
Conference Record of the Fifth Annual ACM Sym~sium on Principles of Programming Languages

A Metalanguage for Interactive Prcof in ICE’*

M. Gordon, R. Milner

University of Fdinburgh

L. Morris
Syracuse University

M. Newey
Australian National University

C. Wadsworth
University of Edinburgh

Introduction

LCF (Icqic for Caqmtable Functions) is a

prcof generating system mnsisting of an inter-

active programing language MG (MetaLmguage) for

mnducting prcofs in PPA (Polynmrphic Predicate

A-calculus) , a deductive calculus suitable for the

formalisation of reasoning almut recursively

defined functions, in particular about the syntax,

semantics and iq?lementations of many prqrcmming

languages. PPI is an enrichment (in respect of

type structure and expressive pcwer) of an extended

a-calculus due to Dana Scott and is fully discussed

elsewhere [22 I . The puxposes of this paper are

(a) to illustrate the features of ML which me

it of general interest in language design

quite independently of its use for machine

assistd formal pxcof,

(b) to illustrate ML applied to PPA, in

encoding interesting prcof -finding-and-

perfonning procedures, and

(c) to convey a methodology for controlled semi-

automatic proof.

We avoid formal descrj ption; we hope that our

qles and discussion will achieve these purposes

mme clearly. A qlete description of ML, and

its use with PPA, exists as a techriical reprt [91.

The in@enemtation (using LISP on a DEC 10

—.-

W’his work was supprted by the Science I@search
Council of Great Britain under grant n-

B/RG/48175.

cqmting system) of ML and PPI began over three

years ago at Edinburgh; for abut two years the

system has keen usable, and its development is now

virtually ccmplete. Recently it has been used in

various studies concerning formal semantics:

theorems about data structures, recursion remval,

direct versus continuation semantics, and Other

topics.

The need for and design of ML is based on

experience with an earlier system at Stanford

[17, 181 . In that system, beyond the ability to

direct it to execute a basic inference (e.g. beta

conversion, or transitivity of equivalence) , the

user could

(a)

(b)

(c)

These

invoke .s@lif ication with respect to a set

of equivalences specified by him,

adopt a goal-directed pr~f style, gener-

ating subgoals by built-in tactics based

qn the inference rules and simplification,

and

use theorems previously proved.

facilities were enough to enable several

non-trivial case studies to be tackled [1,23,24,34]

but further use of the systein hecam increasingly

limited by the fixed, and rather primitive, nature

of its repertoire of ccmnands (rather like using

an interactive assenbly language - and one without

a prow stirou~e feature at

one is working all the t- at

oft.em contained many instances

inference which one would like

mat: - in whim

top-level) . Prcnfs

of

to

a few patterns

express as

of

119

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1978 ACM 0-12345-678-9…$5.00

derived inference rules or - in the goal-directed

style - as derived tactics or strategies.

Our present point of view is that neither a

straightforward prcof -checker (lalmrious and re@t-

itive to use) nor an autcmatic theorem-prover

(inefficient because of general search) is satis-

factory. What is required is a framswork in which

a user can both design his own partial prmf

strategies (where he can find them) and execute

single steps of proof (where he needs to) . We

believe also that, although formal proofs are @?-

ortant and should be retrievable, it is pragmatic-

ally more convincing to achieve clear expression of

p~f strategy; the latter entails that the way in

which the strategy is built from sub-stratqies

should be evident in its expressicm.

In other words, we’ re not so concerned with

checking or generating prcofs as with per forming

procf s . ‘RnJs, we don’ t normally store or display

proofs but only the results of them - i.e. theorems.

These form an abstract type on which the only

allowed operations are the inference rules of PPI ;

this ensures that a well-typed pnqcam carmot

perform faulty proofs (it may not prove the theorem

expected but the result ~ be a theorem!) . If

extra security or formal prcof -checking is desired,

full proofs are easily generated - only minor

changes in the implementation of the abstract t~

for theorems wmld be required.

The principal aims then in designing ML were

to make it impossible to prove non-theorems yet

easy to prcgram strategies for performing pnmfs.

A strategy - or recipe for proof - cm.dd be scane-

thing like “induction on f and g , f ollad by

assuning antecedents and doing case analysis, all

interleaved with sinplif ication”. This is

inprecise - analysis of what cases? - what kind of

induction, etc, etc. - but these in turn may well

be given by further recipes, still in the sam

style. The point is that such strategies appear

to be built frcm sinpler ones (which we call

tactics rather than strategies) by a number of

general operations in fairly regular ways; we

call these operations tacticals by analcgy w’ith

functional.

For progr arming tactics and tacticals, and

mre generally for manipulation of PP1 in f ind.ing

prcofs, the following ingredients in ML were soon

found to be expedkmt (almost necessary) : the

ability to handle higher order functions, a rigorous

but flexible type structure, a mechanism for gen-

erating and trapping failures, and an abstract

synta~ic rePres-tation of the object language

PPa .

Acknowledgments

We are indebted to Dana Scmtt for providing

a large part of the theoretical basis for oux vmrk:

to John McCarthy for encmrcaging the forerunner of

this project at Stanford: to Richard Weyhrauch who

contributed greatly to that project: to Tony Hoare

and Jexry Schwarz for help with the notion of

abstract -s in ML : to Avra Cohn for help in

the final design stages through her experiments:

to Rod Burstall and many colleagues in ~inburgh

for ilhnnina ting discussions.

