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1. INTRODUCTION TO THE FUNDAMENTAL GROUP

In this course, we describe the fundamental group, which is an al-
gebraic object we can attach to a geometric space. We will see how
this fundamental group can be used to tell us a lot about the geo-
metric properties of the space. Loosely speaking, the fundamental
group measures “the number of holes” in a space. For example, the
fundamental group of a point or a line or a plane is trivial, while the
fundamental group of a circle is Z. Slightly more precisely, the fun-
damental group of a space X is the space of all loops in X, where we
say two loops are equivalent if you can wiggle one to the other.

As a standard application, if two spaces are sufficiently similar, in
an appropriate sense to be defined then they will have the same fun-
damental group. Since the fundamental group is a relatively com-
putable object, this will, right off the bat, give us a way of proving
that two spaces are quite different.

Moreover, soon after defining the fundamental group, we will be
able to immediately derive a number of interesting consequences.
For example, we will prove the Borsuk-Ulam theorem, which im-
plies, among other things, that at any time, there are always some
two points on exact opposite sides of the earth, with the same tem-
perature and barometric pressure. We will also use this to show you
can always slice a ham sandwich so that there is the same amount
of both pieces of bread and ham on each side of the slice (the “Ham
Sandwich theorem”). Let’s now begin defining the fundamental group.

One excellent source for understanding more about the funda-
mental group is [Hat02]. Indeed, most of the pictures in this doc-
ument were copied from [Hat02].
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2. PRELIMINARIES: SPACES AND HOMOTOPIES

2.1. Spaces. As mentioned above, the fundamental group will be a
way of assigning a certain group to a given space. So, as a first step,
we will introduce spaces and groups:

Definition 2.1. A space X is a subset of Rn. A pointed space (X, x0)
is a space X together with a point x0 ∈ X. For (X, x0) a pointed space,
we call x0 is called the basepoint of X.

Warning 2.2. We will often be sloppy about keeping track exactly
how a given space X is embedded in Rn.

Remark 2.3 (Unimportant remark). The above definition is “bad” in
that it is not natural to embed a give space inside Rn, but rather it is
better to consider it as an abstract space in its own right. This makes
certain construction easier, since we do not have to keep track of an
embedding into Rn. Nevertheless, working with subsets of Rn is
more concrete, and so we will adapt this perspective for most of the
course, unless otherwise noted.

For a brief description of a more general notion of space, see Ap-
pendix A.

There is a third notion of a space which is perhaps even more cor-
rect than that of a topological space: Perhaps you can impress your
friends by saying “the category of spaces is the cocompletion of the
infinity category point” but, for now, let’s just stick to subsets of Rn.

Example 2.4. Here are some examples of spaces we will encounter
frequently:

(1) The space Rn, known as Euclideann-space. As a special case,
we have R0, which is a point.

(2) The n-disk

Dn := {x ∈ Rn : |x| ≤ 1} .

(3) The n-sphere

Sn :=
{
x ∈ Rn+1 : |x| = 1

}
.

(4) The interval I := [0, 1] ⊂ R.

2.2. Maps of spaces. Now that we’ve defined our objects of spaces,
the next step is to define the maps between the objects.

Definition 2.5. For two spaces X and Y, a map of sets f : X → Y is
continuous if for any sequence of points {xi}

n
i=1 in X converging to

x ∈ X, the sequence {f(xi)}
n
i=1 converges to f(x) ∈ Y. A continuous
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map of pointed spaces f : (X, x0) → (Y,y0) is a continuous map of
spaces f : X→ Y such that f(x0) = y0.

Loosely, being continuous means that the map should take limits
to limits.

Example 2.6. The map

f : I→ R2

x 7→ (x, x)

is continuous because for any sequence xi → x, we have f(xi) =
(xi, xi)→ (x, x) = f(x).

Example 2.7 (Non-example). The map

f : I→ R2

x 7→ (x, dxe)

is not continuous because the sequence 1
n tends to 0, and f(0) =

(0, 0), but f (1/n) = (1/n, 1), tends to (0, 1).

Example 2.8. The map f : [0, 2π] 7→ R2 sending x 7→ (sin x, cos x) is
continuous because the functions sin x and cos x are continuous. The
image is the unit circle, which we denote by S1.

Exercise 2.9. Show that a map

f : S→ Rn

s 7→ (f1(s), . . . , fn(s))

is continuous if and only if each fi, viewed as a function fi : S → R,
is continuous.

Exercise 2.10. Verify f in Example 2.8 is continuous directly from
Definition 2.5, using Exercise 2.9 and your favorite definition of sin
and cos Hint: It may be easier to verify continuity if you choose a
well-suited definition.

2.3. Homotopies and Loops. We are nearly ready to define the fun-
damental group. We will define it as the group of all loops, so first
we have to say what a loop and a group is.

Definition 2.11. A path is a continuous map f : I → X. A loop in a
pointed space (X, x0) is a path f : I→ X such that f(0) = f(1) = x0.

Example 2.12. The map I → S1 ⊂ R2 sending t 7→ (cos 2πt, sin 2πt)
is a loop, where we consider S1 as the pointed space with basepoint
(1, 0) ∈ R2.
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FIGURE 1. A picture of a homotopy between paths f1
and f2 from x0 to x1

Remark 2.13. It is often convenient to identify a loop f : I → X with
its image f(I) ⊂ X.

Definition 2.14. A homotopy of paths on X is a continuous map f :
I× I ′ → Xwith f(0, t) = f(0, 0) and f(1, t) = f(1, 0) for all t.

A homotopy (of loops) on (X, x0) is a continuous map f : I× I ′ →
Xwith f(0, t) = f(1, t) = x0. Define

ft : I→ X

s 7→ f(s, t).

If f : I × I → X is a homotopy, we say f0 and f1 are homotopic
and write f0 ∼ f1. A loop is nullhomotopic if it is homotopic to the
constant loop (i.e., the loop f : I→ X given by f(t) = x0 for all t).

Remark 2.15. Intuitively, a homotopy is a family of paths interpolat-
ing between f0 and f1.

Example 2.16. Consider the pointed space (R2, 0) (where 0 really de-
notes the point (0, 0))

f1 : I→ R2

s 7→ (1− cos 2πs, sin 2πs)

and

f0 : I→ R2

s 7→ (0, 0) .

Note that f0 and f1 are homotopic via the homotopy

f : I× I→ R2

(s, t) 7→ (t(1− cos 2πs), t sin 2πs) .

This homotopy linearly interpolates between f0 and f1. One can pic-
ture this as a circle getting squashed to a point.
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Exercise 2.17. Recall that a subset X ⊂ Rn is convex if for any two
points x,y ∈ X, the line segment joining x to y is also contained in X.
Generalize Example 2.16 by showing that if f0, f1 are two loops in a
convex set X ⊂ Rn based at the same point x0, then ft(s) = f(s, t) =
(1− t)f0(s) + tf1(s) defines a homotopy between f0 and f1.

Example 2.18. As an example of two loops which are not homotopic,
consider the pointed space

(
R2 − {0} , (1, 0)

)
and the two loops t 7→

(cos 2πt, sin 2πt) and the constant map t 7→ (1, 0) are not homotopic.
While this is certainly intuitively believable, it is somewhat tricky
to prove. Indeed, we will see this somewhat later; it follows from
Theorem 4.1.

We next claim that homotopy defines an equivalence relation on
the set of loops in a space. Recall that an equivalence relation S is a
relation ∼ on a set S that is

(1) reflexive, meaning x ∼ x
(2) symmetric, meaning x ∼ y =⇒ y ∼ x
(3) and transitive, meaning x ∼ y and y ∼ z =⇒ x ∼ z.

Remark 2.19 (Unimportant remark). Formally, one should define an
equivalence relation as a subset of S× S, but this tends to obfuscate
things more than clarify them.

Example 2.20. The relation on the integers Z defined by “a ∼ b if a−
b is even” is an equivalence relation. To check the three properties,
note that

(1) a− a = 0 is even
(2) a− b = b− a, so a− b is even if and only if b− a is.
(3) If a− b is even and b− c is even, then a− c is even.

Lemma 2.21. Let (X, x0) be a pointed space. Homotopy defines an equiva-
lence relation on the set of loops in (X, x0).

Proof. We have to show reflexivity, symmetry, and transitivity. These
are probably best understood by drawing pictures. For reflexivity,
we have to show any loop is homotopic to itself. That is, for a loop
h : I→ X we need a homotopy f : I× I→ X with f0 = h and f1 = h.
We can simply take f(s, t) := h(s), independent of t. Intuitively,
this is just the “constant homotopy.” To show symmetry, given a
homotopy f ∼ g, we can “reverse the direction of time” to show g ∼ f.
To show reflexivity, if f ∼ g and g ∼ h, then f ∼ g by performing the
two homotopies f ∼ g and g ∼ h at double speed, and composing
them.
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FIGURE 2. A composite of two homotopies

Exercise 2.22. Write out the formulas for symmetry and transitivity
to rigorously complete this proof. Hint: For symmetry, if F(s, t) is a
homotopy between f and g, try F(s, 1− t). For transitivity, if F is a
homotopy between f and g and G is a homotopy between g and h,
try the function

φ(s, t) :=

{
F(s, 2t) if 0 ≤ t ≤ 1

2

G(s, 2t− 1) if 12 ≤ t ≤ 1.

