
A PROOF OF MENGER’S THEOREM

Here is a more detailed version of the proof of Menger’s theorem on
page 50 of Diestel’s book.

First let’s clarify some details about “separating.” Given two sets of
vertices A and B in G, a third set of vertices W separates A from B if
every path from a vertex in A to a vertex in B contains a vertex from
W.

We say that a path is an A-B path if it’s first vertex is in A, it’s last
vertex is B, and none of its internal vertices is in A or B. If every A-B
path contains a vertex of W then W is separating. (The argument here
is similar to that used to show that any two vertices connected by a
walk are connected by a path.)

So as a special case, W = A separates A from B since a path that
starts in A includes at least that vertex from A. Thus the definition is
not exactly the same as saying that after removing W there remains a
vertex in A and a vertex in B that can no longer be connected.

Let us define k(G, A, B) to be the smallest number of vertices in a
set that separates A from B.

Since either A or B separates A from B,

(1) k(G, A, B) ≤ min(|A|, |B|).

Another annoying special case is when there are no A-B paths. Then
any set separates A from B. In this case k(G, A, B) = 0. I got that
wrong in lecture.

An important special case in what follows is when A ⊆ B. Then
the paths of length zero that begin and end at a vertex in A don’t go
through any vertices that are not in A. So a set cannot separated A

from B unless is contains A. Therefore

(2) A ⊆ B =⇒ k(G, A, B) = |A|.

If A is given and there are two sets B1 and B2, with B1 ⊆ B2, then
any set that separates A from B2 will necessarily separate A from B1.

Therefore

(3) B1 ⊆ B2 =⇒ k(G, A, B1) ≤ k(G, A, B2)

Theorem 1. Let G be a graph with edge set E and vertex set V. Suppose
A and B are subsets of V and suppose there is at least one A-B path.
Then the minimum number of vertices separating A from B equals the
maximum number of disjoint A-B paths

We’ll prove something a little stronger:
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Lemma 1. Let k = k(G, A, B). Suppose k(G, A, B) = k. Given fewer
than k disjoint A-B paths

P1, P2, . . . , Pn,

(so 0 ≤ n ≤ k − 1) there will exists n + 1 A-B paths

Q1, Q2, . . . , Qn+1

such that if b ∈ B is the endpoint of one of the Pj then b will also be
an endpoint of one of the Qj.

(In the book, he keeps track of the A-enpoints, but this is not im-
portant in making the proof work.)

Proof. We prove this by induction on then number β of vertices not in
B, so

β = |G| − |B|.

Our base case is β = 0. This means that B = G. By equation 2 we
have

k = |A|.

An A-B path is just any path of length zero that starts and ends at a
vertex a in A. Given fewer than |A| disjoint A-B paths, we are really
looking at fewer than |A| elements of A. To this we can add another
path of length zero at one of the remaining vertices in A and this gives
our longer list of A-B paths.

Now we asssume the lemma is true for all β < β0, where β0 ≥ 1. We
now attempt to prove the lemma for β = β0.

Suppose we are given G, A and B with k(G, A, B) = k and where
there are β vertices in G that are not in B. Suppose further that we
are given P1, . . . , Pn disjoint A-B paths with n < k.

Let the set of endpoints of the Pj in A be aj and the endpoint in
B be bj. We will us a line indicate a path with an unknown number
of internal vertices. Since we might have paths of length zero, it is
possible that the two endpoints drawm are really the same vertex. In
the drawings we will assume n = 3.
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Here are P1, . . . , Pn, in green:

•a1

•a2

•a3

•

•

A
•b1

•b2

•b3

•
•

•

B
P1

P2

Pn

Since n < k, the set {b1, . . . , bn} does not separate A from B. There-
fore there is an A-B path R that does end at or go through any of the
bj. If we are luck, this path does not contain any of the vertices from
the other paths. In that case, we are done, with

Q1 = P1, . . . , Qn = PnandQn+1 = R,

as shown here

•a1

•a2

•a3

•

•

A
•b1

•b2

•b3

•
•

•

B
P1

P2

Pn

R

If this is not the case, let x denote the vertex that is the last one on
the path R that is also on one of the paths Pj. We can reindex the Pj,
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aj and bj so that x is on the path Pn.