Outline of ML.

ML is a higher-crder functional programing

language in the tradition of ISWIM [15], PAL [8],

POP2 [6] and @DANKEN [26 1, but differs princip-

ally in its handling of failure and, more so, of

typ2s . It is an expression-based language,

though expressions may have side-effects because

of the presence of assignment (the expression

“X: =e” has as value the value of e , and also

gives x this value) . An @mrtant expression

construct is “let x = e in e’”, which binds x—

to the value of e throughout e‘ ; alternative

forms of declaration are “let f (x,y,. ..) = e“

for def irdng functions, “letrec f (x,y,.. .) = e“

for defining functions recursively, “letref x = e”

for declaring and initializing assignable variables,

and generalizations of these forms for s~taneous

declarations.

Another imprtant expression construct is

‘Ie ? evtp (read “e or else e’”), whose value is the

value of e unless e generates a failure, in which

case it is the value of e’. The systen generates

certain failures autcnnatically, and the user may

generate his own with the expression “fail”, or

the expression “failwith e“ where the value of e

120

is a token which identifies the kind of failure;

a generalization of the form “e ? e’” can be used

to trap only certain failure tokens (kinds of

failure) . The type token is one of ML’s basic

types; tokens are just synbol strings. In our

current application of ML, the use of failure as a

dynamic escqe and escape-trapping mechanism facil-

itates a natural programing style for caqosing

tactics and strategies which are usually inapplic-

able to certain goals.

AS hinted above, if d is a declamation and:

e an expression, then “d in e“ is an expression.—

In interactive prcgramning (which is how prcofs

are conducted) , one evaluates a mixed sequence of

declarations and expressions, separated by “;;” .

ML is a “static binding” language, like ISWIM, PAL

and GEDWWEN (but unlike LISP and FOP2) ; a free

variable z in the declaration “let f(x) = . ..”

refers to the textually enclosing declaration of

z , not to any subsequat declaration.

An example which illustrates most of the

features of MT is a generalised scalar product

(sum the prcducts of two vectors) which is param-

eterised on its prcduct and sunnnation functions

and on a zero (for null vectors) . Two ways - the

first recursive and the second iterative - of

writing this in ML, with vectors represented as

lists and failure for vectors of unequal length,

are as follows:

letrec scalarprod ($*, $+, zero) (.U,~2) = (1,2)

(let xl. il’ = L1 and x2. L2’ = ~2— —

in (x1*x2) +5Cakqwcd($*, $+rzero) (!1’ ,X2’)

);

(if null,(kl) & null (12) then zero.

else fail).—

let itscalaqxod ($*, $+, zero) (U, i2) =

letref ace, 11, i2 = zero, 11, P2

in—

(Q ace, 11, Q2 :=

)?

((~*X2)+acc, ilr, ~2J

where x1.%1’ = !/1 and X2. !?,2’ = 12)—

(if null(!l) & null(i2) thenacc—

else fail)——

(.3)

(4)

(1)

(5)

Notes: (1)

(2)

(3)

(4)

(5)

“letrec f(x,y, z)(urv) = - - -“

is equivalent to

“letrec f = l(x,y, z).l(u,v). - - -“.

(Similarly, let . ..). That is, scala.r-

prod and”itscalarprod are defined here

as (partially) curried functions, as

is the style in functional progrann.ing.

The separation of argments into two

groups allows scalarprcxi to be

“partially applied” to three argummts

to obtain particular scalar prcduct

functions; it also suggests a more

efficient recursive definition in which

we replace

letrec scalarprcx3($*, $+, zero) (kl,12) =

- - -scalaqrod ($*, $+, zero) (11’, ~2’)- -

by a form which recurses on only &

arguments, nawly

let scalarprcd($*., $+, zero) = scalp

whererec scalp (!l, t2) =

--- scalp (n’ ,12’) - - -

Prefixing $ to a token enables its use

as a binaq infix without the $.

Infixed “.” is the cons function. Use

on the left of a declaration, as here,

binds xl and kl’ to the head and tail,

respectively, of !1, with failure when

U is null.

The failure trappd by “?” here is that

of the declaration when one of R1, L2

is null.

“q e“ repeats e until failure.

The functions scalaxprod and itscalarprcd make

s-e on a wide variety of objects. Applications

of either are well-typed provided their arguments

have types which are instances of

$* : (cl x B)+y

$+ : (y x 6)+ 6

Zero:a

where a,~, y,c$ are t ype variables, and then the

result is a function which has the corresponding

instance of (a list x 6 list)+ 6 as its type.——

We say that the type

((aX&Y)X(yX6-M)X6) + (a list x f3 list + 6)——

121

is generic for scalarprod (or itscalarprcd);

this means that these functions may be used at any

type which is a substitution instance of the

generic type, in which a,$’, y,d are type

variables. Thus, since $*,$+ : ~ x ~+ ~

are arithmetic functions predeclared in MG, and

using the ML notation “Eel; . . . ;enl” for lists, we

have

scakrprcd($*,$+,O) ([1;2;31, [4;5;61)

= 1x4 + 2x5 + 3x6

using Scahrprcd at the instance 0.= B-~=6= tit Of—

its generic t=.