�

Remark 2.23. Note that the equivalence relation of homotopy par-
titions the loops in (X, x0) into equivalence classes called homotopy
classes.
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FIGURE 3. If f0 ∼ f1 and g0 ∼ g2 then f0 ? g0 ∼ f1 ? g1.

3. THE FUNDAMENTAL GROUP: A DEFINITION AND BASIC
PROPERTIES

3.1. Finally defining the fundamental group. Finally, we can de-
fine the fundamental group. If you are not familiar with the defini-
tion of a group, now may be a good time to read the beginning of
Appendix B.

Definition 3.1 (Composition of paths). Let f,g : I→ X be two paths.
Define the composition of f and g, denote (f ? g) : I→ X, by

(f ? g)(t) :=

{
f(2t) if 0 ≤ t ≤ 1

2

g(2t− 1) if 12 ≤ t ≤ 1.

Remark 3.2. Note that if f and g are loops, then f ? g will again be a
loop.

Remark 3.3. Intuitively, the composition law is just given by follow-
ing one path, and then the other.

Definition 3.4. The fundamental group of (X, x0), denoted π1(X, x0),
is the group whose underlying set is loops, up to homotopy, (so that
two homotopic loops correspond to the same element in the funda-
mental group) with composition operation given by [f] · [g] = [f ? g]
for loops f,g : I→ X.

Proposition 3.5. The fundamental group, π1(X, x0), is a group.

Proof. To check it is a group, we have to show there is an identity
element, inverses exist, and the group law is associative. First, we
construct the identity loop and inverse loop. Then we give an intu-
itive sketch of why these satisfy the properties of a group. Finally,
we leave it as an exercise to complete the proof.

Define the identity e to be the homotopy class of the constant path
f : I → X sending t 7→ x0. Given a loop f : I → X define f−1 : I → X

by f−1(t) = f(1− t).
Next, we intuitively justify the three axioms in turn. First, the

identity axiom makes sense because for any loop f, we have [f] · e =
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[f] because [f] · e corresponds to going around f at double speed and
then staying still, which is homotopic to moving around f at nor-
mal speed. Second, the inversion axiom makes sense because if we
first go around f and then go backwards, we can linearly move the
midpoint of the path backwards along the path until to show it is
homotopic to the constant path. Third, the associativity axiom holds
because if f,g,h are three loops, then (f ? g) ? h and f ? (g ? h) both
result in going around f,g, and h in the same order, albeit at different
speeds.

Exercise 3.6. Verify that the above satisfy the axioms of a group as
follows

(1) Show that for f a loop, [f] · e = e · [f] = [f].
(2) Show that for f a loop, [f] · [f−1] = [f−1] · [f] = e. Hint: Let g be

the constant loop at x0. Show that

F(s, t) :=

{
f(2st) if s ≤ 1

2

f(1− 2st) if s ≥ 1
2

defines a homotopy between f ? f−1 and g.
(3) Show that for f,g,h loops, ([f] · [g]) · [h] = [f] · ([g] · [h]).

�

Definition 3.7. A space X is path connected if there is a path joining
any two points (i.e., for all x,y ∈ X there is some path f : I → X
with f(0) = x, f(1) = y). A space is simply connected if it is path
connected and for all points x ∈ X, π1(X, x).

We next note that the fundamental group of a path connected space
does not depend on the choice of basepoint:

Lemma 3.8. Let X be a path connected space and x,y ∈ X two points.
Then, we have an isomorphism of groups π1(X, x) ' π1(X,y).

Proof. Explicitly, we can construct the isomorphism π1(X, x)→ π1(X,y)
as follows. Start by choosing a path η from x to y (meaning η : I→ X
with η(0) = x,η(1) = y). Then, send a loop γ based at x to the loop
η−1 ? γ ? η, which is a loop based at y.

Exercise 3.9. Verify that if γ and γ ′ are homotopic then so are η−1 ?
γ ? η and η−1 ? γ ′ ? η, so the above map is a well defined homomor-
phism of fundamental groups.

Exercise 3.10. Show the above map is an isomorphism by construct-
ing an inverse map sending a loop δ based at y to η ? δ ? η−1. Verify
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FIGURE 4. A picture of the change of basepoint map
by a path h from x0 to x1

that this indeed defines an inverse map by checking that the com-
position of this map with the previous one in both directions is the
identity.

�

Remark 3.11. By Lemma 3.8, the fundamental group of a path con-
nected space does not depend on the basepoint, and so it is not par-
ticularly important to keep track of the basepoint. For this reason,
we will often not be explicit with which basepoint we choose in the
remainder of these notes.

Exercise 3.12. Let (X, x0) be a path connected space. Show that the
fundamental group is abelian, meaning [f ? g] = [g ? f], if and only if
for any y0 ∈ X and two paths η1,η2 from x0 to y0 (meaning ηi(0) =
x0,ηi(1) = y0) the induced homomorphisms

φ1 : π1(X, x0)→ π1(X,y0)

[γ] 7→ [η−11 ? γ ? η1]

and

φ2 : π1(X, x0)→ π1(X,y0)

[γ] 7→ [η−12 ? γ ? η2]

are the same homomorphism. Hint: Show that φ1 = φ2 if and only
if φ1φ−1

2 = id. Show the latter statement holds for all such φ1,φ2 if
and only if a−1ba = b for every a,b ∈ π1(X, x0).

Definition 3.13. We say a continuous map of spaces f : X → Y is a
homeomorphism if there is a map g : Y → X with f ◦ g = id and
g ◦ f = id. In this case, we say X is homeomorphic to Y and write
X ' Y.

Exercise 3.14. Suppose f : X → Y is a homeomorphism with x 7→
y. Show that π1(X, x) and π1(Y,y) are isomorphic. Hint: Define a
homomorphism π1(f) : π1(X, x) → π1(Y,y) by sending a path γ :
I → X to the path f ◦ γ : I → Y. Since f is a homeomorphism, f
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has an inverse map f−1. Show that the corresponding map π1(f−1) :
π1(Y,y)→ π1(X, x) is an inverse to π1(f).

3.2. Examples of a trivial fundamental group. In this section, we
give several examples of spaces with trivial fundamental group. I.e.,
examples of simply connected spaces.

Example 3.15. The space (Rn, 0) has trivial fundamental group. To
see this, we have to show every loop is homotopic to the constant
loop. But indeed, for any loop f : I → Rn, the homotopy F(s, t) =
t · f(s) defines a homotopy between f and the trivial loop.

Exercise 3.16. Generalize Example 3.15 by showing that for any con-
vex subset X ⊂ Rn and x0 ∈ Xwe have π1(X, x0) is the trivial group.
In particular, show thatDn has trivial fundamental group. Hint: Use
Exercise 2.17.

3.3. Yo I heard you like groups. . . We now briefly explore what
happens when your space is also a group (such as the space S1 where
you can add two points of S1 by adding their angles). We will see
that this forces the fundamental group to be abelian. This subsection
is somewhat peripheral to the discussion, and can safely be skipped
on a first reading.

Definition 3.17. A group space is a space G with a continuous mul-
tiplication map m : G × G → G and a continuous inversion map
i : G→ Gmaking the underlying set of G into a group.

Theorem 3.18 (Eckmann-Hilton). Let G be a group space and e ∈ G be
the identity point. Then π1(G, e) is abelian.

Proof. To show π1(G, x) is abelian, we will show that for any two
loops γ, δ : I→ Gwe have γ ? δ ∼ δ ?γ. Indeed, for this, we construct
a homotopy between the two loops above.

Exercise 3.19. Let h : I→ G denote the constant loop sending t 7→ e.
Verify that the homotopy

F : I× I ′ → G

(s, t) 7→ m((γ ? h)(max(0, s− t/2)), (h ? δ)(min(1, s+ t/2))

defines a homotopy between γ ? δ and δ ? γ.

�

Exercise 3.20. Show that π1(S1, x0) is abelian. (Later, in Theorem 4.1,
we will see it is Z.)
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Feel free to skip the following exercise if you have not seen deter-
minants.

Exercise 3.21 (Assuming knowledge of determinants). Let GLn de-
note the space of n× n invertible matrices, viewed as a subspace of
Rn2 by sending a matrix A = (aij) to the point in Rn2 whose n2 co-
ordinates are given by the n2 entries of A (explicitly, the coordinate
in place n(i− 1) + j is aij).

(1) Show that GLn is an open subset of Rn2 . Hint: The comple-
ment is where the determinant vanishes.

(2) Show that matrix multiplication makes GLn into a group space.
Hint: For multiplication and inversion, write out the explicit
formula. For this you will need to use the explicit formula
for the inverse of a matrix, given by Cramer’s rule. It may be
helpful to first try the cases n = 1 and n = 2.

(3) Show that π1(GLn, id) is abelian.

Remark 3.22. Although we have not yet seen many examples of fun-
damental groups, it is in general, quite common from the fundamen-
tal group to be nonabelian. For example, this is true for the figure 8,
(i.e., two circles meeting at a point) see Example 6.6.
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4. THE FUNDAMENTAL GROUP OF THE CIRCLE

4.1. Statement of the main result. So far, we have only seen exam-
ples of spaces with trivial fundamental group. If the fundamental
group were always trivial, it would not yield any mathematical in-
formation. Fortunately, this is not the case. In fact, the prototypical
example of a space with nontrivial fundamental group is the circle:

Theorem 4.1. Let x0 ∈ S1 be a point and let f : I → S1 be the loop
going once counterclockwise around the circle at constant speed. Then, the
homomorphism φ : Z→ π1(S

1, x0) sending 1 7→ [f] is an isomorphism.

