
Dynamic Optimization through the use of

Automatic Runtime Specialization

by

John Whaley

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1999

c© John Whaley, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 21, 1999

Certified by. .
Martin Rinard

Assistant Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Dynamic Optimization through the use of Automatic

Runtime Specialization

by

John Whaley

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 1999, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Profile-driven optimizations and dynamic optimization through specialization have
taken optimizations to a new level. By using actual run-time data, optimizers can
generate code that is specially tuned for the task at hand. However, most existing
compilers that perform these optimizations require separate test runs to gather profile
information, and/or user annotations in the code. In this thesis, I describe run-time
optimizations that a dynamic compiler can perform automatically — without user
annotations — by utilizing real-time performance data. I describe the implementation
of the dynamic optimizations in the framework of a Java Virtual Machine and give
performance results.

Thesis Supervisor: Martin Rinard
Title: Assistant Professor

2

Acknowledgments

First and foremost, I would like to thank all of the past and present members of the

Jalapeño team at IBM T.J. Watson Research: Bowen Alpern, Dick Attanasio, John

Barton, Michael Burke, Perry Cheng, Jong-Deok Choi, Anthony Cocchi, Stephen

Fink, David Grove, Michael Hind, Susan Hummel, Derek Lieber, Vassily Litvinov,

Mark Mergen, Ton Ngo, Igor Pechtchanski, Jim Russell, Vivek Sarkar, Mauricio

Serrano, Janice Shepherd, Steve Smith, V.C. Sreedhar, and Harini Srinivasan. Each

one of them contributed in some way to this thesis. I am eternally grateful to them

for allowing me the opportunity to work on my ‘dream’ project. I could have never

done it without them.

I’d especially like to thank Vivek Sarkar, my IBM thesis advisor, for inciting my

interest in compilers and compiler research. I’d also like to thank him for the many

hours he spent helping me understand compilers and his insights on conferences and

writing compiler research papers.

I’d also like to thank Martin Rinard, my MIT thesis advisor, for all of his help

and advice, and his numerous insights into compiler research. His enthusiasm for the

subject is absolutely contagious; he even made the most dreaded part of research —

writing papers — enjoyable. He was also an excellent role model, and I only regret

that I didn’t get more of a chance to work with him.

I’d like to thank my coworkers at IBM for their permission to describe their work

in my thesis. The sections on the compiler backend (sections 3.5.1 through 3.5.6) are

based very heavily on work and writings by others at IBM. Some of the graphs and

figures in this thesis are also due to coworkers at IBM, and have been used in prior

publications [20, 37, 8, 30]. Finally, sections 4 through 6 describe ongoing work by

myself and others at IBM, and will be the subject of future publications.

I’d also like to thank Jong-Deok Choi for acting as my ‘senpai’ at IBM, for sit-

ting through all of my attempted explanations and for teaching me so much about

compilers and writing.

I’d like to thank all of my fraternity brothers at Theta Xi, Delta Chapter for being

3

so supportive as I rushed to finish this thesis and in all my other endeavours.

Finally, I’d like to thank my wonderful girlfriend, Shiho Iwanaga, for pushing

me to get started on writing my thesis. (I procrastinated anyway, but at least I’m

acknowledging her for trying...)

4

Contents

1 Introduction 11

2 Background 18

2.1 Partial evaluation . 19

2.2 Programmer-directed dynamic compilers 19

2.3 Profile-driven optimization . 20

2.4 Dynamic code specialization . 20

2.5 Automatic dynamic specialization with respect to data 20

3 Dynamic Compiler 22

3.1 Overview . 25

3.2 Intermediate Representation . 27

3.2.1 Core IR . 27

3.2.2 Auxiliary information . 30

3.3 Converting from bytecode to IR . 33

3.3.1 Overview . 35

3.3.2 Symbolic state . 35

3.3.3 Initialization . 35

3.3.4 Main loop . 36

3.3.5 Abstract interpretation loop 36

3.3.6 Splitting basic blocks . 38

3.3.7 Rectifying state at control flow joins 38

3.3.8 Greedy ordering for basic block generation 39

5

3.3.9 Control-flow and Java subroutines 41

3.4 Combining optimizations and analyses with IR generation 43

3.4.1 Limited copy propagation and dead code elimination 44

3.4.2 Unreachable code elimination 45

3.4.3 Constant propagation and folding 45

3.4.4 Strength reduction . 46

3.4.5 Calculation of last use information 46

3.4.6 Control flow optimizations . 46

3.4.7 Reaching definitions . 47

3.4.8 Null pointer check elimination 48

3.4.9 Type analysis . 50

3.4.10 Extended basic blocks . 51

3.4.11 Full SSA form . 52

3.4.12 Method inlining . 53

3.4.13 Basic block specialization and loop peeling 53

3.4.14 Object escape analysis . 54

3.4.15 Side effect analysis . 55

3.4.16 Specialization benefit prediction 56

3.4.17 Bytecode verification . 57

3.5 Later compiler stages . 58

3.5.1 Lowering of IR . 58

3.5.2 Building dependence graphs 59

3.5.3 BURS code generation . 60

3.5.4 Instruction scheduling . 61

3.5.5 Register allocation . 63

3.5.6 Outputting retargetable code 64

4 Weighted calling context graph 66

4.1 Description of data structure . 67

4.2 Building and maintenance . 68

6

4.2.1 Timer-tick based profiler . 68

4.2.2 Instrumented code . 68

4.2.3 Analyses . 69

4.2.4 Preloaded WCCG . 69

4.2.5 Invalidating the WCCG . 69

5 The controller 71

5.1 Deciding which call sites to inline . 72

5.2 Specialization with respect to method parameters 75

5.2.1 Specializing on parameter types and values 75

5.3 Specialization with respect to fields 76

5.3.1 Static fields . 76

5.3.2 Object fields . 77

5.4 Directing the online measurement system 78

5.4.1 Adding instrumentation . 78

5.4.2 Adding instrumentation to evaluate specialization opportunities 79

5.4.3 Adding basic block level/trace level profiling 79

5.4.4 Removing instrumentation . 80

5.5 Directing the garbage collector to reorder code 80

6 Performing the dynamic optimizations 81

6.1 Speculative inlining . 82

6.2 Method specialization on parameters 83

6.3 Method specialization on fields . 83

6.4 How we back out . 85

7 Results 86

7.1 Description of benchmark . 86

7.2 Effectiveness of concurrent optimizations 87

7.2.1 Null pointer checks eliminated 87

7.2.2 Type checks eliminated . 89

7

7.2.3 Reduction in size of IR . 89

7.2.4 Reduction in code generation time 89

7.2.5 Reduction in run time . 90

7.3 Effectiveness of dynamic optimizations 90

7.3.1 Effectiveness of speculative inlining 90

8 Related Work 92

8.1 BC2IR . 92

8.1.1 Converting stack based code to register based code 92

8.1.2 Java compilers . 93

8.1.3 Abstract Interpretation . 94

8.1.4 Combining analyses and negative time optimization 94

8.2 Speculative inlining . 94

8.2.1 Specialization benefit prediction 94

8.2.2 Backing out of specialization optimizations 95

9 Conclusion 96

8

List of Figures

3-1 Overview of the dynamic compilation system 24

3-2 Overview of the compilation stages in the heavyweight dynamic compiler 26

3-3 Examples of IR Instructions . 27

3-4 Operand types . 28

3-5 An example Java program. 29

3-6 HIR of method foo(). l and t are virtual registers for local variables

and temporary operands, respectively. 29

3-7 Graphical overview of the BC2IR algorithm 34

3-8 Java bytecodes and their effects on the symbolic state 37

3-9 Example of how the layout of do-while statements forces basic blocks to

be split. BC2IR does not know that the branch to loop exists until after

it has parsed the loop body and incorrectly appended its instructions

to the previous basic block. 38

3-10 Lattice for Operands . 39

3-11 Example of the meet operation on two stacks 39

3-12 Choosing the topological order 1 2 4 3 may result in having to regen-

erate blocks 2, 3 and 4. The refined topological order 1 2 3 4 allows us

to avoid having to regenerate block 4. 40

3-13 Example of limited copy propagation and dead code elimination . . . 44

3-14 Assuming that there are no other incoming edges, only the first invokevirtual

can throw a null pointer exception. The getfield and putfield can-

not possibly throw null pointer exceptions in this context. 48

3-15 Data flow equations for null pointer check elimination 49

9

3-16 Lattice for type information . 50

3-17 Example of redundant checkcast operation 51

3-18 LIR of method foo() . 58

3-19 Dependence graph of basic block in method foo() 59

3-20 Example of tree pattern matching for PowerPC 60

3-21 MIR of method foo() with virtual registers 61

3-22 Scheduling Algorithm . 63

3-23 MIR of method foo() with physical registers 64

5-1 Algorithm for building inlining plan 73

5-2 Example of inlining plan . 74

5-3 Algorithm for choosing when to specialize with respect to method pa-

rameters . 75

5-4 Algorithm for choosing when to specialize with respect to a field . . . 77

6-1 Algorithm for performing inlining based on an inlining plan from the

controller . 82

6-2 Example of profile-directed speculative inlining 84

7-1 Static number of null pointer checks eliminated by the null pointer

check elimination optimization in BC2IR 88

7-2 Static number of run time type checks eliminated by type analysis in

BC2IR . 88

7-3 Size of the generated IR (in number of instructions) with different

BC2IR optimization options . 89

7-4 Time (in ms) spent in dynamic compilation of pBOB with different

BC2IR optimization options . 90

7-5 Execution times (in ms) of pBOB compiled with different BC2IR op-

timization options . 91

7-6 Execution times of pBOB (in ms) with and without speculative inlining

enabled . 91

10

Chapter 1

Introduction

wataran to

omoi ya kakeshi

azumaji ni

ari to bakari wa

kikugawa no mizu

Had I ever thought

to be crossing these waters?

Of the Chrysanthemum River

I had merely heard men say,

“It is on the eastland road.”

— Abutsu, Izayoi nikki (Journal of the Sixteenth-Night Moon),

thirteenth century.

Traditional optimizers optimize code without regard to the actual run time char-

acteristics of the program. Many optimizations can benefit from the additional knowl-

edge available from run time data. However, most optimizations in static compilers

that benefit from run time information make simple rough estimates as to the nature

of that data. For example, restructuring of loops, elimination of induction variables,

and loop invariant code motion all assume that a loop will most likely execute a large

number of times. Loop unrolling and some register allocation algorithms make a

simplifying assumption that a loop will execute a given number of times. All of these

optimizations could benefit from actual runtime performance data.

Having run-time data available also makes new optimizations available to static

compilation. For example, using trace scheduling with profile information, a static

compiler can minimize the dynamic instruction count along critical paths [71, 72].

11

It can specialize procedures for common argument values. Using a calling context

tree with actual branch percentages, it can optimize branches for the typical case

and maximize cache locality by putting related code together [117, 87, 48]. It can

utilize the actual execution frequencies to reorder if-elseif constructs to put the most

common cases at the top, and compile switch statements into a Huffman tree to

minimize average lookup time [63]. For hash tables, it can come up with a near-

perfect hash function that is suited to the actual data that the program will be using.

Static compiler writers have realized the benefit of using actual performance data,

and profile-directed optimization has already been incorporated into some modern

commercial compilers [88, 131, 89].

However, profile-directed static compilation has its faults. Profile-directed static

compilers require a number of test runs to collect profile information to ‘prime’ the

compilation. If the profile of the program during the test runs is different than from

an actual execution, then the compiler has been ‘primed’ with the wrong data, and

so it may make choices that can actually reduce performance on an actual execution.

Finding ‘typical’ inputs for a program is very difficult for some applications. If the

‘priming’ misses a few common cases, those cases may have sufficiently poor perfor-

mance as to negate the gains from the other cases. Even if ‘priming’ manages to cover

all typical cases, the test runs are often on low-optimized and heavily instrumented

code. The profile from this code may be drastically different from the profile of the

final, optimized application.

The correctness of profile data aside, there is still a fundamental problem with

profile-directed static compilation. Most programs go through a number of stages,

or modes, where they do very different things. For example, even simple programs

go through a ‘loading/initialization stage’ followed by some sort of ‘computation

stage.’ Some interactive applications may have hundreds of different modes, each

with different characteristics. Ideally, the compiler should be able to have different

versions of the code, each suited to a particular stage. Today’s static compilers

that rely on post-mortem profile information cannot distinguish between stages —

everything, from initialization to shutdown, is lumped together, indistinguishable.

12

Even if the profile information were time-sensitive, the static compiler would need

some sort of runtime support to handle the ‘switching’ between modes.

Static compilers also have a problem adapting to different architectures. Due

to the rapid advancement of hardware technology, new microprocessors are released

very quickly. A program that is optimized assuming a particular processor may have

less-than-ideal performance on the other processors in its line. Even when running

on a system that has the same processor, the performance may be wildly different.

External factors such as cache size, cache flush policies, motherboard type, bus speed,

amount of free memory, and hard disk speed can all affect performance and can cause

the optimizer to make different decisions that do not match a system with different

specifications.

Performing the profile-directed optimizations at run time can solve many of these

problems. The information available at actual run time will most likely be a more

accurate model of the current execution. If the profile-directed optimizations are run

continuously, they can ‘track’ the changing modes of the program. The optimizer can

also be tuned to the specific system that it is running on. Performing optimizations at

run-time also opens the door to new optimizations that are intractable or impossible

to perform statically. For example, using partial evaluation or other run-time code

generation mechanisms, the run time optimizer can create specialized code that is

generated with the knowledge that certain invariants are true. Code compiled with

these invariants can be many times more efficient than ‘general’ code. These invariants

are not known at compile time, only at run time, so a static compiler cannot generate

such code.

However, performing profile-directed optimizations at run time has its own share of

problems. First and foremost is the additional runtime overhead due to the collection

and management of the profile data, and the extra time and resources spent analyzing

that data and performing the optimizations, as well as the extra overhead for the

runtime to support such features. Because the analysis and optimization occurs

at run time rather than compile time, the time spent performing them must be

factored into the equation — if the amount of time spent performing the optimizations

13

is greater than the amount of time gained by performing the optimizations, then

the strategy was a loser — it would have been better to not have attempted the

runtime optimizations at all. This makes it very difficult to justify using expensive

optimizations. And it is very difficult to anticipate how much benefit an optimization

will bring without actually going ahead and performing the optimization.

There is another reason why performing profile-directed optimizations at run time

can have worse results than performing them at compile time. At run time, the

optimizations do not know what will happen in the future. They can only make

decisions based on events that have already occurred. This is fine if the past events

are representative of the future, but this might not always be the case. A program

whose profile is very random would do very poorly with a run time optimizer —

the optimizer would be operating with the wrong information. A profile-directed

static optimizer that operates on post-mortem profile data has the entire profile at

its fingertips, and therefore can optimize based on the ‘future’.

There are currently two types of run time optimizers being experimented with.

The first type is one which utilizes code profile information — information about

what code the program executes. This ‘code profile-directed optimization’ strategy

is sometimes used in dynamic systems, where the code for the program may not

be available a priori and therefore static analysis is not possible. The optimizer uses

information about ‘hot spots’ in the program to decide where to concentrate its efforts.

The second type is one which utilizes information about run time data values. This

‘data-directed optimization’ strategy is used in some dynamic compilation systems.

The dynamic compiler can generate code which is specialized to a particular set of

data values. As such, it can sometimes generate much faster code, code which, if

executed enough times, can more than make up for the time spent in the dynamic

compiler.

This thesis describes a much more aggressive approach than any previously at-

tempted dynamic optimization technique. The current code profile-directed opti-

mization strategies are very rudimentary — they simply use the profile information

to decide what to spend time compiling and optimizing. We propose a much more

14

sophisticated use of the information, to optimize ‘hot’ traces and reorder code blocks

in memory. The current data-directed optimizations are all programmer-specified

through annotations or special constructs. This is an unsatisfactory solution. Pro-

grammers can only make rough guesses as to when and where to apply these op-

timizations, and presumably an optimizer could potentially identify some locations

that a programmer might overlook or which might be too cumbersome for him to

specify. We propose a scheme to automatically identify and exploit opportunities for

data-directed optimizations.

Simplifying assumptions Successful dynamic compilation is a difficult problem

in general. Full coverage of all of the issues involved in dynamic compilation is,

unfortunately, beyond the scope of a masters thesis. Therefore, in this thesis we

made a few simplifying assumptions so that we could focus on a few key issues.

The first assumption that we made was that run time information can be collected

with zero overhead. This thesis is not focused on the optimization of the collection of

run time information (although, in some of our presented algorithms and techniques,

the efficiency of the information gathering is taken into consideration.) We believe this

is a reasonable assumption to make for a few reasons. First, many techniques exist for

minimizing the cost of gathering profiling information; even very fine-grained exact

basic block level profile information can be gathered with as low as 10% overhead [19,

13, 14]. Second, overhead can be brought down significantly if additional hardware

profiling support were added. If/when dynamic compilation systems become more

mainstream, we may begin to see more hardware profiling support.

The second assumption that we made was that there is no a priori static program

analysis allowed. Allowing offline static program analysis opens up a plethora of

new issues, including what analysis and optimization should be performed at offline

compile time versus run time. This assumption was mostly made out of necessity —

our implementation is in the context of a Java Virtual Machine that supports the dy-

namic loading of as-of-yet unseen classes, and therefore we could not assume any static

analysis information would be available. This fact necessitates a wholely dynamic ap-

15

proach, and allows us to focus on dynamic analysis, compilation, and optimization

techniques, rather than get caught up in evaluating static analysis techniques.

The third assumption is that our target system is one which is designed for long-

running applications, such as server applications. This allows us to focus on the

heretofore unexplored area of performing more heavyweight dynamic optimizations,

without being overly concerned about the dynamic compilation overhead.

Organization of our approach Because we are investigating more heavyweight

dynamic compilation strategies in this thesis, we use compilation stages that are sim-

ilar to those found in a static compiler. Namely, we first convert the bytecode into

an intermediate representation (IR), perform optimizations on that IR, and use a

backend to generate machine code. However, because this is still a dynamic compiler,

compilation efficiency is still a concern. Therefore, much of the functionality of the

compilation process is compressed into the single pass conversion process described

in chapter 3, section 3.3, called BC2IR. Because it is the largest step and because

it incorporates most of the interesting dynamic compilation methods, this thesis fo-

cuses on BC2IR, and only gives a cursory overview of the remainder of the dynamic

compilation process. More information about the rest of the dynamic compiler and

of the rest of the system can be found in other publications [20, 37, 8, 30].

Why Java? We implemented the dynamic compiler in a Java Virtual Machine for

a number of reasons:

• Java is popular. The popularity of Java in both academia and industry makes

it easy to find interesting, typical, and diverse applications. Different aspects

of the language are fairly well understood, which means that we can avoid

explaining idiosyncrasies and concentrate on the relevant issues. It also makes

the work more relevant to a wider audience.