TO define a function which, given two vectors

[bl;bnl , [cl; ...; cm] of truth values, will

count the number of times that Wzh bi and ci are

true, we may define

let botlltinecount = scalarprcd (bothtrue, $+, O)

where bothtrue (bl ,b2) = if bl &—

using scalarprod at its t~ instance

and y=6= int. We may even define a

type a list x (a list) list + a list—— .

b2 then 1

else O

~.~.~1

function of

such that

[xl;xnl. [lisl; . . . lisn]w(xl.lisl) @. ..@ (m. lisn)

using the predeclared amend function $(? ; the

definition is

let mapconsappend = scalarprod ($. ,$@,nil)

using scalarprod at its type instance B=y=d=a =.

Notice then that lxk.h scalarprd and mapconsappmd

possess a type which contains type variables; they

are plynn rphic functions. The polynmrphism of MG

should not be confused with the plyrmrphism

present in the object language PPl ; we will allude

briefly to the latter in a later section.

such plyllm rphim with respect to program

types is possible, to a greater or lesser extent,

in several languages (e.g. PASQUAL [301) which allow

procedures to have explicit type parameters. ML

relies instead on a type-checker which not only

checks that plynmrphic functions are used consist-

ently at instances of their generic type but can,

in nearly all practical cases, infer the types of

all variables without these being supplied

explicitly (e.g. it will infer the type giva

above for scalarprcd and itscalarprcd).

cane close to the discipline which a gccd

Thus we

program-

mer will impose upn himself in using a typeless

language such as LISP. It is remarkably conven-

ient in interactive prcgr amring to be relieved of

the need to specify types, with assurance that

badly-typed phrases will be caught, re~rted, and

not evaluated. Of course, for off-line program-

ming it is oftw advisable to specify the types in

declarations - ticluding the types of formal param-

eters, and we are aware that many prefer to adopt

such a discipline for intelligibility and for

docmnentation purpses. TO this end, ML always

allcws the user to speci~ his types explicitly.

If he cares to write

letrec scalarprcd ($*: (.xf3 .+ y),

$+: (yxa + 6),

2=0: 6)

(U: a=,

!,2: ~list) : 6=

he can do so, and the typechecker will check these

types for him. It tuxns out that, in the presence

of @ymorphism, essentially the same typechecking

algorit.lm is necessary even if type specification

is made compulsory (unless indeed the type of every

expression were required, which would be intoler-

able) .

The typechecking method may be illustrated by

a sinple exanple. Consider the following function

for mapping a function over a list:

letrec map(frlis) = if null(lis) then nil—

else f(hd(lis)). map(f,tl(lis);

The generic type of map should be (Y+8) x y list

+ 8 list. How may we infer this type frcm the

bare declaration? First, the generic types of

the identifiers occurring free in the declaration

are

null : a list + bool—.

nil : a list

hd :ctlist*a

tl : a list + a list—.

$. :axctlist+ alist—.

and we require that every occurrence of such an

identifier is given, as type, a substitution

instance of its generic type (different occurren~s

may be assigned different type instances) .

Secmnd, every occurrence of a formal parameter

must be givem the same type, and every occurrence

122

(in its declaration) of a recursively defined iden-

tifier must be given the same type. Third, if we

denote by Uid the type to be given to each iden-

tifier in the declaration, then besides the above-

msntioned constraints on ondl etc, the follcwing

equations must hold for some types T1JT2J. . . :

‘map = ‘f x ‘lis + ‘1 ‘f
‘T+’T

24

+ -1
‘null = ‘lis —

X-r+’r
‘map = ‘f 35

‘hd = ‘lis + ‘2
‘T x T +T

‘$. 4 5 6

‘tl
= Glis + -C3

‘1 = ‘nil = ‘6

Each of these equations except the last arises fmn

sane sub-expression which is a function application;

the last arises because a conditional expression is

given the sane type as its two arm, and because

the definiens and definiendm of a declaration are

given the same type.

NON if we chcose distinct type variables

~ l...t~1 5
and set u =allist+~,

null —
= a2 list , etc , the equations may be solved

‘nil —
for the variables Ul,...a5, T1,...,T6 and

‘map ‘ ‘f’ ‘lis
using Robinsons unification algor-

ithm [271 . It turns out, as the reader may like

to heck, that for sane distinct pair of variables

yr8 we obtain

G =(y+&)xylist+81ist
map —.

as expected. This then is the generic type of

map, which may be instantiated (differently) for

each later occurrence of the identifier.

T’MS exanple does not illustrate all the

typing constraints. There are further rules

concerning the instantiation of generic types of

variables declared within a function My (for

example, the type of the variable xl in the

declaration of scalarprod is fully determined

by the type of the formal parameter .L1, and the

rules will demand in this case that xl is

given the same type at each occurrence), and con-

cerning the types of variables declared by

letref (in particular, like formal parameters,

they must be given the same type at each occurrence).

For the ccnplete algorithm, and a prcof of its

smantic correctness for a siqler language, see

[211 ; the algorithn is in fact rather straight-

forward.

