
Chapter 12

Time-dependent perturbation
theory

So far, we have focused largely on the quantum mechanics of systems in
which the Hamiltonian is time-independent. In such cases, the time depen-
dence of a wavepacket can be developed through the time-evolution operator,
Û = e−iĤt/! or, when cast in terms of the eigenstates of the Hamiltonian,
Ĥ|n〉 = En|n〉, as |ψ(t)〉 = e−iĤt/!|ψ(0)〉 =

∑
n e−iEnt/!cn(0)|n〉. Although

this framework provides access to any closed quantum mechanical system, it
does not describe interaction with an external environment such as that im-
posed by an external electromagnetic field. In such cases, it is more convenient
to describe the induced interactions of a small isolated system, Ĥ0, through a
time-dependent interaction V (t). Examples include the problem of magnetic
resonance describing the interaction of a quantum mechanical spin with an
external time-dependent magnetic field, or the response of an atom to an ex-
ternal electromagnetic field. In the following, we will develop a formalism to
treat time-dependent perturbations.

12.1 Time-dependent potentials: general formalism

Consider then the Hamiltonian Ĥ = Ĥ0 + V (t), where all time-dependence
enters through the potential V (t). In the Schrödinger representation, the
dynamics of the system are specified by the time-dependent wavefunction,
|ψ(t)〉S through the Schrödinger equation i!∂t|ψ(t)〉S = Ĥ|ψ(t)〉S. However,
in many cases, and in particular with the current application, it is convenient
to work in the Interaction representation,1 defined by

|ψ(t)〉I = eiĤ0t/!|ψ(t)〉S

where |ψ(0)〉I = |ψ(0)〉S. With this definition, one may show that the wave-
function obeys the equation of motion (exercise)

i!∂t|ψ(t)〉I = VI(t)|ψ(t)〉I (12.1)

where VI(t) = eiĤ0t/!V e−iĤ0t/!. Then, if we form the eigenfunction expansion,
|ψ(t)〉I =

∑
n cn(t)|n〉, and contract the equation of motion with a general

state, 〈n|, we obtain

i!ċm(t) =
∑

n

Vmn(t)eiωmntcn(t) , (12.2)

1Note how this definition differs from that of the Heisenberg representation, |ψ〉H =

eiĤt/! |ψ(t)〉S in which all time-dependence is transferred into the operators.
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where the matrix elements Vmn(t) = 〈m|V (t)|m〉, and ωmn = (Em −En)/! =
−ωnm. To develop some intuition for the action of a time-dependent potential,
it is useful to consider first a periodically-driven two-level system where the
dynamical equations can be solved exactly.

$ Info. The two-level system plays a special place in the modern development
of quantum theory. In particular, it provides a platform to encode the simplest
quantum logic gate, the qubit. A classical computer has a memory made up of
bits, where each bit holds either a one or a zero. A quantum computer maintains a
sequence of qubits. A single qubit can hold a one, a zero, or, crucially, any quantum
superposition of these. Moreover, a pair of qubits can be in any quantum superposition
of four states, and three qubits in any superposition of eight. In general a quantum
computer with n qubits can be in an arbitrary superposition of up to 2n different
states simultaneously (this compares to a normal computer that can only be in one
of these 2n states at any one time). A quantum computer operates by manipulating
those qubits with a fixed sequence of quantum logic gates. The sequence of gates to
be applied is called a quantum algorithm.

An example of an implementation of qubits for a quantum computer could start
with the use of particles with two spin states: |↓〉 and |↑〉, or |0〉 and |1〉). In fact any
system possessing an observable quantity A which is conserved under time evolution
and such that A has at least two discrete and sufficiently spaced consecutive eigenval-
ues, is a suitable candidate for implementing a qubit. This is true because any such
system can be mapped onto an effective spin-1/2 system.

$ Example: Dynamics of a driven two-level system: Let us consider a
two-state system with

Ĥ0 =
(

E1 0
0 E2

)
, V (t) =

(
0 δeiωt

δe−iωt 0

)
.