• Java is portable. Because Java is portable, the work that we are doing is not

tied to a particular machine architecture, which, again, makes the work more

relevant to a wider audience.

16

• Java is easy. This allowed us to implement things quickly and spend time on

the important issues, rather than wasting time on implementation.

• Java is an inherently dynamic language. Because the code contained in dy-

namically loaded class files is in a machine-independent bytecode format that

cannot be efficiently executed directly on typical microprocessors, some form

of run time code generation is necessary. The fact that the code may not be

available a priori for static analysis reinforces the need for effective dynamic

compilation techniques.

Organization of this document This thesis is organized as follows. Chapter 2

provides some background to dynamic compilation by outlining the existing work in

the area. Chapter 3 describes the dynamic compiler infrastructure used in the sys-

tem. Chapter 4 describes the weighted calling context tree data structure. Chapter 5

describes the criteria by which we choose when, what, and how to invoke the optimiz-

ing compiler. Chapter 6 describes how the dynamic optimizations are performed.1

Chapter 7 gives some preliminary experimental results. Chapter 8 outlines related

work, and chapter 9 concludes.

1Chapters 4 through 6 are still ongoing work and will be covered in more detail in future
publications.

17

Chapter 2

Background

kogite yuku

fune nite mireba

ashihiki no

yama sae yuku o

matsu wa shirazu ya

Gazing from the boat

as it goes rowing along,

we see that the hills,

the very hills, are moving.

Don’t the pine trees know it?

— Ki no Tsurayuki, Tosa nikki (A Tosa Journal), tenth century.

The first serious look at run-time code generation (RTCG) for performance im-

provement was by Calton Pu and Henry Massalin in the Synthesis kernel [124, 125,

122, 106, 107, 105, 123, 104, 108]. The Synthesis kernel used RTCG to optimize

frequently used kernel routines — queues, buffers, context switchers, interrupt han-

dlers, and system call dispatchers — for specific situations. It only used a few simple

optimizations — constant folding/propagation and procedure inlining. The RTCG

was limited in that it was mostly ‘fill-in-the-blanks’ code generation, and it was

programmer-directed, not automatic. They kept the RTCG lightweight and lim-

ited to a few circumstances. RTCG was manually applied to a few specific routines,

and there was no pattern or framework for using RTCG. Despite the simplicity of his

optimizations, they were able to get impressive performance improvements for some

applications. Their results encouraged others to look more deeply into the area of

RTCG.

18

2.1 Partial evaluation

Pu and Massalin drew heavily from the work on partial evaluation. Partial evaluation

is a program transformation technique for specializing programs with respect to parts

of their input. Partial evaluation is traditionally a source-to-source transformation.

It was first developed in the sixties for use in LISP [103], and later spread to or

was independently developed in the areas of artificial intelligence applications [15],

compiling and compiler generation [15, 45, 44, 52, 76, 90, 92, 94], string and pattern

matching [42, 57, 126, 80], computer graphics [10, 110], numerical computation [16],

circuit simulation [11], and hard real-time systems [115]. There was a major step

forward in partial evaluation in the eighties with the MIX partial evaluator [91]. The

MIX partial evaluator was different than earlier efforts because it was self-applicable

— one could apply partial evaluation to the partial evaluator itself, specializing the

partial evaluator to the input of the partial evaluator. In order to make partial

evaluators self-applicable, they had to be drastically simplified, and as a result new

paradigms of partial evaluation were developed [46].

2.2 Programmer-directed dynamic compilers

More recently, there has been great interest in programmer-directed dynamic code

generation systems. Tempo is a partial evaluator that can perform both compile-

time and run-time specialization based on programmer hints and simple program

analysis [43, 114]. ’C is an extension of ANSI C that allows the programmer to

compose arbitrary fragments of dynamically generated code [118]. ’C includes two

dynamic compilers — the first is DCG [66], which is relatively heavyweight, and the

second is VCODE [65], which is much faster and more lightweight. DyC is a dynamic-

compilation system that uses programmer annotations to specify the variables and

code on which dynamic compilation should take place [74]. It uses a binding-time

analysis to compute the set of run-time constants at each point in the dynamic region.

19

2.3 Profile-driven optimization

Profile-driven optimization is a relatively new field. Some static compilers utilize

profile information from prior ‘test runs’ to perform better optimizations, for example,

trace scheduling [79], improving cache locality [87, 117, 48, 128, 127], or traditional

optimizations [35, 34, 36, 23]. Profile driven optimizations have shown up in recent

commercial products [89, 88, 131]. There has been work on using profile information

in dynamic compilers for Scheme [18, 17, 19], Self [61], Cecil [26] and ML [96, 101].

More recently, the upcoming HotSpot dynamic compiler for Java claims to perform

profile-driven optimizations [84].

2.4 Dynamic code specialization

The SELF Compiler [28, 133, 27] was the first system to incorporate automatic code

specialization. SELF is a completely dynamically-typed language, and therefore ad-

vanced specialization techniques are required into order to get adequate performance.

The largest overhead in SELF came from dynamic dispatch, and therefore the work

was focused on converting dynamic calls to static calls [31, 32], or using type feedback

with polymorphic inline caches to reduce the overhead [82]. There was also some later

derivative work in the same area [59, 73, 62, 75].

More recently, Burger and Dybvig describe a profile-driven dynamic recompilation

system for Scheme [19]. They describe using profile information to reorder basic blocks

to improve branch prediction and instruction cache locality.

2.5 Automatic dynamic specialization with respect

to data

Automatic dynamic specialization on data values is an as-of-yet-unexplored area of

computer science. Many dynamic compilation projects state that automatic dynamic

optimization is their eventual goal, but that it is beyond the current state of the

20

art. The only results available in this area are very preliminary. Audrey and Wolfe

describe an analysis to automatically identify so-called ‘glacial variables’, which are

variables that only change infrequently and are therefore good candidates for special-

ization [12]. However, their analysis is static, not dynamic, and it doesn’t take into

account dynamic execution frequency or profile information. Execution frequency is

estimated simply by loop nesting level. A proposal for the Dynamo project contains

a paragraph on their plans to use profile information to help identify candidate vari-

ables for specialization [97]. There is no mention of how they plan to use the profile

information, however.

21

Chapter 3

Dynamic Compiler

yama toyomu

ono no hibiki o

tazunureba

iwai no tsue no

oto ni zo arikeru

The echo of axes

reverberating in the hills

proves to be none other

than the sound of men felling trees

to make the festive wands.

— Sei Shōnagon, Makura no sōshi (Pillow Book), tenth century.

A dynamic compiler has very different design criteria as compared to a static

compiler. Because compilation occurs at run time in a dynamic compiler, it is imper-

ative that resource usage is minimized. A dynamic compiler should also be able to

effectively utilize the extra information about how the program is actually running

— for example, path profile information, run time data values, etc. Finally, if the

system is to support loading code dynamically, the compiler should be able to deal

with incomplete knowledge of the program.

Traditional compiler wisdom states that a compiler writer should split the func-

tionality of the compiler into as many separate, small, simple, independent pieces

as possible. For example, many optimization passes, as traditionally implemented,

output suboptimal code (such as dead code or code that uses extra registers) with

the expectation that a later compiler pass will “clean up” its output [7]. Also, many

optimization passes simply invalidate auxiliary information and recompute it, rather

22

than incrementally update the information. This simplifies the overall design of sys-

tem and of each individual piece — compiler writers can concentrate on making each

compiler pass correct, and not have to worry about complicated interactions between

the passes.

However, with this modularity comes inefficiency. Because each piece of a tra-

ditional compiler must be able to operate independently, it is typically less efficient

than if multiple pieces were combined. For example, calculating reaching definitions

and performing sparse conditional constant propagation are traditionally separate

compilation passes. However, they can easily be combined, saving the overhead of

set up and traversing the IR multiple times. Furthermore, it is often possible to do

a better job in optimizing if two optimization passes are combined compared to as if

they were invoked separately, regardless of their order or the number of times that

they are invoked [41].

In a dynamic compiler, however, efficiency of the utmost concern. For this rea-

son, many dynamic compilers forego the traditional idea of compilation stages or an

intermediate representation altogether [98, 96, 99, 65]. They use simple table driven

compilation or “fill in the blanks” compilation. However, code quality is sacrificed,

of course, and therefore using an intermediate representation and a staged compiler,

despite the longer compile times, might pay off in the long run for some applications.

For this reason, our system employs two distinct compilers. The first is a quick

“baseline” compiler, whose job is to generate decent code quickly. The online mea-

surements system keeps track of the particularly hot spots of the program by in-

strumenting the baseline compiled code or through sampling. The controller then

selectively invokes the “heavyweight” dynamic compiler on selected pieces of code

with a certain plan. The controller continues to monitor the performance of the sys-

tem and selectively (re-)invokes the “heavyweight” dynamic compiler with different

plans as the information becomes more accurate or as the program profile changes.

This thesis focuses almost entirely on the “heavyweight” dynamic compiler and

the controller mechanism, because of the more interesting dynamic optimization op-

portunities that it can exploit and the fact that performing heavy optimization at

23

Baseline / Quick
Compiler

Executable code

Unoptimized
Code

Instrumented

Online
Measurements

Controller

Optimizing
CompilerAdaptive

Optimization
SystemContext-sensitive

Profile Information
Optimization
Plan

Code

Bytecode

Optimized
Code

Translation
Bytecode

Figure 3-1: Overview of the dynamic compilation system

24

run time has not yet been explored. The context of the dynamic compiler also played

a part in the decision; a Java Virtual Machine dynamically loads code that is often

unoptimized and not in a form that is amenable to efficient execution, therefore a

more substantial dynamic compiler is required for good performance.

But although we have made the design decision to use a more heavyweight dynamic

compilation strategy, luxuries such as independent compiler passes are very difficult

to justify. For this reason, many of the compilation passes that are typically separate

in traditional compilers are combined into a single pass in our dynamic compiler.

Because the amount of resources consumed by a compiler pass is almost always at least

linear with the size of the code that is being compiled, enabling some optimizations

that reduce code size, such as dead code elimination and null pointer check elimination

actually reduces the total compilation time. Combining many optimizations into a

single pass also has the benefit of exposing more optimization opportunities, without

the need to iterate over optimization passes.

Because the compiler was designed from the beginning to be dynamic, many of

the compilation stages, especially the conversion process, make use of any available

dynamic information. They also support more dynamic features such as specialization

with respect to data values (section 3.4.13).

The fact that the dynamic compiler is operating within the constraints of a Java

Virtual Machine that can dynamically load classes means that the compiler has to

be able to deal with incomplete knowledge of the program. Because this was known

to be a design criteria from the beginning, the system was designed with support for

incomplete information, and makes conservative assumptions whenever necessary.

3.1 Overview

Figure 3-2 shows an overview of the stages of the dynamic compiler. Java source

code is compiled with an offline static compiler into bytecode, which is distributed

in a machine-independent class file format. The dynamic compiler starts by convert-

ing the bytecode into an easy to manipulate intermediate representation (IR). Many

25

Bytecode to HIR

HIR

Optimized HIR

Optimization of HIR

Front-end

Optimization of LIR

HIR to LIR

LIR

LIR to MIR

Optimization of MIR

MIR

Optimized LIR

Final Assembly

Optimized MIR

Back-end

Executable code

Machine Description
and Parameters

Profile Information

BURS grammar

Hardware
Parameters

HIR = High-Level Intermediate Representation

LIR = Low-Level Intermediate Representation

MIR = Machine-Specific Intermediate Representation

BURS = Bottom Up Rewrite System

Figure 3-2: Overview of the compilation stages in the heavyweight dynamic compiler

26

Operator Operand(s) Meaning
int add t1int, t2int, t3int t1 := t2 + t3
long return 42long return from method with (constant)

value 42
ifeq t5cond, 〈target〉 if t5 is equal to zero, branch to

〈target〉
call t8ref , toString, t7ref call method toString with an argu-

ment given in t7, and put the result
in t8

bounds check t9ref , 10int do a array bounds check on the ar-
ray t9 and the (constant) index 10.

Figure 3-3: Examples of IR Instructions

optimizations and analyses happen as part of this conversion process. Optimizations

are performed on the IR, and target code is generated. This thesis focuses on the

conversion step (called BC2IR) because it is the most unique piece; other steps are

only briefly outlined in section 3.5. Section 3.2 describes the intermediate representa-

tion that our compiler uses. Section 3.3 describes the basics of the BC2IR step, while

section 3.4 describes the optimizations and analyses that can be performed as a part

of BC2IR. Section 3.5 briefly outlines the compiler steps after BC2IR.

3.2 Intermediate Representation

We first describe the format of our intermediate representation (IR), and give an

example. Section 3.2.1 describes the essential pieces of the IR, while section 3.2.2

describes some of the auxiliary information that the IR can contain.

3.2.1 Core IR

For reasons of simplicity, efficiency, and versatility, the IR was designed to be modular.

The core IR is simply a set of Instructions. An Instruction consists of an Operator

and some number of Operands. See Figure 3-3.

Instructions can be organized in a number of different data structures, depending

on what manipulations are expected to occur. They are commonly organized into a

27

Operand type Description
Register symbolic register
IntConst integer constant
LongConst long constant
FloatConst float constant
DoubleConst double constant
StringConst string constant
NullConst null constant
CaughtException location of exception in an exception handler
Method target of a method call
FieldAccess an object or static field access
Location a location in memory, used to track memory aliasing
Type represents a type in a type check instruction
Branch target of a branch
BasicBlock used in a LABEL instruction to point to the basic block
Condition condition code for a branch

Figure 3-4: Operand types

doubly-linked list for ease of manipulation. If code motion transformations are not

expected to occur, they can also be organized into an array-like structure. If a control

flow graph is available, Instructions can also be organized into their respective basic

blocks. Most optimizations are not concerned with the format of the instruction

stream because all access is through interface calls.

Operators are divided into ranges. Very roughly, there is a high level range for

the HIR, which has operators similar to Java bytecode, a low level range for the

LIR, which replaces higher-level constructs by lower level operations, and a machine-

specific range for the MIR, which corresponds to the instruction set architecture of

the target machine. The output of the BC2IR step consists only of HIR operators,

viz., most of the non-stack-manipulation operators of Java bytecode, plus a few no-

table additions: there are move operators of different types to move values between

symbolic registers, and there are separate operators to check for run time exception

conditions (for example, null check, bounds check, etc.) Run time exception checks

are defined as explicit check instructions so that they can be easily moved or elimi-

nated. Keeping exception checks as separate instructions also makes it easier for code

motion optimizations to obey exception semantics.

28

class t1 {
static float foo(A a, B b, float c1, float c3)
{

float c2 = c1/c3;
return(c1*a.f1 + c2*a.f2 + c3*b.f1);

}
}

Figure 3-5: An example Java program.

The Operand types are described in Figure 3-4. The most common type of

Operand is the Register, which represents a symbolic register. There are also

Operands to represent constants of different types, branch targets, method signa-

tures, types, etc.

0 LABEL0 B0@0
2 float_div l4(float) = l2(float), l3(float)
7 null_check l0(A, NonNull)
7 getfield_unresolved t5(float) = l0(A), < A.f1>
10 float_mul t6(float) = l2(float), t5(float)
14 getfield_unresolved t7(float) = l0(A, NonNull), < A.f2>
17 float_mul t8(float) = l4(float), t7(float)
18 float_add t9(float) = t6(float), t8(float)
21 null_check l1(B, NonNull)
21 getfield t10(float) = l1(B), < B.f1>
24 float_mul t11(float) = l3(float), t10(float)
25 float_add t12(float) = t9(float), t11(float)
26 float_return t12(float)

END_BBLOCK B0@0

Figure 3-6: HIR of method foo(). l and t are virtual registers for local variables and
temporary operands, respectively.

Figure 3-5 shows an example Java source program of class t1. Figure 3-6 shows

the HIR for method foo of that class. The number on the first column of each

HIR instruction is the index of the bytecode from which the instruction is gener-

ated. Before loading class t1, class B was loaded, but class A was not. As a

result, the HIR instructions for accessing fields of class A, bytecode indices 7 and

14, are getfield unresolved, while the HIR instruction accessing a field of class B,

bytecode index 21, is a regular getfield instruction. Also, notice that BC2IR’s on-

29

the-fly optimizations eliminated a redundant null check instruction for the second

getfield unresolved instruction.

3.2.2 Auxiliary information

The IR includes space for the caching of optional auxiliary information, such as a

control flow graph, reaching definition sets, or a data dependency graph. Auxiliary

information is computed on demand — optimizations that require auxiliary infor-

mation compute it if it is not available and cache the result. When transformations

are performed that potentially invalidate a piece of auxiliary information, the cached

copy is marked as invalid. This design makes it possible to easily add, remove, or

reorder compilation stages to suit the particular situation. It also simplifies imple-

mentation because optimizations are not required to maintain auxiliary information

through transformations.

Some of the auxiliary information is kept in side tables, whereas some is stored

in the IR itself. Information that is not used often or that is easily invalidated, such

as dominator information, is kept in side tables. This has the benefit of keeping

the IR small. However, a few pieces of auxiliary information are stored in the IR

itself. This includes information such as the control flow graph, because it is small

and convenient, program transformations that make local code transformations can

update the control flow graph with little hassle.

Control flow graph

The control flow graph is represented as a set of basic blocks, where each basic block

has a start instruction, an end instruction, a set of in edges, a set of out edges,

and a set of exception edges. The start instruction is always a label instruction,

and the end instruction is always a bbend instruction. Exception edges point to any

exception handlers in the current method that protect the given basic block. To

facilitate backward-pass analyses, there is an edge from every block that ends with

an explicit return (or an uncaught throw) instruction to a special exit basic block.

30

Control flow may only enter at the start of the block, but can potentially leave in the

middle of the block through a trap or a method call. (In other words, method calls

and potential trap sites do not end basic blocks. This is similar to superblocks [109]

and traces [71].) Basic blocks are linked together using normal edges and exception

edges. See [37] for a more complete description of the control flow graph structure

and its benefits.

The decision to use extended basic blocks was based on the fact that because a

large number of instructions can potentially throw exceptions, forcing basic blocks to

end at all such instructions would greatly increase the number of control flow edges

and greatly reduce the size of basic blocks. Many optimizations are more effective

and/or have shorter running times when basic blocks are larger and there are fewer

control flow edges. Forward pass analyses can support the exception edges with very

few modifications. (Backward analyses can also support exception edges with a little

more work [37].)

Dominators

Dominators are represented in a separate tree structure, where basic blocks are nodes

in the tree and a node dominates all nodes in its subtree. The dominator information

is used by some optimizations, mostly code motion transformations.

Last use information

Register operands contain an is last use bit, which, if the last use information is valid,

corresponds to whether or not it is the last use of the given register. This is useful for

register allocation and can make some optimizations more efficient, because they can

free the resources allocated to keeping track of a register when its last use is reached.

