Fling — A Fluent API Generator

Yossi Gil
Technion I.I.T Computer Science Dept., Haifa, Israel

yogi@cs.technion.ac.il

Ori Roth
Technion I.I.T Computer Science Dept., Haifa, Israel
ori.rothh@gmail.com

—— Abstract

We present the first general and practical solution of the fluent API problem — an algorithm, that
given a deterministic language (equivalently, LR(k), k¥ > 0 language) encodes it in an unbounded
parametric polymorphism type system employing only a polynomial number of types. The theoretical
result is accompanied by an actual tool FLING— a fluent API compiler-compiler in the venue of
YACC, tailored for embedding DSLs in JAVA.

2012 ACM Subject Classification Software and its engineering — General programming languages;
Software and its engineering — Domain specific languages

Keywords and phrases fluent API, type system, compilation, code generation
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2019.13

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.12

Funding Yossi Gil: Technion I.I.T
Ori Roth: Technion I.I.T

1 Introduction

Given a formal language ¢ over some finite alphabet ¥, i.e., £ C ¥* and a host programming
language, e.g., JAVA [1], the fluent API problem is to generate E = E({), a set of definitions
in the host language that encode ¢ such that membership in ¢ is equivalent to type-checking

against E: Concretely, for a word w = 0109 ---0,, 0; € ¥, 2 =1,...,n, the chain of method
calls
00.010.020.+.0,0.050) (1)

type checks (in the host language) against E(¢) if and only if w € ¢. (Here variable og and
method og are specified by E.) The fluent API problem is parameterized by £’s ranking in
the Chomsky hierarchy and the capabilities of the host language.

Attention was drawn to the problem since fluent APIs are a valuable software engineering
technique, useful, e.g., when £ specifies an object protocol, or for embedding a domain specific
language (DSL) in the host language. (See, e.g., [5] for motivation and applications.)

A straightforward solution for the limited set of regular languages has been known and
used for years; yet, interesting DSLs and protocols are often not regular.

Previous theoretical advances at the problem remain unpractical due to algorithm com-
plexity, size of E(¢), or, inherent time complexity of the type checking. Prior attempts to
make these theoretical results practical remain ad hoc, with no clear specification of the class
of formal languages that can be processed.

?Yossi Gil and Ori Roth; .

5v icensed under Creative Commons License CC-BY
33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 13; pp. 13:1-13:25

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:yogi@cs.technion.ac.il
mailto:ori.rothh@gmail.com
https://doi.org/10.4230/LIPIcs.ECOOP.2019.13
https://dx.doi.org/10.4230/DARTS.5.2.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2

Fling — A Fluent APl Generator

1.1 Contribution

This work presents the first general and practical solution of the fluent API problem. To this
end, we prove that any Deterministic Context Free Language (DCFL) can be encoded in a
type system that supports unbounded parametric polymorphism, while employing only a
polynomial (in the size of the language specification) number of types.

Recall that DCFL is the class of formal languages that are recognizable by a Deterministic
PushDown Automaton (DPDA). Our proof is supported by an automata compiler which
converts a DPDA into JAVA definitions so that (1) holds.

The generality of the result is in two respects:

Most programming languages, and hence most DSLs, are designed with practical parsing

in mind. The DCFL class includes all languages for which an LL or LR grammar exists.

The requirements from the type system of the host language are minimal. In particular,

we assume the type parameterization:

does not allow the generic invoke functions found in the in its type parameter, nor
expose any other property of this type

does not allow generic class make any assumption, nor place constraints on its type
parameter, inherit from it, or supply a default value for it.

does not support partial specialization of generic classes (with the help of these, it is
possible emulate a two-stack machine, and henceforth a Turing machine [9]),

In fact, the generics we assume are as weak as found in ML. The only thing a generic

can do with its parameter is to pass it as a parameter to another generic.

Conversely, the practicality of the result is in two respects:
The time to type checking an expression such as (1) is linear in its size.
The length of E(¢) is polynomial in the size of the DPDA that defines £.

We further demonstrate the theoretical result in an actual tool FLING— a fluent API
compiler-compiler in the style of YACC, tailored for embedding DSLs in JAvA. Given
an LL(1) grammar G, FLING generates appropriate JAVA definitions of modest size by which
(1) type-checks, if and only if G derives w.

FLING’s restriction to LL(1) is not inherent — extending FLING to support LR (1) languages
(and hence all deterministic languages) is technical (though laborious). Further, FLING
generates JAVA class definitions of the abstract syntax tree (AST) implicit by G. Even
further, FLING generates bodies for methods o; that generate the AST: When executed, the
sequence (1) returns an instance of this AST that describes w, to be used by clients for
further processing.

To demonstrate, we use FLING to define a fluent API language for writing regular

expressions. In this API the regular expression (ab?)* | (0 —9)" is written as:
re.noneOrMore (exactly("a") .and() .option(exactly("b"))) .or() .oneOrMore (anyDigit ()).$()

Composing the API begins with a grammar for the language ¢ of regular expressions:

(Expression) ::=re (RE)

(RE) ::=exactly (Tail)
| option (Tail)
| noneOrMore (Tail)
| oneOrMore (Tail) (2)
| either (Tail)
| anyChar (Tail)
| anyDigit (Tail)

(Taily ::=and (RE) | or (RE) | e.

This grammar is then supplied into FLING; incidentally, the grammar specification for FLING
uses the fluent API style:

Y. Gil and O. Roth

Listing 1 FLING fluent API specifying the regex grammar depicted in (2).

