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Abstract

The seven following theorems, while seemingly unrelated, are

equivalent (i.e., any one of them may be proved by assuming any

other is true). These theorems relate to graph theory, set the-

ory, flow theory, and even marriage: Menger’s theorem (1929),

König’s theorem for matrices (1931), the König-Egerváry theo-

rem (1931), Hall’s marriage theorem (1935), the Birkhoff-Von

Neumann theorem (1946), Dilworth’s theorem (1950) and the

Max Flow-Min Cut theorem (1962). I will attempt to explain

each theorem, and give some indications why all are equivalent.



Graph Theory

A graph can be defined as a set of points, called vertices or

nodes, and a set of 2-element sets of points, called edges.

We say a graph is bipartite if it’s vertices can be partitioned into

two disjoint sets such that all edges in the graph go from one

set to the other. A covering of the edges in a graph is a set C

of vertices such that each edge of the graph contains at least

one vertex of C.

König’s Theorem

Let G be a bipartite graph. The size of a maximum matching of

G is equal to the size of a minimum covering of G.



Menger’s Theorem

Let G be a graph, v and w vertices in G, and S be a subset of

vertices. S is a vw-separating set if there is no path from v to w

in G \ S. Two paths from v to w are vertex-disjoint if they only

have v and w in common.

Menger’s Theorem (1929)

The maximum number of vertex-disjoint paths connecting two

distinct non-adjacent vertices v and w is equal to the minimum

number of vertices in a vw-separating set.



Flow Theory

A directed graph is a graph in which each edge has associated

with it a direction. A network is a directed graph with two

distinct vertices singled out as the source s and the target t,

and with each edge assigned an integer called it’s capacity.

Let S be a set of vertices, and S’ it’s complement. We define

an edge cut [S, S’] as all the edges directed from S to S’. A

minimum edge cut is one such that the sum of the capacities of

the edges in [S, S’] is a minimum.

The easiest example to see would be a system of pipes, with

water flowing from one source to one target where the capacities

are the diameter of the pipes. You can also look at any kind of

product distribution line as an example of a network.



Flow Theory cont., and the Max-Flow Min-Cut
theorem

The flow on an edge uv is f(u,v), a positive integer such that

f(u,v) ≤ the capacity of uv, and f+(v) = f−(v) (the out flow

from v equals the inflow to v). We will say a flow in the network

N is a valid assignment of flows on all the edges. The value of a

flow in N is f+(s)− f−(s). A maximum flow is one whose value

is maximum.

The Max-Flow Min-Cut theorem

A value of a maximum flow in a network N is equal to the value

of a minimum cut of N.



(0,1)-Matrices and the König-Egerváry theorem

The Term Rank of a (0,1)-matrix is the largest number of 1s

that can be chosen from the matrix such that no 2 selected 1s

lie on the same line. A set S of rows and columns is a cover of

a (0,1)-matrix if the matrix becomes a zero matrix after all the

lines in S have been deleted.

König-Egerváry theorem (1931)

The term rank of a (0,1)-matrix is the cardinality of its smallest

cover.



The Birkhoff-Von Neumann Theorem

A matrix D = (dij) with real non-negative entries is Doubly

Stochastic if the sum of the entries in any row and any column

equals 1. A Permutation Matrix is a doubly stochastic matrix

with entries 0 and 1, that is, a matrix with exactly one 1 in each

row and in each column. A matrix A is a convex combination of

matrices A1, ..., As if there exist non-negative reals λ1, ..., λs such

that A =
∑s

i=1 λiAi and
∑s

i=1 λi = 1.

Birkhoff-Von Neumann Theorem (1946)

Any doubly stochastic matrix can be written as a convex com-

bination permutation matrices.



Hall’s Theorem

Let X be a set of elements. Let S = {S1, ..., Sn} be a family

of subsets of X. Then, a Sequence of Distinct Representatives

(SDR) for S is a sequence {x1, ..., xn} of pairwise distinct ele-

ments of X such that xi ∈ Si,1 ≤ i ≤ n

Hall’s Theorem

S has an SDR if and only if the union of any k members of S

contains at least k elements.

Example:

X = {1, 2, 3, 4, 5}

S1 = {1, 2, 3}, S2 = {1, 4, 5}, S3 = {3, 5}

SDR: {1, 4, 5}



The Marriage Theorem

This was the original motivation for Hall’s Theorem:

Given a set of n men and a set of n women, let each man make

a list of the women he is willing to marry. Then each man can

be married to a woman on his list if, and only if, for every value

of k (1 ≤ k ≤ n), the union of any k of the lists contain at least

k names.

