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These notes grew out of a desire to have a nice Majorana representation of

the gamma matrices in eight Euclidean dimensions. I failed to obtain this

by guesswork, so had to approach it systematically, by induction from two

dimensions with a few tricks along the way. As such, I ended up with a nice

tour through Euclidean spinors in dimension up to eight. There are also some

brief comments about what changes in Lorentzian signature.

1 Dirac, Weyl, Majorana

One thing which confused me for quite some time as a beginning graduate student was the

distinction between ‘Dirac’, ‘Weyl’ and ‘Majorana’ spinors. I think this was because of the

slightly unusual usage of these terms in physics parlance; mathematically, it is reasonably

straightforward.

I will mostly discuss spinors in Euclidean signature i.e. spinor representations of SO(D)

rather than SO(D−1, 1), so that our gamma matrices will simply be Hermitian, and satisfy

{γm, γn} = 2δmn . (1)

In any dimension, we can define a 2b
D
2
c-dimensional unitary representation of Spin(D)

by taking generators

σmn =
1

4
[γm, γn] . (2)

These are automatically anti-Hermitian since the gamma matrices are Hermitian, so indeed

we have that etmnσmn ∈ SU(2b
D
2
c).

If the gamma matrices can be chosen to be either real or purely imaginary, then the

generators Equation (2) will be real, and the image of Spin(D) will actually lie in SO(2b
D
2
c) ⊂

SU(2b
D
2
c). If this is the case, we can impose that our spinors are real-valued; they are

then called Majorana spinors. Any more general choice of gamma matrices is related to

the Majorana representation by a similarity transformation, and the corresponding change

of basis will typically not preserve the reality of the spinors. However, we can ask what

the image of the real spinors is under such a change of basis, and this real subspace will

still be preserved by Spin(D) transformations. This boils down to the following: for a

general representation of the gamma matrices, the Majorana spinors are those which satisfy

ψ = Cψ∗, where C is constructed from the gamma matrices. We will see an explicit example

in Section 2.4.
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If D is even, we can define the chirality operator

γ̂ = i±
D
2

D∏
m=1

γm .

where the sign of the exponent can be chosen for convenience. This is Hermitian, and satisfies

γ̂2 = 1, so has eigenvalues ±1. It also anti-commutes with all the gamma matrices, {γ̂, γm} =

0, and so commutes with the spin generators σmn. The action of Spin(D) therefore preserves

the eigenspaces of γ̂, indicating that the Dirac representation splits into two irreducible

representations, the left- and right-handed Weyl spinor representations.

Weyl spinors do not exist in odd dimensions, because if we make a similar definition of

γ̂, we find that it commutes with all the gamma matrices. Since they generate the relevant

matrix algebra, this implies that γ̂ is just a multiple of the identity. So in odd dimensions,

the Dirac representation is irreducible.

2 Spinors in various dimensions

One straightforward, and instructive, way to build spinor representations in various dimen-

sions is to start with D = 2 and work inductively.

2.1 D = 2

Let us start in two dimensions, where we can ‘solve’ (1) by relatively straightforward guess-

work:

γ1 =

(
0 1

1 0

)
, γ2 =

(
1 0

0 −1

)
.

Then the single generator of Spin(2) is given by

σ12 =
1

2

(
0 −1

1 0

)
,

which is the standard generator of SO(2) multiplied by a factor of 1
2
, corresponding to the

characteristic spinor behaviour of picking up a factor of −1 under rotation by 2π. Note that

I deliberately chose real gamma matrices, showing that we can take our spinors to be real

i.e. Majorana.

Since we are in an even number of dimensions, we can define the chirality operator

γ̂ = iγ1γ2 =

(
0 −i

i 0

)
.

It is trivial to see that the eigenvectors of this operator, which are the Weyl spinors, must

be complex-valued, so Majorana-Weyl spinors do not exist for SO(2).
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Note that we could alternatively have picked the gamma matrices to be

γ1 =

(
0 1

1 0

)
, γ2 =

(
0 i

−i 0

)
,

in which case we find

σ12 =
1

2

(
−i 0

0 i

)
, γ̂ =

(
1 0

0 −1

)
.