We will prove Theorem 4.1 in subsection 4.3 (assuming a particu-
lar result on lifting covers), and then we will give a full proof later in
subsection C.4. At a certain level the two proofs are really the same
proof, though the latter depends on the machinery of universal cov-
ers.

4.2. Applications. Having setup the theory of the fundamental group,
we are now prepared to reap some cool applications.

To start, we prove the Brouwer fixed point theorem. Before prov-
ing it, we need to prove that the fundamental group is functorial.
That is, we need to show that a continuous map of spaces induces a
homomorphism of fundamental groups.

Proposition 4.2. Let f : (X, x0) → (Y,y0),g : (Y,y0) → (Z, z0) be two
continuous maps of pointed spaces. Then,

(1) f induces a homomorphism π1(f) : π1(X, x0)→ π1(Y,y0).
(2) The homomorphism π1(g) ◦ π1(f) : π1(X, x0)→ π1(Z, z0) is equal

to the homomorphism π1(g ◦ f) : π1(X, x0)→ π1(Z, z0).
(3) For id : (X, x0) → (X, x0) the identity map, we have π1(id) :

π1(X, x0)→ π1(X, x0) is the identity map of groups.

Proof. We prove the three parts in turn. For the first, we define the
map by sending a loop γ : I→ X to the loop f ◦ γ : I→ Y.

Exercise 4.3. Verify that homotopic loops map to homotopic loops
under composition with f, and hence the above construction defines
a well-defined map of fundamental groups.
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For the second point, using the above definition, we note that for
a path γ : I→ Xwe have

π1(g) ◦ π1(f)([γ]) = π1(g)([f ◦ γ])
= [g ◦ (f ◦ γ)]
= [(g ◦ f) ◦ γ]
= π1(g ◦ f)[γ],

as we wished to check.
For the third part, it suffices to note that π1(id) sends any loop to

itself, since id ◦γ = γ. Therefore, it induces the identity morphism
on fundamental groups. �

Using this functoriality, we can provide a quick proof of the Brouwer
fixed point theorem:

Theorem 4.4 (Brouwer fixed point theorem). Any continuous map h :
D2 → D2 has a fixed point. That is, there is some x ∈ D2 with h(x) = x.

Proof. Suppose, for the sake of contradiction, that h has no fixed
point. Define a continuous map r : D2 → S1 as follows. Start with a
point x ∈ D2 and its image h(x). Draw the ray from h(x) to x, and
define r(x) to be the intersection of the continuation of this ray with
S1. This is a well defined map because no point is fixed, and two
ordered points determine a unique ray. Further, the map r is contin-
uous because if we move x a little bit, h(x) also moves only a little
bit and so the ray from h(x) only moves a little bit which means r(x)
only moves a little bit.

FIGURE 5. A picture of the map r

Observe from the construction that if x ∈ S1 then r(x) = x because
the ray from f(x) to x meets S1 at x. Let i : S1 → D2 denote the
inclusion of S1 as the boundary of D2. It follows that we have the
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commuting diagram

(4.1)
S1 D2

S1

i

id
r

where the composite map S1 → S1 is the identity. This diagram
commuting just means that id = r ◦ i. Taking fundamental groups,
we obtain

(4.2)

π1(S
1, x) π1(D

2, x)

π1(S
1, x)

π1(i)

id
π1(r)

using Proposition 4.2 to obtain this diagram commutes and to de-
duce that the left map is the identity. But plugging in the groups
above, we obtain maps

(4.3)

Z {e}

Z

π1(i)

id

π1(r)

(where {e} denotes the trivial group). So, we obtain that id : Z → Z

can be realized as the composition Z → {e} → Z, which is impos-
sible, since the latter composition must send everything to 0, while
the identity map id : Z→ Z is surjective. �

Exercise 4.5. Show that any continuous map f : D2 → D2 with f(x) =
x for all x ∈ S1 (i.e., all x with |x| = 1) is surjective. Hint: Use an
argument similar to that of Theorem 4.4.

Next, we can provide a neat proof of the fundamental theorem of
algebra.

Proposition 4.6. Every polynomial f(z) : C → C of degree at least 1 has
a root.

Proof. Suppose f(z) = anz
n + an−1z

n−1 + · · · + a0 has no root. We
may assume an 6= 0 and divide through by an so that f(z) = zn +
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· · ·+ z0. Then, f defines a continuous map f : C→ C − {0}. Compos-
ing fwith the continuous map

p : C − {0}→ S1

x 7→ x/|x|

we obtain a continuous map g := p ◦ f : C → S1. Now let S1r denote
the circle of radius r inside C. Restricting g to S1r , we obtain a contin-
uous map g : S1r → S1, which is a map between two copies of S1. On
the one hand, we can see that for large r, this sends the loop going
once around S1r to the loop going n times around S1 because the lead-
ing term of the polynomial dominates, meaning that the map looks
like z 7→ zn.

Exercise 4.7. Spell out the details above, making precise why g sends
the generator of π1(S1r , x) to n times the generator in π1(S1,g(x)).

On the other hand, as in the proof of Theorem 4.4, the composite

(4.4) S1r C S1

induces a morphism on fundamental groups

(4.5) π1(S
1
r , x) π1(C, x) π1(S

1,g(x)),

which can be identified with the homomorphisms

(4.6) Z {e} Z.

So, the composite homomorphism must send everything to 0. Hence,
we obtain that n = 0, and so the polynomial f can only have no roots
if n = 0, as desired. �

Next, we reach one of the neatest results we’ll see in this course,
the Borsuk-Ulam theorem.

Theorem 4.8 (Borsuk-Ulam). Any continuous map f : S2 → R2 has
some point x so that f(x) = f(−x).

Remark 4.9. One “real-world application” of this is that, at any time,
there are some two points on opposite sides of the earth with the
same temperature and barometric pressure. To see this, just view the
surface of the earth as S2 and let f be the map to R2 sending a point
to the pair ( temperature at the point , pressure at the point ).
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Exercise 4.10. Show the 1-dimensional version of the Borsuk-Ulam
theorem. That is, show that any continuous map f : S1 → R has
some point with f(x) = f(−x). Hint: Apply the intermediate value
theorem to f(x) − f(−x).

Proof. Suppose there is no point with f(x) = f(−x). Define the func-
tion g : S2 → R2 − {0} sending x 7→ f(x) − f(−x). Composing g with
the continuous map

p : R2 − {0}→ S1

x 7→ x/|x|

we obtain a continuous map h := p ◦ g : S2 → S1. Let i : S1 → S2

be the inclusion of the equator. Observe that −h(x) = h(−x) because
the same is true of g. That is,

g(−x) = f(−x) − f(x) = −(f(x) − f(−x)) = −g(x).

Exercise 4.11. Show rigorously that −(i ◦h)(x) = (i ◦h)(−x) implies
that the loop passing once around S1 is sent under i ◦ h to a loop
passing an odd number of times around S1. In particular, the re-
sulting homomorphism π1(S

1, x) → π1(S
1,h(x)) is not the constant

map.

We now obtain a contradiction, because we also have that the ho-
momorphism π1(S

1, x)→ π1(S
1,h(x)) is the constant map. Indeed,

(4.7) S1 S2 S1
i h

induces a morphism on fundamental groups

(4.8) π1(S
1, x) π1(S

2, x) π1(S
1,h(x)).h

We can see that the generator of π1(S1, x) is mapped to the loop pass-
ing once around the equator, which is nullhomotopic in S2. It fol-
lows that the map π1(i) is the constant map sending every element
of π1(S1, x) to the trivial element of π1(S2, x) (as goingn times around
the equator in S2 is also nullhomotopic). It follows that the compos-
ite map h ◦ imust send everything to 0 ∈ Z ' π1(S1,h(x)). �

Next, we deduce some nice consequences of the Borsuk-Ulam the-
orem.
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Corollary 4.12. SupposeA,B,C are three closed subsets of S2 covering S2.
Then, there is some point x so that one of these sets contains both x and −x.

Proof. Define functions dB : x 7→ d(x,B) and dC : x 7→ d(x,C) where
d is the distance function; for a set S, d(x,S) is the smallest real num-
ber bigger than or equal to d(x, s) for every s ∈ S. The functions dB
and dC are well defined because B and C are closed. Then, define the
continuous map

f : S2 → R2

x 7→ (dB(x),dC(x)).

By the Borsuk-Ulam theorem, there is some point x with f(x) =
f(−x). We will show x and −x lie in the same set. Indeed, if dB(x) =
dB(−x) = 0, this means x and −x lie in B. Similarly, if dC(x) =
dC(−x) = 0, then x and −x lie in C. Finally, if dB(x) 6= 0 and
dC(x) 6= 0, then x does not lie in either B or C, so x lies in A. By
similar reasoning −x also lies in A. �

Corollary 4.13 (Ham Sandwich theorem). LetA1,A2,A3 be three closed
and bounded sets in R3. Then there is a 2-plane P ⊂ R3 that cuts each of
the three sets Ai into two sets of equal volume.

Remark 4.14. This is called the ham sandwich theorem because you
may pretend thatA1 andA3 two pieces of bread, andA2 is a piece of
ham. The theorem says you can always cut the two pieces of bread
and the piece of ham exactly in half, with a slice by a single plane.