Specifying the wavefunction by the two-component vector, c(t) = (c1(t) c2(t)), Eq. (12.2)
translates to the equation of motion (exercise)

i!∂tc = δ

(
0 ei(ω−ω21)t

e−i(ω−ω21)t 0

)
c(t) ,

where ω21 = (E2 − E1)/!. With the initial condition c1(0) = 1, and c2(0) = 0, this
equation has the solution,

|c2(t)|2 =
δ2

δ2 + !2(ω − ω21)2/4
sin2 Ωt, |c1(t)|2 = 1− |c2(t)|2 ,

where Ω = ((δ/!)2+(ω−ω21)2/4)1/2 is known as the Rabi frequency. The solution,
which varies periodically in time, describes the transfer of probability from state 1 to
state 2 and back. The maximum probability of occupying state 2 is a Lorentzian with

|c2(t)|2max =
γ2

γ2 + !2(ω − ω21)2/4
,

taking the value of unity at resonance, ω = ω21.

$ Exercise. Derive the solution from the equations of motion for c(t). Hint:
eliminate c1 from the equations to obtain a second order differential equation for c2.

$ Info. The dynamics of the driven two-level system finds practical application
in the Ammonia maser: The ammonia molecule NH3 has a pryramidal structure
with an orientation characterised by the position of the “lone-pair” of electrons sited
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on the nitrogen atom. At low temperature, the molecule can occupy two possible
states, |A〉 and |S〉, involving symmetric (S) or an antisymmetric (A) atomic con-
figurations, separated by a small energy splitting, ∆E. (More precisely, along the
axis of three-fold rotational symmetry, the effective potential energy of the nitrogen
atom takes the form of a double-well. The tunneling of the nitrogen atom through the
double well leads to the symmetric and asymmetric combination of states.) In a time-
dependent uniform electric field the molecules experience a potential V = −µd · E,
where E = Eêz cos ωt, and µd denotes the electric dipole moment. Since µd is odd un-
der parity transformation, PµdP = −µd, and P |A〉 = −|A〉 and P |S〉 = |S〉, the ma-
trix elements of the electric dipole moment are off-diagonal: 〈S|µd|S〉 = 〈A|µd|A〉 = 0
and 〈S|µd|A〉 = 〈S|µd|A〉 &= 0.

Charles Hard Townes 1915-
(left)
is an American
Nobel prize-
winning physicist
and educator.
Townes is known
for his work on
the theory and
application of the maser – microwave
amplification by stimulated emission
of radiation, on which he got the
fundamental patent, and other work
in quantum electronics connected
with both maser and laser devices.
He received the Nobel Prize in
Physics in 1964.

If we start with all of the molecules in the symmetric ground state, we have
shown above that the action of an oscillating field for a particular time can can drive
a collection of molecules from their ground state into the antisymmetric first excited
state. The ammonia maser works by sending a stream of ammonia molecules, traveling
at known velocity, down a tube having an oscillating field for a definite length, so the
molecules emerging at the other end are all (or almost all, depending on the precision
of ingoing velocity, etc.) in the first excited state. Application of a small amount of
electromagnetic radiation of the same frequency to the outgoing molecules will cause
some to decay, generating intense radiation and therefore a much shorter period for
all to decay, emitting coherent radiation.

12.2 Time-dependent perturbation theory

We now turn to consider a generic time-dependent Hamiltonian for which an
analytical solution is unavailable – sadly the typical situation! In this case,
we must turn to a perturbative analysis, looking for an expansion of the basis
coefficients cn(t) in powers of the interaction,

cn(t) = c(0)
n + c(1)

n (t) + c(2)
n (t) + · · · ,

where c(m)
n ∼ O(V m) and c(0)

n is some (time-independent) initial state. The
programme to complete this series expansion is straightforward but technical.

$ Info. In the interaction representation, the state |ψ(t)〉I can be related to
an inital state |ψ(t0)〉I through the time-evolution operator, UI(t, t0), i.e. |ψ(t)〉I =
UI(t, t0)|ψ(t0)〉I. Since this is true for any initial state |ψ(t0)〉I, from Eq. (12.1), we
must have

i!∂tUI(t, t0) = VI(t)UI(t, t0) ,

with the boundary condition UI(t0, t0) = I. Integrating this equation from t0 to t,
formally we obtain,

UI(t, t0) = I− i

!