So in this case, the two components of our spinor simply transform under Spin(2) with equal

and opposite phases, and correspond to the two one-dimensional Weyl representations.

Geometrically, the case D = 2 is special, since SO(2) ∼= U(1) has an infinite fundamental

group, π1
(
SO(2)

) ∼= Z. In all higher dimensions, π1
(
SO(D)

) ∼= Z2, and Spin(D) is the

unique covering group. When D = 2, the group Spin(2) is just isomorphic to SO(2) itself,

but geometrically corresponds to ‘unwrapping’ it once i.e. it is the double cover associated

with the subgroup 2Z ⊂ Z.

2.2 D = 3

Going from D = 2N to D = 2N+1 is always trivial; we get the extra gamma matrix for free

in the form of the chirality operator γ̂ from the dimension below. Since the Pauli matrices

generate the Clifford algebra for SO(3), we will use slightly different notation in this case,

and take our ‘gamma’ matrices to be:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.

As already discussed, there are no Weyl representations in odd dimensions. This representa-

tion of the gamma matrices does not manifestly allow Majorana spinors, but could we change

basis to make them all real or purely imaginary? The answer is obviously no, because the

above matrices (and hence their commutators) generate su(2). So Spin(3) ∼= SU(2), which

has no real representations.

To see why there are no Majorana spinors for Spin(3) without relying on prior knowledge,

one can construct the charge conjugation operator and see that it squares to minus the

identity.

We can skip the other odd dimensions, since in each case the gamma matrices are just

those of one dimension lower, along with the chirality operator from that dimension.

2.3 D = 4

Passing from D = 2N − 1 to D = 2N is only marginally more complicated than the even-

to-odd case. For D = 4, we can build our gamma matrices out blocks of the D = 3 gamma
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matrices given above, as follows:

γ1 =

(
0 iσ1

−iσ1 0

)
, γ2 =

(
0 iσ2

−iσ2 0

)
,

γ3 =

(
0 iσ3

−iσ3 0

)
, γ4 =

(
0 1

1 0

)
,

where 1 is the 2× 2 identity matrix. It is easy to see how to generalise this to D = 2N for

any N , given the gamma matrices in dimension 2N − 1. The nice thing about this method

is that it automatically gives the ‘Weyl representation’, in which γ̂ is diagonal. This is easy

to calculate explicitly (and I will give γ̂ its traditional name, γ5, in this dimension):

γ5 = −γ1γ2γ3γ4 =

(
−iσ1σ2σ3 0

0 iσ1σ2σ3

)
=

(
1 0

0 −1

)
.

So with this representation of the gamma matrices, the top two components of a Dirac spinor

correspond to a positive-chirality Weyl spinor, and the bottom two components correspond

to a negative-chirality Weyl spinor.

Once again there are no Majorana spinors in this dimension.

2.4 D = 6

By now, we can easily write down the D = 6 gamma matrices in terms of what we already

have. As a matter of notation, we will denote them by γ̃ to distinguish them from their

four-dimensional counterparts:

γ̃m =

(
0 iγm

−iγm 0

)
for m = 1, . . . , 5 ; γ̃6 =

(
0 1

1 0

)
,

where m runs over 1, . . . , 5, and 1 now represents the 4 × 4 identity. Once again, we have

naturally obtained a Weyl representation; the chirality operator is

γ̃7 = i γ̃1 . . . γ̃6 =

(
1 0

0 −1

)
.

Note that the generators σmn, projected onto either of the Weyl spinor representations, are

a set of
(
6
2

)
= 15 anti-Hermitian 4 × 4 matrices, and therefore generate SU(4). So we get

another handy isomorphism Spin(6) ∼= SU(4), and the two Weyl representations are the

fundamental and anti-fundamental representations of this group.

This is the first time since D = 2 that we also have Majorana spinors. To see why, note

that γ̃m is real for m = 1, 3, 6, and purely imaginary for m = 2, 4, 5. We can therefore define

charge conjugation by

Ψc = γ̃2γ̃4γ̃5Ψ∗ ,
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and verify that
(
Ψc
)c

= Ψ. So it is consistent to demand that Ψc = Ψ; the spinors satisfying

this are of the form:

Ψ =

(
ψR

ψL

)
=

(
ψR

−iγ2γ4γ5ψR

)
=

(
ψR

iγ1γ3ψ∗R

)
.