Reaching definitions

Register operands that are uses contain the set of defs that reach them. (If the

register is in SSA form, it is a singleton set.) This information is used by a variety of

optimizations.

31

Upwardly-exposed uses, downwardly-exposed defs

Basic blocks have a set of upwardly-exposed uses, which are the register operands in

the basic block with reaching defs outside of the basic block. They also have a set of

downwardly-exposed defs, which are defs that are exposed to other blocks. These are

used when computing reaching definitions.

Branch/Trace frequency information

There are side tables that contain frequency information, collected by the online

measurement system, about the number of times that a trace or branch is taken.

This information is used by the controller and trace scheduler to make decisions

about “hot” traces, and by the code generator to organize code to improve branch

prediction hit rates and instruction cache hit rates, and by a few other optimizations.

The information is not required — if it is not available, the optimizations use static

prediction routines.

Type/Value frequencies

There are tables that contain type frequencies for dynamically dispatched method

calls and frequencies for method parameter values. These are also collected by the

online measurement system. They are used by the controller and some of the dynamic

optimizations.

SSA Form

SSA form can be very useful; it can simplify many analyses [111]. However, main-

taining a full SSA form is not always desirable in a dynamic compiler — when we are

not performing optimizations and/or analyses that benefit from SSA, the time spent

converting to and maintaining SSA form is wasted. Also, using SSA form greatly

increases the number of registers used, and therefore usually necessitates a register

allocation step, whereas the non-SSA version may simply fit into registers without

having to perform allocation. Furthermore, we wanted to use the same IR form for

32

post-register allocation, for uniformity and to facilitate reordering of optimizations.

Therefore, the IR does not force a particular convention with regard to SSA.

The IR typically uses a hybrid approach, where some registers are in SSA form

(compiler generated temporaries) while others are not (local variables.) Each indi-

vidual register is marked as SSA or non-SSA. Furthermore, all non-SSA registers are

numbered consecutively, so that analyses can efficiently build tables based on the

register numbers.

Method-wide information

Some information is stored at a per-method level. Information used for inter-procedural

analysis — for example, a method’s side effects or the results of escape analysis —

falls into this category. This gives us an easy way to perform simple inter-procedural

analysis. Assumptions that were made during code generation are also stored at a

per-method level, to allow multiple specialized copies of a single method to exist and

be distinguishable, and to aid in the invalidation process when new classes are loaded,

etc.

3.3 Converting from bytecode to IR

The first order of business in the dynamic compiler is to convert the input (Java byte-

code) into a form that is more amenable to optimization, namely, the IR described in

the previous section. There are many ways of converting from stack-based Java byte-

code to register-based IR (see sections 8.1.1 and 8.1.2). However, all of these methods

are time-consuming, mostly due to the fact that they are multi-pass. Through ex-

perimentation, we discovered that parsing the bytecodes takes a significant amount

of time. (See Chapter 7.) Because the conversion process must occur at run time, its

efficiency is of the utmost concern. Therefore, to minimize the parse time, we decided

to make BC2IR operate in a single pass over the bytecodes.

33

Initialize state

Main loop:

Abstract
interpretation Loop: Parse bytecode

Update state

Rectify state with

Successor basic blocks

Main Initialization

Choose basic block from set

Figure 3-7: Graphical overview of the BC2IR algorithm

34

3.3.1 Overview

BC2IR is based on an abstract interpretation engine. Bytecodes are abstractly interpreted,1

performing actions on a symbolic state. As a side effect of the abstract interpretation,

BC2IR generates an instruction stream and control flow information. See Figure 3-7

for an graphical overview of the algorithm. Section 3.3.2 covers the symbolic state,

Sections 3.3.3 through 3.3.5 give an overview of each of the steps of the algorithm,

and sections 3.3.6 through 3.3.9 go into more detail on a few aspects of the algorithm.

3.3.2 Symbolic state

The only symbolic state that must be maintained in BC2IR is the state of the symbolic

stack. The symbolic stack state is stored as an array of Operands, with an index

variable indicating the top of the stack. The maximum stack depth for each method

is available from the Java class file, so the array can be pre-allocated to the correct

size and never needs to be grown.

Extensions to BC2IR can require maintaining other symbolic state information.

Performing bytecode verification and effective type analysis requires keeping track

of the types of the local variables. Performing constant propagation through local

variables, effective method inlining, and basic block specialization requires keeping

track of not only the types, but also the values of the local variables. When performing

these optimizations, we maintain an array of Operands indexed by local variable

number. Various other extensions to the symbolic state are described in section 3.4.

3.3.3 Initialization

BC2IR begins by initializing a basic block set. This set is implemented as a balanced

tree of basic blocks, indexed by starting bytecode index. The set contains all basic

blocks discovered thus far. As the abstract interpretation continues and more basic

blocks are discovered, they are added to the basic block set. Basic blocks also contain

1Some authors [111] prefer to use the term symbolic execution, but I use abstract interpretation
because it emphasizes the fact that there is an interpretation loop.

35

an initial state, which corresponds to the symbolic state of the machine at the start

of the basic block. If some of the initial state is not known, it can be marked as

unknown.

Before parsing any bytecodes, only a few basic blocks are known. There is a basic

block beginning at bytecode 0, with an empty initial stack. The bytecode indices of

exception handlers also start basic blocks; for these, the initial stack state is known

to contain a single exception operand. The start and end indices of try ranges also

denote basic block boundaries, but for these, nothing is known about the initial state.

3.3.4 Main loop

After initialization, BC2IR enters the main loop. The main loop searches in the

basic block set for an as-of-yet ungenerated basic block with a fully known initial

state. (For more information on the order that the basic block set is searched in, see

section 3.3.8, below.) If no such block is found, generation is complete. If it finds

one, it initializes the state to the initial state stored in the basic block, and enters the

abstract interpretation loop.

3.3.5 Abstract interpretation loop

The abstract interpretation loop is the core piece of BC2IR. Each iteration of the

abstract interpretation loop symbolically executes the current bytecode and updates

the current state accordingly. The loop terminates when the current bytecode index

reaches a basic block boundary. As a side effect of the symbolic execution, instruc-

tions are generated and added to the current basic block, new basic blocks that are

discovered are added to the basic block set, the initial states of basic blocks are

updated, and the control flow graph is updated.

The effect of each bytecode on the symbolic state follows straightforwardly from

the Java bytecode specification [102]. See Figure 3-8 for table containing the effects

of each of the bytecodes on the symbolic state and the IR instructions that they

generate.

36

Bytecode Effect on stack Instructions generated Ends
basic
block?

pop, pop2,
dup, ...

Perform appropriate ac-
tion on stack

None No

iconst 1,
aconst null,
...

Push constant None No

iload, ... Push local variable None No

istore, ... Pop value, replace copies
of local with new temps

For each copy on stack: move new temp, local
move local, popped val

No

iaload, ... Pop index, array refer-
ence, push new temp

null-check array ref
bounds-check array ref, index
new temp = array load array ref, index

No

iadd, fmul,
...

Pop operands, push new
temp

new temp = op {...operands...} No

idiv, imod,
ldiv, lmod

Pop operands, push new
temp

zero-check denominator
new temp = op {...operands...} No

iinc Replace copies of local
with new temps

For each copy on stack: move new temp, local
local = add local, amount

No

i2f, l2d,
checkcast, ...

Pop value, push new
temp

new temp = conv op value No

instanceof Pop value, push new
temp

new temp = instanceof value, type No

ireturn, ... Pop value return value Yes

athrow Pop value null-check value
athrow value

Yes

getstatic Push new temp new temp = getstatic field No
putstatic Pop value putstatic field, value No

getfield Pop obj ref, push new
temp

null-check obj ref
new temp = getfield obj ref,field

No

putfield Pop obj ref, value null-check obj ref
putfield obj ref,field, value

No

invokestatic Pop args, push new temp new temp = call method,{args} No

invokevirtual,
...

Pop args, obj ref, push
new temp (if not void)

null-check obj ref
new temp = call method,obj ref, {args} No

new Push new temp new temp = new type No
newarray, ... Pop size, push new temp new temp = newarray type, size No

arraylength Pop array ref, push new
temp

null-check array ref
new temp = arraylength array ref

No

monitorenter,
monitorexit

Pop obj ref null-check obj ref
monitor obj ref

No

goto, ... None goto target Yes
ifeq,
if icmpeq, ...

Pop value(s) if value, target Yes

tableswitch,
...

Pop value switch value, {target} Yes

jsr, ret See section 3.3.9. Yes

Figure 3-8: Java bytecodes and their effects on the symbolic state

37

Java source code Java bytecode
... ...

do { loop: loop body here
loop body here iload x

} while (x != 0); ifne loop

... ...

Figure 3-9: Example of how the layout of do-while statements forces basic blocks to
be split. BC2IR does not know that the branch to loop exists until after it has parsed
the loop body and incorrectly appended its instructions to the previous basic block.

3.3.6 Splitting basic blocks

Due to backward branches, a basic block boundary may not be known until after the

bytecodes at that boundary have been parsed and instructions generated. This can

happen when the source code uses a do-while statement. (See Figure 3-9.) If we

can guarantee that the state at the backward branch is identical to the state of the

abstract interpretation loop when it reached the target bytecode, then BC2IR can

split the basic block. If BC2IR is only keeping track of the stack state and the stack

is empty, then the states must be identical and therefore the basic block can be split.

Instructions have a bytecode index, which corresponds to the bytecode from which

they came. When BC2IR encounters a backward branch into the middle of an already-

generated basic block, it searches from the end of the basic block for the instruction

that has a bytecode index that is lower than the target. The basic block is split

at that point. If the stack is not empty on a backward branch to the middle of

an already-generated basic block, the basic block must be regenerated because the

states may not match. However, current Java compilers never generate code that

performs backward branches with a non-empty stack, so this situation is currently

not encountered in practice.

3.3.7 Rectifying state at control flow joins

At a control flow join, the state may be different on different incoming edges. We

define a meet operation on the state. The meet of a number of states is the result of

38

an elementwise meet of their components. We use the lattice pictured in Figure 3-10,

where Ctype refers to constants of the given type, and Rtype refers to registers of the

given type.

...Cint... ...Clong...

Rint

...Cref......Cdouble......Cfloat...

Rlong Rfloat Rdouble Rref

Figure 3-10: Lattice for Operands

Thus, the meet of two stacks A and B is a stack whose elements are the results

of the meet operation on the corresponding elements of A and B. See Figure 3-11 for

an example.

Stack 2

1

1

Rref

2.0f

1

2

Stack 1

Rfloat

Rref

Result of meet

1

Rref

Rfloat

Rint
=meet

Figure 3-11: Example of the meet operation on two stacks

3.3.8 Greedy ordering for basic block generation

BC2IR generates code for a basic block assuming an initial state, which may be

incorrect due to as-of-yet-unseen control flow joins. In some cases, the basic block

39

may have to be regenerated in order to take into account a more general initial state.

We would like to choose basic blocks in an order such that the number of basic blocks

that must be regenerated is minimized.

When the state is empty on backward branches, visiting the basic blocks in a

topological order will avoid regeneration because the correct initial state will always

be known. However, when BC2IR is keeping track of state information other than the

stack, the state may not be empty on backward branches, and therefore regeneration

may be necessary. We would like to minimize this regeneration by traversing back

edges as early as possible so that the state from the back edge will “corrupt” a minimal

number of basic blocks. See Figure 3-12 for an example.

1

2 3

4

Figure 3-12: Choosing the topological order 1 2 4 3 may result in having to regenerate
blocks 2, 3 and 4. The refined topological order 1 2 3 4 allows us to avoid having to
regenerate block 4.

The optimal order for basic block generation is a refined topological order, which

is a topological order where edges that lead into loop paths are taken before edges

that exit loops.2 However, because BC2IR computes the control flow graph in the

same pass, it cannot compute the optimal order a priori.

Somewhat surprisingly, for programs compiled with current Java compilers, a

simple greedy algorithm can always find the optimal ordering (ignoring exceptional

2This is similar to the reverse post order.

40

control flow which uses finally clauses or exception catches.) When selecting which

block to generate out of the set of valid blocks, choose the block with the lowest

starting bytecode index.

The reason that the simple greedy algorithm will always find the optimal ordering

is as follows. Ignoring loops, all non-exceptional control flow constructs are generated

in topological order. This means that, for non-loops, the bytecode order is the opti-

mal order. Also, ignoring exceptional control flow, the control flow graph is always

reducible (there are no loops with multiple headers.) The control flow graph can

be thought as a “string” in a “graph language”, where the reductions of the “graph

language” grammar correspond to the reduction of the control flow graph into the

Java language control flow construct that generated it.

Now, because non-loops are in topological order, the only edges that branch to

prior bytecode indices must have arisen from a Java loop construct. Furthermore,

because the graph is reducible, any loop has only a single entry and therefore a single

header. The greedy algorithm specifies that the loop edge will be traversed before

other edges, and therefore the algorithm will complete the loop before continuing.

Now, because the graph is reducible, the loop can be summarized by its header in

the control flow graph (with additional out edges corresponding to loop exits.) After

collapsing the node, the graph will still be reducible and still correspond to a “string”

in the “graph language” grammar, and therefore the algorithm continues as if the

loop were a single node. Because the algorithm makes the correct decision for all

loop constructs (entering loops before non-loops) and non-loop constructs (because

they are in topological order and any loops that they contain can be summarized as

a single node,) the algorithm finds the optimal order.

3.3.9 Control-flow and Java subroutines

Java supports the use of intra-method subroutines through the jsr and ret bytecodes.

The existence of these subroutines complicates control-flow and data-flow analyses.

Some suggested resolutions to this problem are to duplicate the entire subroutine at

each jsr instruction [120], or even to change the Java virtual machine specification [4,

41

5]. However, the following constraints on Java bytecode make it possible to compute

the control flow information for intra-method subroutines efficiently and in the same

pass [102] [sections 4.8.2 and 4.9.6]:

1. The instruction following each jsr (or jsr w) instruction only may be returned

to by a single ret instruction.

2. No jsr or jsr w instruction may be used to recursively call a subroutine if that

subroutine is already present in the subroutine call chain.

3. Each instance of type returnAddress can be returned to at most once. If a

ret instruction returns to a point in the subroutine call chain above the ret

instruction corresponding to a given instance of type returnAddress, then

that instance can never be used as a return address.

4. When executing the ret instruction, which implements a return from a sub-

routine, there must be only one possible subroutine from which the instruction

can be returning. Two different subroutines cannot “merge” their execution to

a single ret instruction.

These four constraints imply that a subroutine is defined by a jsr target address,

and that each ret instruction corresponds to exactly one subroutine. Thus, each ret

instruction maps to one and only one jsr target address.

Although it is not specified explicitly in the JVM specifications, BC2IR assumes

that subroutines are distinct; i.e.,two subroutines do not share regions of code. If this

were not the case, the verification of constraint 4, above, would be an undecidable

problem.3 Two subroutines can, however, “share” a region of code through a third

subroutine, because the third subroutine will return to a different location depending

upon where it was called from, and so constraint 4 is verifiable in this case.

For each subroutine, we keep track of a return site set, which contains the locations

that the subroutine can return to; a ret block, which is the basic block containing the

3Nonetheless, some current Java compilers generate bytecode that does not have this property.
We consider this to be due to either an inaccurate specification or broken compilers. When such
code is encountered, it is easily detected and compilation reverts to the baseline compiler.

42

ret instruction for the subroutine; and an ending state, which is the state after

interpreting the ret instruction. We define a subtype of the basic block type with

these extra fields (a subroutine basic block) and make the basic blocks that mark the

start of a subroutine use this subtype.

The jsr (and jsr w) bytecodes are handled as follows: first, it looks up the basic

block corresponding to the bytecode after the jsr. If it doesn’t exist, it is created,

and its initial stack state is marked as unknown. Then, it looks up the basic block

corresponding to the target of the jsr. If it doesn’t exist, then this is the first call

to the subroutine that we have encountered, so the subroutine basic block is created

and its return site set is initialized to contain one element: the basic block after the

jsr. If it does exist, the algorithm has already encountered a call to the subroutine

and so the states are rectified. If the subroutine basic block has a valid ret block, then

a control flow edge is added from the ret block to the next basic block, and the ending

state is copied from the subroutine basic block into the next basic block. If it doesn’t

have a valid ret block, then it simply adds the next block to the return site set. A

subroutine operand is pushed onto the stack and the state is rectified with the initial

state contained in the subroutine basic block. Finally, it ends the current basic block.

Similarly, for the ret (and wide ret) bytecodes, it starts by setting the current

block as the ret block of the current subroutine. Then, it adds each of the blocks

contained in the return site set of the subroutine as successors of the current block.

Finally, it ends the current basic block.

3.4 Combining optimizations and analyses with IR

generation

This section describes some of the extensions to BC2IR. Because the conversion is

based on a general abstract interpretation framework, it was straightforward to extend

BC2IR to concurrently perform a number of forward pass analyses and optimizations.

Six such analyses and thirteen such optimizations have been implemented thus far.

43

Java bytecode Generated IR Generated IR
(optimization off) (optimization on)

iload x int add tint, xint, 5 int add yint, xint, 5
iconst 5 int move yint, tint

iadd
istore y

Figure 3-13: Example of limited copy propagation and dead code elimination

Traditional optimizers found in static compilers perform optimizations indepen-

dently. Because compile time is not critical, they often make design choices that

favor simplicity of implementation over efficiency. For example, static compilers of-

ten recompute analysis information after code transformations rather than update

it incrementally, even when an incremental update would be more efficient. Some

optimization stages leave code in a suboptimal state, knowing that a later pass will

clean it up. Such luxuries are difficult to justify in a dynamic compiler. Performing

optimizations and analyses incrementally and in the same pass can be much more

efficient.

Note that many of these optimizations and analyses have near-identical versions

that operate independently, on the IR directly. These versions are used when the

method has already been converted to IR — for example, after the dynamic com-

piler has already compiled the method once, but wants to perform more analyses or

optimizations.

3.4.1 Limited copy propagation and dead code elimination

Java bytecode often contains sequences that perform a calculation and store the result

into a local variable. See Figure 3-13. A simple peephole optimization can eliminate

most of the unnecessary temporaries. When storing from a temporary into a local

variable, BC2IR looks back at the most recently generated instruction. If its result is

the same temporary, the instruction is mutated to write the value directly to the local

variable instead. (When a stack manipulation bytecode is encountered that duplicates

44

a temporary on the stack, the pointer to the most recently generated instruction is

reset to temporarily disable the optimization.) This simple technique catches almost

all cases of unnecessary copy instructions, and it actually speeds up IR generation

because of the reduction in the number of instructions that have to be generated. See

section 7.2.3.

3.4.2 Unreachable code elimination

Because the algorithm only generates code that it has encountered a reference to, it

obviously does not generate unreachable code. Less obviously, if an exception handler

protects a range and no exception can be thrown in the range that will be caught by

that exception handler, the exception handler is considered unreachable, and code is

not generated for it.