∫ t

t0

dt′VI(t′)UI(t′, t0) .

This result provides a self-consistent equation for UI(t, t0), i.e. if we take this expres-
sion and substitute UI(t′, t0) under the integrand, we obtain

UI(t, t0) = I− i

!

∫ t

t0

dt′VI(t′) +
(
− i

!

)2 ∫ t

t0

dt′VI(t′)
∫ t′

t0

dt′′VI(t′′)UI(t′′, t0) .

Iterating this procedure, we thus obtain

UI(t, t0) =
∞∑

n=0

(
− i

!

)n ∫ t

t0

dt1 · · ·
∫ tn−1

t0

dtnVI(t1)VI(t2) · · · VI(tn) , (12.3)
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where the term n = 0 translates to I. Note that the operators VI(t) are organised in
a time-ordered sequence, with t0 ≤ tn ≤ tn−1 ≤ · · · t1 ≤ t. With this understanding,
we can write this expression more compactly as

UI(t, t0) = T
[
e−

i
!

R t
t0

dt′VI(t
′)
]

,

where “T” denotes the time-ordering operator and its action is understood by Eq. (12.3).

If a system is prepared in an initial state, |i〉 at time t = t0, at a subsequent
time, t, the system will be in a final state,

|i, t0, t〉 = UI(t, t0)|i〉 =
∑

n

|n〉

cn(t)
︷ ︸︸ ︷
〈n|UI(t, t0)|i〉 .

Making use of Eq. (12.3), and the resolution of identity,
∑

m |m〉〈m| = I, we
obtain

cn(t) =

c(0)
n︷︸︸︷

δni

c(1)
n︷ ︸︸ ︷

− i

!

∫ t

t0

dt′〈n|VI(t′)|i〉

c(2)
n︷ ︸︸ ︷

− 1
!2

∫ t

t0

dt′
∫ t′

t0

dt′′
∑

m

〈n|VI(t′)|m〉〈m|VI(t′′)|i〉 + · · · .

Recalling that VI = eiĤ0t/!V e−iĤ0t/!, we thus find that

c(1)
n (t) = − i

!

∫ t

t0

dt′eiωnit′Vni(t′)

c(2)
n (t) = − 1

!2

∑

m

∫ t

t0

dt′
∫ t′

t0

dt′′eiωnmt′+iωmit′′Vnm(t′)Vmi(t′′) ,
(12.4)

where Vnm(t) = 〈n|V (t)|m〉 and ωnm = (En − Em)/!, etc. In particular, the
probability of effecting a transition from state |i〉 to state |n〉 for n &= i is given
by Pi→n = |cn(t)|2 = |c(1)

n (t) + c(2)
n (t) + · · · |2.

$ Example: The kicked oscillator: Suppose a simple harmonic oscillator is
prepared in its ground state |0〉 at time t = −∞. If it is perturbed by a small time-
dependent potential V (t) = −eEx e−t2/τ2

, what is the probability of finding it in the
first excited state, |1〉, at t = +∞?

Working to the first order of perturbation theory, the probability is given by
P0→1 * |c(1)

1 |2 where c(1)
1 (t) = − i

!
∫ t

t0
dt′eiω10t′V10(t′), V10(t′) = −eE〈1|x|0〉e−t′2/τ2

and ω10 = ω. Using the ladder operator formalism, with |1〉 = a†|0〉 and x =√
!

2mω (a + a†), we have 〈1|x|0〉 =
√

!
2mω . Therefore, making use of the identity

∫∞
−∞ dt′ exp[iωt′ − t′2/τ2] =

√
πτ exp[−ω2τ2/4], we obtain the transition amplitude,

c(1)
1 (t → ∞) = ieEτ

√
π

2m!ω e−ω2τ2/4. As a result, we obtain the transition probabil-
ity, P0→1 * (eEτ)2(π/2m!ω)e−ω2τ2/2. Note that the probability is maximized for
τ ∼ 1/ω.

