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1 Introduction

One of the major unsolved problems in modern day moleculalogy is the protein folding
problem: given an amino acid sequence, predict the ovénaktdimensional structure of the
corresponding protein. It has been known since the semiogt wf Anfinsen (1973) in the
early seventies that the sequence of a protein encodegsutswst, but the exact details of
the encoding still remain elusive. Since the protein fajdomoblem is of enormous practical,
theoretical and medical importance, and in addition fornfssainating intellectual challenge,
it is often called the holy grail of bioinformatics.

The conformational space potentially accessible to a pragevast, and a brute force enumer-
ation of all possible conformations to pinpoint the minimemergy conformation is compu-
tationally (and in fact also physically) impossible (Letial, 1969). Therefore, exploring the
conformational space of a protein is typically done usingvadd-and-conquer approach: plau-
sible protein conformations are generated using a conftooma sampling method, and the
sampled conformations are accepted or rejected using sordeok energy function. In ad-
dition, protein structure prediction methods often make afsimplified models, where each
amino acid in the polypeptide chain is represented by ond@wgpoints in space.

However, efficient sampling of plausible protein structutbat are compatible with a given
amino acid sequence is a long standing open problem. Wedw@vsolution to this problem
by constructing probabilistic models of protein structtinat represent the joint probability
distribution of sequence and local protein geometry. Thestraction of these models becomes
feasible by combining graphical models like Hidden Markowdéls (HMMs) or Dynamic
Bayesian Networks (Ghahramani, 1997) with directionalistias (Mardia and Jupp, 2000),
which leads to tractable models that nonetheless reprpsatein structure in continuous space.
We developed two models: the first dealing with @eometry, the other one with full backbone
geometry.

2 FB5-HMM: A model of Ca geometry

A protein is a linear chain of amino acids. By representingheamino acid as a single point,
corresponding to the &atom, one obtains the so-calledi@ace of the protein. The distance
between two consecutivenCatoms can be considered fixed (about 3.8 A), and as a resailt, th
geometry of the @ trace can be parameterised by a sequencé ef3 dihedral angles (called

7) and N — 2 angles (called) (Levitt, 1976; Oldfield and Hubbard, 1994).
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By interpreting the(d, ) angles as polar coordinates, a @ace can also be fully described
by a sequence of three-dimensional unit vectors. Theregfreonvenient way to construct
a probabilistic model of the & trace of proteins is to use an HMM that outputs amino acid
symbols, secondary structure symbaishelix, 5-strand and coil), and unit vectors. Probability
distributions over unit vectors are in the realm of direntibstatistics, which is concerned with
the statistics of angles, orientation and directions (Maahd Jupp, 2000). We used the 5-
parameter Fisher-Bingham distribution on the unit sphereepresent the unit vectors (Kent,
1982; Kent and Hamelryck, 2005).

The resulting HMM, called FB5-HMM is shown in Fig. 1. The joprobability distribution of
amino acid sequencé, secondary structure sequert¢@nd angle sequence is given by:

P(A, S, X) ZPA|H (S| H)YP(X | H)P(H)

where the sum runs over all possible hidden node sequeiiceBhe parameters of the FB5
distribution are conditioned on the value of the hidden node

Using an HMM with multiple outputs allows challenging opvas like sampling a sequence
of backbone angles given an amino acid and secondary steustguence to be computed in
an efficient way (Cawley and Pachter, 2003). The use of dineat statistics makes it possible
to represent protein structure in continuous space, wittitmuneed of the usual discretisations.

FB5-HMM was implemented in our Dynamic Bayesian Networkkadviocapy (Hamelryck,
2004) using using a dataset of more than 1400 protein stegténalysis of FB5-HMM shows
that the model captures protein structure extremely whif tor example in terms of angle
content and secondary structure length distributions. Zghows five typical G trace samples
for the sequenc¥;s| NGKV,s. Valine (V) has a strong preference for thestrand conformation,
while the central NGK sequence is a sequence that is typical féftarn. These conformational
preferences are clearly reflected in the sampled structures

H > H H
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Figure 1: Conditional dependency diagram of the two HMMscdbsd in the article. The
HMM shown here corresponds to a sequence of length threeowAarrepresent conditional
dependencies. Each node represents a random varidbldiscrete hidden node4: discrete
amino acid nodeX': continuous angle node. The latter node is an FB5 node faCthmodel,
and a Torus node for the full backbone model.

3 TorussHMM: A mode of full backbone geometry

The Gu trace is a convenient way to represent proteins. It is honeeganplified representation

of the protein backbone: in an actual protein, consecutiweaf®ms are not connected by
physical bonds, but are separated by a nitrogen and a catboon(the backbone is a sequence
of N, Ca and C’ atom triplets). While the &representation successfully captures the topology
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Figure 2: Five superimposetQraces sampled for the sequenggl NGKV;5. The N- and C-
terminal ends, and the approximate position oflthNe&K sequence stretch are indicated. Figures
2 and 3 were made using PyMdit(t p: / / pynol . sour cef or ge. net /).

of the overall backbone, it contains no information on theipon of these additional atoms,
which is often necessary for the calculation of detailedgyéunctions.

Since both the bond angles, the dihedral angles associatedhe peptide bonds, and the
physical bond lengths between the various atoms are appadely fixed, also this model has
two angular degrees of freedom for each amino acid. Theseamally referred to as the
andy angles. Unlike the & model, these angles abethdihedral angles, and thus both range
from —r to w. Pairs of such angles correspond to points on the surfacemit torus and given
the approach described for the FB5-HMM, the only additisaglirement to model a full-atom
backbone is a family of Gaussian-like distributions on thdeace of a torus. For this purpose,
we use the cosine model, which was recently proposed by lsla8libramaniam and Taylor
(Mardiaet al., 2006). The optimal parameters of the resulting torus-HMBtevfound using
the method described in the previous section.

Since the models described in this paper include informatiosecondary structure, they should
be able to capture their corresponding angular prefereriigare 3 shows the structures gener-
ated by the torus-HMM if we sampl@ () angle sequences given a fixed secondary structure.
We clearly observe that the secondary structure elementss&eas input have significant in-
fluence on the produced local structure. Since the field obrsdary structure prediction is
well-developped, the ability to add secondary structuriepst to our model makes it possible
to use predicted secondary structure as a guideline for tyipat of angular preferences you
expect to see in different parts of your unknown proteindtrce - and thereby reduce the size
of the search space.

(b) ()

Figure 3: Structures sampled using the torus-HMM from amisecondary structure. (a) 15
a-helix - 5 coil - 15a-helix, (b) 155-sheet - 5 coil - 153-sheet, (c) 153-sheet - 5 coil - 15
a-helix. The N-termini are on the left.
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4 Conclusions

The marriage of graphical models and directional stasspimved extremely fruitful for the
development of probabilistic models of the local structofr@roteins. By using an HMM with
directional output (points on the unit sphere or on the tpitisecomes possible to construct a
joint probability distribution over protein sequence atrdisture. Importantly, protein structure
can be represented in a geometrically natural, continupaises The two HMMs presented here
will be used for the proposal of plausible protein geomstirea protein structure prediction
method. The future of methods based on combining graphiodiefs and directional statistics
in bioinformatics looks bright, as these methods are pawedomputationally tractable and
conceptually elegant.
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