This has limited use by itself, because java compilers will typically not allow

you to compile programs with unreachable code. When used in conjunction with

other optimizations such as constant propagation, branch optimizations, and method

inlining, however, it becomes more useful.

3.4.3 Constant propagation and folding

Constant propagation and folding is easy for values on the stack. Constants are

implicitly propagated on the stack and when an arithmetic operation is performed on

operands that are constant, the result of the operation is simply pushed back onto

the stack; no instruction is generated.4

Constant propagation through local variables requires extending the state to in-

clude the values of local variables. The current state of the local variables is stored

in a local variable file. By default, the entries in the local variable file contain the

register operand corresponding to each of the local variables. When a constant is

stored into a local variable, however, the variable’s entry in the local variable file is

4Operations that will throw an exception (divide by zero) are simply changed into an explicit
throw instruction, and the remainder of the basic block is considered unreachable.

45

replaced by that constant. When pushing the value of the local variable onto the

stack, BC2IR uses the operand contained in the local variable file, and therefore,

will use the constant. The meet operation for the local variable state is similar to

that of stacks — the pairwise meet of each entry in the local variable file. Constant

propagation through local variables is very useful when used along with basic block

specialization and method inlining.

3.4.4 Strength reduction

Strength reduction is another optimization that is straightforward to perform on

the fly. Transformations that always result in better code — for example, replacing

division by a constant power of two by a right-shift-arithmetic — are performed here.

3.4.5 Calculation of last use information

Keeping track of the last use of a compiler-generated temporary is very straight-

forward. When a temporary is pushed onto the stack, it has its last use flag set,

signifying that it is the last use of that temporary. Stack manipulation operations

simply maintain the invariant that if there are multiple copies of a temporary on the

stack, only the one closest to the bottom has its last use flag set.

Computing last use information for local variables is a backwards analysis, and

therefore is not performed in BC2IR. It is performed in a later step.

3.4.6 Control flow optimizations

BC2IR can replace unnecessary branches by storing a “forwarding address” in basic

blocks that do nothing but unconditionally branch. This optimization does more

than improve code quality — it also speeds up data flow calculations because it

limits superfluous basic blocks. It is more efficient to perform the optimization in

BC2IR rather than in a separate, later pass, although performing this optimization

later may catch more cases.

46

3.4.7 Reaching definitions

BC2IR can also concurrently calculate reaching definitions. The algorithm used is

similar to the forward pass analysis described in [7]. Calculating reaching defs for

compiler generated temporaries is very straightforward — because they are in SSA

form, they only have a single reaching def, and when the operand is generated, the

definition is known, so the reaching def set can be initialized to the correct value.

Calculating reaching defs for local variables is more complicated. We add a new

piece of state information — a reaching def set array for local variables. This is an

array, indexed by local variable number, of the set of definitions that can reach the

current program point. We also keep track of the downwardly-exposed def array for

each basic block, which are the downwardly exposed defs for each of the local variables.

This is very simple to do — it is an array indexed by local variable number, initialized

to all nulls, and definitions of a local variable write their definition into the slot in

the array, overwriting whatever was there.

At the start of BC2IR, the reaching def set array of the first basic block is ini-

tialized to refer to the parameters of the method. In the main loop, the reaching def

set is initialized by copying from the initial state contained in the basic block. Uses

of local variables use the set of reaching defs in the appropriate slot in the reaching

def set array. Defs of local variables overwrite the slot with a new set containing

the single new definition. Because reaching defs are implemented using sets and all

upwardly-exposed uses of a given local variable refer to the same set, updating the

initial state of the reaching def set array in a basic block simultaneously updates the

reaching defs of all upwardly-exposed uses.

If the control flow graph has loops, it may be necessary to iterate over the control

flow graph. Iteration is fast because the sets have already been computed, so it can

deal with an entire basic block at a time. Since there is no such thing as a ‘may-def’

of a local variable, the downwardly-exposed def set also acts as the ‘kill’ set — if

an entry in the downwardly-exposed def set is non-null, then that local variable is

defined within the basic block and therefore all other definitions of that local variable

47

aload a

invokevirtual foo()

aload a

getfield x

aload b

ifrefnull label

aload b

putfield x

label: ...

Figure 3-14: Assuming that there are no other incoming edges, only the first
invokevirtual can throw a null pointer exception. The getfield and putfield

cannot possibly throw null pointer exceptions in this context.

are killed. The data flow equations are identical to those found in [7].

3.4.8 Null pointer check elimination

As noted in section 3.2.1, the IR contains explicit exception check instructions. This

gives the compiler a uniform way of keeping track of the locations where exceptions

can possibly be thrown, so that code motion optimizations will not inadvertently

violate exception semantics [102]. Also, it is possible to do analysis to prove that

many null-check instructions are unnecessary. By having a separate instruction, we

can simply remove it so that it will not constrain other optimizations.

There would appear to be a large number of locations that null pointer exceptions

can be thrown. Any field access, array access, non-static method call, or exception

throw has the potential to throw a null pointer exception. The large number of

potential exception sites severely constrains potentially profitable code reordering

optimizations like instruction scheduling. Because there is a separate null-check

instruction for each one of these, it also greatly expands the size of the IR, slowing

down optimizations and analyses. Therefore, it is in the best interest of the compiler

to avoid generating and/or eliminate unnecessary null-check instructions.

Certain null-check instructions are superfluous. For example, see Figure 3-14.

When you have a sequence of operations in a single basic block on the same variable

48

OUT (s = null check x) = x ∪ IN(s)
OUT (s = c = string const) = c ∪ IN(s)
OUT (s = ref = new object) = ref ∪ IN(s)
OUT (s = ref1 = ref2) = if (ref2 ε IN(s)) ref1 ∪ IN(s)

otherwise IN(s) − ref1

OUT (s = ifnull ref1) = IN(s) − ref1 along true branch
IN(s) + ref1 along false branch

OUT (s = ifnonnull ref1) = IN(s) + ref1 along true branch
IN(s) − ref1 along false branch

IN (s) = intersection over all OUT(PRED(s))

IN (Exception Handler with caught exception e) = e
IN (Start of instance method) = ‘this’ pointer

Figure 3-15: Data flow equations for null pointer check elimination

and that variable does not change, only the first null-check is necessary — the fact

that control flow had progressed past the first null-check implies that the variable

is not null, so later null checks are superfluous. Performing a null check on a variable

is not the only way to imply that a variable is not null — there are a number of

other interesting cases. For example, bytecodes that perform allocations (new, etc.)

can never return null, the this pointer in a virtual method is never null, a caught

exception is never null, and string constants and certain static final fields are never

null. Conditional branches that are based on comparing a variable against null imply

that the variable is non-null on one of the branches.

The non-null property can be modeled as a data-flow problem specifying out sets

in terms of in sets, where the sets refer to the “set of non-null references”. See

Figure 3-15 for the data flow equations.

The implementation of null-check elimination in BC2IR follows straightfor-

wardly from the data-flow equations. Although this analysis is conservative, it elimi-

nates over 90% of the null checks in Java code. (See section 7.2.1.)

This optimization can benefit code quality in other ways, too: for example, con-

ditionals based on a comparison of a value to null can sometimes be eliminated.

Performing this optimization also decreases the time spent in IR generation, because

the extra time spent in performing the optimization is less than the time that would

49

have been spent generating the superfluous instructions. (See section 7.2.4.)

3.4.9 Type analysis

int long float double
...class hierarchy...

null type

java.lang.Object

Figure 3-16: Lattice for type information

BC2IR can concurrently perform simple type analysis. We extend operands to

include a type field. Instructions that push operands on the stack set the type field

to be the most specific type possible. Performing a checkcast (run-time type test)

operation on an operand causes its field to be updated to the more specific type,

and conditionals based on instanceof tests propagate refined type information for the

operand to one of the target basic blocks.

We extend the meet operation to include the type information. The lattice for

computing the type information is shown in Figure 3-16. There are four primitive

types — int, long, float, and double — and a set of reference types. The reference

types include the class hierarchy (without exceptions) and a special null type, which

corresponds to the type of a null pointer. We also include a bit that signifies whether

or not the given type is exact.

Type analysis allows more method calls to be devirtualized and inlined. It also

removes many redundant checkcast operations. For example, see Figure 3-17. In

this case, the type of x at the checkcast instruction is already known to be Bar,

so the redundant checkcast is ignored. This instanceof-checkcast pattern is very

common in Java bytecode, so a large number of run-time type tests can be eliminated.

50

Java source Java bytecode
if (x instanceof Bar) instanceof Bar

ifeq lab1
... = (Bar)x; aload x

checkcast Bar

Figure 3-17: Example of redundant checkcast operation

checkstore5 operations can also be eliminated when the array type is known exactly.

3.4.10 Extended basic blocks

Although there may be a limitless number of possible paths through the code of

a method, in typical programs only a handful are taken with any significant fre-

quency. We can use dynamic profile information to discover the frequently executed

(or dominant) paths through a method, and generate an IR where branches off of the

dominant path are considered to be traps and therefore do not end basic blocks. (See

section 3.2.2.) Many optimizations work better on larger basic blocks, and by per-

forming trace scheduling on the dominant path, we can further improve performance

on the typical case. Because we can avoid compiling code on non-dominant paths,

dynamic compilation time is also reduced.

Extending BC2IR to support extended basic blocks was simple. In the abstract

interpretation loop, when a forward conditional branch instruction is encountered

and code for neither of the cases has been generated yet, the auxiliary data structure

(described in section 3.2.2) that holds dynamic profile data is consulted. If one

condition has occurred much more often than the other condition, then the conditional

branch is changed to a conditional trap (inverting the conditional if necessary) and

the loop continues along the dominant path without ending the basic block.

In the case of a backward conditional branch instruction, if the fallthrough case is

taken much more often than the other case, then the conditional branch is changed

5checkstore operations are run time type checks that occur when an object is stored into an
object array.

51

into a conditional trap and the loop continues along the dominant path.

3.4.11 Full SSA form

BC2IR makes compiler generated temporaries SSA by default, but leaves local vari-

ables as they were. Sometimes it is useful to have all registers, including locals, in

SSA form. A simple extension allows BC2IR to concurrently convert local variables

to SSA form with φ nodes where necessary.

Converting straight line code to SSA form is straightforward. Each slot in the

local variable file contains, instead of a reference to the local variable, a reference to

an SSA temporary that represents that local variable. Loads from a local variable

use that temporary. When storing into a local variable, a new SSA temporary is

generated, which replaces the old value in the slot.

At control flow joins, if an element of the local variable file differs and there is no

current φ node for that variable, a φ node is inserted on the original value and the

new value. If the φ node already exists, the new value is added to the φ node. If the

target block has already been generated, all “upwardly-exposed uses” of the original

value are modified to point to the result of the φ function. Because φ nodes are added

only when necessary, they are relatively rare.6

Variables have to be modified at most once per basic block to take into account

heretofore unknown control flow edges. By recognizing some common Java constructs

during abstract interpretation, we can pessimistically add φ nodes, and thereby avoid

a large number of cases that would have otherwise required modifying upwardly-

exposed uses. This is identical to the pessimistic generalization of the state described

in section 3.4.13.

6This algorithm for φ node placement does not come up with the optimal φ node placement [54,
55, 130, 56], but comes reasonably close in practice.

52

3.4.12 Method inlining

One of the most beneficial optimizations in Java is method inlining. Most Java pro-

grams are written in a heavily object-oriented fashion, with a large number of calls to

methods with small bodies. Method inlining can yield very substantial performance

increases due to the reduction of dynamic dispatch/call overhead and improved opti-

mization opportunities.

When we know what we want to inline, method inlining is trivially straightforward.

When we encounter a method invokation that we want to inline, we simply save

away the current state, initialize a new state corresponding to the start of the inlined

method, and begin abstractly interpreting the bytecodes of the inlined method. After

it completes, we change return instructions to store the return value into a register

and branch back into the calling method. Because code is more or less generated as

if the method invokation were replaced by the bytecodes for the method, all of the

other optimizations and analyses apply to the inlined method, and so the method

body is automatically specialized to the call site. For example, constant parameters

to an inlined method call can be propagated and folded in the inlined method body,

more null pointer checks can be eliminated, and type information from outside of the

method can propagate inside, improving optimizations opportunities.

3.4.13 Basic block specialization and loop peeling

While keeping track of more state information (such as the local variable file, type

information, or “non-null” bits) allows us to do a better job at code generation, it also

increases the chance of overspecialization. The more specific the information that we

assume about the state, the more likely that an assumption that we make based on

incoming edges that have been seen will not hold for an as-of-yet unseen incoming

edge. In these cases, our prior solution was to regenerate the basic block, assuming a

more general initial state.

However, there is no reason that we have to throw away the overspecialized version

of the basic block that we worked so hard to generate. A basic block that is generated

53

assuming more constraints will be more optimized. We can keep the more optimal

code around, and incoming edges that satisfy the tighter constraints can use the more

specialized version, while others can use the less-specialized version.

We cannot indiscriminately specialize all basic blocks, however, because that can

lead to explosive code growth. Code growth not only increases dynamic compile

time, but can also make the resulting code less efficient because it may disrupt cache

locality.

By recognizing common patterns in Java bytecode, it is possible to gain a fine

control over how basic block specialization is performed. For example, current Java

compilers output the for and while loop constructs in a specific order — the entrance

to the loop is an unconditional branch to the loop condition, which is at the bottom of

the loop. These are the only constructs that are laid out as such, and therefore when

BC2IR encounters an unconditional forward branch past a block that it has never

seen before, it can assume that it is entering a loop construct and pessimistically

generalize the state at that point.7

By refraining from generalizing the state, we can also peel iterations out of a

loop, specializing the peeled iterations with respect to any constant values, informa-

tion propagated from the loop condition, or any other state information available.

Peeling an iteration out of a loop also allows a common subexpression elimination

optimization to implicitly perform loop invariant code motion.

3.4.14 Object escape analysis

A significant portion of JVM run time is spent in garbage collection. In typical

Java programs, most of the objects die quickly. By performing escape analysis, we

can determine whether objects can escape the current method. An object is said to

escape if, when the method exits, there is still a live reference to the object. If an

object cannot escape a method, it can be allocated on the stack instead of the heap,

7Generalization of the state usually involves converting constants to registers and reseting non-
null attributes to possibly null. Other possibilities include changing register types to a more general
form, but this is not done because the register type rarely changes during a loop iteration.

54

and thus will be implicitly garbage collected when the method returns. This saves

both on the number of garbage collections that have to be performed and on the

speed of those collections. Also, synchronization operations on non-escaping objects

are unnecessary and therefore can be removed. (For more information on escape

analysis in Java and the optimizations that it facilitates, see [135].)

We implemented a simple object escape analysis as part of the BC2IR framework.

Object creation sites are tracked, and registers include attributes stating whether or

not they can refer to objects created at a given site. If a location that can contain an

object created at a particular object creation site is used in a putfield or putstatic

operation, then objects created at that site are said to escape.

The escape analysis also implements a simple interprocedural analysis.8 If a loca-

tion that can refer to objects created at a given site is used in a return instruction,

then objects created at that site are said to escape through the returned value.9 Then,

each method call is modeled as a function on its parameters. Each of the method

parameters can be of one of three types. The first type is that objects passed into

a particular parameter can escape outright. The second type is that objects passed

into the parameter can escape through the return value. The third type is objects

passed into that parameter can not escape. When a method call is encountered where

all targets are known and have been analyzed, the algorithm uses the summary in-

formation for the target method(s). When analysis of a method completes, summary

information for the method is stored.10

3.4.15 Side effect analysis

We also implemented a simple side effect analysis. It keeps track of which fields

are read and written in the method, using profile information (or static estimates,

if profile information is unavailable) to estimate the number of reads/writes to each

8Some sort of interprocedural analysis is necessary due to the fact that all created objects have
constructor methods called on them.

9For simplicity, anything used as an argument to an athrow instruction is said to escape.
10When a cycle is encountered in the call graph, the algorithm pessimistically assumes the worst

case — i.e.,everything escapes outright.

55

field.

3.4.16 Specialization benefit prediction

Compiling dynamically allows us to take advantage of actual run time information

to selectively specialize with respect to a data value. Specialization with respect to

values can allow order-of-magnitude increases in performance [118, 74]. However,

specialization has a significant cost in time and memory, and therefore we must be

careful what we attempt to specialize and on what values.

We implemented an extension to BC2IR that allows us to analyze a method and

make a prediction as to how much better we could do if we knew that a particular

parameter or parameter field were constant, or if we knew that a parameter or param-

eter field had a specific type. This information is used by the controller (chapter 5)

along with frequency information to make decisions about when to specialize with

respect to data values and what to specialize on.

For predicting the benefit of specializing with respect to a parameter value or

type, the algorithm is as follows. Along with each register operand, we include ex-

tra information that specifies whether the value contained in that register would be

constant if a parameter were constant, and if so, the parameter(s) that would need

to be constant. This attribute can be modeled as a simple data flow problem; the

modeling is straightforward so we do not go into any more detail here.

For predicting specialization benefit if the parameter were constant, a benefit

number is associated with each parameter.11 Whenever a register that is derived

from a parameter is used in an operation, the parameter’s benefit number for the

parameter(s) it is derived from is incremented by an amount relative to the expected

savings on the cost of the operation if the specified operand were constant. For

example, for an addition where one of the operands was from a method parameter,

the increment is small, but for a division operation where the denominator was from

a method parameter, the increment is much larger.

11Benefit numbers are also associated with combinations of parameters. These are allocated as
needed, and are very rarely used.

56

When a branch is discovered that depends entirely on registers that come from

parameters, the algorithm calculates the expected benefit gained if the conditional

branch were either eliminated or changed into a unconditional branch. It does this as

follows. On each branch, it propagates information that the code is dominated by the

outcome of the branch. The costs of all operations along that branch are scaled by

the estimated frequency that the outcome of the branch will occur. (It uses dynamic

information if it is available, otherwise it uses a static prediction.) This scaled value

is added to the benefit number. When a control flow merge occurs where an incoming

edge is not dominated by a particular branch outcome, the code after the merge is not

dominated by the outcome (i.e.,the merge function for the dominator information is

intersection.)

Predicting the benefit if a parameter were a known type works in a similar fashion,

but in this case, the benefit number is updated for operations that could be optimized

based on the type (such as checkcast operations or virtual method calls.)

Predicting specialization benefit if a parameter field is similar. Performing a get-

field operation on a register operand that comes from a parameter causes that value

to be tracked analogous to the tracking of parameter values.12 However, synchro-

nization points kill information, because fields must be reloaded at synchronization

points.

3.4.17 Bytecode verification

The abstract interpretation engine performs a number of steps that are very similar

to the Java bytecode verifier as described in [102]. For example, the manner in

which type information is propagated and the tracking of which local variables are

used in a subroutine are identical. Therefore, adding bytecode verification support

to BC2IR was relatively simple. Instead of implicitly assuming that constraints are

true, it explicitly verifies them. Because BC2IR is much more optimized than the Sun

verifier implementation and it traverses the basic blocks in an optimal order, it can

12Assuming that the field is not marked as volatile.