ML also includes a facility for defining

abstract types, including simultaneous and\or

recursive and/or parmnetric ones. In ML these are

not “really abstract” in the sense of the algebraic

abstract types of, e.g., Guttag [101 or Zilles [361

but rather are analogous to SIMUIA classes [71,

CLU clusters [16], and ALPHARD forms [35]. As the

latter are by now well-known, it will be enough to

describe briefly our syntax for abstract type

declarations and give a simple example. The

declaration form is

-’ty-s’’id’=’ty’ m...=d ‘tY==9-’id’=’+=Y’

with . . .

where the identifiers <id> are the new (parametri-

zed) t~s being declared, each <tyargs> is a

sequence (possibly empty) of type variables - the

formal parameters - and each <ty> is a type express-

ion. The Part “with . ..” has the syntax of a

normal declaration (but with let replaced by with) ,—

and defines the operations or other objects availa-

ble at the new types; the essence of ~

abstraction is that one may get at the represent-

ation of the new types only in the with-part, and

this representation is provided by two halves of

the iscmmrphism (denotedby “absid” and “repid”

for each type identifier “id”) between each type

and its representation. For (mutually) recursive

types one must use absrectype in place of abstype.

We give, as an exanq?le, the redefinition of the ML

type operator list for lists; note that the

iscmmrphism functions are plynmrphic - they are

abslist : (. +(axalist))+a~

replist : a~+(. +(ax a list))

where the basic type “.” is that with just one

elemsnt denotsd by the expression () , and “+”

between -s is disjoint smn. The declaration is:

absrectype

with

and—

and.

and—

and

a list = . + (a x a list)

nil = abslist(tilo)

$.(x,f,) =abslist(inr(x,i)

null(l) = isl(replist(i))

hd(f,) = fst(outr(replist(i))

tl(~) = snd(outr(replist(i)))

The polynn~hic functions inl and m, outl ~d

outr, and isl and isr are left and right injections,

projections (with failure for arguments in wrong

sumnands) and predicates for disjoint sm types.

123

(~: we have underlined types and reserved words

in this paper, for clarity, but our implementation

requires no underlining; we have ncw abandoned it

for newly declared types) .

Functional types are allowed in abstract type

declarations, and this yields sane interesting

possibilities. A simple exan@e is streams - a

notion of infinite implicit lists due to ~.

Here is a definition which provides two stream

operations; one for splitting a strean into its

first merber and reminder, and one for building a

stream frcm a function of the natmal numbers:

absrectype a stream = . + (a x a stream)

with

and—

next(s : a strean) = repstrem(s) ()

Streamof = Str : (@ + a) + a stream

whererec str (f) =

absstream(~ () . (f(1) ,str(lx. f(x+l))_))

w an aside, we can shcw that the recursiveness of

types also gives us the pcwer of non.nal recursion,

so that in the presence of absrect ype, the letrec

construct is theoretically redundant! In fact,

a fixed-point function

FIX : ((B+y)+(D+y))+(B+y)

can be defined so that “let f = FIX(.lf .e) “ is—

exact ly equivalent to “ letiec f = e“ ; the reader

may like to puzzle out how the f olluwing does the

trick:

absrectype cl fixty=afixty+a

with FIX (f) = F (absf ixty F)

PPX in ML

PPA is

where F y = f(lx. repfixty(y) (Y) (x))

discussed in ML via pre-def ined abstract

types, one for each of its principal syntactic

classes. ~s ~thod could be adopted for the

discussion of any syntactic system within ~, but

we have also built in the special ability to discuss

PPA h terms of a concrete representation of its

syntax . This is a necessary convenience; to

provide concrete syntax for other syntactic systems

the user would need to write, in ~, a parser and

an “unpamer” to map f rcm concrete to abstract

syntax and vice-versa.

The fomulae of PPl are those of a f irst-ord~

predicate calculus built by conjunction, implication

and universal quantification frcxn atomic ones;

atcanic formulae are equivalences and inequivalences

(i.e. partial ordering~) betwe= terms of a

typed A-calculus with a f ixed-pdnt operator, a

conditional operator and other constants. Many

these constants - including the two mentioned -

are plymxphic; as with ML the plynmrphism

involves the use of type variables, and t~

instantiation is one of the inference rules of

of

PPA . Thus PPI is repres=ted in ML by the three

abstract types form, term and ~ (objects of——

type ~ are syntactic - they are PPI type express-

ions) ; primitive operations provided at these

(ML) types are constructors and destructors.

Exa@es of instructors are:

rfkvar :

mkcomb :

mkinequiv :

mkquant :

token X ~ + term

(a variable consists of a token

with a type)

term xterm+texnl—— .

(a combination,

application)

term x teml + form—— .

or function

(tobuild an atcmic formula)

tem x fom + form—. —

(the term must be a variable)

and to each constructor corresponds a destructor

(destvar, destd etc) of inverse functional type.

Destructors fail if their argument is not a tenm or

form of the right sort - e.g. destvar (ink@ (..))

will fail. Concrete syntax is provided via

quotation ‘. ..3 ; this syntax is what one would

expect, and allows t~s to be mentioned explicitly,

although the system will often deduce types using

a methcd sinilax to that in ML. Here then are two

equivalent ML expressions of type form , assuming

that the user has introduced “integer” as a PPA

type (see the later section on Thearies) :

%x: integer. x ~ x’

let x = mkvar (‘X’ ,mkconsttyp’ integer’)—

in mkquant (x,nkinequiv (x,x)).