$ Exercise. Considering the same perturbation, calculate the corresponding
transition probability from the ground state to the second excited state. Hint: note
that this calculation demands consideration of the second order of perturbation theory.
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12.3 “Sudden” perturbation

To further explore the time-dependent perturbation theory, we turn now to
consider the action of fast or “sudden” perturbations. Here we define sudden
as a perturbation in which the switch from one time-independent Hamiltonian
Ĥ0 to another Ĥ ′

0 takes place over a time much shorter than any natural
period of the system. In this case, perturbation theory is irrelevant: if the
system is initially in an eigenstate |n〉 of Ĥ0, its time evolution following the
switch will follow that of Ĥ ′

0, i.e. one simply has to expand the initial state as
a sum over the eigenstates of Ĥ ′

0, |n〉 =
∑

n′ |n′〉〈n′|n〉. The non-trivial part
of the problem lies in establishing that the change is sudden enough. This is
achieved by estimating the actual time taken for the Hamiltonian to change,
and the periods of motion associated with the state |n〉 and with its transitions
to neighboring states.

12.3.1 Harmonic perturbations: Fermi’s Golden Rule

Let us then consider a system prepared in an initial state |i〉 and perturbed by
a periodic harmonic potential V (t) = V e−iωt which is abruptly switched on at
time t = 0. This could represent an atom perturbed by an external oscillating
electric field, such as an incident light wave. What is the probability that, at
some later time t, the system lies in state |f〉?

From Eq. (12.4), to first order in perturbation theory, we have

c(1)
f (t) = − i

!

∫ t

0
dt′〈f|V |i〉ei(ωfi−ω)t′ = − i

!〈f|V |i〉e
i(ωfi−ω)t − 1
i(ωfi − ω)

.

The probability of effecting the transition after a time t is therefore given by
Plot of sin2(αt)/α2 for t = 1.
Note that, as t → ∞, this func-
tion asymptotes to a δ-function,
πtδ(α).

Pi→f(t) * |c(1)
f (t)|2 =

1
!2

|〈f|V |i〉|2
(

sin((ωfl − ω)t/2)
(ωfl − ω)/2

)2

.

Setting α = (ωfl − ω)/2, the probability takes the form sin2(αt)/α2 with a
peak at α = 0, with maximum value t2 and width of order 1/t giving a total
weight of order t. The function has more peaks positioned at αt = (n+1/2)π.
These are bounded by the denominator at 1/α2. For large t their contribution
comes from a range of order 1/t also, and as t →∞ the function tends towards
a δ-function centred at the origin, but multiplied by t, i.e. the likelihood of
transition is proportional to time elapsed. We should therefore divide by t to
get the transition rate.

Finally, with the normalisation,
∫∞
−∞ dα( sin(αt)

α )2 = πt, we may effect the
replacement, limt→∞

1
t (

sin(αt)
α )2 = πδ(α) = 2πδ(2α) leading to the following

expression for the transition rate,

Enrico Fermi 1901-1954:
An Italian physi-
cist most noted
for his work on
the development
of the first
nuclear reactor,
and for his
contributions to
the development
of quantum
theory, nuclear and particle physics,
and statistical mechanics. Fermi was
awarded the Nobel Prize in Physics
in 1938 for his work on induced
radioactivity and is today regarded
as one of the most influential
scientists of the 20th century. He is
acknowledged as a unique physicist
who was highly accomplished in both
theory and experiment. Fermium, a
synthetic element created in 1952 is
named after him.

Ri→f(t) = lim
t→∞

Pi→f(t)
t

=
2π

!2
|〈f|V |i〉|2δ(ωfl − ω) . (12.5)

This expression is known as Fermi’s Golden Rule.2 One might worry that,
in the long time limit, we found that the probability of transition is in fact

2Curiously, although named after Fermi, most of the work leading to the Golden Rule was
undertaken in an earlier work by Dirac, (P. A. M. Dirac, The quantum theory of emission and
absorption of radiation. Proc. Roy. Soc. (London) A 114, 243265 (1927)) who formulated
an almost identical equation, including the three components of a constant, the matrix
element of the perturbation and an energy difference. It is given its name due to the fact
that, being such a useful relation, Fermi himself called it “Golden Rule No. 2” (E. Fermi,
Nuclear Physics, University of Chicago Press, 1950).
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diverging — so how can we justify the use of perturbation theory? For a
transition with ωfl &= ω, the “long time” limit is reached when t - 1/(ωfl−ω),
a value that can still be very short compared with the mean transition time,
which depends on the matrix element. In fact, Fermi’s Rule agrees extremely
well with experiment when applied to atomic systems.