57

sometimes perform bytecode verification and concurrently generate IR more quickly

than the Sun verifier can perform just the bytecode verification. See chapter 7.

3.5 Later compiler stages

This section briefly describes the later stages of the compiler. Because the focus of

this thesis is on BC2IR, they are not covered in detail. See [20] for a more complete

treatment of these compiler stages.

3.5.1 Lowering of IR

After high-level analyses and optimizations are performed, HIR is lowered to LIR.

The LIR expands instructions into operations that are specific to the virtual ma-

chine’s object layouts and parameter-passing conventions. For example, operations

in HIR to invoke methods of an object consist of a single instruction, closely matching

the invokevirtual bytecode. These single-instruction HIR operations are lowered

(i.e.,converted) into multiple-instruction LIR operations that invoke the methods

based on the virtual-function-table layout. These multiple LIR operations expose

more opportunities for low-level optimizations.

0 LABEL0 B0@0
2 float_div l4(float) = l2(float), l3(float) (n1)
7 null_check l0(A, NonNull) (n2)
7 getfield_unresolved t5(float) = l0(A), <A.f1> (n3)
10 float_mul t6(float) = l2(float), t5(float) (n4)
14 getfield_unresolved t7(float) = l0(A, NonNull), <A.f2>(n5)
17 float_mul t8(float) = l4(float), t7(float) (n6)
18 float_add t9(float) = t6(float), t8(float) (n7)
21 null_check l1(B, NonNull) (n8)
21 float_load t10(float) = @{ l1(B), -16 } (n9)
24 float_mul t11(float) = l3(float), t10(float) (n10)
25 float_add t12(float) = t9(float), t11(float) (n11)
26 return t12(float) (n12)

END_BBLOCK B0@0

Figure 3-18: LIR of method foo()

Figure 3-18 shows the LIR for method foo of the example in Figure 3-5. Notice

58

that the LIR is very similar to the HIR of Figure 3-6. The only differences are that

the getfield of bytecode 21 has been lowered to a float load and return float

has been lowered to return. (The labels (n1) through (n12) on the far right of each

instruction indicate the corresponding node in the data dependence graph shown in

section 3.5.2, Figure 3-19.)

3.5.2 Building dependence graphs

reg_true

n12

excep

reg_true

excep

reg_true

reg_true

reg_true

control

reg_true

excep

reg_true

excep

reg_true

reg_true

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

Figure 3-19: Dependence graph of basic block in method foo()

An instruction-level dependence graph for each basic block is constructed that

captures register true/anti/output dependences, control dependencies, and other de-

pendencies that preserve the Java memory model and exception semantics. This

graph is used during BURS code generation (section 3.5.3).

Synchronization constraints are modeled by introducing synchronization depen-

dence edges between synchronization operations (monitor enter and monitor exit)

and memory operations. These edges prevent code motion of memory operations

across synchronization points. Java exception semantics [102] is modeled by excep-

tion dependence edges, which connect different exception points in a basic block.

Exception dependence edges are also added between register write operations of lo-

cal variables and exception points in the basic block. Exception dependence edges

between register operations and exceptions points need not be added if the corre-

sponding method does not have catch blocks. This precise modeling of dependence

constraints allows us to perform more aggressive code generation.

Figure 3-19 shows the dependence graph for the single basic block in method foo()

of Figure 3-5. The graph, constructed from the LIR for the method, shows register-

59

true dependence edges, exception dependence edges, and a control dependence edge

from the first instruction to the last instruction in the basic block. There are no

memory dependence edges because the basic block contains only loads and no stores,

and we do not not need any load-load dependencies because the fields are not marked

as volatile [102]. An exception dependence edge is created between an instruction

that tests for an exception (such as null check) and an instruction that depends on

the result of the test (such as getfield).

3.5.3 BURS code generation

Machine specific code is generated from the optimized LIR. The dependence graph for

a basic block is partitioned into trees that are input to a tree-pattern-matching system

based on a bottom-up rewriting system (BURS) [53]. Unlike previous approaches [70]

to partitioning DAGs for tree-pattern-matching, this approach considers partitioning

in the presence of memory and exception dependences (as well as register-true depen-

dences). The partitioning algorithm also incorporates code duplication [129].

input LIR: DAG/tree: input grammar (relevant rules):

move r2=r0
not r3=r1
and r4=r2,r3
cmp r5=r4,0
if r5,!=,LBL

emitted
instructions:

andc. r4,r0,r1
bne LBL

IF

CMP

AND

MOVE

r0

0

NOT

r1

RULE PATTERN COST
---- ------- ----
1 reg: REGISTER 0
2 reg: MOVE(reg) 0
3 reg: NOT(reg) 1
4 reg: AND(reg,reg) 1
5 reg: CMP(reg,INTEGER) 1
6 stm: IF(reg) 1
7 stm: IF(CMP(AND(reg, 2

NOT(reg)),ZERO)))

Figure 3-20: Example of tree pattern matching for PowerPC

Figure 3-20 shows a simple example of pattern matching for the PowerPC. The

data dependence graph is partitioned into trees before using BURS. Then, pattern

matching is applied on the trees using a grammar (relevant fragments are illustrated

in the figure.) Each grammar rule has an associated cost, in this case the number of

0This footnote tests a conjecture that no one ever reads M.Eng theses after they are submitted.

60

instructions that the rule will generate. (Rule 2, for example, has a zero cost because

it is used to coalesce register moves.) Although rules 3, 4, 5, and 6 could be used to

parse the tree, the pattern matching selects rules 1, 2, and 7 as the ones with the least

cost to cover the tree. Once these rules are selected as the least cover of the tree, the

selected code is emitted as MIR instructions. Thus, only two PowerPC instructions

are emitted for five input LIR instructions. Figure 3-21 shows the MIR for method

foo in Figure 3-5. Notice that the null-pointer checks have been eliminated since

these are implemented as hardware traps in the virtual machine.

LABEL0 B0@0
2 ppc_fdivs l4(float) = l2(float), l3(float)
7 getfield_unresolved t5(float) = l0(A, NonNull), < A.f1>
10 ppc_fmuls t6(float) = l2(float), t5(float)
14 getfield_unresolved t7(float) = l0(A, NonNull), < A.f2>
17 ppc_fmuls t8(float) = l4(float), t7(float)
18 ppc_fadds t9(float) = t6(float), t8(float)
21 ppc_lfs t10(float) = @{ -16, l1(B, NonNull) }
24 ppc_fmuls t11(float) = l3(float), t10(float)
25 ppc_fadds t12(float) = t9(float), t11(float)
26 return t12(float)

END_BBLOCK B0@0

Figure 3-21: MIR of method foo() with virtual registers

3.5.4 Instruction scheduling

Instruction scheduling allows the compiler to improve code quality by reordering

instructions to increase the utilization of processor resources and eliminate stalls. We

use a priority list scheduling algorithm with bitmapped resource management [111].

The target machine is specified as a collection of independent resources of different

types. Instructions are grouped into instruction classes such that all instructions in

the same class have the same resource usage pattern. A resource usage pattern is a

list of resource reservations, each of which consisted of a resource type, and start and

end time of usage relative to instruction issue time.

The compiler builds all possible resource patterns for each instruction class in

an offline step, also adding latency information between instruction classes. Each

61

instruction has associated with it a list of resources that are required. The scheduler

will reserve particular resources for a given instruction, as long as there are no resource

conflicts.

The current target architecture for the compiler is PowerPC 604e, which contains

the following types of functional units: FXU (fixed point unit), FPU (floating point

unit), BRU (branch unit), LDST (load/store unit), and FXUC (complex fixed point

unit). The architecture contains multiple instances of the FXU. To model a multiple-

issue machine, we added a pseudo-resource class ISSUE (issue slot). To deal with

certain peculiarities of the architecture, we also added two more artificial resource

classes: CR (control register) and RESERVE (memory reservation).

Most instructions have straightforward resource allocation. For example, most

floating point arithmetic instructions belong to the float arith instruction class,

and reserve the floating point unit for one cycle. However, since the pipeline is of

length 3, the results of these instructions can only be available 3 cycles later. Some

instructions, however, required special treatment. For example, the integer divide

instruction (DIVW/DIVWU) is non-pipelined, which means that it will reserve the fixed

point unit that it is executing on for the entire time of execution (19 cycles). The

load/store-multiple instructions (LMW/STMW) have a variable latency that depends on

the operand. For these instructions, we use a conservative approach, because such

instructions occur rarely in practice. Some instructions that manipulate the data or

instruction cache have effects that are difficult to model, we conservatively reserve

all resources for a long time to avoid any possible intermixing of these with other

instructions.

The scheduling algorithm used is a greedy list scheduler (see Figure 3-22), with

instructions arranged in a list by priority. The algorithm for constructing the priority

list is deliberately left unspecified in the scheduling algorithm. The scheduler picks

the next available instruction from the priority list, and finds the first available slot

in the schedule starting with the instruction’s earliest start time. The dependence

graph (see section 3.5.2) is used to compute earliest start times for all instructions.

The schedule itself is just a two-dimensional bitmap, so that bitwise operations

62

build dependence graph for bb;

initialize schedule;

set earliest start time for each instruction to 0;

for each instruction i {

propagate earliest start time for i;

}

build priority list pl for bb;

for each instruction i in pl {

t = earliest start time of i;

while (i cannot be scheduled at time t)

t++;

set scheduling time of i to t;

propagate earliest start time for i;

}

rearrange instructions in bb based on their scheduling times;

Figure 3-22: Scheduling Algorithm

can be used to check resource usages. The algorithm is run on each basic block of a

method.

3.5.5 Register allocation

The dynamic compiler’s register-allocation framework supports different allocation

schemes, according to the available time that can be spent in optimizing a method.

A linear scan register allocator [119] is currently employed. The linear scan algo-

rithm is not based on graph coloring, but allocates registers to variables in a single

linear-time scan of the variables’ live ranges in a greedy fashion. This algorithm is

several times faster than algorithms based on graph coloring, and results in code that

is almost as efficient as that obtained using more complex allocators [119].

The LIR that reaches the register allocator contains two types of symbolic reg-

isters: temporaries, obtained from converting stack simulation into registers, and

locals, obtained from Java locals specified in the bytecode. Higher priority is given

to allocating physical registers to those temporaries whose live range does not span

a basic block.

Once registers for temporaries are allocated, a second pass allocates the remaining

63

registers consecutively to locals without performing any flow analysis. This simple

scheme is appropriate for small methods, as it is typical of object-oriented programs.

(We have observed that for the PowerPC architecture with 32 registers, most methods

do not need spill locations.) Large methods (either in the source program or after

inlining) may merit a better register allocator to avoid spills.

Figure 3-23 shows the foo method of Figure 3-5 after register allocation. The

output of the register allocator also includes a prologue at the beginning, and an

epilogues at the end, of each method.

0 LABEL0 B0@0
0 ppc_stwu FP(int), @{-24, FP(int) }
0 ppc_ldi R0(int) = 4021
0 ppc_stw R0(int), @{ 4, FP(int) }
0 ppc_mfspr R0(int) = LR(int)
0 ppc_stw R0(int), @{ 32, FP(int) }
2 ppc_fdivs F3(float) = F1(float), F2(float)
7 getfield_unresolved F4(float) = R3(A, NonNull), < A.f1>
10 ppc_fmuls F1(float) = F1(float), F4(float)
14 getfield_unresolved F4(float) = R3(A, NonNull), < A.f2>
17 ppc_fmuls F3(float) = F3(float), F4(float)
18 ppc_fadds F1(float) = F1(float), F3(float)
21 ppc_lfs F3(float) = @{ -16, R4(B, NonNull) }
24 ppc_fmuls F2(float) = F2(float), F3(float)
25 ppc_fadds F1(float) = F1(float), F2(float)
0 ppc_lwz R0(int) = @{ 32, FP(int) }
0 ppc_mtspr LR(int) = R0(int)
0 ppc_addi FP(int) = FP(int), 24
26 ppc_blr LR(int)

END_BBLOCK B0@0

Figure 3-23: MIR of method foo() with physical registers

3.5.6 Outputting retargetable code

The final phase of the compiler emits binary executable code into an (int) instruction

array (called a method body). The assembly phase also finalizes the exception table

and the stack map of the instruction array, by converting offsets in the IR to offsets

in the machine code. A reference to the instruction array is stored into a field of the

object instance for the method. The method object can hold multiple method bodies

64

for the same bytecodes (specialized based on factors such as the call-site contexts or

the values of the parameters.) Selection of a particular method body to be invoked at

a particular invocation site can be made during compile-time when LIR is generated

or at the actual invocation time.

65

Chapter 4

Weighted calling context graph

ran no ka ya

chō no tsubasa ni

takimono su

An orchid’s perfume

transfers incense to the wings

of the butterfly.

— Matsuo Bashō, seventeenth century.

A dynamic compiler must walk a delicate line. Because compilation occurs at run

time, it must be very selective in what it decides to compile and how it decides to

compile it. A dynamic compiler should only spend extra time analyzing and compiling

a piece of code if there is a reasonable chance that the extra time spent on compilation

will be made up in run time. However, if the dynamic compiler is too timid in its

decision making, it may miss good opportunities for optimization and lead to overall

slow performance. An aggressive dynamic compiler even has the ability to beat the

best static compilers because information about the actual run time performance of

the system is available, and it can specialize the code and data to suit the situation.

To guide decisions on what and how to dynamic compile and optimize, we use

the prior behavior of the system with the expectation that the past will provide some

indication of the future. This information is gathered by an online measurement

system through the use of timer-based sample profiling and code instrumentation.

The information gathered by the online measurement system must be stored in a

66

form that allows fast updates and that also allows the salient information to be easily

extracted.

The primary data structure used by the online measurement system is the weighted

calling context graph, or WCCG. It maintains context-sensitive profile information for

method calls. It is similar to the Calling Context Tree data structure introduced in

[9], with the major distinction being that a WCCG may have multiple roots since the

entire call stack may not be analyzed at a sample point due to time constraints.

This chapter describes the WCCG. Section 4.1 describes the data structure, while

section 4.2 describes how the WCCG is built and maintained.

4.1 Description of data structure

The weighted calling context graph is a graph (not necessarily connected) whose edges

go from call sites to methods. Each edge corresponds to calls from the call site that

resolve to the method. (Different call sites are treated as different nodes for greater

precision.) The edges have weights, which correspond to approximate frequencies

with which each call is made.

In addition to the weights on the edges, each node can also contain extra informa-

tion. Each method node can contain a number that corresponds to the approximate

time spent in the body of method. (This does not include time spent in methods

called by this method.) It can also contain the results of the specialization benefit

prediction algorithm described in 3.4.16, and the results of other pertinent analyses

like side-effect analysis.

Edges can also contain tables that break down the edge frequencies into more

precise information. For example, a table associated with an edge can contain combi-

nations of parameter types and associated frequencies. The numbers associated with

each entry correspond to the approximate frequencies with which the edge was tra-

versed when the types of the parameters matched the types listed in the entry. There

can also be tables that record frequency information for combinations of parameter

values or parameter field values.

67

4.2 Building and maintenance

Information in the WCCG can come from four different places. The first is from a

timer-tick based profiler, which periodically samples the currently executing context.

The second is from instrumented code that records method entries, exits, etc. The

third is from analyses such as those found in BC2IR. Finally, the WCCG can be

preloaded with values. The following sections cover each of these in turn.

4.2.1 Timer-tick based profiler

The first source for WCCG information is the timer-tick based sample profiler. Timer-

tick based sample profiling is a very inexpensive way to quickly determine where the

most time is being spent in the system. However, it is not very precise. The timer-tick

based profiler is used as the default profile strategy upon virtual machine startup.

The timer-tick based profiler works as follows. An interrupt is set up to fire at

a defined frequency (approximately every millisecond.) When the interrupt fires,

the interrupt service routine looks at the program counter and the stack pointer to

determine which method is currently executing. It also begins walking the stack,

constructing the calling context. It continues walking the stack until it reaches a

cycle or the top of the stack, or runs out of budgeted time. It then updates the

WCCG with the new information — namely, that a timer tick occurred in a given

calling context, constructing new nodes and edges when necessary.

4.2.2 Instrumented code

The second source for WCCG information is instrumented code. When the controller

decides that it would like more precise information for some of the methods, it in-

troduces instrumentation to measure information such as the exact number of times

that an edge in the WCCG is traversed, the exact amount of time spent in a method,

or other conditions present during method calls. (See section 5.4.1.)

The instrumented code makes a call to the appropriate routine in the online

measurement system to record the pertinent information. The routine analyzes the

68

stack to find the calling context, traverses the WCCG to find the correct edge or

node, and updates the information stored there.

4.2.3 Analyses

The third source for WCCG information is code analyses. Some analyses, such as

specialization benefit prediction and side effect analysis, record their results in the

WCCG (as well as in other locations.)

4.2.4 Preloaded WCCG

While the online measurement system was still in development, we constructed the

WCCG in an offline step. This functionality still exists in the system, and we use it

extensively for testing purposes. One could easily envision using this functionality to

allow profile information from prior executions to be used in the current execution.

4.2.5 Invalidating the WCCG

Program profiles typically change over time, as the program goes through different

modes of operation: initialization, input, computation, output, etc. The program

profile may be entirely different from one mode to another, and the decisions made

assuming the conditions for one mode may be suboptimal when executing in a different

mode.

Furthermore, as the system runs and more data is collected, newer data becomes

less and less important due to the fact that as data is collected, recent data becomes

a smaller and smaller portion of the whole. If anything, more recent data should be

weighted more heavily than earlier, potentially-more-obsolete data.

Rather than attempt to age data or invalidate portions of the data, we decided

to simply throw away the WCCG whenever it gets old or obsolete due to new infor-

mation, code transformations, etc. We decided that it would be too complicated and

time consuming to implement aging and/or invalidation of data. Besides, changes

in the system will often cause system performance to change; by throwing away the

69

data, we are insured that future decisions will only be based on the new data. This

also avoids the problem of the “incredible expanding data”; because data is thrown

away, the memory consumption of the WCCG never grows large.

70

Chapter 5

The controller

kaze fukeba

hana no shiranami

iwa koete

watariwazurau

yamakawa no mizu

White waves of blossoms

cascade over the rocks

when the breezes blow.

How difficult to ford

the waters of the mountain stream!

— Lady Nijō, Towazugatari (The Confessions of Lady Nijō),

forthteenth century.

The controller is at the heart of our dynamic compilation system. It has three

main functionalities. First, it makes the decisions of when and how to invoke the

dynamic compiler. Second, it drives the online measurement system by selectively

introducing instrumented code for profiling and data gathering purposes. Third, it

gives hints to the garbage collector about the placement of code in memory.