1 start(Expression). // (Ezpression) is the start symbol

2 derive(Expression).to(re, RE). // (Ezpression) ::= re(RE)

3 derive(RE).to(exactly.with(String.class), Tail) // (RE) ::= exactly(Tail)

4 or(option.with(RE), Tail). // | option(Tasl)

5 or(noneOrMore.with(RE), Tail). // | noneOrMore(Tail)

6 or (oneOrMore.with(RE), Tail). // | oneOrMore(Tail)

7 or(either.with(RE, RE), Tail). // | either(Tail)

8 or(anyChar, Tail). // | anyChar(Tasl)

9 or(anyDigit, Tail). // | anyDigit(7Tasl)

0 derive(Tail).to(and, RE).or(or, RE).orNone(); // (Tail) ::= and(RE)| or(RE)| e

The above chain of method calls produces, at run time, a FLING object of type BNF. This
object can then be requested to emit the JAvA (indeed, also C++ [19]) code that implements
the fluent API. To use this API, one must compile and link again this emitted code.

One may disregard the regular-expression example and others as being singular, asking
whether it would be better to manually compose a fluent API for regular expressions and
other examples, rather than developing a general purpose machinery. An answer would be
in considering the problem of embedding XML literals and expressions as fluent code, by
writing, e.g.,

XMLData t = data().th().td("Customer").td("Number").th(end).tr().td("A").td(3).tr(end).data(end);

to create an XML data object. To maintain correctness of the generated object, the fluent
APIT that begins with data() must support the DTD (XML schema) of an XMLData object.
Alas, this schema could be very different in different applications. A tool such as FLING
is handy in creating a fluent API to support different XML schemas and their evolution
through the software’s lifetime.

It is interesting that previous efforts to introduce XML literals and expressions into
programming languages fail to do the DTD specific type checking. Such is the case with
XJ [10], an XML extension to JAVA in which all XML instances belong to the same type.
Similarly, XML literals of Visual Basic do not distinguish between various DTDs. Also,
attempts to introduce XML into C# [11] [16, 15] ignored the issue of static type checking of
distinct XML objects. To our knowledge, the only language supporting typed XML objects
is HASKELL [20]. With the current contribution, XML objects with DTD static typing
can be easily introduced into JAVA, C# and C++, for all DTDs that can be written as a
deterministic language. (Note however that a DTD requirement that all rows in the table
have the same number of columns, is not context free, for the same reason that the language
a™b"c" is not context free.)

A concern often raised against fluent API carry is that the syntactic baggage of parenthesis
and a ‘" dot operator in each call obscures the syntax of the implemented language. This is
true for JAVA in the implementation we offer. We believe it might be possible to tune the
implementation to use fields rather than methods whereby minimizing the baggage to the ¢
dot operator. The same is possible in languages such as EIFFEL [12], in which it possible to
omit the empty parenthesis in calls to methods that do not take parameters. A workaround

to omit the parentheses is possible in C# with getter methods.

We further note that one of the most successful examples of embedding a DSL in a host
language, namely of SQL in C# with LINQ, relies on a fluent API. SQL code excerpts found
in C# are free of any syntactic baggage and use the SQL syntax. An SQL excerpt is converted
in a technical iteratively process (which involves little parsing if any) into a fluent API call
chain. The definitions beyond this fluent API were handcrafted for the particular syntax.
We believe it should be possible to extend this mechanism to support user defined DSLs.

13:3

ECOOP 2019

13:4

Fling — A Fluent APl Generator

1.2 Previous work

Gil and Levy [5] described the first non-trivial solution of the fluent API problem, recognizing
the same class of languages as we do here, and making the same requirements from the type
system of the host language as we do. However, in their construction E(¢) is exponential in
the specification of £. Moreover, since their result relies on on a very complex theoretical
construction [3], no implementation is provided nor one does seem feasible.

Grigore [8] noticed that bounded below parametric polymorphism, e.g., JAVA’s super
constraints on generics, makes it possible to coerce the type checker into non-constant
computation, going up and down the inheritance tree. With this observation, he was able
to show that JAVA generics are Turing-complete and solve the fluent API problem for any
recursive language ¢. For a context free grammar language ¢, his construction produces a
polyomially sized E(f). However type checking an expression of size n requires O(n) time.
In Grigore’s words,

“ ..the degree of the polynomial is not exactly encouraging. There is room for improvement,
and work to be done to achieve a practical parser generator for fluent interfaces.”

Indeed, practical parser generators for fluent APIs restrict themselves to using unbounded
parametric polymorphism as we do here.

Fajita [14] is a tool for generating a fluent API definition from a given grammar specification.
The class of grammars accepted by Fajita is contained in LL(1), but otherwise unspecified.
Also, unlike FLING which generates an AST, Fajita can only be used for language recognition
but not for language processing.

In contrast, Silverchain by Nakamaru et al. [18] is a real compiler-compiler. However,
the class of languages it can process has not been defined. Unlike FLING, Silverchain fails
on the many common languages that require an unbounded number of e-transitions (see
below Sect. 2).

Another related contribution is by Xu’s [22] compiler-compiler for LL(1) languages
provided they are given in Greibach Normal Form.

Outline. Sect. 2 defines deterministic pushdown automata, establishes vocabulary and
gives some intuition on the difficulty posed by e-transitions. With these, we proceed in
Sect. 3 to describe how deterministic pushdown automata can be emulated by a realtime
device that uses tree encoding data structure, rather than a stack. Sect. 4 demonstrates
(using JAVA) how the emulation can be compiled to any unbounded parametric type. The
FLING tool and its implementation are the subject of Sect. 5. Sect. 6 concludes, mentioning
directions for further research.