Similarly, we can apply this theorem to the Assignment Problem:

Given a set of n employees, fill out a list of the jobs each of them

would be able to preform. Then, we can give each person a job

suited to their abilities if, and only if, for every value of k (1 ≤

k ≤ n), the union of any k of the lists contains at least k jobs.



Partially Ordered Sets and Dilworth’s Theorem

We define a Partially Ordered Set, or a Poset, as a set P with

a partial ordering ≤ defined on it’s elements. I.e, for any two

elements x and y of P, either x ≤ y, y ≤ x (x and y are com-

parable), or x || y (x and y are incomparable). A Chain is any

pairwise comparable subset of P, and an Antichain is any pairwise

incomparable subset of P.

Dilworth’s Theorem

Suppose that the largest antichain in the poset P has size r.

Then P can be partitioned into r disjoint chains.



The König-Egerváry theorem ⇔ König’s
Theorem

Let the bipartite graph G have bipartitions X = {x1, x2, ..., xm}

and Y = {y1, y2, ..., ym}. Construct the m*n adjacency matrix

A with Aij =1 if, and only if, there is an edge joining xi to

yj. Now, the term rank of A is the cardinality of a maximum

matching in G, and the size of a smallest cover of A is the size

of a smallest covering of the edges of G. So, we have that the

König-Egerváry Theorem ⇒ König’s Theorem. Conversely, since

any (0,1)-matrix can be interpreted as the adjacency matrix of

some bipartite graph, König’s Theorem ⇒ the König-Egerváry

Theorem.



Hall’s Theorem ⇒ The König-Egerváry
Theorem

Sketch: Let B be an m*n (0,1)-matrix, p = term rank of B, q

= cardinality of smallest cover.

Claim: p ≤ q. Removing r rows and s columns (r + s = q)

removes all the ones from the matrix. Thus, there are at most

r + s ones in different rows and columns. Thus p ≤ q.



Hall’s Theorem ⇒ The König-Egerváry
Theorem (cont.)

Claim: p ≥ q. Permute the rows and columns of B (as figure).

Let Ai = {j : j > s and Bij = 1}. Note |Ai| > 0 for all i. Also,

the union of any k of the Ai’s has at least k elements. If not, we

would be able to replace k rows of the smallest cover with less

than k columns. Thus, by Hall’s theorem, we have r ones in the

top right, each in it’s own row and column.

Similarly, we get s ones in the bottom left, each in it’s own row

and column. So, p ≥ r + s = q. So, p = q.



Dilworth’s Theorem ⇒ Hall’s Theorem

Sketch: Let S1, S2, ..., Sn be the subsets of {x1, ..., xm}

Assume that the union of any k sets has at least k elements. Let

X = {S1, S2, ..., Sn, x1, x2, ..., xm} and define a partial order on X

such that xi < Sj iff xi ∈ Aj, and there are no other comparable

elements.

The xi’s form an antichain of length m, and it can be shown

this is the largest antichain. So, by Dilworth’s theorem, we can

partition X into m chains, n of which have 2 elements, and the

rest have 1. The 2 element chains define an SDR.



Konig’s Theorem ⇒ Hall’s Theorem

Sketch: Let S = {S1, S2, ..., Sn} be a set of subsets of X =

{x1, x2, ..., xm} such that the union of any k members of S con-

tains at least k elements. Construct a bipartite graph G with

bipartitions X and Y = {1, ..., n} in which {xi, j} is an edge if,

and only if, xi ∈ Sj.

Let K ⊆ Y . Define N(K) to be the set of vertices in X such

that each vertex in N(K) is joined to at least 1 vertex in K.

Equivalently, N(K) =
⋃

i∈K Si. By assumption, |N(K)| ≥ |K| (1).

Now, we need to show that there is a matching of Y into X.



Konig’s Theorem ⇒ Hall’s Theorem (cont.)

By König’s Theorem, a complete matching from Y into X exists

if and only if the cardinality of every covering of the edges in this

graph is at least n.

Let C be a covering of G. Let Cy = C
⋂

Y . Then, N(X \Cy) is a

subset of C \ Cy (2). Thus,

|C| = |Cy| + |C \ Cy|

≥ |Cy| + |N(X \ Cy)| (by (2))

≥ |Cy| + |X \ Cy| (by (1)) = m
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