~er, a device which we call antiquotation

L . . . j allows ~ expressions (of appropriate ~

type!) to

following

amu Witi quotations, so that the

is also equivalent to the above:

124

let x = ‘X:integer7 in ‘V~xJ. ~n_kinequiv(x,x)J1— —

Now a sequmt of PPA is an object (rrw) of

~ form list x form. PPA is a sequent calculus,—— —

so a PPl theorem is a sequmt which follows frcm

the axians by the inference rules. A theorem is

represented as l!r + wnf on output; theorems of

ccmxse may not be input, but only deduced, and for

this puqose the axicans and inference rules are

provided as primitive objects at the abstract type

thin. We give part of the definition of this type;—

the types of the inference rules mentioned are

ASSUME:form + ~, GEN:tenn+(thm+thn) ,—. —

TRANS:th XtbI+ t.@, BETACDW:term+thm :—. ——

m thm = form list x form—— —

with ASSUME w = absthm([w] ,w) (Infer w +- w)

and ~Xth=—

let r,w = repthm th in (Frclnr l-w—

if 1 isvar x ~ x E freevaxs (r). infer r I- VX. w

then f ailwith ‘GEN’ when X is not

else absthm (r ,mkquant (x,w)) free in r)

and TRANS(thl, th2) = . . . (transitivity

of qaivalence

and inequival-

ence)

and BETACCXfV t=... (6 reduction)—

and—

. . . .

and destthn = repthm—

Notice that repthm is provided to the user (under

the nane destthm) to allw him to analyse his

theorems syntactically, but he is deprived of

alEthm - and thus assured that all objects of ~

tkm are indeed theorems, since he can only make—

(prove!) them with the inference rules.

The PPl calculus was discussed in detail in [221;

our present iqlenxmtation provides essentially that

calculus, but for convenience - and sane efficiency -

many of the axicms are presented tistead as infer-

ence rules, of ihich there are about thirty (mre

than strictly necessary, again for ocnvenience) .

Goals tactics and tacticals

As a simple example to illustrate our method-

ology, consider an obvious fact abut conditionals

(for “T => XIY” read “if T then X else Y“) , namsly

I- VTl T2 X Y Z W. (Tl => (T2 => XIY) I (T2 => Z/W)~

T2 => (Tl => X/Z)] (Tl => YIW))

The natural way one would prove this informally is:

strip off tie quantifiers (“Consider any T1, T2,. .,W”) ,

then do case analysis on any truth-valued term in

sight - and do any sirtrplif ications that are possible.

So su~ficially, as a tactic for this (and many

other similar goals) we muld like to write

(REPFAT GENTAC) THEN REPFAT(ANYCASESTAC TFIHi SIMF’IW) .

AS a first approximation, a tactic should take

as argument a goal and produce as result a list of

subgoals . We shall here assume that a goal is a

sequent, that is

gO@ = form list x form—— .

though we in fact use a slight ramification of this

type. The idea is that, by repeated sukqoaling

(i. e. tactic application) we shall reach subgoals

which may be achieved by theorems, until no sub-

goals are left; a theorem r’ I-W’ is said to

achieve the goal (r ,w) if (up to a-conversion)

w ‘=w and r’Sr - the formulae of r in the

goal are to be thought of as assumptions, sane or

all of which may be used in proving w.

But now we can see a deficiency in our first

a~roximation to a tactic. ‘Suppse that a tactic

T, applied to goal g , has generated the subgoal

list [gl; . . . ;gn 1 and that scanehow theorems thi

achieving gi (1 s i s n) have been found. who

is to deduce frcan [thl;thnl a theorem th

achieving g ? Our answer is that it is the job

of T to provide a way of performing this deduction;

to this end we define

= thmlist+thmQZQ —— .

tactic = go& + (goal list X prcef)

and we call the proaf oaqmnent of a tactic’s

result a validation. We!! a ccmpsite tactic has

scxnehow generated an eqty goal list, the valid-

ations of the ccqonmts can be ccanpsed to yield

a theorem, and this cq?osite validation (a function)

can be generated autcanatically as part of the

business of -sing tactics.

125

Hcxvever, not all tactics will be very useful.

lie shall call the useful ones valid (related but

not identical with lqicians’ use of the word) :

T is a valid tactic if, whenever

T(g) = ([gI; . . .;gnl,p) and whenever thi achieves

9i (1 s i s n) , then P[thl;thnl evaluates

successfully to a th~rem which achieves g . In

particular, when n = O - i.e. T reduces g to an

qty subgoal list - then p[1 achieves g and we

say that T solves g (e.g. the s~lification tactic

manages this when tie gcal simplifies to an obvious

tautology) .

TO illustrate, here is a tactic for quantifier

stripping (yielding one s~oal) which is “inverse”

to the basic inference rule W, where we write in

sane types explicitly as an aid to the reader:

let GENTAC ((r,w): go@ =—

let x,wl = destquant w ? failwith ‘G3fTAC’—

in—

let x’ = variant (x, freevars (w. r))—

-u 1
.