2 Pushdown Automata

Intuitively, a pushdown automaton (PDA) is a finite state automaton (FSA) additionally
equipped with a stack whose values are drawn from some finite set of stack symbols. A PDA
has two kinds of transitions:

1. In a consuming transition, the PDA consumes an input letter and pops a symbol from
the top of stack. Then, depending on the popped symbol, the input letter, and its current
state, the PDA moves into another state, and pushes onto the stack a (possibly empty)
sequence of stack symbols.

2. An e-transition is similar to a consuming transition, except that no input letter is
consumed: The selection of the next state and the symbols to push in the transition
therefore depends solely on the stack’s top and the current state of the automaton.

Y. Gil and O. Roth

The PDA process the input letter by letter: For each letter, the automaton carries out a
single consuming transition, followed by zero or more e-transitions. There is no upper bound
on the number of e-transitions carried out for a single input letter. As our next example
shows, this number may be linear in the input size.

2.1 Example

Consider a simple (balanced) parentheses language defined by the grammar of Fig. 1. In this
language each opening parenthesis, ‘(’; must be balanced with a closing ‘)’, except that a
closing square bracket, ‘1’ closes all previous opening parentheses.

(Word) ::= (Word) { Word) (Balanced) ::= (Balanced) (Balanced)
| (Balanced) | ¢ (Balanced))
| (Squared) | e
| € (Squared) ::=(" (Balanced)]

Figure 1 Grammar for a parentheses language in which ‘(’ and ‘)’ are balanced except that ‘]’

closes all currently open parentheses.

To recognize this language a PDA should maintain a stack to count all unclosed opening
parentheses. The stack should be cleared when a ‘]’ is encountered. One such PDA is
depicted in Fig. 2.

Gyo = Yo

Gy =7
start *> q1
W e
5 /0 0

€,% — 70 y Y1 — €

q2

U

g,Y1 — €

Figure 2 A deterministic pushdown automaton recognizing the balanced parentheses language of
Fig. 1.

The figure uses the usual representation of automata as a multi-graph whose nodes are the
states of the inner FSA of the PDA, while multi-edges emanating from a node describe the
transitions taken by the PDA when being in this state. Edge labels describe the dependency
of the transition on both the current input letter and the top stack, and the sequence of
stack symbols to be pushed in response to these. The figure also employs the convention
that consuming transitions are depicted as thicker edges than e-transitions.

The automaton in the figure can be in one of three inner states: qg, g1, and, go. It uses
of stack symbols, 79, marking the bottom of the stack, and «;. The number of occurrences
of v1 on the stack is count of the yet unmatched opening parentheses.

Focus on the self edge of ¢; and the two labels that annotate it.

13:5

ECOOP 2019

13:6

Fling — A Fluent APl Generator

The first label (,y7 — 7171 means that if the automaton is in this state, and if the
current input letter is ‘(’, and if the stack’s top is 1, then the automaton carries out a
consuming transition, in which the stack top is replaced by 7171, hence maintaining the
unary representation of n.

The second label),y — € over this edge means that if the current input letter is ‘)’ then
a y1 at the top of the stack is popped without being replaced.

Notice that if after popping, the symbol at the top of the stack is also 1, then no further
processing of this input letter occurs. If however after popping, g is revealed, then the
transition consuming ‘)’ is followed by precisely one e-transition, in which the automaton
traverses the edge from ¢; to gqg. The label €,v9 — ¢ on this edge demonstrates the notation
for e-transition: in this e-transition the popped 7y is pushed back to the stack.

Any number of e-transitions may occur if the input letter is ‘]’: state ¢; is the only inner
state in which this letter is legal, and the stack top must be y;: if this is not the case, the
automaton aborts; Otherwise, it moves to inner state g2, and then follows the self edge of this
state in a sequence of n e-transitions, popping all occurrences of 7 from the stack. Finally,
the automaton follows another e-transition which brings the automaton back into its initial
internal state qq.

2.2 Deterministic pushdown automata

We distinguish between deterministic and non-deterministic PDAs: At each point during
its computation a non-deterministic PDA (NDPDA) may have several legal transitions (be
they consuming or €). For example, the automaton depicted in Fig. 2 is deterministic. An
NDPDA chooses among these in the usual non-deterministic fashion: It accepts when there
is a non-deterministic run which leads to an accepting state.

» Definition 1 (DPDA). A deterministic pushdown automaton (DPDA) M is a septuple M =
(%,Q,q0, F\T',7v0,0) where Q is a finite set of automaton states, g9 € @ is the initial
state, F' C Q) is the set of accepting states, I' is a finite set of stack symbols, y9 € T is a
designated symbol marking the initial bottom of the stack, and § is the (partial) transition
function:

§:Qx (BU{e}) xT - Q xTI; (3)

A configuration of a DPDA is a pair (g, s) € Q x I'* where q is M ’s inner FSA state and s
is the stack contents.

A DPDA gives an operational definition of a some (typically infinite) language ¢ C ¥*:
Given a word w € ¥*, a DPDA M starts consuming input, left to right, at the configur-
ation {qo, o). For each input letter it encounters, automaton M carries out a consuming
transition and followed by a (possibly empty) sequence of e-transitions. Automaton M aborts,
rejecting the input and announcing w ¢ ¢, if it either (%) tries to consume a letter when the
stack is empty, or if (ii) the transition function is undefined for the current combination of
input letter and top of stack symbol.

Suppose that M is in configuration (g,s) and that the stack top is symbol v € T,
i.e., s = s where s’ € T'*. Then, if §(q,0,7) = {¢’,a) the automaton moves through a
consuming transition to configuration (¢’, as’). Alternatively, the automaton also moves to
configuration (¢’, as’) in through an e-transition, if d(q,e,7) = (¢, a).

A configuration is called consuming if M is about to consume an input letter. Intermediate
configurations are the configurations in which M attempts to carry out an € transition. Thus,
a consuming configuration is one in which the automaton cannot make any € transitions; an
intermediate configuration is one in which such transitions are possible.

