinted above, if d is a declaration and:
e an expression, then "d in e" is an expression.
In interactive programming (which is how proofs
are conducted), one evaluates a mixed sequence of
declarations and expressions, separated by ";;" .
ML is a "static binding" language, like ISWIM, PAL
and GEDANKEN (but unlike LISP and POP2); a free
in the declaration "let f(x) = ...

variable z
refers to the textually enclosing declaration of

z , not to any subsequent declaration.

An example which illustrates most of the
features of ML is a generalised scalar product
(sum the products of two vectors) which is param-—
eterised on its product and summation functions
and on a zero (for null vectors). Two ways - the
first recursive and the second iterative - of
writing this in ML, with vectors represented as
lists and failure for vectors of unequal length,

are as follows:

letrec scalarprod ($*,$+,zero) (21,22)= (1,2)
(let x1.21' = 21 and x2.82" = %2 3
in (x1*x2)+scalarprod($*,$+,zero) (21',22")

)2 (4)
(if null(el) & null(2) then zero
else fail)

let itscalarprod ($*,$+,zero) (21,22) = (1)
letref acc, 21, %22 = zero, &1, 92

in
( loop acc, 21, 22 := (5)

( (x1*x2)+acc, 21°, 22°'
where x1.21' = 21 and x2.22"' = 22)
) 2 (if null(el) & null(e2)

then acc

else fail)
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Notes: (1) "letrec f£(x,y,z)(u,v) ==~ - ="

is equivalent to

"letrec £ = A(x,y,2).2(u,v). - - =",

(Similarly, let ...). That is, scalar-
prod and itscalarprod are defined here
as (partially) curried functions, as
is the style in functional programming.
The separation of arguments into two
groups allows scalarprod to be
"partially applied" to three arguments
to obtain particular scalar product
functions; it also suggests a more
efficient recursive definition in which

we replace

letrec scalarprod($*,$+,zero) (21,22) =

- — —scalarprod($*,$+,zero) (21',22")- -

by a form which recurses on only two
arguments, namely

let scalarprod($*,$+,zero) = scalp
whererec scalp(l,22) =

scalp(#l',82') - - -

(2) Prefixing $ to a token enables its use -

as a binary infix without the $.

(3) Infix
on the left of a declaration, as here,
binds x1 and 21" to the head and tail,
respectively, of 1, with failure when

21 is null.

is the cons function. Use

(4) The failure trapped by "?" here is that
of the declaration when one of 21,22

is null.
(5) "loop e" repeats e until failure.

The functions scalarprod and itscalarprod make
Applications
of either are well-typed provided their arguments -

sense on a wide variety of objects.

have types which are instances of

$* : (a x B)> ¥
$+ ¢ (y x 8)> ¢
2ero : §

where
result is a function which has the corresponding

o,B,v,8 are type variables, and then the

instance of (o list x g list)» § as its type.

We say that the type

((oxB>y) x (yx&+8)x8) - (a list x B list - &)



is generic for scalarprod (or itscalarprod);
this means that these functions may be used at any
type which is a substitution instance of the
generic type, in which a,8,v,8 are type
variables. Thus, since $*,$+ : int x int - int
are arithmetic functions predeclared in ML, and
using the ML notation "[el;...;en]" for lists, we
have

scalarprod($*,$+,0) ([1;2;3],[4;5;61)

= 1x4 + 2x5 + 3x6

using scalarprod at the instance a=p=y=8§= int of
its generic type.

To define a function which, given two vectors
[bl;...;bn] , [cl;...;cn] of truth values, will
count the number of times that both bi and ci are

true, we may define

let bothtruecount = scalarprod(bothtrue, $+, O)
where bothtrue(bl,b2) = if bl & b2 then 1
else O

using scalarprod at its type instance o=g=bool
and y=8= int. We may even define a function of

type o list x (o list)list + o list such that

[x1;...;xn],[1isl;...1lisn]»(x1.1is1)@...@ (xn.1lisn)
using the predeclared append function $@ ; the
definition is

let mapconsappend = scalarprod ($.,$Q@,nil)
using SCalaxprod at its type instance pg=y=6=a list.
Notice then that both scalarprod and mapconsappend

they
The polymorphism of ML

possess a type which contains type variables;
are polymorphic functions.
should not be confused with the polymorphism

we will allude
briefly to the latter in a later section.

present in the object language PPX ;

