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Recall that a fixed point of a map f : X — X, defined on a set X, is an element x € X such that
f(z) = . A celebrated theorem of L.E.J. Brouwer stated that if X is a nonempty closed, convex subset of R
(e.g. X is the convex hull of a finite number of points) and f : X — X is a contnuous map, then f has a
fixed point in X. The goal of this note is to use Brouwer’s fixed-point theorem to obtain a result for set-valued
maps known as the Knaster-Kuratowski-Mazurkiewicz theorem. This theorem turns out to be quite useful in the
branch of mathematical economics known as game theory for nonconstructively showing the existence of so-called
‘equilibria’.

Suppose X C R” is nonempty and M : X — 2% such that M(z) is a closed nonempty subset of X, for each
x € X. We use the notation co to denote the convex hull of a set.

Theorem 1. (KKM) If co(F) C J,cp M(x) for every finite subset F' C X, then (\,cp M(z) # 0. Moreover, by
the finite intersection property, (\,cx M(x) # 0, if X is compact.

Proof. We prove the proposition by contradiction. Suppose there exists a nonempty finite subset F© C X such
that (,cp M(x) = 0. Define a map ® : co(F) — R" by

ZI€F dM(a:) (y)l‘
erF dM(x) (y) ’

where dps(2)(y) = inf.care) |y — 2| (the distance is the standard Euclidean norm). Note that this map is well-
defined: since y € co(F) C M (x), for some x € F, and [\, M(x) = 0, we have that dp;(,)(y) > 0 for some
z' eF.

If we can show that ® is a continuous self-map of co(F’) into co(F), then we can apply the Brouwer fixed-point
theorem to ® to obtain a fixed point z € co(F). If we define G := {z € F : z ¢ M(x)}, then

Y =

Yy € co(F)
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implies that z € co(G). But then since z € co(G) C J,c M(x) by hypothesis, we have that z € M(x), for some
x € GG, which contradicts the definition of G.
Since F' is finite, it is clear that ® is a self-map. To see that ® is continuous, it suffices to show dps(,)(+) is
continuous, then the result follows since the composition of continuous functions is again continuous. If, for ¢ > 0
given, |ly — ¢’ < ¢, then

du@ @) <lly—zl <lly =yl + Iy =zl <e+ Iy — 2]

Taking the infimum of the RHS, we obtain that d;(,)(y’) > darz)(y) — €. By the same argument, we see that
dai(z)(y) > darz)(y') — €, which completes the proof. O

Suppose C' is a nonempty, compact, and convex subset of R and f : C x C' — R is a function which is
quasiconcave in x and lower semicontinuous in y. Wan use the KKM theorem to prove the Ky Fan minimax
inequality, which states that

inf sup f(z,y) < sup f(z, )
yeC zeC zeC

Proof. For each x € C fixed, the level set {y € C': f(z,y) < f(z,2)} is closed by hypothesis that f is l.s.c. in the
second variable. Being the closed subset of C, it is also compact. For x € C, we define the nonempty closed set
M (z) to be the level set

M(z) := {y €C: flz,y) < jgng)}

Let F = {x1,--- ,2,} be a finite subset of C. I claim that co(F) C |J,cp M(x). Let A\izy + -+ + Az, be an
arbitrary convex combination in co(F'). Since f is quasiconcave in the first coordinate, we have the inequalities

sup f(z,2) > f(M@1 + -+ XpZp, Miz1 + -+ Apy) > min f(z, Mz + -+ Ay
zeC 1<j<n



Therefore A\jz1 + - -+ + Az, € M(z;), for some j.
By the KKM theorem, (N, . M(x) # (), which implies that there exists y € C' such that

f(x,y) <sup f(z,2), Vexel
zeC

Taking the supremum over z € C in the fiirst coordinate, we conclude that sup,cc f(z,y) < sup,co f(2, 2).
Taking the infimum over y € C' on the LHS, we obtain the Ky Fan minimax inequality.

We can use the Ky Fan minimax inequality to prove the existence of a Nash equilibrium for nonempty
compact, convex set strategy sets Cr, C R™, for 1 < k < m.

Proposition 2. Let the Cy be as above C = Cy X -+- x Cp, and let f1,--- , frn : C — R be continuous functions
such that the function
i € Cy, ka(yh... S Thy e ’ym)
is convex on Cy, for all y; € Cy, i # k, fized. Then there exists an element ¢ = (c1,- -+ ,¢m) € C such that
fe(e) < fuler, - yxp, - yem), Vo € Cp,V1<k<m
Proof. Consider the function
fley) =D U@ = fulyr, - zk o ym)], Va,yel
k=1

Observe that f is continuous on C' x C, being the composition of continuous functions. I claim that f is
quasiconcave in the first coordinate and lower semicontinuous in the second variable. Indeed, in fact, f is a
convex function of z, for y fixed, by our hypotheses on the f;. Since each f is continuous on C, it follows that
f is continuous in y, for = fixed. We can apply the Ky Fan minimax inequality to f to obtain

inf supf(x y) < supf(x z)=0
yel yeC

Since the supremum of L.s.c. functions is again l.s.c. and l.s.c. functions attain their infimum on compact subsets,
we see that there exists ¢ € C' such that

sup f(x,¢) = inf sup f(z,y)
zeC veC zeC

Observe that since fi(y) — fr(y1, -+, 2k, Ym) = 0 for zp = yi, where y = (y1,- -+ ,ym) € C is fixed, we see that

Supfmy Zsup fk f(yh'"7$ka"'7ym)]22fk(y)_lnff(yla 9 ka"'aym)207

|=17€C k=1 vee
and each term on the RHS is nonnegative. Hence, inf,cc sup,cc f(2,y) = 0 and since

fk(c)fwhelgf(cla"' s Lhy " ,mm):0:>fk(c) Sf(cla"' sy Lyt ° ;Cm) vxk GCk

and for all k € {1,--- ,m}. O