Y. Gil and O. Roth

It follows from the determinism requirement that we can assume the initial configura-
tion (go, 7o) is consuming: If this is not the case, then initially the automaton must choose
between a possible e-transition and a consuming transition.

The automaton accepts, announcing w € ¢, and terminates if after w is consumed in full,
it reaches a consuming configuration (g, s), where ¢ € F.

Notice that it is technically possible for a DPDA to loop indefinitely via pushing e-
transition, e.g., by repeatedly pushing symbols into the stack, or, by repeatedly replacing
the stack’s top. This singularity is easy to detect and can be ignored. We tacitly assume
that a DPDA always halts.

2.3 Deterministic languages

Unlike FSAs, the expressive power of PDAs depends on whether they are deterministic or not:
The set of languages accepted by NDPDAs is exactly the set of languages that can be specified
by a context free grammar (CFG). In contrast, the set of languages accepted by DPDAs,
also called the set of deterministic languages, is exactly the set of languages recognizable by
an LR(1) parser [13]. Another important property of deterministic languages is that they
are guaranteed to have an unambiguous grammar. (In contrast, some non-deterministic
languages are inherently ambiguous, i.e., all CFGs for such a language are ambiguous.)

Parsing algorithms used in practice, e.g., LL(k) and LR(k) employ a deterministic
automaton. In fact, the computation in all of the classical LL(1)-, SLR~, LALR~, and LR(1)-
parsers is essentially that of a DPDA.

Deterministic languages are all context free, but not all context free languages are
deterministic. For example, the language specified by the condition

{ww” | w e X Aw” is w in reverse order }, (4)

or, equivalently, the context free grammar

(8) =a(S) a
b (S) b

| &

(5)

requires a PDA to “guess” when w ends and w" begins. If the guess is correct, then the
automaton must pop symbols of the stack. If it is not, more symbols must be pushed. A
non-deterministic automaton can explore both options for each letter in the input. Such
guessing cannot be done in a deterministic fashion.

2.4 Simplification of DPDAs

A real-time automaton is an automaton that carries out precisely one transition for each input
symbol. The challenge in producing a real-time pushdown automaton is in the consolidation
of an unbounded number of (e-) transitions into one. Next we do the first step towards this
consolidation:

We say that the transition is popping if « is empty, and that it is pushing otherwise.
We show how a given DPDA can be transformed into an equivalent one, in which pushing
transitions are never followed by e-transitions.

» Lemma 2. For every DPDA M, there is a DPDA M’ recognizing the same language as M,
such that every pushing transition of M’ leads to a consuming configuration, in which no
further e-transitions are possible.

13:7

ECOOP 2019

13:8

Fling — A Fluent APl Generator

Proof. Consider any particular pushing transition. If no e-transition follows it, we are done.
Otherwise, we consolidate the transition with the subsequent one. We need to consider four
cases, as depicted in Fig. 3.

(i) consuming push, e-push. (%) e-push, e-push.
T, %i = Vi &7 =B €,%i = Vi €7 — B
i > 45 qx qi q; qx
(i) consuming push, -pop. (iv) e-push, e-pop.
0, = Vi &% — € &% = Vi &% €
qi > 4 Ak qi 4qj qr

Figure 3 Four cases of consolidating a pushing transition with a subsequent e-transition.

The top left of the figure shows case (i), in which the first transition is consuming push
and the second transition is an e-push: A DPDA at state ¢; and top stack symbol ; consumes
letter o removes ;, pushes back a sequence v;a, and moves to state g;. In this state, it
carries out an e-push in which +y; is removed and replaced with a sequence 3 of stack symbols,
and moves to state qy.

The cumulative effect of the two transitions is then: consuming ¢, moving from ¢; to g
and pushing the sequence Sa. As shown in the figure, the automaton can be transformed
without perturbing its semantics, by replacing the edge (g;, g;) labeled o,v; — v;a (rendered
in black in the figure) with an edge (g;, gx) with labeled o,7v; — S (rendered in red).

Notice that edge (g;, qr) with label €,7; — /3 is not eliminated in the transformation: In
the case that there are other edges leading to ¢;, elimination of the edge would change the
semantics of the automaton.

Case (ii) is similar, except that the first transition is not consuming. In this case,
the transformation replaces edge (gi, q;) with label e,v; — v, with a (g;, qx) edge with
label €,v; — Ba.

These two cases assume that the second transition pushes a non-empty sequence 3 of
stack symbols. In both cases, the consolidating transition is a pushing consuming transition,
which could be consolidated further.

Cases (7i4) and (i) in Fig. 3 pertain to the situation in which the sequence § is empty,
i.e., the second transition is an e-pop. As shown in the figure, the transformations correspond
respectively to cases (i) and (7), with the assumption || = 0. In these cases, the consolidated
transition pushes «, which may, or may not be empty. If « is non-empty, then the consolidated
transition is a push, which may be consolidated further with a succeeding e-transition
(if present).

We repeatedly apply the transformations depicted in Fig. 3 as long as they are applicable:
If (g:, qx) is an edge that the transformation yields (marked in red in the figure) is pushing,
then it must be further consolidated with any e-edge outgoing from g.

Clearly, the process must stop, and when it does, no e-transitions can follow a pushing
transition. <

What impact does the transformation described in Lemma 2 have on the size of the
automaton? Each step of the transformation consolidates two edges into one. Revisiting

Y. Gil and O. Roth

Fig. 3 we see it is not always safe to remove edge (g;,qx): There might be yet another
state ¢ (not depicted in the figure) with an edge (gi/, ¢;). If (gj, qx) is eliminated then the
four case analysis of ¢;, ¢; and g and the edges that connect them cannot be repeated for
states gy, g; and g and their edges.

