
Parikh’s theorem

H̊akan Lindqvist

Abstract

This chapter will discuss Parikh’s theorem and provide a proof
for it. The proof is done by induction over a set of derivation
trees, and using the Parikh mappings obtained from the set of
terminal derivation trees and the possible enlargement of them
during derivation. Moreover, the usefulness of the theorem will
be lightly addressed.

1 Introduction

This chapter will explain Parikh’s theorem [Par66] and provide a proof for it.
Parikh’s theorem is important since it shows that a context–free language over
a singleton alphabet must be regular [RE97]. The theorem is also practical to
prove whether a language is context-free or not [Gol77]. Moreover, it can be
used quite easily to prove whether the language contains a string with the same
number of two given terminals. An example of how the theorem can be used
to show that property will be presented together with the theorem itself. The
biggest implication of the theorem though, is that it shows that if the order of
the symbols is ignored, then it is impossible to distinguish between a regular set
and a context-free language. This in turn implicates that context-free languages
can have a richer structure than those obtained from regular sets.

It should be noted that there are other ways in which Parikh’s theorem can
be proved than using induction over derivation trees. One such technique is
presented in [Gol77] by using a strengthened type of the pumping lemma.

The chapter is structured as follows. The following section presents basic defi-
nitions needed for the definition of Parikh’s theorem. Next, the theorem itself
is presented and briefly discussed. The theorem section is followed by a proof
divided into three steps. The chapter is concluded with a discussion of the
theorem, its proof and usefulness.

2 Basic definitions

Before the discussion of the Parikh’s theorem, some definitions are made to
facilitate the upcoming discussion.

Definition 2.1 (Linear subset) A linear subset, M , of N
n is given by tuples

t0, . . . , tm ∈ N
n, where m ∈ N and n ∈ N

+.

M = {t0 + l1t1 + . . . + lmtm | l1, . . . , lm ∈ N}
= t0 + {t1, . . . , tm}⋆

1

That is, M is a linear subset, which is constructed by taking a basic tuple and
adding tuples to it from a finite set an arbitrary number of times.

The next definition provides a notion for the union of several linear subsets.

Definition 2.2 (Semilinear subset) A semilinear subset, M ′, of N
n, is a

union of finitely many linear subsets M1, . . . ,Mk, where k ∈ N
+. In other

words:
M ′ = M1 ∪ . . . ∪ Mk

Example 2.3 (Linear and semilinear sets) Consider the following second
order linear subsets, and their union:

M1 = (1, 2) + {(3, 5), (7, 11)}⋆

M2 = (1, 1) + {(2, 3), (5, 7)}⋆

M ′ = M1 ∪ M2

By definition, M ′ is a semilinear subset.

Definition 2.4 (The Parikh mapping) Let Σ = {a1, . . . , an}, where n ∈
N

+ and the order of a1, . . . , an is arbitrary, but fixed (i.e. one order is chosen,
but which one does not matter). For w ∈ Σ∗, the Parikh image is

Ψ (w) = (m1, . . . ,mn)

Each number mi is the number of occurrences of ai in w.

When referring to the Parikh mapping for a language, this should be taken
to mean the mapping applied to all the words in the language. This idea is
expressed in the next definition.

Definition 2.5 (The Parikh mapping on a language) For a language
L ⊆ Σ⋆, let Ψ (L) = {Ψ (w) |w ∈ L}.

Example 2.6 (Parikh mapping of words from a context-free grammar)
Consider the context-free grammar G = (N,Σ, R, S) with rules:

S → ASB | BSA | ab
A → a
B → b

This means that the language generated by G contains strings where a’s and b’s
can occur intermixed. But, as is clear from the language definition, the same
number of a’s and b’s will always be present. Moreover, there will always be at
least one of each letters.

Now, let a1 and a2 from Definition 2.4 be a and b respectively. Consider the
words w1 = aaaabbbb ∈ L (G) and w2 = babababa ∈ L (G). Both of these words
have the same Parikh mapping; Ψ(wi) = (4, 4), where 1 ≤ i ≤ 2.