[(r, substinform(x’ ,x)w1)]: goal ~ ,

(~ X’ o hd) :s

where o is ftmction ccmpsition, and

variant (x, vars) primes x, if necessary, to obtain

a variable not in the list vars. The call of

variant in GENT!AC is needed to ensure that it is

a valid tactic, in this case to prevent possible

variable clashes causing the validation function to

fail unexpectedly (when applied to a singleton

theorem list [thl where th achieves the one subgoal

produced by GENTAC) . Note that at worst an

invalid tactic can fail or prove the wrong theorem;

it can never produce a “false theorem” !

Other elementary tactics are also easily

defined, e.g. for case analysis on a truth-valued

term (prcducing three subgoals - the true, false

and undefined cases) , and for ccxrputation induction

(prcaucing two subgoals – the induction basis and

the induction step) .

We are mainly interested in valid tactics,

though one may demmd eva mre of a tactic. We

say that a (valid) tactic is strongly valid if,

whenever the argmnent goal is achievable (by sane

theorem) so is each of the gaerated subgoals.

One may not always be able to use strongly valid

tactics. Consider for exa@e

tic for proving Vn. f (n) < g(n)

function h for which W. f (n) <

particular, we find that Vh. n

the heuristic tac-

by finding SClne

h(n) s g(n); in

<2n+ lis true

(and

but

Nbre

Ussd

achievable !) over the non-negative integers,

Vn. n<2n<2n+l is false (not achievable) .

relevant is that various induction rules,

in reverse, yield tactics which are not

strongly valid. It is good practice to use

strongly valid tactics when pxssible, and always to

use valid tactics.

Tacticals are fmctions on tactics, building

simple tactics into ccnpsite ones. Wee obvious

exanples are: binary tacticals THEN (apply a

secnnd tactic to all subgoals produced by a first)

and ORELSE (try one tactic, or if it fails try

another) , and a unary one REPEAT (iterate a tactic

until faihrce) . Defining these, and many others,

in PIG is a straightforward exercise in functional

prcgramnin g with lists. 143reover, it is easy to

shcw that THEN, ORELSE and REPEAT preserve the

validity - even strong validity - of tactics.

(It is worth noting that this tactics-and

tacticals style could be adopted in general for

problem solving; all that is involved is a type

goal , a type for proposed solutions - which might

be called shot - and an achievement relation between

shots and goals .)

Isolating useful tactics and tacticals, and

enccding them in ML, is a sbj ect of ongoing study

in the various applications to do with formal

senmntics which we mentioned in the introduction.

Theories

In our discussion of PP1 we did not suggest

the variety of its application; in fact, just as

first-order predicate calculus (or any pure

CACUIUS) may be extended to an applied calculus by

the introduction of non-lcgical constants and non-

logical axicms, so may PPA be extended. An imprt-

ant part of this extension is the introduction of

new types (the only non-trivial primitive type

available is that of txuth-values) . New types may

be either introduced independently or defined -

perhaps recursively - in terms of existing typss .

A set of types, tcgetier with sane new constants

126

and axicms, is called a tkory, and all work with

ICF consists in setting up theories, extending them

or joining them to form larger theories, or (nm.t

inportant) adding new useful theomne to the list of

those proved in an existing theory. Theories are

preserved permanently on files, to allow incremen tal

working; for each theay T there is a fixed file

T. THY with the types, ccmstants and axicxns, and a

9row@l file T. FCC of useful theorems (facts).

Suppse for example one wishes to prove the

correctness of a compiling algoritlm f ran AI.lX)L to

sane target language L . One will develop first a

theory of AKDL and a theory of L (we give the

theories these names) , then join them and extend

the result by adding a constant “ALoanPile” of type

“ALprcg + Lprcg” say, and an axicnn defining this

ccmpiling function. The resulting theory might be

called ALGQLCDMPILE ; its parent theories are

ALCX3L and L , and one of its theor~ will assert

the cxnnpiler’s correctness.

But AIGOL itself will be a ccmpsite theory.

One of its parent theories will be AISYN - the

theory of ALCDL syntax; the types in this th~ry

will be such as ALprcg, ALblock, ALstatmt, ALexpn

etc, the constants will be the abstract syntactic

operations such as

mkassignment : ALVar ~ ALexpn + ALstatmt, and the

axiars will characterise these operations. Further

mnstants and axicms will be concerned with auxiliary

syntactic operations - e.g. a predicate for determ-

ining whether an identifier occurs free (i.e. non-

local) in a block - arxl the theorems of ALSYN will

be about these purely syntactic matters. ALSYN

may have a parent IiVT. - the theory of integers -

if for example one of the syntactic operations

counts the nunber of free occurrences of an

identifiers in a block.

Another parent theory of ALGOL will be AiSEM;

this is the theory of dcanains used to specify the

semantics of AIGOL, and may in turn have parent

theories INT, REAL, etc cmrrespnding to various

data types. ALGOL itself will be the join of

ALSYN and ALSEM extended by the definition of the

semantic function - call it “ADneaning” - whose

type will be perhaps “AJLprcg + (ALstate + ALstate) “

where “ALstate” is the type of AI.LX3L machine states

introduced in ALSm. Thmmns of ALGDL will have

nothing to do with amnpilation; for exanple, there

are many interesting results to be proved concerning

meantig-preserving transformations of programs.