The number of edges in the automaton may sometimes be reduced in the course of the
transformation. However, the encoding of the automaton typically increases in size. In cases
(i) and (%) edge (g;, ¢;) with string « is replaced by edge (g;, gx) with string o5. If |3] > 1,
the length of the label increases. We argue that this increase is polynomial in the size of the
specification of the automaton: The assumption that the automaton halts is tantamount to
the claim that no e-transition can occur twice in the processing of a single input letter, and
hence can add |3| symbols to each other edge at most once.

3 Realtime emulation of DPDAs with tree encoding

There are three steps in our algorithm for converting a given DPDA M into to a fluent API
encoding of L(M), the language recognized by M: First we convert M to an equivalent
automaton where no pushing transition can be followed by an e-transition, relying on
Lemma 2 from the previous section (Sect. 2). Second, in this section we show how M can be
encoded in a tree data structure that makes it possible to process an input letter in constant
time. Effectively, we emulate the computation of M using this data structure. Finally, the
following section (Sect. 4) will hows how this data structure and the constant time processing
can be compiled to JAVA’s type system, using only unbounded parametric polymorphism.

3.1 Encoding configurations as trees

Let M =(%,Q, qo, F, T, 70,) be implicit henceforth, and suppose that @ = {qo, ..., qn} for
some h > 0. Recall that configurations of M are pairs (g,s) € Q x I'*, storing the inner
state ¢ and a string s € I'* that represents the entire contents of the stack.

For an intermediate configuration ¢ define ¢®, the e-closure of ¢, as the consuming
configuration obtained from c after carrying out all possible e-transitions. If ¢ is consuming
then ¢ = ¢. Observe that ¢© depends only on ¢, and not on the input.

The encoding of a configuration ¢ = (q, s), written e = e(c), is a complete tree of degree h+
1: The root node of e carries labels g and «, where « is a prefix of s, i.e., s = ar, r € ['*, and
where |a| > 0 is bounded by some constant that depends on M, but not on the stack’s depth.

More generally, any non-leaf sub-tree ¢’ of e (including e itself) is an encoding of some
configuration ¢’ = (¢/, s’), where s’ is a suffix of r, and has two labels associated with it:
1. a state label, which is the state ¢,
2. a stack prefiz label o, a non-empty string of stack symbols whose length does not depend
on the input.
We will use the field notation e.q for the state label; e.« for the stack prefix label.

Consider, for example, the DPDA of Fig. 2 recognizing the parentheses language specified
by Fig. 1. The configuration {(g1,v1v17v170) of this automaton (obtained, e.g., after reading
the input prefix “(((”) is encoded by our algorithm as depicted in Fig. 4.

13:9

ECOOP 2019

13:10

Fling — A Fluent APl Generator

q0 q
q1,7171
l {“\L
q0 q2 q0

q2 q0 q2
90,71 q1,71 90,70

Lot Lo L, [
q0 q2 q0 q2 q0 q2 q0 q2 q0 q2 q0 q2
9o, Yo 90,70 9o, Yo 90,70 o, Yo q0; Y0 $ [}]
q1i (1|l rhi qul qxi qul
$]] $ 2] 2] $]] $ 2] 2] $]] $ 2] 2]

Figure 4 The tree encoding of configuration (g1,7v1v1v170) of the automaton of Fig. 2.

(We are oblivious to the question of whether encoding, as defined above, of a configura-
tion is unique; incidentally, our algorithm always creates the same encoding for the same
configuration.)

Since the automaton has three inner states qo, ¢q1, and, g2, the tree is, as can be seen
in the figure, of degree 3. Examine now the path that starts at the root, and choose the
edge labeled ¢¢ until a leaf is encountered. Collecting the stack prefix labels along this
path, yields first the «171, then 1 and then ¢, whereby reconstructing the full stack of the
configuration (g1,v1717170). Following the g2 edge will only yield fragments of this stack
contents. However, this curious property is not true for all encodings — the consolidation of
pushing transitions may make changes to the stack contents, so that s’ is not necessarily a
suffix of s, even if €’ occurs in e.

Notice that the same sub-trees occur several times in the figure. We will see below that
even though tree encoding may be exponential in size, it has an efficient, linearly sized,
representation in memory.

The emulation does not examine s’ directly: Instead, it stores in the i*” child of e, written
either as e[i] or e[g;], the encoding of configuration (g;,s’)®. Intuitively, the emulation does
not know to which state ¢; automaton M will move when « is removed from the stack, so it
stores the result of the computation for all possible values of g;. More precisely, we have the
recursive encoding property

» Property 1 (Recursive encoding property). If e is the encoding of configuration ¢ = (g, s)
and e.« = «, then eli] is the encoding of the e-closure of the configuration of {(g;,s'), i.e.,

Vi=0,... heeli] = e((g.s)). (6)

In general, configuration (g;, s')¢ depends on the stack contents s” and therefore computing
its encoding may require an unbounded time. The emulation however these said values
incrementally: whenever an encoding of a new configuration is generated, the values of
its h + 1 children are computed from the encoding of the previous configuration and its
immediate children, as explained below in Sect. 3.5.

Also notice that the length of the encoded stack decreases as one goes down the tree.
Leaves thus encode configurations in which the stack is empty. We allow two kinds of leaves:
the special node L, denoting the (pseudo) configuration of M rejecting the input, and, T,
denoting the (pseudo) configuration of accepting it. It will become evident that these special
nodes represent acceptance or rejection even in the case that the stack is not emptied.