•a1

•a2

•a3

•

•

A
•b1

•b2

•b3

•
•

•

B

•x

P1

P2

Pn

We have no need for the part of R before x. We do need xR, the part
of R from x on, which we show in blue. We also need xPn, the part of
Pn after x, which we also show in blue. Finally, we need Pnx, the part
of Pn before x, which we show in green.

•a1

•a2

•a3

•

•

A
•b1

•b2

•b3

•
•

•

B

•x

P1

P2

Pnx xPn

xR

Let B′ equal all the vertices in B together with all the vertices on
the blue paths xR and xPn. Since B ⊆ B′ we know by equation 3 that

n < k ≤ k(B, A, B′)

Therefore we can apply the induction hypothesis to the strictly larger
set B′ and the n paths

P1, . . . , Pn−1, Pnx.

These have endpoints

b1, . . . , bn−1, x
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We conclude that there are disjoint A-B ′ paths

Q′

1, . . . , Q
′

n+1

whose endpoints are {b1, . . . , bn−1, x, y} where all we know about y is
that is it in B′ and is not equal to b1, . . . , bn−1 or x. We can reindex the
Q′

j so that the B-endpoint of Q′

j is bj for j < n, the B-endpoint of Q′

n

is x and the B-endpoint of Q′

n+1 is y. We have no idea which elements
in A are the other endpoints.

Since B′ contains vertices from B, from xPn and xR, there are three
cases to consider:

Case 1 – y is on xPn : Recall that y cannot equal x. Here is the
picture:

•

•

•

•

•

A
•b1

•b2

•b3

•
•

•

•y

B

•x

Q′

1

Q′

2

Q′

n

xPn

xR

Q′

n+1

Extend Q′

n with xR to create Qn and extend Q′

n with yPn :

•

•

•

•

•

A
•b1

•b2

•b3

•
•

•

•y

B

•x

Q1

Q2

Qn

Qn+1

The desired new disjoint paths are

Q1 = Q′

1, . . . , Qn−1 = Q′

n−1, Qn = Q′

n ◦xR, Qn+1 = Q′

n+1 ◦yPn
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Case 2 – y is on xR : Recall that y cannot equal x. Here is the picture:

•

•

•

•

•

A
•b1

•b2

•b3

•
•

•

B

•x

•y

Q′

1

Q′

2
Q′

n

Q′

n+1

xPn

yR

This time, concatenate Q′

n with xPn and concatenate Q′

n+1 with yR :
x. Here is the picture:

•

•

•

•

•

A
•b1

•b2

•b3

•
•

•

B

•x

•y

Q1

Q2

Qn

Qn+1

The desired new disjoint paths are

Q1 = Q′

1, . . . , Qn−1 = Q′

n−1, Qn = Q′

n ◦xPn, Qn+1 = Q′

n+1 ◦yR

Case 2 – y is not on xR or xPn. This means that y is in B and y does
not equal bn, the B-endpoint of xPn. When we applied the induction
hypothetis we were guaranteed that y would not equal b1, . . . , bn−1 so
in fact

y 6= bj (for allj, 1 ≤ j ≤ n)
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Here is the picture:

•a1

•a2

•a3

•

•

A
•b1

•b2

•b3

•
•

•

B

•x

Q′

1

Q′

2Q′

n

xPn

xR

Q′

n+1

This time we can use Q′

n+1 as it is, and we extend Q′

n by xPn, as shown
here:

•a1

•a2

•a3

•

•

A
•b1

•b2

•b3

•
•

•

B

•x

Q1

Q2

Qn

Qn+1

The desired new disjoint paths are

Q1 = Q′

1, . . . , Qn−1 = Q′

n−1, Qn = Q′

n ◦ xPn, Qn+1 = Q′

n+1
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