Such polymorphism with respect to program
types is possible, to a greater or lesser extent,
in several languages (e.g. PASQUAL [30]) which allow
procedures to have explicit type parameters. ML
relies instead on a type-checker which not only
checks that polymorphic functions are used consist~
ently at instances of their generic type but can,
in nearly all practical cases, infer the types of
all variables without these being supplied
explicitly (e.g. it will infer the type given
above for scalarprod and itscalarprod). Thus we
come close to the discipline which a good program—
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mer will impose upon himself in using a typeless
language such as LISP. It is remarkably conven-
ient in interactive programming to be relieved of
the need to specify types, with assurance that
badly-typed phrases will be caught, reported, and
not evaluated. Of course, for off-line program-—
ming it is often advisable to specify the types in
declarations - including the types of formal param-
eters, and we are aware that many prefer to adopt
such a discipline for intelligibility and for

To this end, ML always

allows the user to specify his types explicitly.

documentation purposes.

If he cares to write

letrec scalarprod ($*: (axBf - v),

$+: (,'YXG - &) ’
zero: §)
(2l: o list ,

22: B list) : 8§ = ....

he can do so, and the typechecker will check these
types for him.
of polymorphism, essentially the same typechecking

It turns out that, in the presence

algorithm is necessary even if type specification
is made compulsory (unless indeed the type of every
expression were required, which would be intoler-
able) .

The typechecking method may be illustrated by

a sinmple example.
for mapping a function over a list:

Consider the following function

letrec map(f,1lis) = if null(lis) then nil
else £(hd(lis)). map(f,t1(lis);

The generic type of map should be (y=¢) x v list

-+ & list. How may we infer this type from the
bare declaration? First, the generic types of

the identifiers occurring free in the declaration

are
null : o list -+ bool
nil : o list
hd : a list » o
tl : o list » o list
$. ¢ ax olist » o list

and we require that every occurrence of such an
identifier is given, as type, a substitution
instance of its generic type (different occurrences
may be assigned different type instances).

Second, every occurrence of a formal parameter

must be given the same type, and every occurrence



(in its declaration) of a recursively defined iden-
tifier must be given the same type. Third, if we
denote by %4 the type to be given to each iden-
tifier in the declaration, then besides the above-

mentioned constraints on o

ull etc, the following

equations must hold for some types TyrTgress
‘map T %f * %1is T N1 9 T Ty
Fmuii T O1is 201 Fmap = % X T3 7 Ts
ha T %1is T T2 9%, T4 ¥ T5 7 T
%1 T %1is 7 73 I T Thil T Te

Each of these equations except the last arises from
some sub-expression which is a function application;
the last arises because a conditional expression is
given the same type as its two arms, and because
the definiens and definiendum of a declaration are

given the same type.

Now if we choose distinct type variables
Ugreeerlg and set onull =ay list - bool ,
9hi1 = %2 list , etc , the equations may be solved

for the variables and

ul,...aS, Tl,---,T6

Omap’ Ofr 9yig using Robinsons unification algor-

ithm [27] .
to check, that for some distinct pair of variables

It turns out, as the reader may like

Y,8 we obtain

Omap = (y + 8) x y list » § list

as expected. This then is the generic type of
map, which may be instantiated (differently) for
each later occurrence of the identifier.

This example does not illustrate all the
typing constraints. There are further rules
concerning the instantiation of generic types of
variables declared within a function body (for
example, the type of the variable x1 in the
declaration of scalarprod is fully determined
and the

rules will damand in this case that x1 is

by the type of the formal parameter (1,

given the same type at each occurrence), and con-
cerning the types of variables declared by

letref (in particular, like formal parameters,

they must be given the same type at each occurrence)
For the camplete algorithm, and a proof of its
semantic correctness for a simpler language, see
[21] ; the algorithm is in fact rather straight-

forward.

123

ML also includes a facility for defining
abstract types, including simultaneous and/or
recursive and/or parametric ones. In ML these are
not "really abstract" in the sense of the algebraic
abstract types of, e.g., Guttag [10] or Zilles [36]
but rather are analogous to SIMULA classes [7],

CLU clusters [16], and ALPHARD forms [35]. As the
latter are by now well-known, it will be enough to
describe briefly our syntax for abstract type

declarations and give a simple example. The

declaration form is

abstype <tyargs><id>=<ty> and...and <tyargs><id>=<ty>
with ...

where the identifiers <id> are the new (parameter-
ized) types being declared, each <tyargs> is a
sequence (possibly empty) of type variables - the
formal parameters - and each <ty> is a type express-
The part "with ..." has the syntax of a
normal declaration (but with let replaced by with),

ion.