3.2 Emulating a DPDA with tree encoding

There is only one valid encoding of the initial configuration (gg,7o), since there is only one
way of selecting a.. All children of this configuration are leaves. Leaf i is T if ¢; € F' and L
otherwise. The emulation of M iterates from this initial encoding following Alg. 1.

Y. Gil and O. Roth

Algorithm 1 Function emulate(w) — emulate the computation of DPDA M on w € ¥*; returns T
if M accepts w, and L otherwise.

1: Function emulate(w):
2: Let e + newNode(qo, Vo) // encoding of initial configuration {(go,o)
3: Fori+ 0,...,h do // fill in the i™ child of e
4: If ¢; € F then /] M accepting the input
5: eli] <~ T // an accepting leaf
6: else /] M rejecting it
s eli] + L // a rejecting leaf
8: For 0 € w do // iterate on input letters, left to right
9: e < next(e, o) // encoding of next consuming configuration
10:. If e=_1 then // M was unable to proceed
11: Return L // halt emulation rejecting the input
12: If e.q € F then /] M terminates in an accepting state
13: Return T // accept the input
14: Return L // else, M terminated in a non-accepting state, reject the input

The emulation in the algorithm has three parts: In lines 2—7 the encoding of the initial
configuration is computed. Input processing is in lines 811 — for each input letter, the

emulator calls function next to compute the encoding of the next consuming configuration.

If it is determined during the iteration that M does not have a valid transition, then the
emulator aborts, rejecting the input. Finally, in lines 12-14, the emulator decides on accepting
or rejecting the input, depending on whether M ended in an accepting state.

3.3 Computing the next encoding

The gist of the emulation is in function next(e,o) (Alg. 2): given e, an encoding of a
consuming configuration, and input letter o, next(e, o) returns the encoding of the consuming
configuration obtained after consuming the input letter o. This function computes the
cumulative effect on the stack and the inner state of the consuming transition from e on o
and all e-transitions that might follow.

Algorithm 2 Function next(e, o) — given e, an encoding of a consuming configuration, and input
letter o, returns the encoding of the consuming configuration obtained after consuming o.

1: Function next(e, 0):

2: Let q,a < label of e // € is encoding of (q,s), s = as’, s’ is unknown
3: Let v «+ first(«) // Pop is possible since o € T
4: Let f + rest(a) // e is encoding of {q, s), s = yBs’, s’ is unknown
5. If 6(q,0,7) is undefined then // o-consuming transition is undefined
6: Return L // The automaton rejects the input
7. Let ¢/, + 6(q,0,7) // Compute the consuming transition
8: continue as in Alg. 4

We see that next first (lines 2-4) determines that e is encoding of a configuration (g, y8s’),

where v € T is the head of the stack, 8 € I'* is the known stack prefix under it, and s’ € I'*

13:11

ECOOP 2019

13:12

Fling — A Fluent APl Generator

is the unknown remainder of the stack. In principle, next can examine the values of e[i] to
determine s’, but doing so would lead to a computation that depends on the stack size, and
hence on the input, which we would like to avoid.

In lines 5-7, next examines the consuming transition of M. If this transition is undefined,
then the input is rejected. Otherwise, next determines that M moves to state ¢’ and
replaces 7 with the string « in the consuming transition, i.e., M moves to intermediate
configuration ¢ = (¢’, o/ Bs’).

Function next uses an auxiliary recursive function, consolidate(e) (Alg. 3), which recursively
computes the effect on the stack and the inner state of all e-transitions that might follow:
given e, an encoding of an intermediate configuration ¢, the function returns the encoding of ¢*.

Algorithm 3 Recursive function consolidate(e) — given e, an encoding of an intermediate config-
uration, returns the encoding of the consuming configuration obtained from e after all e-transitions
were carried out.

1: Function consolidate(e):

2: Let q,a < label of e // e encodes {(q,s), s = as’, s’ is unknown
3: Let v «+ first(«) // Pop is possible since o € T'™
4: Let § <+ rest(«) // e encodes {(q,s), s =yBs’, s is unknown
5: If 6(q,&,7) is undefined then // No further e-transitions are possible
6: Return e // Automaton is ready to consume
7. Let (¢/, o) + d(q,e,7) // Compute the € transition
8: continue as in Alg. 4

We see that function consolidate is quite similar to next: It starts (lines 2-4) by determining
that e is an encoding of a configuration (g, v8s’), v € ', 8 € I'* and unknown remainder
of the stack s’ € I'*. In lines 5-7, consolidate examines the forthcoming e-transition of M.
However, if this transition is undefined, it is determined no more e-transitions are possible,
and that e is in fact an encoding of a consuming transition. Function consolidate then simply
returns e.

The similarity of next and consolidate goes further: after initial processing, they proceed
identically: The common part of these two functions is described in Alg. 4, which, given e,
an encoding of a configuration (g,v8s’), and a transition from this configuration to new
configuration (¢, o/ s’), returns the encoding of (¢’,a/8s’)e.

3.4 Correctness of the emulation

» Lemma 3. If e is the encoding of an intermediate configuration c, then consolidate(e)
returns the encoding of ¢

Proof. Let ¢ = (q,as’), where e.¢ = ¢ and e.a« = a. Recall that || > 1 and the de-
composition @« = 3, v € I'. By the lemma’s assumption e[i] is the encoding of (g;, s')¢
fori=0,...,h.

First notice that if §(q,e,7) is undefined, then there is no e-transition from ¢, ¢ is a
consuming configuration, and ¢ = ¢°. In this case no further processing is required and
consolidate returns e (line 6 in Alg. 3).

Otherwise the function focuses on the e-transition leading from ¢ to ¢’ with label ,v — /.

In this transition M moves from ¢ to configuration ¢’ = (¢’, o’8s’).