Proof. Define a continuous map f : S2 → R2 as follows. For any unit
vector ~v, consider ~v as a point of S2. There is some plane Qv normal
to v which cuts A1 into two pieces of equal volume. Let Q+

v be those
points in R3 in the direction of ~v from Q and let Q− be those points
of R3 in the direction of −~v from Q. Define f(~v) = (f2(~v), f3(~v)),
where fi(~v) = Vol(Ai ∩Q+

v ) − Vol(Ai ∩Q−
v ). Here, Vol(S) denotes

the volume of the set S.

Exercise 4.15. Verify that the function f is continuous.

Applying the Borsuk-Ulam theorem, there is some x with f(x) =
f(−x). However, we may also note that f(−x) = −f(x) by construc-
tion. Therefore, f(x) = f(−x) = 0. It follows that the plane Qx cuts
A1 into two equal pieces also satisfies Vol(Ai ∩Q+

v ) = Vol(Ai ∩Q−
v )

for i = 2, 3. This means it also cuts A2 and A3 into pieces of equal
volume, as desired. �
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FIGURE 6. The map R→ S1.

4.3. Computing the fundamental group of the circle. Here, we now
give a hand-on proof that π1(S1, x0) = Z, Theorem 4.1. Later, in sub-
section C.4, we give a more conceptual proof that depends on much
more machinery. We recommend you do not look at that later proof,
unless you are particularly keen.

Define

p : R→ S1

t 7→ (cos 2πt, sin 2πt) .

For now, we prove Theorem 4.1 assuming Lemma C.14, which im-
plies that any loop in S1 can be lifted uniquely to a path in R starting
at 0, and any homotopy of loops in S1 can be lifted to a homotopy of
their respective lifts in R.

Proof of Theorem 4.1 assuming Lemma C.14. First, let us show the map
φ of Theorem 4.1 is surjective. Note that the map p sends the path
from 0 to n in R to the loop wrapping n times around S1. To show
the map is surjective, we just need to show that every loop in S1
is homotopic to a path in R traveling at constant speed from 0 to
n for some n. To see this, using Lemma C.14, we can lift a loop
f : I → S1 uniquely to a loop f̃ : I → R sending 0 7→ 0. Since
p−1(x0) = Z, because (p ◦ f̃)(1) = x0 it follows that f̃(1) ∈ Z. Then,
since R is convex, we can construct a linear homotopy taking f̃ to
the constant path from 0 to f̃(1). That is, we obtain a continuous
map F : I× I ′ → R restricting to f̃ on I× {0} and to the desired path
from 0 to f̃(1) on I× {1}. Then, the map p ◦ F : I× I ′ → S1 produces
the desired homotopy, showing that φ is surjective.
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For injectivity, we only need show that two loops wrapping a dif-
ferent number of times around S1 cannot be homotopic. If they were
homotopic, by Lemma C.14, a homotopy between these loops would
lift to a homotopy between their lifts to R. But, their lifts have differ-
ent endpoints in R. This is a contradiction because the lift of the
homotopy must fix the endpoint, as the homotopy fixes the end-
point. �
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5. FURTHER COMPUTATIONS WITH HOMOTOPY GROUPS

We shall next investigate further properties of homotopy groups,
such has how the behave under products and homotopy groups of
spheres. As an application, we will show Rn is not homeomorphic
to R2 for any n 6= 2.
5.1. Products.

Definition 5.1. For X ⊂ Rm and Y ⊂ Rn the Cartesian product, is

X× Y := {(x,y) : x ∈ X,y ∈ Y} .

Exercise 5.2. Let X, Y be two spaces. Choose x0 ∈ X,y0 ∈ Y.
(1) Show that π1(X, x0) × π1(Y,y0) ' π1(X × Y, (x0,y0)). Hint:

Given a loop f in X and a loop g in Y, obtain a loop in X× Y
by viewing f as a loop in X× {y0} and g as a loop in {x0}× Y
and taking f ? g as a loop in X× Y. To show this map is sur-
jective, if you have a loop h in X × Y, one can write this as
a function s 7→ hs(x,y) = (fs(x),gs(y)). Show that hs is ho-
motopic to the composition of the loops s 7→ (fs(x),y0) and
s 7→ (x0,gs(y)) (where composition is taken in the fundamen-
tal group via the ? operation of Definition 3.4).

(2) Compute π1(S1 × S1, x0). (S1 × S1 is known as the torus.)

Exercise 5.3. Let L ⊂ R3 be a line (say the line x = y = 0 with
coordinates x,y, z for R3). Let p ∈ R3 − L. Compute π1(R3 − L,p).

Exercise 5.4 (Tricky exercise). Give R4 coordinates x,y, z,w and let
P1 ⊂ R4 be the 2-plane defined by x = y = 0 and let P2 ⊂ R4 be the
two-plane defined by z = w = 0. Let p ∈ R4 − P1 − P2. Compute
π1(R

4 − P1 − P2,p). Hint: Write R4 − P1 − P2 as a product.

5.2. Homotopy groups of spheres.

Example 5.5. Here is an example of a non-convex set with trivial
fundamental group. Take S2 ⊂ R3 the 2-sphere. We claim that for
any x ∈ S2, π1(S2, x) is the trivial group. To see this, we only need
show that any loop is nullhomotopic. First, without loss of general-
ity, by rotating the sphere, we may assume x is the south pole. Let y
denote the north pole of S2. Start with a loop f : I→ S2. If the loop f
does not pass through the north pole, you can construct a homotopy
between f and the constant loop, by identifying S2 − y ' R2. If it
does pass through the north pole, then you can first deform the loop
slightly to miss the north pole, and then perform the linear homo-
topy following that. We now flush out the details of the above in the
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following difficult exercise. Note that another proof, which is easier
provided one assumes the machinery of van Kampen’s theorem, is
given in Example 6.13.

Exercise 5.6 (Difficult exercise, assuming Appendix A). Flush out the
details of the above sketch as follows:

(1) Show that the map R2 → S2−y via the stereographic projec-
tion sending

(a,b) 7→ 1

a2 + b2 + 1

(
2a, 2b,a2 + b2 − 1

)
.

is a homeomorphism (see Definition 3.13). Hint: As an in-
verse take the map S2 − y→ R2 sending

(a,b, c) 7→ 1

1− c
(a,b) .

(2) Show that any path not passing through y is homotopic to the
constant path.

(3) Show that any path passing through y is homotopic to a path
not passing through y as follows:
(a) Choose such a path f : I→ S2 passing through y. Choose

a small open ball U around y. Use Exercise A.8 to show
f−1(U) is an open set of I and f−1(x) is a closed set of I.

(b) Use Proposition A.18 to show that f−1(x) is compact sub-
set of f−1(U).

(c) Using that f−1(U) is a possibly infinite collection of inter-
vals and f−1(x) is a compact subset, show there is a finite
collection of intervals I1 := (a1,b1), . . . , In := (an,bn)
such that f(In) ⊂ U and so that f(I \ ∪ni=1Ii) does not
intersect U.

(d) Perform linear homotopies on each [ai,bi] to avoid y and
show that each f is homotopic to a path not meeting y.

(4) Conclude that S2 is simply connected.
(5) Generalize this same argument to show that for all n ≥ 2,

π1(S
n, x) is the trivial group.

(6) Do you see what goes wrong with this argument in the case
n = 1? (As we have seen, π1(S1, x) ' Z.)

5.3. An application to Rn. We can now apply the above to show in
Proposition 5.8 that R2 is not homeomorphic to Rn for n > 2.
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Lemma 5.7. Let x ∈ Rn − {0} . Then,

π1(R
n − 0, x) =

{
Z if n = 2

0 if n > 2

Proof. Note that Rn − {0} is homeomorphic to R× Sn−1. Therefore,
using Exercise 3.14 and Exercise 5.2 we see

π1(R
n − {0} , x) ' π1(R1 × Sn−1, (p,q))

' π1(R,p)× π1(Sn−1,q)
for some p ∈ R,q ∈ Sn−1. Therefore, since π1(R,p) = 0, we obtain

π1(R
n − 0, x) = π1(Sn−1, x ′).

The claim then follows from our computation of the fundamental
groups of S1 (by Theorem 4.1) and Sn for n ≥ 2 (in Example 5.5). �

Proposition 5.8. For n > 2, R2 is not homeomorphic to Rn.

Proof. Suppose they were homeomorphic by a map φ : R2 → Rn.
Say φ(0) = p. Then, it would follow that R2 − {0} is homeomorphic
to Rn−p. But, homeomorphic spaces have isomorphic fundamental
groups by Exercise 3.14. So, by Lemma 5.7, R2 − {0} is not homeo-
morphic to Rn − p. �

Exercise 5.9. Show also that R1 is not homeomorphic to Rn for any
n ≥ 1 by removing a point from both. Hint: Show that R1 − {0} is
not path connected, while Rn − p for any point p is path connected.
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6. VAN KAMPEN’S THEOREM

Having seen some nice applications of π1(S1, x0) = Z, we would
like to be able to compute fundamental groups. The key tool for this
is known as van Kampen’s theorem, which lets you compute the fun-
damental group of a union of spaces Xi in terms of the fundamental
groups of the Xi and their overlaps. In order to state van Kampen’s
theorem, we first need to introduce a certain product operation on
groups, known as the free product.