The first section (5.1) covers how the controller decides which call sites to inline.

The second section (5.2) covers how the controller decides which methods to specialize

with respect to parameters. The third section (5.3) describes how the controller

decides which methods to specialize with respect to field values. The fourth section

(5.4) covers how the controller directs the online measurement system, and the fifth

section (5.5) describes how the controller gives hints to the garbage collector for code

relocation purposes.

71

5.1 Deciding which call sites to inline

An object oriented language such as Java has many small method calls. The BC2IR

also has support for “on-the-fly inlining” (see section 3.4.12), which has the benefit

that all the on-the-fly optimizations performed by BC2IR will automatically be per-

formed on the inlined code; it is not necessary to repeat those optimizations after

inlining. Therefore, inlining is one of the most important optimizations in our sys-

tem. However, needlessly inlining call sites that are rarely executed or that don’t

considerably improve code quality is wasteful; because inlining increases code size

and therefore compilation time, and compilation time counts against run time in a

dynamic compiler, one must be very careful about what one inlines.

The controller decides where and how to apply inlining using the information in

the WCCG along with static information about the method and the call site. The

controller traverses the WCCG and looks for edges with execution weights that are

greater than a certain threshold.1 For all such edges, it calculates a utility function to

decide whether or not to request that the call site be inlined. The utility function is the

combination of a number of metrics with different weighting functions. The strongest

weighted factor is the method size (smaller is better,) followed by the execution

frequency (larger is better.) If specialization benefit prediction information is available

and the call site has one or more of its parameters as a constant or as a known type,

the expected benefit from specializing the method with respect to that constant/type

is also added.2 If the result of the utility function is greater than a certain threshold,

the call site is added to the “inline plan” of the caller method. See Figure 5-1 for the

algorithm.

1If only timer tick profile information is available, execution weights are synthesized by looking
at the number of timer ticks in the caller vs. the callee.

2If one or more parameters is a constant but the actual specialization benefit prediction informa-
tion is not available, it uses a default estimate for each of the constant parameters.

72

OUTPUT:

WORKLIST = list of root methods to be compiled with inlining. For
each method M in WORKLIST there is an "inlining plan" that specifies
what inlining should be done when compiling M

ALGORITHM:

* Select a subset of WCCG edges for inlining, based on edge frequency,
target method size, and how many parameters to the call are
constant, along with specialization benefit prediction information,
if it is available.

* Define an Inlining Graph (IG) to be the subgraph of the WCCG that
only contains edges selected for inlining. In general, the IG will
be a forest of small trees.

* Initialize WORKLIST to an empty list

* FOR EACH tree T in the IG such that T contains >= 2 nodes DO
Let M := method corresponding to root node of T
IF (there exists a WORKLIST entry with M as the root method) THEN

Merge decision to inline all edges in tree T into existing plan for
method M
(This is the case in which there are multiple trees in the IG that
have the same method as root. We are not performing cloning -
rather, we are effectively merging all IG trees that have the same
root method.)

ELSE
Create a new WORKLIST entry with M as the root method;
Set PLAN field for method M to an inlining plan that inlines all
call sites corresponding to edges in tree T

END IF
END FOR

Figure 5-1: Algorithm for building inlining plan

73

Assume that the CCT returned by online measurements is as follows
(call X is a virtual method call; all other calls are direct calls):

CCT = MAIN
1 / \ 1

/ \
A A

1000 / \ 1 | 1000
/ \ |
B C call X = D

Assume that the subset of edges selected for the Inlining Graph is as
follows:

IG =
A A

1000 / | 1000
/ |
B call X = D

Then the planning phase will create a WORKLIST with a single entry
that has the following "inlining plan":

A
/ \

/ \
B call X = D

Figure 5-2: Example of inlining plan

74

ALGORITHM:

FOR EACH method M with time spent > threshold DO
initialize totals to zero
FOR EACH edge E with target M in WCCG DO

FOR EACH combination C of parameter types/values associated with E DO
Let S := specialization benefit prediction for C
increment total associated with C by frequency * S

END FOR
END FOR

END FOR

FOR EACH method M with total > threshold DO
add method M to list of methods to specialize, sorted by total

END FOR

Figure 5-3: Algorithm for choosing when to specialize with respect to method param-
eters

5.2 Specialization with respect to method param-

eters

The controller can also select to specialize with respect to method parameters. Method

specialization is somewhat similar to inlining, but there is a key difference — a single

specialized method can be shared by multiple call sites; an inlined call, by definition,

is only at a particular call site. This also means that call sites can be added to point

to a specialized method later.

After the controller is finished making inlining decisions, it chooses which methods

to specialize and how to specialize on them. It uses the extra table information

associated with the edges in the WCCG. (See section 4.1.) Section 5.2.1 describes

how the controller detects opportunities to specialize on parameter types and values.

5.2.1 Specializing on parameter types and values

The controller detects opportunities for specialization based on parameter types/values

using the information about the frequency of combinations of parameter types/values

associated with the WCCG graph edges, along with the results of the specializa-

75

tion benefit prediction algorithm. The controller first selects methods that have the

amount of time spent in them above a certain threshold. For these methods, it looks

at all edges into the method, and for each combination of parameter types/values it

scales the frequency by the results of the specialization benefit prediction algorithm

for that parameter combination. This number is added to a total associated with that

combination of parameter types/values for the method. After the controller finishes,

if any of the totals are above a certain threshold, the controller chooses to specialize

those methods. After the dynamic compiler finishes specializing those methods, it

patches the call sites of the edges who have the frequency with the given types/values

to check their parameter types/values and conditionally branch to the new version.

5.3 Specialization with respect to fields

Many values that we would want to specialize on are not passed as method parameters,

but are rather stored in static fields or object fields. Therefore, the controller also

specializes methods with respect to object fields.

5.3.1 Static fields

Specializing a method with respect to a static field, unlike the other forms of method

specialization, does not use the specialization benefit prediction algorithm. It uses

the execution frequencies from the WCCG along with side-effect analysis results (see

section 3.4.15).

The controller only attempts to specialize with respect to static fields that it is

confident of. The controller is confident of a static field if it has performed side-effect

analysis on all recently executed methods that can potentially access the static field

and has added profile instrumentation to those which side-effect analysis has stated

can store to the specified static field.

As the controller traverses the WCCG, it keeps track of a number for each static

field that it is confident of and that is reported as used in the side effect analysis for

each method. For each method, it scales the number of estimated uses of the given

76

ALGORITHM:

initialize totals to zero
FOR EACH method M in WCCG > threshold DO

Let C := execution frequency of M
FOR EACH confident field F used in M DO

Let N := expected number of uses of F in M
increment total for F by C * N

END FOR
END FOR

FOR EACH confident field F DO
IF (total for F > threshold) THEN

FOR EACH method M that uses F DO
Let N := expected number of uses of F * execution frequency of M
IF N > threshold THEN

add to list method M to be specialized w.r.t. current value of F
END IF

END FOR
END IF

END FOR

Figure 5-4: Algorithm for choosing when to specialize with respect to a field

static field by the execution frequency of that method and adds it to the total for

that static field. If a method is ever encountered in the WCCG that modifies the

static field as a side effect, the number for the static field is removed and that static

field is no longer tracked.

After the controller has traversed the WCCG, the number associated with each

field signifies the approximate dynamic number of uses throughout the system of the

given static field. The controller then considers each of these static fields in turn. If

the number is above a certain threshold, the controller specializes all of the methods

encountered that have an estimated number of dynamic uses of that field higher than

a certain threshold with respect to the current value of the static field.

5.3.2 Object fields

The controller decides to specialize with respect to object fields in two different ways.

The first method is analogous to deciding when to specialize with respect to method

77

parameters types/values — by using the extra frequency information associated with

the edges in the WCCG.

The second method is similar to the method used to decide when to specialize

with respect to static fields. The analysis proceeds in a similar manner, but the

actual specialization proceeds differently — the value that the method is specialized

on is taken from frequency information on the WCCG edges, and a run time check

is introduced, which checks the value of the object field and branches to the correct

version.

5.4 Directing the online measurement system

There is a certain synergy between the controller and the online measurement system.

Not only does the controller base its decisions on the information provided by the

online measurement system, but it also directs the online measurement system on

what information it should try to collect.

5.4.1 Adding instrumentation

The controller adds instrumentation to method headers for information-gathering

purposes. The information gathered by the instrumentation can range from a simple

counter that counts the number of executions to a table with frequency information

on the values of method parameters.

When the virtual machine starts up, the timer-tick based profiler is the only

method of gaining information. The controller uses the information from the timer-

tick based profiler to decide which methods to add instrumentation to. The controller

only adds instrumentation to “hot” methods and the subgraph of methods below

“hot” methods in the static call graph, up to a certain depth. This instrumentation

records number of invocations of a method and amount of time spent in a method in

the WCCG (see section 4.1.)

78

5.4.2 Adding instrumentation to evaluate specialization op-

portunities

The controller also adds instrumentation when the results of static analysis look

promising, and it needs a way to justify performing a specialization optimization. The

controller adds instrumentation to methods whose anticipated specialization benefit

is high. This instrumentation records the types/values of the potentially beneficial

parameters and uses the information to update frequencies stored in tables attached

to the edges in the WCCG (see section 4.1.)

Another situation where the controller adds instrumentation based on a static

analysis is when the controller detects that it may be beneficial to specialize with

respect to a field, but it does not have the confidence to make the specialization

(see sections 5.3.1 and 5.3.2, above.) In this case, it adds instrumentation to count

invokation frequencies of methods that have a side effect of modifying the specified

field.

5.4.3 Adding basic block level/trace level profiling

The controller also adds instrumentation to measure intramethod information. When

the execution time is dominated by a small number of methods, the controller adds

basic block level profiling or trace profiling to those methods. These profiling methods

store the frequency information in the IR for the method (see section 3.2.2) and the

information is used by the trace scheduler and the basic block reordering algorithm,

among other optimizations.

For the placement of instrumentation code in basic block level profiling, we use

an algorithm similar to that presented by Ball and Larus [13]. We use the maximal

spanning tree on the method control flow graph to determine the optimal placement

for instrumentation counters.3 Placement of instrumentation for trace profiling also

uses the Ball and Larus algorithm [14].

3We use a priority-first search algorithm for finding the minimum spanning tree [50].

79

5.4.4 Removing instrumentation

Although in the thesis we assume that instrumentation code comes free of charge,

in our actual implementation this is not the case. Our system does not support

the explicit removal of instrumentation code. Rather, instrumentation is implicitly

removed when methods are dynamically recompiled and optimized.

5.5 Directing the garbage collector to reorder code

The last functionality of the controller is to give “hints” to the garbage collector about

which pieces of code call each other often and therefore should be located near each

other in memory to maximize instruction cache locality.

As the controller traverses the WCCG, it keeps track of total call frequencies

between methods in a separate graph. After the controller completes, the graph is

passed to the garbage collector and used during the next garbage collection as a

guide on how to relocate code in memory. (The garbage collector uses a relocation

algorithm similar to that presented in [117].)

80

Chapter 6

Performing the dynamic

optimizations

ashibe kogu

tananashiobune

ikusotabi

yukikaeruran

shiru hito mo nami

For how many times —

how many dozens of trips —

might the tiny boat

go and return among the reeds

with none to know of it?

— Ariwara no Narihira, Ise monogatari (Tales of Ise), tenth century.

Once the controller identifies opportunities for dynamic optimization, the com-

piler needs to perform them. One interesting aspect of our system is the fact that

it can speculatively perform specialization operations. This stems from the fact that

the dynamic compiler is in the context of a Java Virtual Machine that can dynami-

cally load classes, and therefore must be able to support incomplete information. If

the dynamic compiler always made the most pessimistic decisions, then it wouldn’t

be able to make many optimizations at all. Instead, it speculatively performs the

optimization, but leaves a way to back out of the optimization if necessary.

This ability to back out of optimizations is necessary for adequate performance

and correct functionality in the presence of dynamic class loading. But because

this mechanism exists in the system, we can also use it to speculatively perform

81

ALGORITHM:

FOR EACH root method M in WORKLIST DO
Compile method M while obeying inlining decisions in plan for M ;
If a call site to be inlined is a virtual call, then generate
dual-path code with a target test and perform inlining only for the
case where the target test corresponding to the desired WCCG edge
returns true.

END FOR

Figure 6-1: Algorithm for performing inlining based on an inlining plan from the
controller

specialization optimizations that selectively ignore pieces of the program that execute

rarely. The process of backing out can be time-consuming, but if the event is rare

enough and the specialization benefit is good enough, it may be worthwhile.

This chapter describes the speculative dynamic optimizations performed by our

system, and the back out mechanism. Section 6.1 describes speculative inlining.

Section 6.2 describes method specialization on parameters, while section 6.3 describes

specialization on fields.

6.1 Speculative inlining

Inlining is performed according to an inlining plan (see section 5.1). The dynamic

compiler takes the inlining plan and performs the inlining decisions listed in the plan.

See figure 6-1 for the algorithm.

If the inlining is speculative, meaning that the given call site can potentially call

a method body that is different than the inlined body, then a run time check of the

method target is inserted. The run time check is implemented as a CHECK TARGET in-

struction. The CHECK TARGET is similar to other instructions that maintain exception

semantics, like NULL CHECK, BOUNDS CHECK, etc., in that it does not end a basic block.

One can think of the target being different as an ‘exceptional event’, just like a run

time exception, but instead of walking the stack for an exception handler when the

exception occurs, it branches to code that calculates the correct method target and

82

branches there. See figure 6-2 for an example written in high level code.

Some of the CHECK TARGET instructions are eliminated due to the more precise

type information propagated from prior CHECK TARGET instructions. For example, in

many nested inlining cases, only the initial call requires the CHECK TARGET instruction,

because the first target matching implies that other targets will match.

6.2 Method specialization on parameters

The dynamic compiler also supports method specialization with respect to parameter

types/values. See section 5.2.1 for a description of how methods are selected to be

specialized.

Specializing a method with respect to some parameter types/values works as fol-

lows. The dynamic compiler compiles a version of the method assuming that the

parameters have the given constraints. (See section 3.4.) Then, for all call sites

that the specialization plan specifies, it rewrites the call site to instead call a routine

that checks the constraints on the parameters. If the constraints are satisfied, the

specialized version is called, otherwise the (more) general version is called.

6.3 Method specialization on fields

Method specialization on fields is more complicated due to the Java memory model.

The specification states that fields must be reread at every synchronization point [102].

Thus, when specializing with respect to field values, we compile a specialized version

of the method assuming that the given field does not change values, but we include a

run time check of the value at every (potential) synchronization point where the field

value is potentially used after that point. If the value does change, we back out to

the general version. See the next section.

83

ORIGINAL CODE FOR METHOD A:

... A (...) {
. . .
while (...) {

call B() ;
}
. . .
call C() ;
. . .
while (...) {

call this.X() ;
}

}

STRUCTURE OF COMPILED CODE FOR METHOD A (AFTER INLINING):

... A (...) {
. . .
while (...) {

/* inlined copy of B() goes here */
}
. . .
call C() ; // this call does not get inlined
. . .
while (...) {

try {
if (this.X != D) throw WrongTarget;
/* inlined copy of D() goes here */

} catch (WrongTarget e) {
call this.X() ;

}
}

}

Figure 6-2: Example of profile-directed speculative inlining

84

6.4 How we back out

When we are executing a method that is specialized with respect to a field having a

particular value and that value changes during the execution of the method, we need

to “back out” to a version of the method that is not specialized with respect to that

field.

Backing out is accomplished by enforcing a mapping between synchronization

points in the specialized method and the original method. Each synchronization

point in the specialized method corresponds to exactly one synchronization point in

the unspecialized method, and all variables that are live in the unspecialized method

are also marked as live in the specialized method. When a “back out” needs to occur,

affected stack frames are rewritten to match the layout of the unspecialized version,

and all return addresses are updated to point to the unspecialized version. Control

flow then continues in the unspecialized version.

Backing out of specialization when the program profile changes A back

out mechanism is not (strictly) necessary for speculative inlining and specialization

with respect to parameters, because even if the assumptions change, the code is still

correct. However, as the program profile changes, the code may become inefficient.

In this case, recompilation is triggered by the basic block level instrumentation (see

section 5.4.3.) The controller adds basic block level profiling to a method when it

begins to take a significant portion of time. If a large number of mispredictions occur

due to the fact that an earlier assumption was incorrect, the time in the method will

increase. If the time spent in the method is still small, then although there are a large

number of mispredictions, it does not significantly adversely affect run time because

only a small portion of the time is spent in the method anyway. If it does significantly

increase the method time, however, then the controller will eventually recompile the

method and use the updated edge weights in the WCCG, and make a decision that

is more optimal for what is currently occurring in the program.

85

Chapter 7

Results

ayamegusa

oinishi kazu o

kazoetsutsu

hiku ya satsuki no

sechi ni mataruru

Eagerly I await

the Fifth Month Festival,

the time when people

pull up the sweet flags, counting

the sum of their well-grown roots.

— Michitsuna’s Mother, Kagerō nikki (Gossamer Journal), tenth

century.

In the chapter we present the effectiveness of our compiler on a large transacting

processing benchmark program called “Portable BOB” (Portable Business Object

Benchmark) [22]. Section 7.1 provides a description of the benchmark we used and a

justification of why we used it and section 7.2 shows the effectiveness of the concurrent

optimizations in BC2IR. Section 7.3 provides some preliminary performance results

of the effectiveness of our dynamic optimizations.

7.1 Description of benchmark

“Portable BOB”, or the “Portable Business Object Benchmark” [22], is a benchmark

designed to quantify the performance of simple transactional server workloads written

in Java. The source code, minus libraries, is approximately 18,000 lines. It models

86

a typical electronic order entry business scenario. Its business model is based on the

business model used by TPC Benchmark CTM , Standard Specification, Revision 3.3,

April 8, 1997.[132]

This benchmark was chosen because it is a good model of the typical application

that a dynamic compilation system such as this would be used for — a long running,

dynamic server-type application. It is also written like a typical modern business

application — it was written to emulate common coding practices, not necessarily

practices providing the best possible performance. Another reason that it is an in-

teresting benchmark is that it does not have any obvious way of benefitting from

dynamic compilation. Some applications can have huge gains from dynamic compi-

lation through obvious specialization opportunities [118, 74]. However, by showing

the performance and effectiveness on a benchmark that does not have obvious spe-

cialization opportunities, we can better evaluate whether such a dynamic compilation

system is useful in general, rather than in special, specific cases only.

7.2 Effectiveness of concurrent optimizations

This section shows the effectiveness of the concurrent optimizations in BC2IR on

actual code. For each of the following sections, the stated numbers are for all of the

code for Portable BOB benchmark, minus the libraries, with different BC2IR options.