Y. Gil and O. Roth 13:13

Algorithm 4 Common code of functions next (Alg. 2) and consolidate (Alg. 3) — given e, an
encoding of an intermediate configuration ¢ = {(q,73s’), a state ¢’ € @, and stack prefix o, the
code considers an e-transition from c to configuration ¢’ = {¢’, o’Bs’), and returns €', the encoding
of (¢')?, the e-closure of ¢'.

1: If |5] =0 then /ol =1
2 If |o/| =0 then // This is a popping transition. We encode {(q’,s')®
3 Return e[¢] // Configuration {(q',s')® is encoded by e[q’] by (6)
4 else // 18] = 0, pushing e-transition: encode {q’,a’s")
B Let ¢/ < newNode(q’,) // € is encoding of consuming configuration (¢',a’s’)
6 For i<+ 0,...,h do // Copy the i child of ¢’ from e
7 Let €'[i] < e[i] // By definition, configuration {(g:,s’) is encoded by e[i] (= e[g:])
8 Return ¢ // Encoding of consuming configuration
9: else //18] >0, |a] > 1
10: If |&/| =0 then // This is a popping transition. We encode (¢, Bs’)®
11: Let ¢/ < newNode(q', 3) /] € is encoding of intermediate configuration (q',Bs’)
12: For i<+ 0,...,h do // Create the i child of €’
13: Let €'[i] < el] // Other than label €' is the same as e
14: Return consolidate(e’) /] Then, continue recursively to yield (¢, Bs’)®
15: else // 18] > 0, pushing e-transition: encode {q’,c’Bs")
16: Let ¢/ < newNode(q’,) /] € is encoding of consuming configuration {(q',a’Bs’)
17: For i<+ 0,...,h do // Create the i™ child of /. We encode (q;, 3s')*
18: Let €'[i]] < newNode(g;,3) // Temporarily store the encoding of {(gi, Bs’) in €'[i]
19: For j < 0,...,h do // Create the §™ child of €'[i]. We encode {(q;,s')*
20: Let €'[i][j] < e[j] // Encoding of {(g;,s")¢ is e[j] by (6)
21: Let €'[i] < consolidate(e’[7]) // Recursive call to compute encoding of (q:, 8s")°
22: Return ¢ // Return consuming configuration {q’,a’Bs")

Function consolidate then carries on in Alg. 4 to compute and return ¢’¢. If the transition
is popping, consolidate calls itself recursively, to compute the effect of further e-transitions.
In the case it is pushing, no recursion is required thanks to the transformation of Lemma 2.

We complete the proof by induction on the length of «.

Inductive base. The case |o| =1, i.e., |5] = 0 is managed in lines 1-8 of Alg. 4. There are
two sub-cases to consider:

Popping transition. If o is empty, (line 2) then the transition is popping and ¢/ = (¢/, s').
By Property 1 the encoding of ¢’® is stored in e[¢'] which consolidate returns (line 3).

Pushing transition. If o/ is not empty (line 4) the transition is pushing, ¢’ = (¢’,a’s’)
is consuming and cannot be followed by e-transitions, i.e., ¢ = ¢’ (Lemma 2). In
choosing the prefix o/ for the encoding €’ of ¢/, we have that the stack remainder of e
and €' are the same, i.e., s = s’. Encoding €’ is therefore created with label ¢, o’
(line 5) and reusing the children of e (lines 6-7). It is then returned by the function
without any further processing (line 8).

Inductive step. If |a] > 1 then string /3, which is one character shorter than «, is not empty.

Function consolidate then proceeds in line 15 with the same two sub-cases:

Popping transition. If o/ is empty (line 10), then this is a popping ¢ transition and ¢ =
(¢, Bs’). Function consolidate then defines a new encoding €’ (line 11) with the non-
empty prefix 5. With this selection of stack prefix, the stack remainder of ¢’ is the
same as that of e, and ¢’ reuses the children of e (lines 12-13).

The recursive call (line 14) then deals with the subsequent e-transitions. It returns the
correct result by the inductive hypothesis (recall that |5] = o] — 1).

ECOOP 2019

13:14

Fling — A Fluent APl Generator

Pushing transition. If o’ is not empty (line 15), then the e-transition under consideration
is pushing. The automaton reaches configuration ¢ = (¢’,a’8s’), and since no e-
transitions follow a pushing transition, we know that ¢’ is consuming and ¢’ = ¢’¢.
Function consolidate then generates a new encoding e’ with labels ¢’ and o’ (line 16).
The remainder that follows the stack prefix o’ in this case is not s’, but rather 8s’.
The stack remainder s’ is obtained with the aid of an extra level in the tree.

Indeed, the children of ¢’ are labeled with § as a stack prefix (line 18). The stack
remainder of each of these h children is s’. We can therefore reuse the children of e in
populating the h? grandchildren of ¢’ (lines 19-20).

Revisiting line 18, we see that we set the i" child of ¢’ to the encoding of config-
uration (g;, 3s’). However, by Property 1, the i child of ¢’ should contain not the
encoding of this configuration, but of its e-closure.

The recursive call to consolidate in line 21 fixes the children of e’: After this call, each
of its children stores, as required by Property 1, the encoding of (g;, 8s')c.

As before, the correctness of the recursive call on the children is guaranteed by the
inductive hypothesis and the fact that 3, the stack prefix of each of these children, is
one character short of a. <

» Lemma 4. Suppose consuming configuration c is encoded by the tree e, and c yields the
intermediate configuration ¢’ upon consuming the input letter o. Then configuration c'¢ is
encoded by next(e, o).

Proof. If 6(q,0,7) is undefined, then there is no suitable o-consuming transition from c,
hence ¢ = L. In this case next returns L (line 6 in Alg. 2).