So far, we have outlined an ancestry g raph for

the theory ALGOLCCMPILE; bearing in mind that the

basic thecmy PPA is an ancestor of every theory,

the graph lcoks like this

AIC33LCOMPILE

AL&42L

ALSYN

Iwr

and of course the subgraph for L (in particular)

has not been discussed. We refer to [9] for the

details of ICF theories; here” we will ~nclh

by remarkimg that it appears @mssible to exploit

the full power of an interactive proof system with-

out sane discipltied f rmework, such as theories

provide, within which to work incranentally.

Relations with other systems

There are several dimensions along which LCF’

can be crqared with other proof systems;

Checking vs. Proving

At one extreme a system just accepts ccmplete

proofs and then simply checks their correctness;

a sophisticated example of this is the AU’IOMATH

system of de Bruijn et al [5 I . At the other

extrem goals are sukmitted and an attenpt is rnac3.s

to aut.anatically achieve them; exzqles are early

resolution theorem proving [27] and the wwk on

wchanising structural induction [2,31 . Between

these is a continuun. Gne can reduce the tedium

of ustig a pure checker by increasing the ‘gap’

between proof steps (these gaps being bridged by

e.g. a simple theorem prover) ; for example the

Stanford LCF system [18] did scane simplifications

autcunatically but otherwise the proof had to be

provided by the user. Conversely a pure theorem

prover can be made rore flexible by allcwing a

user to provide information (perhaps interactively)

127

to guide the search for a prmf (e.g. this is one

of the aims of the GOLUX project [11]) . Our aim

is to construct a system which can be used at any

point on this continuum - for S- problem areas

there already exists useful prcof strategies (e.g.

Aubin [21, Eoyer & Moore [3 I for induction on Lists,

Brown [41 for integer arithmetic) and we would like

to be able to cede them up straightforwardly. In

other less explored areas we want to experiment with

manual prcofs to isolate ccnmmn patterns of inf ex-

ence. Once these are fomd they can be prqranmed

as ML tactics.

Security

w systems based on general problem solving

languages like MICFOPLANNER [291 or QLISP [251

there is a danger that in Prforming a prcof wrong

inferences may be done. This danger is greatest

for systems which are not based on any explicit

logic (e.g. [3,321) ; for these it is not even

always clear what the valid inferences are. Hcw-

ever even when an explicit logic is used (e.g.

Von Henke and Luckhan [121 which is based on Hoare’s

inference system [14 1) there may still be a risk

that invalid manipulations of theorems might

accidently occu - this is espcially so if

inexperienced users are allowed to prcgram strategies.

In KF we give the user the freedcm to write his own

tactics (in ML) but the type-checker ensures that

these cannot perfom faulty proofs - at wrst a

tactic can lead to an unwanted theorem (for exanple

which does not achieve the desired goal) .

~

A nuker of prcgram-proving systems are tailored

to particular programing languages thereby enabling

efficient special puxpse heuristics to be used

(e.g. [12,311). Such systems are gmd for reason-

ing about algorithms encoded in their particular

language but cannot perform proofs of theorems

comnec+ing diffwer+ languages – e.g. proofs of

corcrpil=s. We have tried to get the best of both

vmrlds - spscial puqnse heuristics and generality

- by specializing our system not to any programing

langua ge (e.g. -L, PASCAL etc.) but to the

deductive system PPa , and then pruviding facilities

to enable various particular languages to be axicxn-

atized as PPA theories; efficient special puqose

tactics can then be prcgrann@i in ML for these

theories. Note however that PPi itself is oriented

tcwm.rds reasming about universes of recursively

defined objects of various t~s (viz. -ins of

Scotts TFEOry of Computation [281) and so reasoning

about other obj etis may be indirect. The Stanford

ML system of Wehyrauch [331 is based on a mre

general lcgic, and it r amains to be established

whether this extra generality is needed (e.g. for

reasoning about applications of programs to the

‘real world’) ; there is a delicate trade off

between g&nerality and specialization - PPA is

just general enough to handle reasoning aknut the

syntax, s~tics and implementations of programs,

but is fairly specialized to these.

[11 Aiello, L. , Aiello, M. & Wehyrauchr R. ,

The semantics of PASCAL in ILIF, AI Memo 221

Cmputer Science Dept., Stanford, 1974.

[2] Aubin, R., Mechanizing structural induction,

Ph.D. thesis, University of Fdinburgh, 1976.

[3] Boyer, R.S. &

about LISP

129-144.

[41 Bm, F. M.,

More, J. S., Proving theorems

function, JACM 22,1 (Jan. 1975) ,

A deductive System for Elementary

Arithn@cic. AISB Sumner Conference,

Edinburgh, 1976.

[53 de Bruijn, N. G., AU’IWATH, a language for

math-tics, T. H.- Report 68-WSK-05 , Ept .

of Mathenntics, Technological University,

Eindhoven, Netherlands 1968.

[6] Burstall, R.M. & Pop@estone, R., POP2 refer-

ence manual, in Machine Intelligence 2, eds.

E. Dale & D. Michie, American Elsevier,

New York, 1968, 205-246.