2

It is interesting to note that most information embedded in a word generated
with a context-free grammar is thrown away by the Parikh mapping.

To clearly illustrate the relationship between the first definitions of this section
and the Parikh mapping, the following example shows how the Parikh mapping
of a whole language can be specified.

Example 2.7 (Parikh mapping of a context-free language) Assume
that the language being considered is generated from the grammar specified in
example 2.6.

It is clear from the formulation of the grammar that the smallest word that can
be generated using the grammar from example 2.6 is ab. Each time a word is
increased in size, during its generation, exactly one a and one b will be added.
Hence, the Parikh mapping for the grammar is:

Ψ (G) = {(1, 1), (2, 2), . . . , (n, n)} ,wheren ∈ N
+

3 Parikh’s theorem

In this section Parikh’s theorem is discussed; the proof of the theorem follows
in the next section.

Theorem 3.1 (Parikh’s theorem) For every context-free language L, Ψ (L)
is effectively semilinear. The tuples specifying Ψ (L) can be constructed effec-
tively from a context-free grammar generating L (i.e. there is an algorithm to
perform the work to produce the tuples specifying Ψ (L); Lemma 4.7 can be
used directly to produce the tuples).

Since the theorem states that there is an effective way to specify Ψ (L), it is for
example possible to decide whether a given language contains a certain type of
string. This is illustrated in the following example.

Example 3.2 (Existence of a certain string in a context-free language)
For context-free grammars, G, it is decidable whether the languages L (G) con-
tains a string with the same number of a’s and b’s, by using the following
construction, which effectively describes the Parikh image of the language.

By Parikh’s theorem, we can build a finite automaton, A, such that Ψ (L (G)) =
Ψ (L (A)). Let |wa| refer to the number of a’s in a word w in some language,
and let G0 be a context-free grammar generating the language

L (G0) = {w ∈ {a, b} | |w|a = |w|b}

Since L (A)∩L (G0) is effectively context-free, and a context-free language can
be checked for emptiness [Sud98], this can prove whether or not such a string
is present. For example, this can be done by checking if the set of reachable
symbols is empty for the grammar generating L (A) ∩ L (G0), which has been
proven to be exactly L (G0) [Sud98].

3

4 Proving Parikh’s theorem

The proof of Parikh’s theorem is divided into three parts; two special techniques
are used to divide the problem of proving the theorem into parts that are more
readily provable. Hence, this section will first introduce those techniques, with
their associated proofs, and then use the results to prove Parikh’s theorem itself.

4.1 Techniques, first part (language)

Given a context-free grammar G = (N,Σ, R, S), rather than considering L (G),
look at the language L∼ (G) containing only the strings generated by derivation
trees in which each nonterminal in N occurs.

Since Parikh’s theorem states that the language L (G) is semilinear, the same
must hold for the language L∼ (G) for it be useful in any proof that should hold
for L (G). Hence, it is proved that L∼ (G) is semilinear.

Lemma 4.1 If Ψ (L∼ (G)) is semilinear for all context-free languages, then
Ψ (L (G)) is semilinear.

Proof Construct all grammars G1, . . . , Gk, where k ∈ N
+, obtained from G

by deleting nonterminals. Then L (G) = L∼ (G1) ∪ . . . ∪ L∼ (Gk), and thus
Ψ (L (G)) = Ψ (L∼ (G1))∪ . . . ∪Ψ (L∼ (Gk)) is semilinear by Definition 2.2. �

In the proof, note that the number of languages, k, is limited by the number of
nonterminals in the grammar G to k = 2|N | − 1. The subtraction of one is due
to the fact that the nonterminal S must be kept.

4.2 Techniques, second part (definitions)

This part of the proof focuses on the derivation trees that are used in generation
of the language L∼ (G). Three special kinds of trees, with restrictive properties,
are defined.

Definition 4.2 (Set of terminal derivation trees with root S) Let T be
the set of all terminal derivation trees with the root S that satisfies:

1. All nonterminals occur in the tree .

2. No nonterminal occurs more than k = |N | times on every path.

The members of the set T corresponds to the derivation trees for the language
L∼ (G). The set T is used in the proof to define the Parikh mapping of L∼ (G)
as a union of individual mappings.