$ Info. Alternative derivation of the Golden Rule: When light falls on
an atom, the full periodic potential is not suddenly imposed on an atomic time scale,
but builds up over many cycles (of the atom and of the light). If we assume that
V (t) = eεtV e−iωt, with ε very small, V is switched on very gradually in the past, and
we are looking at times much smaller than 1/ε. We can then take the initial time to
be −∞, that is,

c(1)
f (t) = − i

!

∫ t

−∞
〈f|V |i〉ei(ωfl−ω−iε)t′dt′ = −1

!
ei(ωfl−ω−iε)t

ωfl − ω − iε
〈f|V |i〉 ,

i.e. |cf(t)|2 = 1
!2

e2εt

(ωfl−ω)2+ε2 |〈f|V |i〉|2. Applied to the transition rate d
dt |c(1)

f (t)|2, the
identity limε→0

2ε
(ωfl−ω)2+ε2 → 2πδ(ωfl − ω) leads to the Golden Rule.

From the expression for the Golden rule (12.5) we see that, for transitions to
occur, and to satisfy energy conservation:

(a) the final states must exist over a continuous energy range to match ∆E =
!ω for fixed perturbation frequency ω, or

(b) the perturbation must cover a sufficiently wide spectrum of frequency so
that a discrete transition with a fixed ∆E = !ω is possible.

For two discrete states, since |Vfi|2 = |Vif |2, we have the semiclassical result
Pi→f = Pf→i – a statement of detailed balance.

12.3.2 Info: Harmonic perturbations: second-order transi-
tions

Although the first order perturbation theory is often sufficient to describe
transition probabilities, sometimes first order matrix element, 〈f|V |i〉 is iden-
tically zero due to symmetry (e.g. under parity, or through some selection rule,
etc.), but other matrix elements are non-zero. In such cases, the transition
may be accomplished by an indirect route. We can estimate the transition
probabilities by turning to the second order of perturbation theory (12.4),

c(2)
f (t) = − 1

!2

∑

m

∫ t

t0

dt′
∫ t′

t0

dt′′eiωfmt′+iωmit′′Vfm(t′)Vmi(t′′) .

If, as above, we suppose that a harmonic potential perturbation is gradu-
ally switched on, V (t) = eεt V e−iωt, with the initial time t0 → −∞, we have

c(2)
f (t) = − 1

!2

∑

m

〈f|V |m〉〈m|V |i〉
∫ t

−∞
dt′

∫ t′

−∞
dt′′ei(ωfm−ω−iε)t′ei(ωmi−ω−iε)t′′ .

The integrals are straightforward, and yield

c(2)
n = − 1

!2
ei(ωfi−2ω)t e2εt

ωfi − 2ω − 2iε

∑

m

〈f|V |m〉〈m|V |i〉
ωm − ωi − ω − iε

.

Then, following our discussion above, we obtain the transition rate:

d

dt
|c(2)

n |2 =
2π

!4

∣∣∣∣∣
∑

m

〈f|V |m〉〈m|V |i〉
ωm − ωi − ω − iε

∣∣∣∣∣

2

δ(ωfi − 2ω).
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This is a transition in which the system gains energy 2!ω from the harmonic
perturbation, i.e. two “photons” are absorbed in the transition, the first taking
the system to the intermediate energy ωm, which is short-lived and therefore
not well defined in energy – indeed there is no energy conservation requirement
for the virtual transition into this state, only between initial and final states.
Of course, if an atom in an arbitrary state is exposed to monochromatic light,
other second order processes in which two photons are emitted, or one is
absorbed and one emitted (in either order) are also possible.
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