7.2.1 Null pointer checks eliminated

Figure 7-1 shows the number of null pointer checks in the IR with and without the

null pointer check elimination optimization (described in section 3.4.8). As the figure

shows, over 90% of the null pointer checks are eliminated by the simple null pointer

check elimination optimization. The optimization is especially effective because it

reduces compile-time, due to the reduction in the size of the IR.

87

0

5000

10000

15000

20000

25000

30000

Without null check elimination With null check elimination

Figure 7-1: Static number of null pointer checks eliminated by the null pointer check
elimination optimization in BC2IR

0

500

1000

1500

2000

2500

Without type analysis With type analysis

Figure 7-2: Static number of run time type checks eliminated by type analysis in
BC2IR

88

7.2.2 Type checks eliminated

Figure 7-2 shows the static number of runtime type checks in the IR with and without

type analysis in BC2IR (see section 3.4.9). As the figure shows, a significant number

of type checks (mostly checkcast instructions) are eliminated due to the type analysis

performed by BC2IR.

7.2.3 Reduction in size of IR

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

All optimizations No null check
elimination

No type analysis No copy
propagation

Figure 7-3: Size of the generated IR (in number of instructions) with different BC2IR
optimization options

Figure 7-3 shows the size of the IR (in number of instructions) with different

BC2IR optimization options enabled. Null pointer check elimination gives the largest

gain. Copy propagation is also very effective.

7.2.4 Reduction in code generation time

Figure 7-4 shows the amount of time taken to compile all of the methods in the

benchmark, with different BC2IR optimization options. Because the compilation

time is strongly dependent on the size of the IR, optimizations that reduce the size

of the IR also reduce compilation time.

89

0

500

1000

1500

2000

2500

3000

3500

4000

4500

All optimizations No null check
elimination

No type analysis No copy
propagation

Figure 7-4: Time (in ms) spent in dynamic compilation of pBOB with different BC2IR
optimization options

7.2.5 Reduction in run time

Figure 7-5 shows the reduction in execution time when different optimization options

are enabled in BC2IR. This shows that the optimizations not only reduce dynamic

compile time, but also improve code quality.

7.3 Effectiveness of dynamic optimizations

This section presents some preliminary performance results on the effectiveness of the

dynamic optimizations. More results will appear in future publications.

7.3.1 Effectiveness of speculative inlining

Figure 7-6 shows the effect of the speculative inlining optimization described in sec-

tion 6.1. Enabling speculative inlining has a major impact because of the object-

oriented style of our benchmark — most calls are virtual, even though they only have

a single target, and most method bodies are small.

90

50000

55000

60000

65000

70000

75000

80000

85000

90000

95000

100000

All optimizations No null check
elimination

No type analysis No copy
propagation

Figure 7-5: Execution times (in ms) of pBOB compiled with different BC2IR opti-
mization options

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

No dynamic optimizations With speculative inlining

Figure 7-6: Execution times of pBOB (in ms) with and without speculative inlining
enabled

91

Chapter 8

Related Work

The sound of the Gion Shōja bells echoes the impermanence of all things...

The color of the śāla flowers reveals the truth that the prosperous must

decline.

The proud do not endure; they are like a dream on a spring night;

The mighty fall at last, they are as dust before the wind....

— Heike monogatari (The Tale of the Heike), thirteenth century.

8.1 BC2IR

The BC2IR step (see chapter 3) incorporates ideas from many different areas. This

section compares BC2IR to prior work in related areas.

8.1.1 Converting stack based code to register based code

The problems of compiling stack-based code into efficient code for register machines

are well known in the programming language Forth [67, 68]. However, Forth uses a

more general stack machine model in which the stack depth can differ depending on

which path through the code is taken, and so the stack cannot always be eliminated.

Because the Java specifications state that at a given program point the stack will

92

always be the same size regardless of the path, the stack can always be eliminated

and the process of translation is greatly simplified.

8.1.2 Java compilers

This section compares current work on Java compilers to the BC2IR algorithm de-

scribed in chapter 3. CACAO is a Just-in-Time compiler for the DEC Alpha [95, 69].

It translates Java bytecode into a simple intermediate representation, performs reg-

ister allocation, and then emits target code. Like BC2IR, it keeps track of a stack

state as bytecodes are parsed, and attempts to reduce the number of superfluous copy

instructions generated and registers used. Unlike BC2IR, it requires multiple passes

over the code: once to extract the bytecodes and place them into fixed length in-

structions, another to compute basic block and control flow information, and a third

to generate the IR. It does not support combining other analyses with IR generation.

The resulting IR is designed for rapid code generation, rather than for performing

optimization. DAISY is a VLIW architecture that supports JIT compilation of dif-

ferent architectures, including Java bytecode [63]. It supports single pass translation

by performing a depth first traversal of the bytecode, but it does not perform any

concurrent analyses or optimizations. Briki [39, 38] is an extension to the freely avail-

able Kaffe JIT compiler [136] to allow it to perform more advanced optimizations.

It starts from the Kaffe IR representation and computes a control flow graph and

def-use information.

Caffeine is a static Java compiler that includes a stage that generates IR from

bytecode [85, 86]. It supports both a simple translation scheme that maintains the

stack and a more sophisticated one that uses registers exclusively. The Cream system

is a static optimizer for Java bytecode [40]. It transforms bytecode in a nine-step

process, including construction of a control flow graph and inference of the stack

depth at all points. It eliminates the stack abstraction by treating different stack

depths as different registers. Toba [121] and Harissa [113, 112] convert Java class

files to C, using a similar technique to remove the stack abstraction. Because they

are designed for static compilation, none of these systems attempt to perform any

93

optimizations during translation. They count on later optimization phases to remove

extra registers and redundant copy instructions.

8.1.3 Abstract Interpretation

Abstract interpretation (or alternatively, symbolic execution) has mainly been used in

logic and functional languages. It is often used to develop provably correct program

analyses [21, 51]. It also has been recognized as a powerful technique for performing

flow sensitive data flow analyses [78] and has been used in highly optimizing compil-

ers [93, 77]. As far as we know, BC2IR is the first abstract interpretation engine that

operates on Java bytecode.

8.1.4 Combining analyses and negative time optimization

Various sources remark on the fact that combining analyses can not only be more

efficient, but lead to better results than running the analyses separately [41, 111]. A

system for intra- and interprocedural data flow analysis presented in [25] allows one

to run multiple analyses “in parallel” to achieve the precision of a single monolithic

analysis while preserving modularity and reusability.

In [41], Click mentioned that finding constants and common subexpressions while

parsing reduced the peak intermediate representation size, which reduced total com-

pilation time by 10% due to the fact that later global analyses were faster. The fact

that some optimizations can reduce the amount of time spent in later optimizations

is also sometimes mentioned in discussions of the order in which to perform optimiza-

tions [7, 111]. We are not aware of any other work on negative-time optimization.

8.2 Speculative inlining

8.2.1 Specialization benefit prediction

We believe that the specialization benefit prediction algorithm outlined in section 3.4.16

is unique. There has been some work on attempting to predict the benefit of inlin-

94

ing [58, 61] based on ‘inlining trials’. The compiler experimentally performs inlining

and records the result in a database that is consulted to guide future inlining de-

cisions. There has also been work on designing accurate static predictors of profile

information [134, 116].

8.2.2 Backing out of specialization optimizations

There has been some work on partial program invalidation with specialization opti-

mizations and selective recompilation [24]. Our system is different — it incorporates

run-time checks to validate assumptions and has the ability to revert a currently

executing optimized method to an unoptimized version.

95

Chapter 9

Conclusion

sakite toku

chiru wa ukeredo

yuku haru wa

hana no miyako o

tachikaerimi yo

It is painful

that blossoms must scatter so soon,

but please view them next year,

when the spring that now departs

shall have returned to the city.

— Ō-no-myōbu, Genji monogatari, eleventh century.

Dynamic compilation is an attractive research area because it holds the promise

of significant performance improvements for some applications. Automatically iden-

tifying and exploiting opportunities for dynamic optimization is a difficult problem,

but holds incredible promise. It is one more step towards the eventual goal of allow-

ing programmers to concentrate on system aspects other than performance, such as

maintainability, reliability, etc.

This thesis presented a dynamic compilation system that is suitable for relatively

long-running dynamic Java applications, such as server applications. The system is

centered around an abstract interpretation engine that converts Java bytecode into a

register-based intermediate representation in a single pass, concurrently performing

numerous optimizations and analyses. The conversion process is single pass due to

efficiency considerations. This thesis also presented data structures and routines for

gathering and organizing runtime performance data, and techniques for using that

96

information to improve system performance. Finally, it presented some preliminary

results that show that the dynamic compilation techniques are reasonable.

97

Bibliography

[1] Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh,

and James M. Stichnoth. Fast and effective code generation in a just-in-time

Java compiler. ACM SIGPLAN Notices, 33(5):280–290, May 1998.

[2] O. Agesen, J. Palsberg, and M. I. Schwartzbach. Type Inference SELF: Analysis

of Objects with Dynamic and Multiple Inheritance. In O. Nierstrasz, editor,

European Conference on Object-Oriented Programming, LNCS 707, pages 247–

267, Kaiserslautern, Germany, July 1993. Springer.

[3] Ole Agesen. Design and implementation of Pep, a Java just-in-time translator.

Theory and Practice of Object Sytems, 3(2):127–155, 1997.

[4] Ole Agesen and David Detlefs. Finding references in Java stacks. In Peter

Dickman and Paul R. Wilson, editors, OOPSLA ’97 Workshop on Garbage

Collection and Memory Management, October 1997.

[5] Ole Agesen and David Detlefs. Garbage collection and live variable type-

precision and liveness in Java Virtual Machines. In Proceedings of SIGPLAN’98

Conference on Programming Languages Design and Implementation, ACM SIG-

PLAN Notices, Montreal, June 1998. ACM Press.

[6] Ole Agesen and Urs Hoelzle. Type feedback vs. concrete type analysis: A

comparison of optimization techniques for object-oriented languages. Technical

Report TRCS 95-04, Computer Science Department, University of California,

Santa Barbara, March 1995.

98

[7] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques and

Tools. Addison-Wesley, Reading, MA, 1986.

[8] Bowen Alpern, Anthony Cocchi, Derek Lieber, Mark Mergen, and Vivek Sarkar.

Jalapeño — a compiler-supported JavaTM virtual machine for servers. In Pro-

ceedings of the 1999 ACM SIGPLAN Workshop on Compiler Support for System

Software (WCSSS’99), Atlanta, Georgia, May 1, 1999. ACM Press.

[9] Glen Ammons, Thomas Ball, and James R. Larus. Exploiting hardware per-

formance counters with flow and context sensitive profiling. In SIGPLAN ’97

Conference on Programming Language Design and Implementation, 1997.

[10] P. H. Andersen. Partial evaluation applied to ray tracing. DIKU Research

Report 95/2, DIKU, University of Copenhagen, Denmark, 1995.

[11] Wing Yee Au, Daniel Weise, and Scott Seligman. Automatic generation of com-

piled simulations through program specialization. In ACM-SIGDA; IEEE, edi-

tor, Proceedings of the 28th ACM/IEEE Design Automation Conference, pages

205–210, San Francisco, CA, June 1991. ACM Press.

[12] T. Autrey and M. Wolfe. Initial results for glacial variable analysis. Interna-

tional Journal of Parallel Programming, 26(1):43–64, February 1998.

[13] Ball and James Larus. Optimal profiling and tracing of programs. In Conference

Record of the Nineteenth Annual ACM Symposium on Principles of Program-

ming Languages, ACM SIGPLAN Notices, pages 59–70. ACM Press, January

1992.

[14] Thomas Ball and James R. Larus. Efficient path profiling. In Proceedings of

the 29th Annual International Symposium on Microarchitecture, pages 46–57,

Paris, France, December 2–4, 1996. IEEE Computer Society TC-MICRO and

ACM SIGMICRO.

[15] L. Beckman et al. A partial evaluator, and its use as a programming tool.

Artificial Intelligence, 7(4):319–357, 1976.

99

[16] A. Berlin. Partial evaluation applied to numerical computation. In Confer-

ence on Lisp and Functional programming, pages 139–150. ACM SIGPLAN,

SIGACT, SIGART, 1990.

[17] M. R. Blair. Descartes: A dynamically adaptive compiler and run-time system

using continual profile-driven program multi-specialization.

[18] R. G. Burger. Efficient Compilation and Profile-Driven Dynamic Recompilation

in Scheme. PhD thesis, Indiana University, Bloomington, IN, February 1997.

[19] Robert G. Burger and R. Kent Dybvig. An infrastructure for profile-driven

dynamic recompilation. In Proceedings of the IEEE Conference on Computer

Languages (ICCL). IEEE, April 1998.

[20] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind,

Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John

Whaley. The Jalapeño dynamic optimizing compiler for JavaTM . In Proceedings

of the ACM SIGPLAN ’99 Java Grande Conference, San Francisco, CA, June

12–14, 1999. ACM Press.

[21] G. L. Burn. The abstract interpretation of functional languages. In G. L.

Burn, S. J. Gay, and M. D. Ryan, editors, Theory and Formal Methods 1993:

Proceedings of the First Imperial College, Department of Computing, Workshop

on Theory and Formal Methods, Workshops in Computer Science, Isle of Thorns

Conference Centre, Chelwood Gate, Sussex, UK, March 1993. Springer-Verlag.

[22] Business object benchmark for java.

http://www.as400.ibm.com/developer/performance/bob/jbob400paper.pdf.

[23] Gary Carleton, Knud Kirkegaard, and David Sehr. Programmer’s toolchest:

Profile-guided optimizations. j-DDJ, 23(5):98, 100–103, May 1998.

[24] C. Chambers, J. Dean, and D. Grove. A Framework for Selective Recompilation

in the Presence of Complex Intermodule Dependencies. In Proceedings of the

100

17th International Conference on Software Engineering, pages 221–230, April

1995.

[25] C. Chambers, J. Dean, and D. Grove. Frameworks for intra- and interprocedural

dataflow analysis. Technical Report TR-96-11-02, University of Washington,

Department of Computer Science and Engineering, November 1996.

[26] C. Chambers, J. Dean, and D. Grove. Whole-program optimization of object-

oriented languages. Technical Report TR-96-06-02, University of Washington,

January 28, 1997.

[27] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of SELF ..

Lisp and Symbolic Computation, 4:243–281, 1991.

[28] Craig Chambers. The Design and Implementation of the SELF Compiler, an

Optimizing Compiler for an Object-Oriented Programming Language. PhD the-

sis, Stanford University, Palo Alto, California, March 1992.

[29] Craig Chambers, David Grove, Greg DeFouw, and Jeffrey Dean. Call graph

construction in object-oriented languages. ACM SIGPLAN Notices, 32(10):108–

124, October 1997.

[30] Craig Chambers, Igor Pechtchanski, Vivek Sarkar, Mauricio J. Serrano, and

Harini Srinivasan. Dependence analysis for Java. In Proceedings of the

1999 ACM Workshop on Languages for Compilers and Parallel Computing

(LCPC’99). ACM Press, 1999. submitted.

[31] Craig Chambers and David Ungar. Customization: optimizing compiler tech-

nology for SELF, a dynamically-typed object-oriented programming language.

ACM SIGPLAN Notices, 24(7):146–160, July 1989.

[32] Craig Chambers and David Ungar. Iterative type analysis and extended message

splitting: Optimizing dynamically-typed object-oriented programs. Lisp and

Symbolic Computation, 4(3):283–310, July 1991.

101

[33] Pohua P. Chang, Daniel M. Lavery, and Wen mei W. Hwu. The effect of code

expanding optimizations of instruction cache design. Technical Report CRHC-

91-18, Coordinated Science Lab, University of Illinois, January 1992.

[34] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-Mei W. Hwu.

Profile-guided automatic inline expansion for C programs. Software Practice

and Experience, 22(5):349–369, May 1992.

[35] Pohua P. Chang, Scott A. Mahlke, and Wen mei W. Hwu. Using profile infor-

mation to assist classic code optimizations. Software Practice and Experience,

1991.

[36] W. Chen, R. Bringmann, S. Mahlke, S. Anik, T. Kiyohara, N. Warter, D. Lav-

ery, W.-M. Hwu, R. Hank, and J. Gyllenhaal. Using profile information to

assist advanced compiler optimization and scheduling. Lecture Notes in Com-

puter Science, 757:31–??, 1993.

[37] Jong-Deok Choi, David Grove, Michael Hind, and Vivek Sarkar. Efficient and

precise modeling of exceptions for the analysis of Java programs. In Proceed-

ings of the 1999 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering (PASTE’99), Toulouse, France, September

6–10, 1999. ACM Press.

[38] M. Cierniak and W. Li. Optimizing Java bytecodes. Concurrency - Practice

and Experience, 9(6):427–444, June 1997.

[39] Michal Cierniak and Wei Li. Briki: A flexible Java compiler. Technical Report

TR621, University of Rochester, Computer Science Department, May 1996.

Thu, 17 Jul 97 09:00:00 GMT.

[40] Lars R. Clausen. A Java bytecode optimizer using side-effect analysis. In

Geoffrey C. Fox and Wei Li, editors, PPoPP’97 Workshop on Java for Science

and Engineering Computation, Las Vegas, June 1997. ACM.

102

[41] Jr. Click, Clifford Noel. Combining analysis, combining optimizations. Techni-

cal Report TR95-252, Rice University, April 24, 1998.

[42] C. Consel and O. Danvy. Partial evaluation of pattern matching in strings.

Information Processing Letters, 30:79–86, 1990.

[43] C. Consel, L. Hornof, F. Noel, and J. Noye. A uniform approach for compile-time

and run-time specialization. Lecture Notes in Computer Science, 1110:54–??,

1996.

[44] C. Consel and S. C. Khoo. Semantics-directed generation of a prolog com-

piler. Technical Report YALEU/DCS/RR-781, Yale University, New Haven,

Connecticut, May 1990.

[45] Charles Consel and Olivier Danvy. Static and dynamic semantics processing. In

ACM, editor, POPL ’91. Proceedings of the eighteenth annual ACM symposium

on Principles of programming languages, January 21–23, 1991, Orlando, FL,

pages 14–24, New York, NY, USA, 1991. ACM Press.

[46] Charles Consel and Olivier Danvy. Partial evaluation: Principles and perspec-

tives. A previous version of this tutorial appeared in the proceedings of the

20th Annual ACM SIGPLAN-SIGACT symposium on Principles of Program-

ming Languages, Jan 1993, South Carolina, January 1993.

[47] Thomas M. Conte, Kishore N. Menezes, and Mary Ann Hirsch. Accurate and

practical profile-driven compilation using the profile buffer. In Proceedings of

the 29th Annual International Symposium on Microarchitecture, pages 36–45,

Paris, France, December 2–4, 1996. IEEE Computer Society TC-MICRO and

ACM SIGMICRO.

[48] Thomas M. Conte, Burzin A. Patel, and J. Stan Cox. Using branch handling

hardware to support profile-driven optimization. In Proceedings of the 27th

Annual International Symposium on Microarchitecture, pages 12–21, San Jose,

103

California, November 30–December 2, 1994. ACM SIGMICRO and IEEE Com-

puter Society TC-MICRO.