Definition 6.1. Let G1,G2, . . . ,Gn be groups. The free product of
G1, . . . ,Gn, denoted G1 ∗G2 is the group whose elements are words
of the form g1g2 · · · gm so that each each each gi in some Gj(i), mod-
ulo the equivalence relation that if gi and gi+1 both lie in the same
Gj, and gi · gi+1 = g ′ then the word

g1g2 · · · gi−1gigi+1gi+2 · · · gm
is identified with the word

g1g2 · · · gi−1g ′gi+2 · · · gm.

Multiplication of words is given by concatenation, the inverse of
g1 · · · gm is g−1m · · · g−11 , and the identity is the empty word.

Exercise 6.2. Verify that the free product of two groups is indeed a
group.

Example 6.3. What does the free product Z ∗Z look like? Write the
first copy of Z multiplicatively as an for n ∈ Z and write the second
copy as bm for m ∈ Z. Typical elements of Z ∗Z might look like
a2 or b−13 or ab3a2 or b−6abab3. We also can write elements in the
form b3b2a3a−5a2bwhich can be simplified to

b3b2a3a−5a2b = b5a−2a2b = b5a0b = b5b = b6.

Exercise 6.4 (Universal property of free groups). Show that for groups
G1 . . . ,Gn and group homomorphisms fi : Gi → H, there exists a
unique homomorphism f : G1 ∗ · · · ∗Gn → H so that the composition

Gi
φi−→ G1 ∗ · · · ∗Gn

f−→ H is equal to fi, where φi : Gi → G1 ∗ · · · ∗Gn
sends an element g to the length one word consisting of g.

To state van Kampen’s theorem, we will also need the notion of
a minimal normal subgroup generated by a subgroup. If you are
not familiar with normal subgroups, see subsection B.1 and more
specifically Definition B.21.
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Theorem 6.5 (van Kampen’s theorem). Suppose X = ∪ni=1Aα where
each Aα contains a given basepoint x0 ∈ X so that each Aα is path con-
nected and each Aα ∩ Aβ is path connected. We have homomorphisms
π1(Aα, x0) → π1(X, x0) induced by the inclusions Aα → X and homo-
morphisms iαβ : π1(Aα ∩Aβ, x0)→ π1(Aα, x0) induced by the inclusions
Aα ∩Aβ → X.

(1) The homomorphismΦ : π1(A1, x0) ∗ · · · ∗π1(An, x0)→ π1(X, x0)
is surjective.

(2) If further each Aα ∩Aβ ∩Aγ is path connected, then the kernel of
Φ is the minimal normal subgroup N generated by all elements of
the form iαβ(ω)iβα(ω)−1 for ω ∈ π1(Aα ∩Aβ, x0) so Φ induces
an isomorphism π1(X, x0) ' π1(A1, x0) ∗ · · · ∗ π1(An, x0)/N.

The idea for showing surjectivity is that if you have any loop in
the total space, you can break it up as a sequence of loops, each one
passing only through a single one of the spaces. To determine the
kernel, it is not too difficult to check that the kernel contains N be-
cause going around one loop and then passing around the same loop
in the reverse direction is homotopic to the identity. To conclude one
then has to do a careful, fidgety argument to show this is precisely
the kernel, which we omit. See [Hat02, Section 1.2, Theorem 1.20] for
a proof.

6.1. Computing examples of fundamental groups with van Kam-
pen’s theorem.

Example 6.6. Let’s start by computing the fundamental group of a
figure 8. This can also be thought of as the fundamental group of two
circles joined a point. Call this space X and let x0 be the point where
the two circles meet. To apply van Kampen’s theorem, we need to
cover X by two open sets. Take as our first open set A1 an open set
containing the first circle, and extending slightly into the second cir-
cle and as our second open set A2, take an open set containing the
second circle, and extending slightly into the first circle. Note, we are
not allowed to just take the respective circles themselves, as they are
not open. Then, we may note π1(Ai, x0) ' π1(S1, x0) ' Z (this can ei-
ther be seen directly, or using the machinery of deformation retracts,
to be introduced following this example). Further,A1∩A2 has trivial
fundamental group (the intersection looks like the letter “x”). By van
Kampen’s theorem the map Φ : π1(A1, x0) ∗ π1(A2, x0) → π1(X, x0)
is both surjective and has trivial kernel, so it is an isomorphism. We
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FIGURE 7. A picture of the figure 8 with one genera-
tor of the fundamental group given by a and the other
given by b

FIGURE 8. Some examples of deformation retracts

conclude that

π1(X, x0) ' π1(A1, x0) ∗ π1(A2, x0) ' Z ∗Z.

As we saw in Example 6.6 to deal with the condition from van
Kampen’s that the sets Ai are open, we had to identify the funda-
mental group of a circle with that of an open set slightly bigger than
the circle. In general, you are free to slightly thicken things in this
way without changing the fundamental group, as is explained by
the notion of a deformation retract, which we now define.

Definition 6.7. Let X be a space and Y ⊂ X a subspace. A defor-
mation retract of X onto Y is a continuous map f : X× I → X such
that

(1) f(x, 0) = x,
(2) f (x, 1) ∈ Y, and
(3) for all y ∈ Y, f (y, t) = y.

We say Y is a deformation retract of X if such a map exists.

The main feature of deformation retracts is that they do not change
the fundamental group:
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Lemma 6.8. Let Y ⊂ X. Suppose Y is a deformation retract of X and
let g : Y → X denote the inclusion. Then, for x ∈ Y, the map π1(g) :
π1(Y, x)→ π1(X, x) is an isomorphism.

Proof. Recall the map π1(g) sends a loop δ : I → Y to the loop g ◦ δ :
I → X. Let f : X × I ′ → X be the deformation retract of X onto
Y. We define an inverse map π1(X, x) → π1(Y, x) by sending a loop
γ : I→ X to the loop γ ′ : I→ Y given by γ ′(s) = f (γ(s), 1).

Exercise 6.9. Complete the proof as follows:
(1) Verify that g ◦ γ ′ is homotopic to γ (viewed as loops I → X).

Hint: Show that the composite I× I ′ γ,id−−→ X× I ′ f−→ X defines
a homotopy between g ◦ γ and γ ′.

(2) Show that the map π1(X, x) → π1(Y, x) just constructed is a
two sided inverse to π1(g).

(3) Conclude that π1(g) is an isomorphism.

�

Definition 6.10. We say a space X is contractible if there is some
point p ∈ X so that p is a deformation retract of X.

Remark 6.11. Intuitively, a contractible space is one you can contract
to a point.

Using the trick of deformation retracts, we can now compute many
more examples of fundamental groups.

Exercise 6.12. Let Xn be a “bouquet of n circles“ (so that the n = 2
case was Example 6.6) which consists of n circles meeting a com-
mon point x. Using the same technique as in Example 6.6, show that
π1(Xn, x) ' Z ∗Z ∗ · · · ∗Z︸ ︷︷ ︸

n

, a free product of n copies of Z.

Next, we can compute π1(Sn, x0) in a much easier fashion than we
did in Example 5.5.

Example 6.13. We will now show that π1(S2, x) = 0. Choose x on
the equator and write S2 = A1 ∪A2 with A1 and open set contain-
ing all points with z-coordinate more than −1/2 and A2 the open
set with all coordinates containing z coordinates less than 1/2. Note
that A1 ∩A2 is path connected (it is an annulus), and hence, by van
Kampen’s theorem, the fundamental group of S2 is generated by the
fundamental groups of A1 and A2. But both A1 and A2 are con-
tractible, and so the have trivial fundamental group. It follows that
S2 has trivial fundamental group.
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FIGURE 9. A bouquet of 6 circles.

Exercise 6.14. Using the same technique as in Example 6.13, show
that π1(Sn, x) = 0 for every n ≥ 2.

Exercise 6.15. In this exercise, we compute the fundamental group
of R2 − {p1, . . . ,pn}, for p1, . . . ,pn n distinct points in R2.

(1) Show that there is a deformation retract from R2 − {p} onto
S1.

(2) More generally, show that R2 − {p1, . . . ,pn} deformation re-
tracts onto a bouquet of n circles, as defined in Exercise 6.12.

(3) Conclude using Exercise 6.12 that

π1(R
2 − {p1, . . . ,pn} , x) ' Z ∗Z ∗ · · · ∗Z︸ ︷︷ ︸

n

.

(Puzzle!) Suppose you have two nails at the same height on a wall and
a picture hung on a string. Can you wind the string around
the nails in such a way that the picture falls down if either nail
is removed but does not fall when both nails remain in place?
Possible hint: It’s possible to solve this without fundamental
groups, but fundamental groups can give an idea of where
to look. What does this problem have to do with π1(R2 −
{p1,p2} , x)?

Exercise 6.16. Compute the fundamental groupX := R3− {L1, . . . ,Ln},
where Li are lines passing through the origin. Hint: Show that X de-
formation retracts onto the complement of 2n points in the sphere
and use Exercise 6.15.

6.2. The inverse problem. One natural question is the following:
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Question 6.17. Given any groupG, is there a space Xwith π1(X, x) =
G?.

Perhaps surprisingly, the answer is yes, and furthermore, one can
build such a space with only circles and disks!

Proposition 6.18. Given any groupG, there exists a spaceXwith π1(X, x) =
G.