We can use this to change basis such that the matrices {σmn} give a manifestly real (i.e.

Majorana) representation of Spin(6). To do so, define C = iγ1γ3, which satisfies C2 = 1,

and use this to define a unitary 8× 8 matrix

M =
1

2

(
1 C

−i1 iC

)
.

If we act with this on a Majorana spinor, i.e. one satisfying Ψc = Ψ, we get

M

(
ψ

Cψ∗

)
=

(
1
2
(ψ + ψ∗)

− i
2
(ψ − ψ∗)

)
=

(
<(ψ)

=(ψ)

)
.

Now we consider the similarity transformation γ̃m 7→Mγ̃mM−1. The results are

γ̃1 7→

(
−γ3 0

0 γ3

)
, γ̃2 7→

(
0 −iγ4γ5

−iγ4γ5 0

)
, γ̃3 7→

(
γ1 0

0 −γ1

)
,

γ̃4 7→

(
0 iγ2γ5

iγ2γ5 0

)
, γ̃5 7→

(
0 −iγ2γ4

−iγ2γ4 0

)
, γ̃6 7→

(
iγ1γ3 0

0 −iγ1γ3

)
.

(3)

Using the properties of the five-dimensional gamma matrices γm, it is easy to see that in

this representation, the γ̃m are still Hermitian, and now purely imaginary. For completeness,

and for use later, we record the image of the chirality operator under this transformation:

γ̃7 7→

(
0 i1

−i1 0

)
, (4)

which is also imaginary and Hermitian.

So if we use these gamma matrices, we can take our spinors to be simply real eight-

dimensional vectors; in fact in this case the Majorana representation corresponds to the

familiar embedding of SU(4) ∼= Spin(6) in SO(8).

2.5 D = 8

We now get to the big pay-off. In eight dimensions we can construct our gamma matrices,

as usual, in terms of the seven dimensional ones. We will use the Majorana representation

of these which was given in (3) and (4), and define 16× 16 matrices

Γm =

(
0 iγ̃m

−iγ̃m 0

)
for m = 1, . . . , 7 ; Γ8 =

(
0 1

1 0

)
.
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Remembering that all the γ̃m were purely imaginary, we see that these gamma matrices

are real, and so we have obtained an 8D Majorana representation. But better still, it also

splits naturally into two Weyl representations, given by the top eight and bottom eight

components respectively. So in fact, these gamma matrices give us the two Majorana-Weyl

representations in eight dimensions, which is something which does not exist in any lower

dimension.

Note that, although the minimal spinors here have eight real components, we cannot

choose the gamma matrices themselves to be 8× 8 matrices, since they anti-commute with

the chirality operator, and therfore exchange the two Weyl representations. If one wishes to

work with just the eight-component spinors, the sort of formalism commonly used for two-

component spinors of SO(3, 1) (and explained, for example, in Wess and Bagger’s classic

supersymmetry textbook) can easily be adapted to this case, starting from the matrices

above.

3 Brief comments on Lorentzian signature

So far I have only discussed spinor representations of SO(D), but spinors were originally

discovered by Dirac in the Lorentzian case of SO(3, 1). Several things change in the indefinite

signature case; let us focus on SO(D − 1, 1) for concreteness, and because it is the most

relevant case in physics.

The main difference now is that one gamma matrix squares to the negative of the identity,

(γ0)2 = −1. It therefore cannot be Hermitian; instead, we take γ0 to be anti-Hermitian, and

the remaining gamma matrices to be Hermitian, which is often summed up by the equation1

γm† = γ0γmγ0 . (5)

The spin generators are still given by Equation (2), but now these are not all anti-Hermitian,

so the representation is not unitary. Instead, it preserves the form defined by

〈χ, ψ〉 = χ̄ψ ,

where χ̄ = χ†γ0.

We can still define Weyl spinors when D is even, but Majorana and Majorana-Weyl

spinors occur in different dimensions to the Euclidean signature case.

1In particle physics, the metric is often taken to have signature (+1,−1,−1,−1), which would have the

effect throughout of replacing Hermitian by anti-Hermitian and vice-versa, but (5) holds either way.
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