[72 oanl, O.-J. et al, The SIMULA 67 Ccrmnon base.—

language, Norwegian Ccrq@ing Centre, Oslo,

1968.

[83 EvallS, A., PAL: a language designed for

teaching prcgrartnning linguistics, Proc. ACM

23rd Nat. Conf. , 1968, Brandin Systems Press,

Princeton, N. J., 395-403.

128

[91

[101

[111

[121

[131

[141

151

161

[171

[181

[191

[201

Ckmdon, M., Milner, R. & Wadsworth, C.

Edinburgh B, Department of Caqmter

Science Internal Reprt CSR-11-77,

University of Fdinburgh, 1977.

Guttag, J.V., The specification and applic-

ation to prcgrarmning of abstract data

types, Ph.D. thesis, University of Toronto,

1975.

Hayes, P.J., The language G3LUX. University

of Essex, 1974.

von Henke, F.N.& Luckhan, D.C., Amethcdobgy

for verifying prcqramsr Proceedings of the

International Conference on Reliable Soft-

ware, IOs Angeles, California 1975.

Hewitt, C., PLANNER: a language for manipul-

ating ndels and proving theorems in a

rolxt, AI i%mo 168, Project MAC, M.I.T.,

1970.

Hoare, C.A.R., An Axiomatic Basis for

Ccmputer Programing, CACM VO1.12, No.1O,

1969.

Landin, P.J., The next 7CX3programing

languages, Ccmn. ACM9,3 (Ech 1966),

157-166.

Liskov, B.H. & Zilles, S., Programing with

abstract data types, Proc. of a Sympsium

on Very High-Level Languages, SIGPIAN

Notices 9,4 (April 1974), 50-59.

&lilner, R., Implementation and application

of Scott’s logic for omputable functions,

Proc. ACM Conf. on Proving Assertions about

Programs, SIGPI.AN Notices 7,1 (Jan.1972),

1-6.

Milner, R.r ~ic for computable functions:

description of a machine inplementa~ion,

AI Memo 169, Cc.q?uter Science Department,

Stanford, 1972.

Miner, R., Prcgram semantics andmechanised

proof, Proc. 2ndAdvanced Course in Found-

ations of Ccnputer Science, Mathematical

Centre, .Nnsterdam, 1976.

Milner, R., ICF: a methodology for perform-

ing rigorous prcofs abut prugramsr Proc.

1st IBM Sympsiun on Mathematical Fomd-

[211

[221

[231

[241

[25]

[261

[271

[281

[29]

[301

[311

ations of Ccmpter Science, Amagi, Japan,

1976.

Milner, R., A Theory of Type Polynmrphism in

Programnin g, Department of Ccmputer

Science Internal Reprk CSR-9-77,

University of Fdinburgh, 1977.

Milner, R., Mxcis, F.L. & Newey, M.,

A lcgic for computable functions with

reflexive and polymorphic types, Proc.

Conf. on Proving and Improving Prcgrams,

Arc-et-Senams, 1975.

Milner, R. & Weyhrauch, R., Proving ccmpiler

correctness in a mechanised logic, in

Machine Intelligence 7, ed. D. Michie,

Edinburgh University Press, 1972.

Newey. M., Formal semantics of LISP with

applications to prcgram correctness, Ph.D.

thesis, Stanford, 1975.

Rekoh, R., Sacerdoti, E.r A Preliminaq

QLISP Manual, Technical note 81,

Artificial Intelligence Centre, SRI.,

Mento Park, California 1973.

Reynolds, J.C., GERMWIN: a s~le typeless

language based on the principle of

completeness and the reference concept,

Ccmn. ACM 13,5 (May 1970), X)8-319.

Robinson, J.A., A machine-oriented logic

based on the resolution principle, JACM

12.1 (Jan. 1965) 23-41.

Scott, D.S. & Strachey, C., Tbward a Math-

ematical Semantics for Ccq?uter Languages,

Proceedings of the SyKpOsiun on Cquters

and Automata, Microwave Research Institute

Smsia Series, Vol.21r Polytechnic

Institute of Brcoklyn, 1972.

SUSman, G., Winogradr T. & Charniak, E.

llhmplanner Refercmce llanual, AI Nkmm 203,

Project MAC, M.I.T. 1970.

Tennent, R.D., PASQUAL: a propsed general-

isation of PASCAL, Tech. Report 75-32,

Queas University, Kingston, Ontario, 1975.

Topr, R. Interactive Progran Verification

using Virtual Prograns., Ph.D. Thesis,

Edinburgh, 1975.

129

[321 Waldinger, R.J. & Levittr C.r Reasoning

about PrOcjrams, Artificial Intelligmcer

VO1.5 No.3.

[331 Weyhrauch, R.W. A User’s P@nual for FOL,

Stanford Artificial Intelligence menm

AIM 235.1, 1977.

[341 Weyhrauch, R. & Milner, R., Program semntics

and correctness in a mechanised lqic,

Proc. usA - Japan Canputer Conference,

Tokyo, 1972.

[351 Wulf, R.A., I.ondon, R.L. & Shawr M.,

Abstraction and verification in ALPHARD:

introduction to language and methodology,

Carnegie-Mellon University, 1976.

[361 Zilles, S., Algebraic specification of data

types, Computation Structures Group -

119, M.I.T., 1974.

130