We will now indicate the idea of the proof of this. For a complete
proof, see [Hat02, Section 1.2, Corollary 1.28]. Let’s say you wanted
to construct a space with fundamental group Z ∗ Z/(aba−1b−1),
with a the generator of the first copy of Z and b the generator of the
second copy, written multiplicatively. Here’s how we can construct
the space Xwith that fundamental group.

FIGURE 10. A picture of how to construct the a space
with fundamental group Z ∗Z/(aba−1b−1)

Start with a square and label the two vertical edges b and the two
horizontal edges a. Start at the lower left hand corner. For each of
a or b, we orient the edge in the clockwise direction and for each of
a−1 or b−1 orient the edge in the counterclockwise direction. We now
glue the edge a to the edge a−1 (they should be identified as they
correspond to the same generator). Since they were both oriented
rightward, we have obtained a cylinder. Next, glue the two edges b
and b−1 together. Since they were both oriented upward, we have
now obtained a torus. Indeed, we saw that a torus has fundamental
group Z ×Z in Exercise 5.2 and Z ∗Z/(aba−1b−1) ' Z ×Z, so
things worked out in this case. In general, we can construct a space
with one edge for each generator of the group, and one disk glued on
for each relation. We can then use van Kampen’s theorem to verify
the resulting space has the correct fundamental group. The details
are a bit technical, so again, see [Hat02, Section 1.2, Corollary 1.28]
for a full proof.
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APPENDIX A. TOPOLOGICAL SPACES

In this appendix, we give a brief introduction to some basic prop-
erties topological spaces.

Definition A.1. A topological space X is a set (also called X) together
with a collection of subsets {Ui}i∈I called open sets with Ui ⊂ X
satisfying the following conditions

(1) The empty set ∅ ⊂ X is open.
(2) The set X is open.
(3) An arbitrary union of open sets is open.
(4) The intersection of two open sets is open.

The collection of open subsets is called a topology for X.

Example A.2. One example of a topological space is Rn. There are
many ways to topologize this. The Euclidean topology for Rn is the
topology where the open sets are unions of open balls centered at
points.

Exercise A.3. Verify this the Euclidean topology is indeed a topology.

Exercise A.4. Let X be a set and define the indiscrete topology on
X to be the topology where the only opens are X and ∅. Define the
discrete topology to be the topology where any subset of X is open.
Show that the discrete and indiscrete topologies are indeed topolo-
gies.

Definition A.5. If ι : X ⊂ Y with X a set and Y a topological space,
then the induced topology on X (with respect to ι) is the topology
on Xwhose open sets are those of the form X∩U for U ⊂ Y open.

Exercise A.6. Verify that the induced topology is indeed a topology.

Definition A.7. A continuous map of topological spaces f : X→ Y is
a map of underlying sets such that for any openU ⊂ Y, the preimage
f−1(U) ⊂ X is open.

Exercise A.8. Let Rm and Rn be topologized with the Euclidean
topologies and let X ⊂ Rn and Y ⊂ Rm be topologized with the
induced topologies. Show that a map of sets f : X→ Y is continuous
in the sense of Definition A.7 if and only if it is continuous in the
sense of Definition 2.5.

Definition A.9. For X and Y two topological spaces, define the prod-
uct topology by taking the topology whose open sets are unions of
sets of the form U× V for U ⊂ X open and V ⊂ Y open.
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Exercise A.10. Verify that the product topology is a topology. Hint:
You need to show that an intersection of two sets of the form (V1 ×
U1) ∩ (V2 × U2), for Ui ⊂ X,Vi ⊂ Y, can be written as a union of
open sets of the formWi × Zi for Ui ⊂ X,Zi ⊂ Y.

A.1. Compactness.

Definition A.11. A space is compact if every open cover has a finite
subcover.

Lemma A.12. The interval I = [0, 1] ⊂ R is compact with the subspace
topology induced from the Euclidean topology on R.

Proof. To see this, let {Ui} be a hypothetical open cover with no finite
subcover. We want to reach a contradiction. Divide the interval into
two pieces I = [0, 1/2] ∪ [1/2, 1]. If Ui has no finite subcover, then
eitherUi ∩ [0, 1/2] has no finite subcover orUi ∩ [1/2, 1] has no finite
subcover. Let I1 be the subinterval with no finite subcover. Then,
split I1 into two intervals and repeat the process to obtain some I2
of half the length. Continue this process to obtain an infinite chain
I ⊃ I1 ⊃ I2 ⊃ · · · .
Exercise A.13. Verify there exists a unique point p in ∩∞i=1Ii. Hint:
Take the limit of the left endpoints and show this converges.

Since {Ui} forms an open cover there is someUi containing p. Since
Ui is open, it contains an open ball around p, so some there is some j
with Ij ⊂ Ui. But, we assumed that Ij has no finite subcover coming
from Ui, a contradiction. �

Next, we aim to show that products of intervals are compact. For
this we need the following:

Lemma A.14. If X and Y are two compact topological spaces, then X× Y
with the product topology (see Definition A.9) is compact.

Proof. Let {Ui}i∈I be an open cover of X× Y. For any point p ∈ X× Y,
by the definition of the product topology on X × Y, there is some
W × Z ⊂ Ui with W ⊂ X,Z ⊂ Y open. For our purposes, we may
replace each Ui in our open cover by a union of sets of the form
Wi
j × Zij, each contained in Ui whose union covers Ui. Note that

if we can find a finite open cover consisting of such sets which are
products, then choosingUi containing these respective sets will yield
a finite subcover of the Ui. Hence, by the above, we may assume all
Ui are of the formWi × Zi.

Next, note that for any x ∈ X, by compactness of Y, there is a
finite collection of Jx ⊂ I with {Wj × Zj}j∈Jx covering {x} × Y. For
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each such point x, we note that the open set Wx := ∩j∈JWj (open
because J is finite) defines an open set of X containing x. Further, the
finitely many members of this set Wj × Zj cover Wx × Y. Applying
this same procedure to each x ∈ X, by compactness of X, we can find
finitely many such points, call them x1, . . . , xn so that the resulting
Wx form an open cover of x. Then, the set ∪ni=1Jxi determines a finite
collection of open sets in our cover which cover X× Y. �

Exercise A.15. Prove that products of intervals are compact, as fol-
lows.

(1) Use Lemma A.14 and Lemma A.12 conclude that I× I is com-
pact.

(2) More generally, by induction on n, prove In (meaning a prod-
uct of n copies of I) is compact.

Our next goal is to prove that a closed and bounded subset of Rn

is compact. This is also known as the Heine-Borel theorem.

Exercise A.16. Show that if X is homeomorphic to Y, then X is com-
pact if and only if Y is compact.

Exercise A.17. Show that a closed subset X of a compact set Y (giv-
ing X the induced subspace topology) is compact. Hint: Take an
open cover Ui of X. By definition of the subspace topology, this is a
collection of open sets Vi in Y, so that Vi ∩ X = Ui. Note that Y \X is
an open set, and so the Vi, together with Y \X form an open cover of
Y. By compactness, obtain a finite subcover, and deduce that there
was a finite subcover of the Ui covering X.

Proposition A.18 (Heine-Borel). A closed bounded subset of Rn (with
the Euclidean topology) is compact.

Proof. Start with some closed and bounded subset X ⊂ Rn.

Exercise A.19. By scaling X, show that X is homeomorphic to a sub-
set X ′ ⊂ In.

Since X is homeomorphic to a subset X ′ ⊂ In, by Exercise A.16,
it suffices to show that X ′ is compact. By Exercise A.15, we know
that In is compact. By Exercise A.17, it follows that X ′ is compact, as
desired. �

Finally, we briefly state the notion of a basis.

Definition A.20. A basis for a topology on X is a collection U of open
sets Ui ⊂ X so that every open U ⊂ X can be written as a union
U = ∪iUi for each Ui ∈ U.
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APPENDIX B. GROUP THEORY

In this appendix, we develop introductory group theory, which
we will use elsewhere in the notes in the course of our investigation
of fundamental groups.

Definition B.1. A group G is a set G together with a multiplication
operation · : G×G→ G and an identity e ∈ G satisfying the follow-
ing properties

Identity For every g ∈ G, we have e · g = g · e = g.
Associativity For g,h,k ∈ G, we have (g · h) · k = g · (h · k).

Inverses For every g ∈ G, there is an inverse denoted g−1 ∈ G so that
g · g−1 = g−1 · g = e.

Remark B.2. We will often omit the multiplication operation · from
the notation of a group when it is understood from context.

Exercise B.3. Verify, directly from the definition that every group has
a unique identity element. Show that for any g ∈ G, g has a unique
inverse, and so the name g−1 is justified.

Definition B.4. A homomorphism of groups f : G → H is a map of
sets such that f(eG) = eH and f(g ·G g ′) = f(g) ·H f(g ′), where the
subscripts denote the identity and multiplication in the correspond-
ing group.

Definition B.5. A group homomorphism f : G → H is injective if
f(g) = f(g ′) =⇒ g = g ′. It is surjective if for every h ∈ H there
is some g ∈ G with f(g) = h. It is bijective (also known as an
isomorphism) if it is both injective and surjective. If f : G → H is
bijective, we write G ' H.

Exercise B.6. Show that a group homomorphism f : G → H is injec-
tive if and only if f−1(eH) = eG.

