
Graphical models and directional statistics capture
protein structure

Wouter Boomsma1, John T. Kent2,
Kanti V. Mardia2, Charles C. Taylor2 & 1 Thomas Hamelryck*1

1 Bioinformatics Centre, University of Copenhagen
2 Department of Statistics, University of Leeds

1 Introduction

One of the major unsolved problems in modern day molecular biology is the protein folding
problem: given an amino acid sequence, predict the overall three-dimensional structure of the
corresponding protein. It has been known since the seminal work of Anfinsen (1973) in the
early seventies that the sequence of a protein encodes its structure, but the exact details of
the encoding still remain elusive. Since the protein folding problem is of enormous practical,
theoretical and medical importance, and in addition forms afascinating intellectual challenge,
it is often called the holy grail of bioinformatics.

The conformational space potentially accessible to a protein is vast, and a brute force enumer-
ation of all possible conformations to pinpoint the minimumenergy conformation is compu-
tationally (and in fact also physically) impossible (Levinthal, 1969). Therefore, exploring the
conformational space of a protein is typically done using a divide-and-conquer approach: plau-
sible protein conformations are generated using a conformational sampling method, and the
sampled conformations are accepted or rejected using some kind of energy function. In ad-
dition, protein structure prediction methods often make use of simplified models, where each
amino acid in the polypeptide chain is represented by one or afew points in space.

However, efficient sampling of plausible protein structures that are compatible with a given
amino acid sequence is a long standing open problem. We provide a solution to this problem
by constructing probabilistic models of protein structurethat represent the joint probability
distribution of sequence and local protein geometry. The construction of these models becomes
feasible by combining graphical models like Hidden Markov Models (HMMs) or Dynamic
Bayesian Networks (Ghahramani, 1997) with directional statistics (Mardia and Jupp, 2000),
which leads to tractable models that nonetheless representprotein structure in continuous space.
We developed two models: the first dealing with Cα geometry, the other one with full backbone
geometry.

2 FB5-HMM: A model of Cα geometry

A protein is a linear chain of amino acids. By representing each amino acid as a single point,
corresponding to the Cα atom, one obtains the so-called Cα trace of the protein. The distance
between two consecutive Cα atoms can be considered fixed (about 3.8 Å), and as a result, the
geometry of the Cα trace can be parameterised by a sequence ofN − 3 dihedral angles (called
τ ) andN − 2 angles (calledθ) (Levitt, 1976; Oldfield and Hubbard, 1994).
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By interpreting the(θ, τ) angles as polar coordinates, a Cα trace can also be fully described
by a sequence of three-dimensional unit vectors. Therefore, a convenient way to construct
a probabilistic model of the Cα trace of proteins is to use an HMM that outputs amino acid
symbols, secondary structure symbols (α-helix,β-strand and coil), and unit vectors. Probability
distributions over unit vectors are in the realm of directional statistics, which is concerned with
the statistics of angles, orientation and directions (Mardia and Jupp, 2000). We used the 5-
parameter Fisher-Bingham distribution on the unit sphere to represent the unit vectors (Kent,
1982; Kent and Hamelryck, 2005).

The resulting HMM, called FB5-HMM is shown in Fig. 1. The joint probability distribution of
amino acid sequenceA, secondary structure sequenceS and angle sequenceX is given by:

P (A, S,X) =
∑

H

P (A | H)P (S | H)P (X | H)P (H)

where the sum runs over all possible hidden node sequencesH. The parameters of the FB5
distribution are conditioned on the value of the hidden node.

Using an HMM with multiple outputs allows challenging operations like sampling a sequence
of backbone angles given an amino acid and secondary structure sequence to be computed in
an efficient way (Cawley and Pachter, 2003). The use of directional statistics makes it possible
to represent protein structure in continuous space, without the need of the usual discretisations.

FB5-HMM was implemented in our Dynamic Bayesian Network toolkit Mocapy (Hamelryck,
2004) using using a dataset of more than 1400 protein structures. Analysis of FB5-HMM shows
that the model captures protein structure extremely well, this for example in terms of angle
content and secondary structure length distributions. Fig. 2 shows five typical Cα trace samples
for the sequenceV15INGKV15. Valine (V) has a strong preference for theβ-strand conformation,
while the centralINGK sequence is a sequence that is typical for aβ-turn. These conformational
preferences are clearly reflected in the sampled structures.

Figure 1: Conditional dependency diagram of the two HMMs described in the article. The
HMM shown here corresponds to a sequence of length three. Arrows represent conditional
dependencies. Each node represents a random variable:H: discrete hidden node;A: discrete
amino acid node;X: continuous angle node. The latter node is an FB5 node for theCα model,
and a Torus node for the full backbone model.

3 Torus-HMM: A model of full backbone geometry

The Cα trace is a convenient way to represent proteins. It is however a simplified representation
of the protein backbone: in an actual protein, consecutive Cα atoms are not connected by
physical bonds, but are separated by a nitrogen and a carbon atom (the backbone is a sequence
of N, Cα and C’ atom triplets). While the Cα representation successfully captures the topology
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Figure 2: Five superimposed Cα traces sampled for the sequenceV15INGKV15. The N- and C-
terminal ends, and the approximate position of theINGK sequence stretch are indicated. Figures
2 and 3 were made using PyMol (http://pymol.sourceforge.net/).

of the overall backbone, it contains no information on the position of these additional atoms,
which is often necessary for the calculation of detailed energy functions.

Since both the bond angles, the dihedral angles associated with the peptide bonds, and the
physical bond lengths between the various atoms are approximately fixed, also this model has
two angular degrees of freedom for each amino acid. These arenormally referred to as theφ
andψ angles. Unlike the Cα model, these angles arebothdihedral angles, and thus both range
from−π to π. Pairs of such angles correspond to points on the surface of aunit torus and given
the approach described for the FB5-HMM, the only additionalrequirement to model a full-atom
backbone is a family of Gaussian-like distributions on the surface of a torus. For this purpose,
we use the cosine model, which was recently proposed by Mardia, Subramaniam and Taylor
(Mardia et al., 2006). The optimal parameters of the resulting torus-HMM were found using
the method described in the previous section.

Since the models described in this paper include information on secondary structure, they should
be able to capture their corresponding angular preferences. Figure 3 shows the structures gener-
ated by the torus-HMM if we sample (φ, ψ) angle sequences given a fixed secondary structure.
We clearly observe that the secondary structure elements weuse as input have significant in-
fluence on the produced local structure. Since the field of secondary structure prediction is
well-developped, the ability to add secondary structure asinput to our model makes it possible
to use predicted secondary structure as a guideline for whattype of angular preferences you
expect to see in different parts of your unknown protein structure - and thereby reduce the size
of the search space.

(a) (b) (c)

Figure 3: Structures sampled using the torus-HMM from a given secondary structure. (a) 15
α-helix - 5 coil - 15α-helix, (b) 15β-sheet - 5 coil - 15β-sheet, (c) 15β-sheet - 5 coil - 15
α-helix. The N-termini are on the left.
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4 Conclusions
The marriage of graphical models and directional statistics proved extremely fruitful for the
development of probabilistic models of the local structureof proteins. By using an HMM with
directional output (points on the unit sphere or on the torus) it becomes possible to construct a
joint probability distribution over protein sequence and structure. Importantly, protein structure
can be represented in a geometrically natural, continuous space. The two HMMs presented here
will be used for the proposal of plausible protein geometries in a protein structure prediction
method. The future of methods based on combining graphical models and directional statistics
in bioinformatics looks bright, as these methods are powerful, computationally tractable and
conceptually elegant.
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