and defines the operations or other objects avail-
the essence of type
abstraction is that one may get at the represent-

able at the new types;

ation of the new types only in the with-part, and
this representation is provided by two halves of
the isomorphism (denoted by "absid" and "repid"
for each type identifier "id") between each type
and its representation. For (mutually) recursive
types one must use absrectype in place of abstype.
We give, as an example, the redefinition of the ML
note that the
isamorphism functions are polymorphic - they are

type operator list for lists;

abslist : (. + (o x o list)) - o list
replist : a list - (. + (o x o list))
where the basic type "." is that with just one

element denoted by the expression (), and "+"

between types is disjoint sum. The declaration is:

absrectype alist = . + (a x o list)

with nil = abslist(inl())

and $.(x,8) = abslist(inr(x,1))
and null(f) = isl(replist(1))
and hd(#) = fst(outr(replist(L)))
and tl1(2) = snd(outr(replist(k)})

The polymorphic functions inl and inr, outl and
outr, and isl and isr are left and right injections,
projections (with failure for arguments in wrong
summands) and predicates for disjoint sum types.



(Note: we have underlined types and reserved words
in this paper, for clarity, but our implementation
requires no underlining; we have now abandoned it

for newly declared types) .

Functional types are allowed in abstract type
declarations, and this yields some interesting
possibilities. A simple example is streams - a
notion of infinite implicit lists due to Landin.
Here is a definition which provides two stream
operations; one for splitting a stream into its
first member and remainder, and one for building a

stream fram a function of the natural numbers:

o Stream = . > (o x o Stream)

absrectype
with next(s : o stream) = repstream(s) ()
and streamof = str : (int + o) + o Stream
whererec str(f) =

absstream(x () . (£(1) ,str(Hx.£(x+1))))

As an aside, we can show that the recursiveness of
types also gives us the power of normal recursion,
so that in the presence of absrectype, the letrec
construct is theoretically redundant! In fact,

a fixed-point function

FIX : ((B+v) > (8> 7)) » (B + )

can be defined so that
exactly equivalent to

"let £ = FIX(xf.e)" is
"letrec £ = e" ; the reader
may like to puzzle out how the following does the

trick:

absrectype o fixty = o fixty - o
with FIX(f) = F(absfixty F)
where F y = f(ix.repfixty(y) (y) (x))

PP in ML

PPA 1is discussed in ML via pre-defined abstract
types, one for each of its principal syntactic
This method could be adopted for the
discussion of any syntactic system within ML, but
we have also built in the special ability to discuss

classes.

PP\ in terms of a concrete representation of its
syntax. This is a necessary convenience; to
provide concrete syntax for other syntactic systems
the user would need to write, in ML, a parser and
an "unparser" to map fram concrete to abstract

syntax and vice-versa.

The formulae of PP) are those of a first-order

predicate calculus built by conjunction, implication
and universal quantification from atomic ones;
atomic formulae are equivalences and inequivalences
(i.e. partial ordering &)
typed A-calculus with a fixed-point operator, a
Many of
these constants — including the two mentioned -
are polymorphic;

between terms of a

conditional operator and other constants.

as with ML the polymorphism

involves the use of type variables, and type
instantiation is one of the inference rules of
PPX . Thus PPX
abstract types form, term and type (cbjects of
type type are syntactic - they are PP\ type express-—

is represented in ML by the three

ions) ; primitive operations provided at these
(ML) types are constructors and destructors.

Examples of constructors are:

mkvax : token % type » term
(a variable consists of a token
with a type)

mkcomb : term x texrm -~ term

(a cambination, or function

application)

mkinequiv : term x term - form

(to build an atomic formula)

: term x form -~ form
(the term must be a variable)

mkquant

and to each constructor corresponds a destructor
(destvar, destcarb etc) of inverse functional type.