The next set defined is a variation of the set T , which is important since it
allows for expansion of the tree.

Definition 4.3 (The set of all terminal trees) Let T̃ be the set of all ter-
minal derivation trees satisfying condition 1 in Definition 4.2 (cf. Figure 2).

The final set corresponds to the rules in a context-free grammar that makes a
string larger during its derivation, that is a rule on the form A → uAv, where

4

u, v ∈ Σ. Note that it can be used to increase the size of the trees in set T̃ by
replacing a nonterminal symbol A on a path in a tree t̃ ∈ T̃ by a tree t ∈ I,
where the tree t has the same nonterminal A as root and as a leaf, as is defined
in the following definition.

Definition 4.4 (Set of intermediate trees) Let I be the set of all deriva-
tion trees with root A ∈ N , containing exactly one nonterminal leaf also labeled
A. In addition, the trees in I are required to satisfy condition 2 from Defini-
tion 4.2.

Observation 4.5 Note that the constant k from Definition 4.2 is at most k2 =
|N |×c, where c is the number of times the nonterminals occur on a path. Hence,
both the trees in T and I are of finite height since the maximum length of any
path has an upper bound.

Figure 1: The special tree type T described in Definition 4.2. On any path,
a nonterminal occurs at most k times. However, each nonterminal must occur
somewhere in the tree

Figure 2: The special tree type T̃ . Contrary to the tree T , the number of any
nonterminal is not restricted on the path

5

4.3 Proof of Parikh’s theorem

Using the techniques from the previous sections, it is now possible to prove
theorem 3.1.

Definition 4.6 (The set of yielded strings) Let w1, . . . , wq, where q ∈ N
+,

be the set of yielded string from the trees in the set T (cf. Definition 4.2), and
let W be the set of all string uv such that uAv is the result of some tree in I
for some nonterminal A ∈ N .

A closer look at Definition 4.6 makes it apparent that the members of the set W
represents possible subtrees that may be used to make a derivation tree larger.
In other words, it corresponds to rules in the specification of a context-free
grammar that makes a string longer by introducing a nonterminal between two
terminals.

Lemma 4.7 The following equivalence holds:

Ψ (L∼ (G)) = Ψ (w1) + Ψ (W)⋆

∪
...
∪
Ψ (wq) + Ψ (W)⋆

Φ

Observation 4.8 The empty string can be discarded from the set W in
Lemma 4.7 without imposing any restrictions on the Parikh mapping Ψ since
it adds nothing to a summation. Moreover, a finite number of additions of
the mapping Ψ (W) to some mapping Ψ (wq) corresponds to replacing some

nonterminal A in a tree from T̃ with a tree from the set I (cf. Figure 2), thus
making tree larger. This can be seen directly by looking closely at Definition 4.6.

Proof The proof of Lemma 4.7 will be by induction.

First direction: Φ ⊆ L∼ (G), where Φ is the union in Lemma 4.7.

Phrased in a another manner, the first direction of the proof handles the case
m = (m1, . . . ,mn) ∈ Φ → m ∈ Ψ (L∼ (G)).

Induction basis: Let m = Ψ (wi) for some i ∈ N
+, then wi ∈ L∼ (G) and thus

Ψ (wi) ∈ Ψ (L∼ (G)). By the definition of T̃ (cf. Definition 4.3), wi corresponds
to the strings forming the language L∼ (G).

Induction hypothesis: The statement holds for m′; m′ ∈ Ψ (L∼ (G)). Since m′

is a tuple from the union Ψ (cf. Lemma 4.7), it follows that m′ is bounded by
a finite number of additions of the mapping Ψ (W) to some Ψ (wq).

Inductive step: Let m = m′ + Ψ (u), for some u ∈ W .

There is some tree t ∈ T̃ with the result w, such that Ψ (w) = m′. Further,
there is a derivation tree t′ ∈ I with the result u0Av0 such that u = u0v0 (i.e.
the u described in definition 4.6).