[49] Thomas M. Conte, Burzin A. Patel, Kishore N. Menezes, and J. Stan Cox.

Hardware-based profiling: An effective technique for profile-driven optimiza-

tion. International Journal of Parallel Programming, 24(2):187–206, April 1996.

[50] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.

MIT Press and McGraw-Hill Book Company, 6th edition, 1992.

[51] Patrick Cousot and Radhia Cousot. Systematic design of program analysis

frameworks. In Conference Record of the Sixth Annual ACM Symposium on

Principles of Programming Languages, pages 269–282. ACM, ACM, January

1979.

[52] P. Cregut. Machines a environnement pour la reduction symbolique et

l’evaluation partielle. PhD thesis, Universite Paris VII, 1991.

[53] R.R. Henry C.W. Fraser and T.A. Proebsting. Burg — fast optimal instruc-

tion selection and tree parsing. In SIGPLAN ’92 Conference on Programming

Language Design and Implementation, 1992.

[54] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. An efficient method of computing static single assignment form.

Technical Report CS-88-16, Department of Computer Science, Brown Univer-

sity, October 1988. Sun, 13 Jul 1997 18:30:15 GMT.

[55] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. Efficiently computing Static Single Assignment form and the

control dependence graph. ACM Transactions on Programming Languages and

Systems, 13(4):451–490, October 1991.

[56] Ron K. Cytron and Jeanne Ferrante. Efficiently computing φ-nodes on-the-fly.

ACM Transactions on Programming Languages and Systems, 17(3):487–506,

May 1995.

104

[57] O. Danvy. Semantics-directed compilation of non-linear patterns. Information

Processing Letters, 37(6):315–322, 1991.

[58] Dean and Chambers. Training compilers to make better inlining decisions.

Technical Report TR 93-05-05, University of Washington, 05 1993.

[59] J. Dean, C. Chambers, and D. Grove. Identifying profitable specialization in

object-oriented languages. Technical Report TR-94-02-05, University of Wash-

ington, Department of Computer Science and Engineering, February 1994.

[60] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented pro-

grams using static class hierarchy analysis. Lecture Notes in Computer Science,

952:77–??, 1995.

[61] Jeffrey Dean and Craig Chambers. Towards better inlining decisions using

inlining trials. In Conference on Lisp and Functional programming, pages 273–

282. ACM SIGPLAN, SIGACT, SIGART, LISP Pointers, July-September 1994.

[62] Jeffrey Dean, Craig Chambers, and David Grove. Selective specialization for

object-oriented languages. ACM SIGPLAN Notices, 30(6):93–102, June 1995.

[63] Kemal Ebcioglu, Erik Altman, and Erdem Hokenek. A Java ILP machine based

on fast dynamic compilation. In MASCOTS ’97 — International Workshop on

Security and Efficiency Aspects of Java, 1997.

[64] D. Engler and M. F. Kaashoek. DPF: Fast, flexible message demultiplexing

using dynamic code generation. In Proceedings of the ACM SIGCOMM Confer-

ence on Applications, Technologies, Architectures, and Protocols for Computer

Communications, volume 26,4 of ACM SIGCOMM Computer Communication

Review, pages 53–59, New York, August 26–30 1996. ACM Press.

[65] Dawson R. Engler. VCODE: A retargetable, extensible, very fast dynamic

code generation system. ACM SIGPLAN Notices, 31(5):160–170, May 1996.

105

[66] Dawson R. Engler and Todd A. Proebsting. DCG: An efficient, retargetable

dynamic code generation system. In Proceedings of the Sixth International

Conference on Architectural Support for Programming Languages and Operat-

ing Systems, pages 263–272, San Jose, California, October 4–7, 1994. ACM

SIGARCH, SIGOPS, SIGPLAN, and the IEEE Computer Society.

[67] M. Anton Ertl. A new approach to Forth native code generation. In euroForth

’92 Conference Proceedings, pages 73–78, MPE Ltd., 133 Hill Lane, Southamp-

ton. SO1 5AF UK, October 1992. Forth Interest Group.

[68] M. Anton Ertl. Implementation of Stack-Based Languages on Register Ma-

chines. Dissertation, Technische Universität Wien, Austria, 1996.

[69] M. Anton Ertl. Fast high-quality JavaVM compilation. Seminar given at IBM

Watson Research Center, Yorktown Heights, August 1997.

[70] M. Anton Ertl. Optimal code selection in DAGs. In 26th Annual ACM SIGACT-

SIGPLAN Symposium on the Principles of Programming Languages, January

1999.

[71] J. A. Fisher. Trace scheduling : A technique for global microcode compaction.

IEEE Trans. Comput., C-30(7):478–490, 1981.

[72] J. A. Fisher. Trace Scheduling-2, an extension of trace scheduling. Hewlett-

Packard Laboratories, 1992.

[73] C. D. Garrett, J. Dean, D. Grove, and C. Chambers. Measurement and appli-

cation of dynamic receiver class distributions. Technical Report TR-94-03-05,

University of Washington, Department of Computer Science and Engineering,

March 1994.

[74] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers. DyC: An

expressive annotation-directed dynamic compiler for C. Technical Report TR

97-03-03, University of Washington, 03 1997.

106

[75] D. Grove, J. Dean, C. Garrett, and C. Chambers. Profile-guided receiver class

prediction. ACM SIGPLAN Notices, 30(10):108–123, October 1995.

[76] Sheila Harnett and Margaret Montenyohl. Towards efficient compilation of a

dynamic object-oriented language. In Proceedings of the 1992 ACM Workshop

on Partial Evaluation and Semantics-Based Program Manipulation, pages 82–

89, San Francisco, U.S.A., June 1992. Association for Computing Machinery.

[77] L. Harrison. Abstract interpretation in a production C/C++ compiler.

Dagstuhl-Seminar on Abstract Interpretation, August 1995.

[78] L. Harrison. Can abstract interpretation become a mainstream compiler tech-

nology? Lecture Notes in Computer Science, 1302:395–??, 1997.

[79] R. R. Heisch. Trace-directed program restructuring for AIX executables. IBM

Journal of Research and Development, 38(5):595–603, September 1994.

[80] T. H. Hickey and D. A. Smith. Toward the partial evaluation of CLP languages.

In Partial Evaluation and Semantics-Based Program Manipulation, New Haven,

Connecticut (Sigplan Notices, vol. 26, no. 9, September 1991), pages 43–51. New

York: ACM, 1991.

[81] Urs Hölzle and Ole Agesen. Dynamic versus static optimization techniques for

object-oriented languages. Theory and Practice of Object Sytems, 1(3):167–188,

1995.

[82] Urs Holzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed

object-oriented languages with polymorphic inline caches. Lecture Notes in

Computer Science, 512:21–??, 1991.

[83] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code with

dynamic deoptimization. SIGPLAN Notices, 27(7):32–43, July 1992. Proceed-

ings of the ACM SIGPLAN ’92 Conference on Programming Language Design

and Implementation.

107

[84] Hotspot compiler.

http://java.sun.com/javaone/sessions/slides/TT06/title.htm.

[85] C.-H. A. Hsieh, J. C. Gyllenhaal, and W. W. Hwu. Java bytecode to native

code translation: the Caffeine prototype and preliminary results. In IEEE,

editor, Proceedings of the 29th annual IEEE/ACM International Symposium

on Microarchitecture, December 2–4, 1996, Paris, France, pages ??–??, 1109

Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1996. IEEE Computer

Society Press.

[86] Cheng-Hsueh A. Hsieh, Marie T. Conte, Teresa L. Johnson, John C. Gyllen-

haal, and Wen mei W. Hwu. Optimizing NET compilers for improved Java

performance. Computer, 30(6):67–75, June 1997.

[87] W. W. Hwu and P. P. Chang. Achieving high instruction cache performance

with an optimizing compiler. In Michael Yoeli and Gabriel Silberman, editors,

Proceedings of the 16th Annual International Symposium on Computer Archi-

tecture, pages 242–251, Jerusalem, Israel, June 1989. IEEE Computer Society

Press.

[88] Intel C/C++ compiler plug in.

http://developer.intel.com/design/perftool/icl24/icl24wht.htm.

[89] J. S. Cox, D. P. Howell and T. M. Conte. Commercializing profile-driven op-

timization. In Trevor N. Mudge and Bruce D. Shriver, editors, Proceedings of

the 28th Annual Hawaii International Conference on System Sciences. Volume

1: Architecture, pages 221–228, Los Alamitos, CA, USA, January 1995. IEEE

Computer Society Press.

[90] N. D. Jones, P. Sestoft, and H. Søndergaard. An experiment in partial eval-

uation: The generation of a compiler generator. In J.-P. Jouannaud, editor,

Rewriting Techniques and Applications, Dijon, France. (Lecture Notes in Com-

puter Science, vol. 202), pages 124–140. Berlin: Springer-Verlag, 1985.

108

[91] N.D. Jones, P. Seshoft, , and H. Søndergaard. Mix: a self-applicable partial

evaluator for experiments in compiler generation. Lisp and Symbolic Computa-

tion, 2:9–50, 1989.

[92] Jesper Jørgensen. Generating a pattern matching compiler by partial evalua-

tion. In Simon L. Peyton Jones, Graham Hutton, and Carsten Kehler Holst,

editors, Proceedings of the 1990 Glasgow Workshop on Functional Program-

ming, Workshops in Computing, pages 177–195, London, August 13–15 1991.

Springer Verlag.

[93] A. Kelly, A. Macdonald, K. Marriott, H. Søndergaard, P. Stuckey, and R. Yap.

An optimizing compiler for CLP(R). In U. Montanari and F. Rossi, editors,

Principles and Practice of Constraint Programming—CP’95, Lecture Notes in

Computer Science 976, pages 222–239. Springer-Verlag, 1995.

[94] S. C. Khoo and R. S. Sundaresh. Compiling inheritance using partial evaluation.

In Proceedings of the Symposium on Partial Evaluation and Semantics-Based

Program Manipulation, volume 26, pages 211–222, New Haven, CN, June 1991.

[95] Andreas Krall and Reinhard Grafl. CACAO – A 64 bit JavaVM just-in-time

compiler. In Geoffrey C. Fox and Wei Li, editors, PPoPP’97 Workshop on Java

for Science and Engineering Computation, Las Vegas, June 1997. ACM.

[96] Peter Lee and Mark Leone. Optimizing ML with run-time code generation. In

Proceedings of the ACM SIGPLAN ’96 Conference on Programming Language

Design and Implementation, pages 137–148, Philadelphia, Pennsylvania, 21–

24 May 1996.

[97] M. Leone and R. K. Dybvig. Dynamo: A staged compiler architecture for

dynamic program optimization. Technical Report #490, Indiana University

Computer Science Department, Indiana University, Bloomington, IN, Septem-

ber 1997.

109

[98] Mark Leone and Peter Lee. Deferred compilation: The automation of run-time

code generation. Technical Report CMU-CS-93-225, Carnegie-Mellon, Depart-

ment of Computer Science, Pittsburgh, PA 15212, December 1993.

[99] Mark Leone and Peter Lee. Lightweight run-time code generation. In Pro-

ceedings of the 1994 ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation, pages 97–106. Technical Report 94/9,

Department of Computer Science, University of Melbourne, June 1994.

[100] Mark Leone and Peter Lee. A declarative approach to run-time code generation.

In Workshop on Compiler Support for System Software (WCSSS), February

1996.

[101] Mark Leone and Peter Lee. Dynamic specialization in the Fabius system. ACM

Computing Surveys, 30(3es):??–??, September 1998. Article 23.

[102] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Ad-

dison-Wesley, Reading, MA, USA, second edition, 1999.

[103] L. A. Lombardi and Bertram Raphael. LISP as the language for an incremental

computer. Report MAC-M-142, Massachusetts Institute of Technology, A.I.

Lab., Cambridge, Massachusetts, March 1964.

[104] H. Massalin. Synthesis: An Efficient Implementation of Fundamental Operating

System Services. PhD thesis, Columbia University, 1992.

[105] H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical Report

CUCS–005–91, Columbia University, 1991.

[106] Henry Massalin and Calton Pu. Threads and input output in the Synthe-

sis kernel. In Proceedings of the 12th ACM Symposium on Operating Systems

Principles, pages 191–201, Litchfield Park AZ USA, December 1989. ACM.

[107] Henry Massalin and Calton Pu. Fine-grain adaptive scheduling using feedback.

Computing Systems, 3(1):139–173, Winter 1990.

110

[108] Henry Massalin and Calton Pu. Reimplementing the Synthesis kernel on the

Sony NeWS workstation. In Workshop on Micro-Kernels and Other Kernel

Architectures, pages 177–186, Seattle WA (USA), April 1992. Usenix.

[109] Wen mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang,

Nancy J. Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank,

Tokuzo Kiyohara, Grant E. Haab, J. G. Holm, and D. M. Lavery. The su-

perblock: An effective technique for VLIW and superscalar compilation. The

Journal of Supercomputing, 7(1-2):229–248, May 1993.

[110] T. Mogensen. The application of partial evaluation to ray-tracing. Master’s

thesis, DIKU, University of Copenhagen, Denmark, 1986.

[111] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann, San Francisco, CA, 1997.

[112] Gilles Muller, Bárbara Moura, Fabrice Bellard, and Charles Consel. Harissa: A

flexible and efficient Java environment mixing bytecode and compiled code. In

Proceedings of the 3rd Conference on Object-Oriented Technologies and Systems,

pages 1–20, Berkeley, June 16–20 1997. Usenix Association.

[113] Gilles Muller and Ulrik Pagh Schultz. Harissa: A hybrid approach to Java

execution. IEEE Software, 16(2):44–51, March/April 1999.

[114] Gilles Muller, Eugen-Nicolae Volanschi, and Renaud Marlet. Scaling and par-

tial evaluation for optimizing the Sun commercial RPC protocol. In Proceed-

ings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-

Based Program Manipulation, pages 116–126, Amsterdam, The Netherlands,

12–13 June 1997.

[115] Vivek Nirkhe and William Pugh. Partial evaluation of high-level imperative

programming languages with applications in hard real-time systems. In ACM,

editor, Conference record of the Nineteenth Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages: papers presented at the

111

symposium, Albuquerque, New Mexico, January 19–22, 1992, pages 269–280,

New York, NY, USA, 1992. ACM Press.

[116] Jason R. C. Patterson. Accurate static branch prediction by value range prop-

agation. ACM SIGPLAN Notices, 30(6):67–78, June 1995.

[117] Karl Pettis and Robert C. Hansen. Profile guided code positioning. SIGPLAN

Notices, 25(6):16–27, June 1990. Proceedings of the ACM SIGPLAN ’90 Con-

ference on Programming Language Design and Implementation.

[118] Massimiliano Poletto, Dawson R. Engler, and M. Frans Kaashoek. tcc: A sys-

tem for fast, flexible, and high-level dynamic code generation. In Proceedings of

the ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI-97), volume 32, 5 of ACM SIGPLAN Notices, pages 109–121,

New York, June 15–18 1997. ACM Press.

[119] Massimiliano Poletto and Vivek Sarkar. Linear Scan Register Allocation. ACM

TOPLAS, 1999. To appear.

[120] Todd Proebsting. Personal communication, 1997.

[121] Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hartman, Tim

Newsham, and Scott A. Watterson. Toba: Java for applications: A way ahead of

time (WAT) compiler. In Proceedings of the 3rd Conference on Object-Oriented

Technologies and Systems, pages 41–54, Berkeley, June 16–20 1997. Usenix As-

sociation.

[122] Calton Pu and Henry Massalin. AN OVERVIEW OF THE synthesis OPER-

ATING SYSTEM. Technical Report CUCS-470-89, University of Columbia,

1989.

[123] Calton Pu and Henry Massalin. Quaject composition in the Synthesis kernel.

In Luis-Felipe Cabrera, Vince Russo, and Marc Shapiro, editors, 1991 Inter-

national Workshop on Object Orientation in Operating Systems, pages 29–34,

Palo Alto CA (USA), October 1991. IEEE, IEEE Computer Society Press.

112

[124] Calton Pu, Henry Massalin, and John Ioannidis. THE SYNTHESIS KERNEL

CUCS-259-87. Technical report, University of Columbia, 1987.

[125] Calton Pu, Henry Massalin, and John Ioannidis. The synthesis kernel. In

USENIX Association, editor, Computing Systems, Winter, 1988., volume 1,

pages 11–32, Berkeley, CA, USA, Winter 1988. USENIX.

[126] C. Queinnec and J.-M. Geffroy. Partial evaluation applied to pattern matching

with intelligent backtracking. In M. Billaud et al., editors, WSA ’92, Static

Analysis, Bordeaux, France, September 1992. Bigre vols 81–82, 1992, pages

109–117. Rennes: IRISA, 1992.

[127] A. Dain Samples. Compiler implementation of ADTs using profile data. In Uwe

Kastens and Peter Pfahler, editors, Compiler Construction, 4th International

Conference on Compiler Construction, volume 641 of Lecture Notes in Com-

puter Science, pages 72–87, Paderborn, Germany, 5–7 October 1992. Springer.

[128] Alan Dain Samples. Profile-driven compilation. Technical Report UCB//CSD-

91-627, University of California Berkeley, Department of Computer Science,

1991.

[129] Vivek Sarkar, Mauricio J. Serrano, and Barbara B. Simons. “Retargeting Op-

timized Code by Matching Tree Patterns in Directed Acyclic Graphs”, Patent

Application, submitted in December 1998.

[130] Vugranam C. Sreedhar and Guang R. Gao. A linear time algorithm for placing

φ-nodes. In Conference Record of the 22nd ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages (POPL’95), pages 62–73, San

Francisco, California, January 22–25, 1995. ACM Press.

[131] Swaptuner. http://www.microquill.com/prod st/index st.html.

[132] Tpc benchmark cTM , standard specification, revision 3.3.

http://www.benchmarkresources.com/handbook/tpca.pdf.

113

[133] David Ungar and Randall B. Smith. SELF. the power of simplicity. Lisp and

Symbolic Computation, 4(3):187–205, July 1991. Preliminary version appeared

in Proc. ACM Symp. on Object-Oriented Programming: Systems, Languages,

and Applications, 1987, 227-241.

[134] Tim A. Wagner, Vance Maverick, Susan L. Graham, and Michael A. Harrison.

Accurate static estimators for program optimization. ACM SIGPLAN Notices,

29(6):85–96, June 1994.

[135] John Whaley and Martin Rinard. Compositional pointer and escape analysis

for Java programs. In Object Oriented Programing: Systems, Languages, and

Applications (OOPSLA), Denver, CO, 2–5 November 1999. To appear.

[136] T. Wilkinson. Kaffe v0.8.3 - a free virtual machine to run Java code.

http://www.kaffe.org, March 1997.

114