Destructors fail if their argument is not a term or
form of the right sort - e.g. destvar(mkcomb(..))

will fail.
quotation ...l ;
expect, and allows types to be mentioned explicitly,

Concrete syntax is provided via
this syntax is what one would

although the system will often deduce types using
a method similar to that in ML. Here then are two
equivalent ML expressions of type form , assuming
that the user has introduced "integer" as a PPA

type (see the later section on Theories):

"VX:integer. X E X'
let x = mkvar (*X* ,mkconsttype"integer™)
in mkquant (x,mkinequiv(x,x))

Further, a device which we call antiquotation
L. allows ML expressions (of appropriate ML
type!) to appear within quotations, so that the
following is also equivalent to the above:
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let x = "X:integer! in 'V x,. mkinequiv(x,x) |’

Now a sequent of PPA is an object (T,w) of
type form list x form.
so a PPx theorem is a sequent which follows from

PP) is a sequent calculus,

the axioms by the inference rules. A theorem is
"I" e W"

course may not be input, but only deduced, and for

represented as on output; theorems of
this purpose the axiams and inference rules are
provided as primitive cbjects at the abstract type
thm . We give part of the definition of this type;
the types of the inference rules mentioned are
ASSUME: form - thm, GEN: term -+ (thm - thm) ,
TRANS: thm x thm - thm , BETACONV: term -+ thm :

abstype thm = form list x form
with ASSWME w = absthm([w],w)
and GEN x th =

let I'yw = repthm th in

(Infer w+ w)

(Fran T + w

if 4 isvar x or x ¢ freevars(r) infer I' - VX.w

then failwith “GEN* when X is not
else absthm (T,mkquant(x,w)) free in T)
and TRANS(th),th,) =. . . (transitivity

of equivalence
and inequival-
ence)

and BETACONV t e .. ( B reduction)

and ... .

and destthm = repthm

Notice that repthm is provided to the user (under
the name destthm) to allow him to analyse his
theorems syntactically, but he is deprived of
absthm - and thus assured that all objects of type
thm are indeed theorems, since he can only make

(prove!) them with the inference rules.

The PP) calculus was discussed in detail in [22];
our present implementation provides essentially that
calculus, but for convenience — and some efficiency -
many of the axioms are presented instead as infer-
ence rules, of which there are about thirty (more

than strictly necessary, again for convenience).
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Goals tactics and tacticals

As a simple example to illustrate our method-
ology, consider an obvious fact about conditionals
(for "T' => X|Y" read "if T then X else Y"), namely

FVILT2 XY ZW.(TL = (T2 => X|Y)|(T2 = Z|W)=
T2 = (T1 = X|2) ]| (T1 => Y|W))

The natural way one would prove this informally is:
strip off the quantifiers ("Consider any T1,T2,...,W"),
then do case analysis on any truth-valued term in
sight - and do any simplifications that are possible.
So superficially, as a tactic for this (and many
other similar goals) we would like to write

(REPEAT GENTAC) THEN REPEAT (ANYCASESTAC THEN SIMPTAC).

As a first approximation, a tactic should take
as argument a goal and produce as result a list of

subgoals.
sequent, that is

We shall here assume that a goal is a

goal = form list x form

though we in fact use a slight ramification of this

type. The idea is that, by repeated subgoaling

(i.e. tactic application) we shall reach subgoals

which may be achieved by theorems, until no sub-

a theorem T'+ w' is said to

(r,w) 1if (up to a—conversion)
- the formulae of T in the

goal are to be thought of as assumptions, same or

goals are left;
achieve the goal

w'=w and T'cT

all of which may be used in proving w.

But now we can see a deficiency in our first
approximation to a tactic.
T, applied to goal g , has generated the subgoal
list [gl;.. .;gn] and that somehow theorems t‘ni
achieving 9; (1 < i <n) have been found. Wwho
is to deduce from [fhl;...;thn] a theorem th
Our answer is that it is the job

’Suppose that a tactic

achieving g ?
of T to provide a way of performing this deduction;
to this end we define

proof = thm list » thm
tactic = goal » (goal list x proof)

and we call the proof camponent of a tactic's

result a validation. When a camposite tactic has
sanchow generated an empty goal list, the valid-
ations of the camponents can be camposed to yield

a theorem, and this camposite validation (a function)
can be generated automatically as part of the
business of composing tactics.



However, not all tactics will be very useful.
We shall call the useful ones valid (related but
not identical with logicians' use of the word):
T is a valid tactic if, whenever
T(g) = ([gyi.-.i9,1/P)
94 (1 <ixn), then P[thl;---;thn] evaluates
In

- i.e. T reduces g to an

and whenever thi achieves

successfully to a theorem which achieves g .
particular, when n =0
empty subgoal list - then pl[] achieves g and we

say that T solves g (e.g. the simplification tactic
manages this when the goal simplifies to an obvious

tautology) .