Now, construct the derivation tree obtained by replacing any A–labeled node p
in t with the tree obtained from t′ by replacing its A–leaf with the subtree of t

6

rooted at p (cf. Figure 3 for an illustration of this process). The resulting tree
belongs to T̃ and its result, z, satisfies Ψ (z) = Ψ (w) + Ψ (u) = m.

Since the resulting sum exactly corresponds to the sum presented at the begin-
ning of the inductive step, the inclusion Φ ⊆ Ψ (L∼ (G)) is proved.

Second direction: L∼ (G) ⊆ Φ, where Φ is the union in Lemma 4.7.

Phrased differently, the second direction of the proof shows that if t ∈ T̃ , with
result w, then Ψ (w) ∈ Φ.

Induction basis: If t ∈ T , then w = wi for some i ∈ N
+, and thus Ψ (w) ∈ Φ.

Induction hypothesis: The statement holds for all trees in T̃ that are smaller
than t.

Inductive step: Let p1, . . . , pn, where n ∈ N
+, be nodes on some path and let

the index indicates each node’s relative position on that path. Furthermore, let
all nodes be labeled with the same nonterminal A, such that all proper subtrees
of the tree rooted at p1 satisfies condition 2 from Definition 4.2.

Let ti be the tree obtained by removing nodes in t at node pi and pi+1. Con-
versely, the tree t̄i is the subtree obtained when removing the nodes between
pi and pi+1 from t. Then ti ∈ I and Ψ (w) = Ψ (ūi) + Ψ (ui), where ūi and ui

are the results of t̄i and ti respectively (cf. Figure 4 for an illustration of this
process).

Now it remains to be shown that t̄i can be chosen in such a way that it belongs
to T̃ .

Let N \ {A} = {B1, . . . , Bn−1}, where n ∈ N
+. Then t̄i ∈ T̃ if ti contains all

Bj’s in (the whole tree) t, for some j /∈ {1, . . . , n − 1}. (Again, cf. Figure 4;
the nodes that should be present in ti corresponds to the A that is removed).
But since there are n choices for i, there must be at least one i ∈ {0, . . . , n − 1}
for which this does not happen. Hence, t̄i ∈ T̃ , and the inductive hypothesis
applies. �

The proof shows that the Parikh mapping of a context-free language is equal
to that which is obtained from the terminal derivation trees, which have the
shortest possible paths (i.e. all subtrees that can be pumped occur at most one
time), and their results and adding the contribution of subtrees that can be
pumped an arbitrary number of times to the corresponding linear subset. This
is exactly what Lemma 4.7 states.

7

Figure 3: A tree from the set I is used to increase the size of a tree from the
set T̃ . Hence, the result of the tree is increased with the strings u0, v0 ∈ Σ∗

Figure 4: The fundamental parts of a tree are shown (a): trees from the set T ,
I and T̃ are illustrated. In (b), the subtree belonging to the set I is removed
from (a). In (c), the removed tree is illustrated on its own

8

4.4 Discussion

In this chapter, Parikh’s theorem [Par66] was presented. As is hinted in exam-
ple 3.2, the theorem is excellent for showing whether or not a string with the
same number of some terminals is present in a given language. This is so simple
since all information preserved by the Parikh mapping 2.4 is the count of each
symbol in a given word. Moreover, it is also very useful for proving whether
a given language is context-free or not. However, it is remarkable that Parikh
came up with the idea of the proof, since the exact conditions controlling the
structure of the trees presented in definition 4.2 through 4.4 are nontrivial, in
the sense that it is not obvious that those conditions must hold.

References

[Gol77] J. Goldstine. A simplified proof of parikh’s theorem. Discrete Mathe-

matics, 19:235–239, 1977.

[Par66] Rohit J. Parikh. On context–free languages. Journal of the Association

for Computing Machinery, 13(4):570–581, 1966.

[RE97] G. Rozenberg and A. Salomaa (Eds.). Handbook of Formal Languages,

vol. 1. Springer, 1997.

[Sud98] Thomas A. Sudkamp. Languages and Machines, 2nd Ed. Addison
Wesley, 1998.

9