Exercise B.7. Show that a group homomorphism f : G → H is bijec-
tive if and only if there is a group homomorphism f−1 : H → G so
that f−1 ◦ f = idG, f ◦ f−1 = idH. Hint: Show that a map is bijective
if and only if there is a unique element of G mapping to any given
element of H. Use this to define an inverse map.

Definition B.8. The kernel of a group homomorphism f : G → H is
the set of elements g ∈ Gwith f(g) = eH.

Definition B.9. A subgroup H of G is a subset H ⊂ G so that
(1) eG ∈ H.
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(2) For any g ∈ Hwe also have g−1 ∈ H.
(3) If g,g ′ ∈ H then g ·G g ′ is also in H.

Exercise B.10. Show that the kernel of a group homomorphism is a
subgroup.

Definition B.11. A group is abelian if for all a,b ∈ G, we have a ·
b = b · a.

Example B.12 (Non-example). The group of permutations of three
elements is not abelian because if you first switch elements 1 and
2, and then switch elements 2 and 3, this is not the same as first
switching 2 and 3 and then switching 1 and 2. In the first case, you
end up sending 1 7→ 3 7→ 2 7→ 1while in the second case you end up
sending 1 7→ 2 7→ 3 7→ 1.

B.1. Normal subgroups and quotients.

Definition B.13. A subgroup H ⊂ G is normal if for all g ∈ G and
h ∈ Hwe have ghg−1 ∈ H.

Definition B.14. Let H ⊂ G be a subgroup. Construct the quotient
G/H as the set of all elements g ∈ Gmodulo the equivalence relation
g1 ∼ g2 if there is some h ∈ H with g1 = g2h. The equivalence class
of g is called the coset of g and the coset is notated gH.

Exercise B.15. Verify that the relation ∼ as defined in Definition B.14
is indeed an equivalence relation.

Exercise B.16. Show that if H ⊂ G is normal then G/H can be given
the structure of a group by gH · g ′H = (gg ′)H.

Exercise B.17 (Universal property of quotients). For H ⊂ G a sub-
group, show that for any group homomorphism f : G → G ′ with
f(H) = eG ′ there is a unique map of sets f : G/H → G ′ so that the
composition of G → G/H (given by g 7→ gH) with f is equal to f.
Show that f is a group homomorphism when H is normal (the nor-
mality hypothesis is only so that G/H can be given the structure of
a group, using Exercise B.16).

Definition B.18. Let S ⊂ G be a subset (which is not necessarily a
subgroup). The subgroup generated by S is the intersection of all
subgroups of G containing S.

Remark B.19. Intuitively, you can obtain the subgroup generated by
a set by just throwing in all inverses and then throwing in all re-
peated products of such elements.
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Exercise B.20. Show that the intersection of any collection of sub-
groups of a group is again a subgroup. Conclude that the subgroup
generated by a set is indeed a subgroup.

Definition B.21. Let H ⊂ G. The minimal normal subgroup gener-
ated by H is the subgroup generated by{

g ∈ G : there exists k ∈ G,h ∈ Hwith g = khk−1
}

.

Exercise B.22 (Tricky Exercise). Let H ⊂ G. Show that the minimal
normal subgroup is indeed a normal subgroup. Hint: To show it
is a subgroup, use Exercise B.20. To show it is normal (which is the
same as saying it is invariant under conjugation; the conjugates of an
element h are those of the form ghg−1 and a set S is invariant under
conjugation if for all s ∈ S gsg−1 ∈ S), use that the generating set is
invariant under conjugation.
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APPENDIX C. UNIVERSAL COVERS

Warning C.1. The following section is written at a level above the
rest of these notes. I recommend you do not read this section, it is
merely here for completeness.

We now construct universal covers. As an application, we will
compute the fundamental group of S1.

Definition C.2. A topological space X is path connected if for any
two points x,y ∈ X, there is a path f : I → X with f(0) = x, f(1) = y.
A topological space X is connected if there is no way to write X =
X1 ∪ X2 with X1,X2 ⊂ X both open sets with Xi 6= ∅ for i = 1, 2.
A topological space X is locally path connected if there is a basis of
open sets which are path connected. A topological space X is semi-
locally path connected if for every point x ∈ X, there is an open set
Ux with the image of the map π1(Ux, x)→ π1(X, x) equal to 1.

Exercise C.3. Show that any path connected space is connected.

The universal cover is a special type of covering space, which we
now introduce.

Definition C.4. A covering space Y of a spaceX is a topological space
Y with a continuous map f : Y → X such that around every p ∈ X
there is some open set Up 3 p with f−1(Up) homeomorphic to a
disjoint union of copies of Up, each of which is mapped homeomor-
phically to Up under f. A pointed covering space (Y,y0) of a space
(X, x0) is a covering space f : Y → Xwith f(y0) = x0.

Definition C.5. Let X be a topological space. A universal cover is a
pointed covering space f : (X̃, x̃0) → (X, x0) so that for any pointed
covering space g : (Y,y0)→ (X, x0) there is a unique continuous map
h : (X̃, x̃0)→ (Y,y0) making (X̃, x0) into a covering space of (Y,y0) so
that f = g ◦ h, i.e.,

(C.1)
X̃ Y

X

h

f
g

commutes.

Exercise C.6. Show that if (X̃, x̃0) is a universal cover, then it is unique
up to isomorphism. That is, if (X̃ ′, x̃ ′0) is any other universal cover,
there is a unique pointed covering map (X̃, x̃0) → (X̃ ′, x̃ ′0) which is
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an isomorphism. Hint: Use Definition C.5 to construct unique maps
X̃ → X̃ ′ and X̃ ′ → X̃ and use Definition C.5 again to show that the
composition of these maps is the identity, using that the identity is
one such map.

It would be nice to know whether universal covers exist. Fortu-
nately, they do, in the following pleasant situation, as we now con-
struct.

Definition C.7 (Construction). LetX be a path connected, semi-locally
simply connected, locally path connected space. Choose some x0 ∈
X. We construct a universal cover X̃ explicitly as

X̃ := {[γ] : γ : I→ X is a path with γ(0) = x0} .

We next define a topology on X̃. Let U denote the collection of path
connected open sets Uwith some x ∈ U so that π1(U, x)→ π1(X, x).

Exercise C.8. Show that the map π1(U, x)→ π1(X, x) is independent
of the choice of point x ∈ U and U forms a basis for the topology on
X.

We define a topology on X̃ by declaring that all open sets are unions
of sets of the following form: For every point p ∈ X, let U ∈ U and
define U[γ] be the set of points [ξ] ∈ X̃ with ξ = η ? γ (where ? de-
notes composition of paths, see Definition 3.4) for η : I → U a path
so that η(0) = γ(1).

Exercise C.9. In this exercise, we check that U[γ] form a base for a
topology on X̃.

(1) Verify that the intersection of two sets of the form U[γ] is a
union of such sets.

(2) Use this to show that unions of sets of the form U[γ] define a
topology on X̃.

(3) Show, via the definition, that U[γ] form a base for this topol-
ogy.

By Exercise C.9, we can define a topology on X̃withU[γ] as a basis.
We have a map X̃→ X sending [γ] 7→ γ(1).

We would like to show the construction of Definition C.5 is indeed
a universal cover. We begin by showing it is a covering space.

Lemma C.10. Let X be a path connected, semi-locally simply connected,
locally path connected space. The construction X̃ of Definition C.5 is a
covering space of X via the map p : X̃→ X sending [γ] 7→ γ(1).
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Proof. This is proven in the following several exercises.

Exercise C.11. Prove Lemma C.10 in the following steps.

(1) Show that the map p : X̃ → X is a homeomorphism when
restricted to a map p|U[γ]

: U[γ] → U. Hint: Show this restric-
tion is a homeomorphism by showing it induces a bijection
between open sets.

(2) Show that p : X̃ → X is continuous, using that it is locally a
homeomorphism, as shown in (1).

(3) Show that p : X̃→ X is a covering space, again using (1).

�

Proposition C.12. Let X be a path connected, semi-locally simply con-
nected, locally path connected space. Then, the construction p : X̃ → X of
Definition C.7 is simply connected.

Proof. Choose x̃0 ∈ X̃ mapping to x ∈ X under the projection p of
Lemma C.10. We want to show π1(X̃, x̃0) is the trivial group. The
proof will proceed in two steps

(1) First, we will show the image of the map π1(X̃, x̃0)→ π1(X, x0)
is trivial.

(2) Second, we will show the map π1(X̃, x̃0) → π1(X, x0) is injec-
tive

Once we prove these two facts, the result will follow.

C.1. Step 1: Trivial image. We check that the image of π1(X̃, x̃0) →
π1(X, x0) is trivial. We need to check that any loop f : I → X̃ in X̃
ending at x̃0 maps to a nullhomotopic loop in X.

Exercise C.13. Show that the composition p ◦ f : I → X, is a loop in
Xwhose homotopy class if f(1)

Since f is a loop ending at x̃0, which represents the homotopy class
of the constant loop at x, by definition of X̃, it follows that p ◦ f is
nullhomotopic.