To illustrate, here is a tactic for quantifier
stripping (yielding one subgoal) which is "inverse"
to the basic inference rule GEN, where we write in
sane types explicitly as an aid to the reader:

let GENTAC ( (r,w): goal) =
let x,wl = destquant w ? failwith “GENTAC™
in

let x' = variant (x,freevars(w.T))

in
[ (r,substinform(x',x)wl) J: goal list ,
(GEN x' o hd) : proof
where o is function camposition, and

variant (x,vars) primes x, if necessary, to obtain
The call of
variant in GENTAC is needed to ensure that it is

a variable not in the list vars.

a valid tactic, in this case to prevent possible
variable clashes causing the validation function to
fail unexpectedly (when applied to a singleton
theorem list [th] where th achieves the one subgoal
produced by GENTAC) .

invalid tactic can fail or prove the wrong theorem;

Note that at worst an

it can never produce a "false theorem" !

Other elementary tactics are also easily
defined, e.g. for case analysis on a truth-valued
term (producing three subgoals - the true, false
and undefined cases), and for camputation induction
(producing two subgoals — the induction basis and
the induction step).

We are mainly interested in valid tactics,
though one may demand even more of a tactic. We
say that a (valid) tactic is strongly valid if,
whenever the argument goal is achievable (by scme
theorem) so is each of the generated subgoals.

One may not always be able to use strongly valid
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tactics.
tic for proving Wwn.f(n) < g(n) by finding scame
function h for which ¥n.f(n) < h(n) < gm); in
particular, we find that ¥n. n < 2n + 1 is true

Consider for example the heuristic tac-

(and achievable !) over the non-negative integers,
but ¥n. n < 2n < 2n+l is false (not achievable).
More relevant is that various induction rules,
used in reverse, yield tactics which are not
strongly valid. It is good practice to use
strongly valid tactics when possible, and always to

use valid tactics.

Tacticals are functions on tactics, building
simple tactics into camposite ones. Three obvious
examples are: binary tacticals THEN (apply a
second tactic to all subgoals produced by a first)
and ORELSE (try one tactic, or if it fails try
another), and a unary one REPEAT (iterate a tactic
until failure). Defining these, and many others,
in ML is a straightforward exercise in functional
programming with lists. Moreover, it is easy to
show that THEN, ORELSE and REPEAT preserve the

validity - even strong validity - of tactics.

(It is worth noting that this tactics-and
tacticals style could be adopted in general for
problem solving; all that is involved is a type
goal , a type for proposed solutions - which might
be called shot -~ and an achievement relation between

shots and goals.) -

Isolating useful tactics and tacticals, and
encoding them in ML, is a subject of ongoing study
in the various applications to do with formal
semantics which we mentioned in the introduction.

Theories

In our discussion of PP) we did not suggest
the variety of its application; in fact, just as
first-order predicate calculus (or any pure
calculus) may be extended to an applied calculus by
the introduction of non-logical constants and non-
logical axicms, so may PPA be extended. An import-—
ant part of this extension is the introduction of
new types (the only non-trivial primitive type
available is that of truth-values). New types may
be either introduced independently or defined -
perhaps recursively — in terms of existing types.

A set of types, together with some new constants



and axioms, is called a theory, and all work with
ICF consists in setting up theories, extending them
or joining them to form larger theories, or (most
important) adding new useful theorems to the list of
those proved in an existing theory. Theories are
preserved pemanently on files, to allow incremental
working; for each theory T there is a fixed file
T.THY with the types, constants and axioms, and a
growing file T.FCT of useful theorems(facts).

Suppose for example one wishes to prove the
correctness of a compiling algorithm from ALGOL to
some target language L .
theory of ALGOL and a theory of L (we give the
theories these names), then join them and extend
the result by adding a constant "ALcampile" of type
"Alprog -+ Lprog" say, and an axiom defining this

One will develop first a

campiling function.
called ALGOLCOMPILE;
ALGOL: and L , and one of its theorems will assert
the compiler's correctness.

The resulting theory might be
its parent theories are

But ALGOL itself will be a camposite theory.
One of its parent theories will be ALSYN - the
theory of ALGOL syntax; the types in this theory
will be such as Alprog, Alblock, ALstatmt, Alexpn
etc, the constants will be the abstract syntactic
operations such as
mkassignment : AlLvar - Alexpn *+ Alstatmt, and the
Further
constants and axioms will be concerned with auxiliary

axioms will characterise these operations.

syntactic operations - e.g. a predicate for determ~
ining whether an identifier occurs free (i.e. non-
ard the theorems of AISYN will
ALSYN
the theory of integers -

local) in a block -
be about these purely syntactic matters.
may have a parent INT -
if for example one of the syntactic operations
counts the number of free occurrences of an
identifiers in a block.

