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Recall that a fixed point of a map f : X → X, defined on a set X, is an element x ∈ X such that
f(x) = x. A celebrated theorem of L.E.J. Brouwer stated that if X is a nonempty closed, convex subset of R
(e.g. X is the convex hull of a finite number of points) and f : X → X is a contnuous map, then f has a
fixed point in X. The goal of this note is to use Brouwer’s fixed-point theorem to obtain a result for set-valued
maps known as the Knaster-Kuratowski-Mazurkiewicz theorem. This theorem turns out to be quite useful in the
branch of mathematical economics known as game theory for nonconstructively showing the existence of so-called
‘equilibria’.

Suppose X ⊂ Rn is nonempty and M : X → 2X such that M(x) is a closed nonempty subset of X, for each
x ∈ X. We use the notation co to denote the convex hull of a set.

Theorem 1. (KKM) If co(F ) ⊂
⋃

x∈F M(x) for every finite subset F ⊂ X, then
⋂

x∈F M(x) 6= ∅. Moreover, by
the finite intersection property,

⋂
x∈X M(x) 6= ∅, if X is compact.

Proof. We prove the proposition by contradiction. Suppose there exists a nonempty finite subset F ⊂ X such
that

⋂
x∈F M(x) = ∅. Define a map Φ : co(F )→ Rn by

y 7→
∑

x∈F dM(x)(y)x∑
x∈F dM(x)(y)

, ∀y ∈ co(F )

where dM(x)(y) = infz∈M(x) ‖y − x‖ (the distance is the standard Euclidean norm). Note that this map is well-
defined: since y ∈ co(F ) ⊂ M(x), for some x ∈ F , and

⋂
x∈F M(x) = ∅, we have that dM(x′)(y) > 0 for some

x′ ∈ F .
If we can show that Φ is a continuous self-map of co(F ) into co(F ), then we can apply the Brouwer fixed-point

theorem to Φ to obtain a fixed point z ∈ co(F ). If we define G := {x ∈ F : z /∈M(x)}, then

z =

∑
x∈F dM(x)(z)x∑
x∈F dM(x)(z)

=

∑
x∈F

z/∈M(x)
dM(x)(z)x∑

x∈F
z/∈M(x)

dM(x)(z)
=

∑
x∈G dM(x)(z)x∑
x∈G dM(x)(z)

implies that z ∈ co(G). But then since z ∈ co(G) ⊂
⋃

x∈GM(x) by hypothesis, we have that z ∈M(x), for some
x ∈ G, which contradicts the definition of G.

Since F is finite, it is clear that Φ is a self-map. To see that Φ is continuous, it suffices to show dM(x)(·) is
continuous, then the result follows since the composition of continuous functions is again continuous. If, for ε > 0
given, ‖y − y′‖ < ε, then

dM(x)(y) ≤ ‖y − z‖ ≤ ‖y − y′‖+ ‖y′ − z‖ < ε+ ‖y′ − z‖

Taking the infimum of the RHS, we obtain that dM(x)(y
′) > dM(x)(y) − ε. By the same argument, we see that

dM(x)(y) > dM(x)(y
′)− ε, which completes the proof.

Suppose C is a nonempty, compact, and convex subset of R and f : C × C → R is a function which is
quasiconcave in x and lower semicontinuous in y. Wan use the KKM theorem to prove the Ky Fan minimax
inequality, which states that

inf
y∈C

sup
x∈C

f(x, y) ≤ sup
x∈C

f(x, x)

Proof. For each x ∈ C fixed, the level set {y ∈ C : f(x, y) ≤ f(z, z)} is closed by hypothesis that f is l.s.c. in the
second variable. Being the closed subset of C, it is also compact. For x ∈ C, we define the nonempty closed set
M(x) to be the level set

M(x) :=

{
y ∈ C : f(x, y) ≤ sup

z∈C
f(z, z)

}
Let F = {x1, · · · , xn} be a finite subset of C. I claim that co(F ) ⊂

⋃
x∈F M(x). Let λ1x1 + · · · + λnxn be an

arbitrary convex combination in co(F ). Since f is quasiconcave in the first coordinate, we have the inequalities

sup
z∈C

f(z, z) ≥ f(λ1x1 + · · ·+ λnxn, λ1x1 + · · ·+ λnxn) ≥ min
1≤j≤n

f(xj , λ1x1 + · · ·+ λnxn)
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Therefore λ1x1 + · · ·+ λnxn ∈M(xj), for some j.
By the KKM theorem,

⋂
x∈C M(x) 6= ∅, which implies that there exists y ∈ C such that

f(x, y) ≤ sup
z∈C

f(z, z), ∀x ∈ C

Taking the supremum over x ∈ C in the fiirst coordinate, we conclude that supx∈C f(x, y) ≤ supz∈C f(z, z).
Taking the infimum over y ∈ C on the LHS, we obtain the Ky Fan minimax inequality.

We can use the Ky Fan minimax inequality to prove the existence of a Nash equilibrium for nonempty
compact, convex set strategy sets Ck ⊂ Rn, for 1 ≤ k ≤ m.

Proposition 2. Let the Ck be as above C = C1 × · · · × Cm and let f1, · · · , fm : C → R be continuous functions
such that the function

xk ∈ Ck 7→ fk(y1, · · · , xk, · · · , ym)

is convex on Ck, for all yi ∈ Ci, i 6= k, fixed. Then there exists an element c = (c1, · · · , cm) ∈ C such that

fk(c) ≤ fk(c1, · · · , xk, · · · , cm), ∀xk ∈ Ck,∀1 ≤ k ≤ m

Proof. Consider the function

f(x, y) =

m∑
k=1

[fk(y)− fk(y1, · · · , xk, · · · , ym)] , ∀x, y ∈ C

Observe that f is continuous on C × C, being the composition of continuous functions. I claim that f is
quasiconcave in the first coordinate and lower semicontinuous in the second variable. Indeed, in fact, f is a
convex function of x, for y fixed, by our hypotheses on the fk. Since each fk is continuous on C, it follows that
f is continuous in y, for x fixed. We can apply the Ky Fan minimax inequality to f to obtain

inf
y∈C

sup
y∈C

f(x, y) ≤ sup
x∈C

f(x, x) = 0

Since the supremum of l.s.c. functions is again l.s.c. and l.s.c. functions attain their infimum on compact subsets,
we see that there exists c ∈ C such that

sup
x∈C

f(x, c) = inf
y∈C

sup
x∈C

f(x, y)

Observe that since fk(y)− fk(y1, · · · , xk, ym) = 0 for xk = yk, where y = (y1, · · · , ym) ∈ C is fixed, we see that

sup
x∈C

f(x, y) =

m∑
k=1

sup
x∈C

[fk(y)− f(y1, · · · , xk, · · · , ym)] =

m∑
k=1

fk(y)− inf
x∈C

f(y1, · · · , xk, · · · , ym) ≥ 0,

and each term on the RHS is nonnegative. Hence, infy∈C supx∈C f(x, y) = 0 and since

fk(c)− inf
x∈C

f(c1, · · · , xk, · · · , xm) = 0 =⇒ fk(c) ≤ f(c1, · · · , xk, · · · , cm) ∀xk ∈ Ck

and for all k ∈ {1, · · · ,m}.
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