C.2. Step 2: Injectivity. To show the map is injective, we need to
show that any loop h : I → X̃ based at x̃0 which maps to a con-
tractible loop in X is contractible in X̃0. If we could lift the homotopy
I× I ′ → X to a homotopy I× I ′ → X̃ between h and the trivial loop,
we would conclude h is nullhomotopic, so the map is injective.
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Lemma C.14. Let p : Y → X be any covering space with y0 7→ x0. Any
homotopy f : I× I ′ → X based at x0 (meaning f(0, t) = f(1, t) = x0) lifts
to a unique homotopy f̃ : I× J → Y for I = [0, 1] and J = [r, s] with [r, s]
any interval (including possibly r = s). By lifts, we mean p ◦ f̃ = f, i.e.,
there is a commutative diagram

(C.2)

I× J Y

X.

f̃

f
p

Let us see why this will finish the proof of injectivity. By Lemma C.14,
we can lift the homotopy I× I ′ → X to a homotopy I× I ′ → Y. It suf-
fices to check that this is indeed a homotopy between h and the con-
stant loop. For this we will use the uniqueness claim of Lemma C.14.
First, we claim that this lift f̃ satisfies f̃(s, 0) = h(s). Indeed, this fol-
lows by taking J to be a point (the interval [0, 0]) and noting that h is
a lift of f0 : I× {0} → X. Similarly, the fact that f̃(s, 1) = x̃0 follows
from the uniqueness part of Lemma C.14 and fact that the constant
loop at x̃0 is a lift of the constant loop at x.

To complete the injectivity, we now prove Lemma C.14.

Proof of Lemma C.14. To start, if J = [r, s] with r > s, we can rescale
and translate so that J = [0, 1]. The case r = s is covered at the end of
the proof in Exercise C.22. To prove the lemma, choose a sufficiently
fine open cover Ui of I× J so that the preimage under p of f(Ui) is
a disjoint union of copies of f(Ui). This is possible by the definition
of covering space, first choosing open sets Vi ⊂ X where this holds,
and then taking their preimages in I× J.

Exercise C.15. For all Ui show that the possible lifts Ui → Y of
f : Ui → X are in bijection with connected components (i.e., maximal
connected subsets) of p−1(f(Ui)), using that the map p is a homeo-
morphism from each connected component of the preimage of f(Ui)
onto Ui.

Exercise C.16. Show that we may assume the Ui are connected, by
replacing Ui by its connected components. Further, show that we
can assume the Ui are boxes of the form

(
a−1
n , a+1n

)
,
(
b−1
n , b+1n

)
, for

0 ≤ a,b ≤ n, interpreted suitably in the case a or b is equal to 0 or n
Hint: For this, use compactness of I× J, as shown in Exercise A.15.
Relabel these Ui as Ua,b.
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Exercise C.17. Verify that for any topological space V with an open
cover Ui, to define a map f : V → X it suffices to define a collection
of maps fi : Ui → X so that fi and fj agree when restricted toUi ∩Uj.

Exercise C.18. Show that for each fixed a we can construct a lift
∪n−2i=0 Ua,i. Hint: Use Exercise C.15 and Exercise C.17.

Exercise C.19. Show that there is a unique lift f̃0 : ∪ni=0U0,i → Y such
that f̃0(0, 0) = x̃0. Hint: Use Exercise C.15.

Exercise C.20. Assume that we have constructed a lift f̃a−1 : ∪ni=0Ua−1,i →
Y. Show that there is a unique lift f̃a : ∪ni=0Ua,i → Y agreeing with
f̃a−1 on (∪ni=0Ua,i)∩ (∪ni=0Ua−1,i).

Exercise C.21. Conclude the proof in the case r < s by induction on
a.

This concludes the case J = [r, s] with r < s. It only remains to deal
with the case r = s.

Exercise C.22. Finally, prove the case that J = [r, r] in a fashion simi-
lar to the above. Hint: This is much easier than the above case, since
we only have to worry about the I coordinate. Essentially, it is the
same as Exercise C.19.

�

This completes the verification of injectivity, and hence completes
the proof of Proposition C.12. �

We still have not yet shown X̃ is a universal cover! We use Lemma C.14
(proved in the course of Proposition C.12) to do this now.

Theorem C.23. Let X be a path connected, semi-locally simply connected,
locally path connected space. Then the construction (X̃, x̃0) of Definition C.5
is a universal cover of (X, x0).

Proof. We need to show that that for any covering space f : (Y,y0)→
(X, x0) there is a unique lift p̃ : (X̃, x̃0) → (Y,y0) of p : (X̃, x̃0) →
(X, x0). Recall that a point z ∈ X̃ is a homotopy class of a path f : I→
X. By Lemma C.14, there is a unique lift of f, call it f̃ : I → Y with
f(0) = y0. Define p̃([z]) := f̃(1).

Exercise C.24. Show that p̃ is well defined by verifying that two ho-
motopic paths of X lift to the same path in Y. Hint: Use Lemma C.14.
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Exercise C.25. Verify that the map p̃ is continuous. Hint: Show that
in fact p̃ : X̃ → Y makes X̃ into a covering space using that Y → X is
a covering space via the definition of the topology on X̃.

So, we have now constructed the desired map. It remains to show
it is the unique map of pointed spaces (X̃, x̃0) → (Y,y0) commuting
with the projection to (X, x0).

Exercise C.26. Verify that p̃ is the unique map of pointed spaces
(X̃, x̃0)→ (Y,y0) commuting with the projection to (X, x0). Hint: Use
the uniqueness part of Lemma C.14.

�

C.3. Properties of universal covers. We can use the universal cover
to deduce the fundamental group of a space.

Corollary C.27. Let X be a path connected, semi-locally simply connected,
locally path connected space. Let p : X̃ → X be the universal cover. Then
for x ∈ X, we have a bijection of sets φ : p−1(x) ' π1(X, x), where φ
sends a point of X̃, to the corresponding homotopy class of a path in X via
the definition of X̃ as in Definition C.5.

Proof. First, note that φ is well defined because every point of p−1(x)
corresponds to a path in X starting and ending at x, which means
that path is a loop. We check φ is injective and surjective. To show it
is surjective, we need to show that every homotopy class of a loop is
represented by a point in p−1(x). We know every class is represented
by some point of X̃. However, the only points of X̃which correspond
to loops based at x (and not just paths) are those points in p−1(x), by
definition of X̃.

It remains to check injectivity. That is, we only need so show that
x̃0 is the only point mapping to the nullhomotopy class in X. How-
ever, this too follows by definition of X̃, since its points correspond
to homotopy classes of loops in X and so x̃0 is the only point of X̃
mapping to the nullhomotopic class. �

Corollary C.28. Let X be a path connected, semi-locally simply connected,
locally path connected space. Suppose that Y is simply connected. Then Y
is the universal cover of X.

Proof. To start, we claim that the identity map Ỹ → Y is a universal
covering.
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Exercise C.29. Show that a simply connected, semi-locally simply
connected, locally path connected space Z is its own universal cover.
Hint: Show that the construction of Definition C.5 outputs Z again.
To show this, demonstrate that if the fiber over one point consists of
a single point, then the fiber over any point consists of a single point.
Show the fiber over a basepoint of z consists of a single point using
that Z is simply connected. Show that a map from a covering space
of Zwhere every fiber has degree 1 is an isomorphism.

Exercise C.30. Show that X̃ is a universal cover of Y, using the defi-
nition Definition C.5.

Exercise C.31. Conclude that X̃ and Ỹ = Y are both universal covers
of Y, hence show that Y → X is a universal cover. Hint: Use Exer-
cise C.6.

�

C.4. Fundamental group of the circle. We are finally ready to com-
pute the fundamental group of the circle, proving Theorem 4.1.

Proof of Theorem 4.1. Consider the map p : R → S1 sending t 7→
(cos 2πt, sin 2πt).

Exercise C.32. Verify p : R→ S1 is a covering space.

We claim that in fact R → S1 is the universal covering space.
Indeed, this follows from Corollary C.28 because π1(R, 0) = 0, as
shown in Example 3.15, and one can easily verify that R satisfies the
hypotheses of Corollary C.28.

From Corollary C.27, it follows that f−1(0) is in bijection with the
fundamental group π1(S1, x0). However, f−1(0) is precisely the inte-
ger points of R. Under the map p, the integer n precisely maps to
the loop winding n times around S1. This shows that all homotopy
classes are represented by such loops.

Exercise C.33. Verify the resulting map Z → π1(S
1, x0) which we

have shown is a bijection also respects the group structures on the
two groups, and hence defines an isomorphism.

�

REFERENCES

[Hat02] Allen Hatcher. Algebraic topology. Cambridge University Press, Cam-
bridge, 2002.


	1. Introduction to the fundamental group
	2. Preliminaries: spaces and homotopies
	2.1. Spaces
	2.2. Maps of spaces
	2.3. Homotopies and Loops

	3. The fundamental group: a definition and basic properties
	3.1. Finally defining the fundamental group
	3.2. Examples of a trivial fundamental group
	3.3. Yo I heard you like groups…

	4. The fundamental group of the circle
	4.1. Statement of the main result
	4.2. Applications
	4.3. Computing the fundamental group of the circle

	5. Further computations with homotopy groups
	5.1. Products
	5.2. Homotopy groups of spheres
	5.3. An application to Rn

	6. Van Kampen's theorem
	6.1. Computing examples of fundamental groups with van Kampen's theorem
	6.2. The inverse problem

	Appendix A. Topological spaces
	A.1. Compactness

	Appendix B. Group Theory
	B.1. Normal subgroups and quotients

	Appendix C. Universal Covers
	C.1. Step 1: Trivial image
	C.2. Step 2: Injectivity
	C.3. Properties of universal covers
	C.4. Fundamental group of the circle

	References