Another parent theory of ALGOL will be ALSEM;
this is the theory of domains used to specify the
semantics of ALGOL, and may in turn have parent
theories INT, REAL, etc corresponding to various
data types. ALGOL itself will be the join of
ATSYN and ALSEM extended by the definition of the
semantic function - call it "Almeaning" - whose
type will be perhaps "Alprog + (ALstate + ALstate)"
where "AlLstate" is the type of ALGOL machine states
introduced in ALSEM. Theorems of ALGOL will have
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nothing to do with compilation; for example, there
are many interesting results to be proved concerning

meaning-preserving transformations of programs.

So far, we have outlined an ancestry graph for
the theory ALGOLCOMPILE; bearing in mind that the
basic theory PPA is an ancestor of every theory,
the graph looks like this

ALGOLCOMPILE

ALGOL L

ATSYN ALSEM

INT REAL

and of course the subgraph for L (in particular)
has not been discussed. We refer to [9] for the
details of ICF theories; here we will conclude

by remarking that it appears im};bssi_ble to exploit
the full power of an interactive proof system with-
out some disciplined framework, such as theories
provide, within which to work incrementally.

Relations with other systems

There are several dimensions along which ICF
can be campared with other proof systems:;

Checking vs. Proving

At one extreme a system just accepts camplete
proofs and then simply checks their correctness;
a sophisticated example of this is the AUTOMATH
At the other
extreme goals are submitted and an attempt is made
to automatically achieve them;
resolution theorem proving [27] and the work on
mechanising structural induction [2,3]1 . Between
One can reduce the tedium

of using a pure checker by increasing the 'gap'

system of de Bruijn et al [5] .

examples are early

these is a continuum.

between proof steps (these gaps being bridged by
e.g. a simple theorem prover); for example the
Stanford ICF system [181 did some simplifications
autamatically but otherwise the proof had to be
provided by the user. Conversely a pure theorem
prover can be made more flexible by allowing a

user to provide information (perhaps interactively)



to guide the search for a proof (e.g. this is one
of the aims of the GOLUX project [113). Our aim
is to construct a system which can be used at any
point on this continuum - for same problem areas
there already exists useful proof strategies (e.g.
Aubin [2], Boyer & Moore [3] for induction on Lists,
Brown [4] for integer arithmetic) and we would like
to be able to code them up straightforwardly. In
other less explored areas we want to experiment with
manual proofs to isolate cammon patterns of infer-
ence. Once these are found they can be programmed

as ML tactics.

Security

In systems based on general problem solving
languages like MICROPLANNER [29] or QLISP [25]
there is a danger that in performing a proof wrong
inferences may be done. This danger is greatest
for systems which are not based on any explicit
logic (e.g. [3,32]) ;
always clear what the valid inferences are.

for these it is not even
How—
ever even when an explicit logic is used (e.q.

von Henke and Luckham [12] which is based on Hoare's
inference system [14]) there may still be a risk
that invalid manipulations of theorems might
accidently occur - this is especially so if
inexperienced users are allowed to program strategies.
In ICF we give the user the freedom to write his own
tactics (in ML) but the type-checker ensures that
these camnot perform faulty proofs -~ at worst a
tactic can lead to an unwanted theorem (for example

which does not achieve the desired goal).

Generality

A number of program-proving systems are tailored
to particular programming languages thereby enabling
efficient special purpose heuristics to be used
(e.g. [12,31]). Such systems are good for reason—-
ing about algoritlms encoded in their particular
language but cannot perform proofs of theorems
comecting different languages —
compilers.
worlds -
~ by specializing our system not to any programming
language (e.g. ALGOL, PASCAL etc.) but to the
deductive system PP) , and then providing facilities

c.g. proofs of
We have tried to get the best of both
special purpose heuristics and generality

to enable various particular languages to be axiam—
atized as PP) theories; efficient special purpose
tactics can then be programmed in ML for these
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theories. Note however that PP\ itself is oriented
towards reasoning about universes of recursively
defined objects of various types (viz. Domains of
Scotts Theory of Camputation [28]) and so reasoning
about other objects may be indirect. The Stanford
FOL system of Wehyrauch [33] is based on a more
general logic, and it remains to be established
whether this extra generality is needed (e.g. for
reasoning about applications of programs to the
there is a delicate trade off

PP) is
just general enough to handle reasoning about the

'real world');

between generality and specialization -

syntax, semantics and implementations of programs,
but is fairly specialized to these.
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