Otherwise there is a o-consuming transition leading to state ¢’ and replacing v with «/'.
This case is managed in Alg. 4: Observe that this algorithm does not use the input letter o.
The rest of the proof is identical to the inductive part in the proof of Lemma 3. |

» Lemma 5. Suppose configuration ¢ = (q,s) is encoded by e with label q,. Then the
computation time of consolidate(e) is bounded by O(|Q|**!*1) and does not depend on |s|, the
stack’s depth.

Proof. Let us examine the body of function consolidate: It calls itself recursively in lines 14
and 21. In the first case the function calls itself once, and in the second it calls itself |@Q| times.
In both cases the function is called on a configuration with label containing the string g
which is shorter than «, |3| = |a| — 1. Therefore the depth of the call tree is a, and at the
worst case |@Q] recursive calls are made in each non-leaf invocation. The number of recursive
calls is at most |Q|!*.
The proof is completed by noticing that the amount of work in the body of the function

is 0(|Q)). <

3.5 Use of memory

An encoding is represented by a tree data structure. Functions next and consolidate receive
such a tree, and return another tree of this sort. The depth of these trees is linear in the
stack size, and since their degree is h + 1, their total size may be exponential in the length of
the input.

Examining the body of Alg. 4, we see that this exponential blowup is not an issue:

The code receives as parameters references to children e[0],. .., e[h] of encoding e: these

references are copied in lines 7, 13, and 20, but never de-referenced.

Y. Gil and O. Roth 13:15

The body of next creates new tree nodes in lines 5, 11, 16, and 18 of Alg. 4.

Examining these lines, we see that the number of these nodes is maximized if the algorithm
executes lines 16, and 18. In this case, precisely |Q|+ 1 nodes are created before a recursive
call is made. In total, next creates O(|Q|l*) nodes.

We therefore represent encoding trees in memory as a compact DAG. As illustrated in
Fig. 5, this encoding is natural: instead of copying children and grandchildren in creating a
new encoding, one stores references to these.

q0 q2
q1, Y171
q1

90 q2

;10771 e[2] q0 — q2

1
J q1
e[0] el1] [2] ogm £
1 q1,71 1 q1 490 a1, 71 92
q1
j/ q1
e[0] e[1] e[2] e[0] e[1] e[2]
(a) as a tree. (b) as a DAG.

Figure 5 Representation of a certain encoding as a tree (5a) and as a DAG (5b).

Since the number of primary calls to next is |w|, the number of letters in the input
(Alg. 1), we have that the memory required for emulating the working of M is linear |w|.
Fig. 6, showing the compact DAG encoding of in Fig. 4, demonstrates.

q2
91,7171

Figure 6 A DAG representation of tree encoding (Fig. 4) of configuration (g1, v1v1v170) of the
automaton of Fig. 2.

Comparing the figure to the DAG representation of the same configuration (Fig. 4 above),
we see that only the nodes explicitly created by the algorithm are present in the DAG. Indeed,
each of these nodes has three children, but as made clear by the figure, the sharing of children
makes a significant saving in the size of the representation.

ECOOP 2019

13:16

Fling — A Fluent APl Generator

4 Compiling a Tree Encoding to Java

This section shows how to construct a JAVA fluent API definitions E(¢) for the lan-
guage ¢ = {(M) recognized by a given DPDA M. These definitions should be such that the
predicate w € ¢ is equivalent to type checking the fluent API call chain expression = = x(w)
(see (1) above). JAVA is used for the sake of exposition: In essence, we show how to compile
a DPDA specification into an abstract declaration in an unbounded parametric polymorph-
ism type system (UPPTS): Correctness of compilation means that every run of the input
specification (some programming language in the general compilation process, but DPDAs
here), has an equivalent run in the output specification (written as machine code instructions
in general, but as type declaration here), and vice versa.

An implementation of the construction is offered as part of the contribution' in the form
of an automata compiler which translates a given DPDA to JAVA definitions. For example,
to generate a fluent API for the balanced parentheses language of Fig. 1, a specification
of the automaton (Fig. 2) that recognizes it is supplied to the compiler. The specification
begins with three enum definitions, describing the finite sets of symbols Q, ¥ and I'?:

enun Q { q0, q1, g2 }
enum ¥ { ¢, o, 0}
enum I' { 70, 71 }

Observe the use of letter ‘c’ instead of ‘(’ (which is not a valid method name in JAVA).
Also, letter o (inverted lower case ‘c’) replaces ‘)’ and ‘O’ replace ‘1. With these definitions,
a JAVA model of the DPDA is constructed using the BUILDER design pattern (List. 2).

Listing 2 Supplying to the automata compiler the specification of the DPDA of Fig. 2.

4(al, o, v1, ql). // popping consuming transition 6(q1,v1,2) = {(q1,€)
6(ql, null, 40, 90, ¥0). // pushing e—transition §(q1,~0,€) = {(qo, o)
6(al, 9, v1, q2). // popping consuming transition §(q1,v0,9) = (g2, €)
6(q2, null, 1, q2). // popping e—transition §(q2,v1,€) = (g2, €)
6(q2, null, 40, 90, ¥0). // pushing e—transition §(q2,~0,€) = {(qo,Yo)
go(); // having accumulated the specification of M, build its model

1 DPDA<Q, X, I'> M = new DPDA.Builder<>(Q.class, X.class, ['.class).

2 q0(q0) . // Starting in state qo

3 F(q0). // qo is an accepting state

4 Y¥0(y0). // ~o is the bottom of stack marker

5 6(q0, ¢, ¥0, ql, 0, v1). // pushing consuming transition &(qo, Yo, <) = {(q1,Y170)
6 6(al, ¢, v1, q1, 1, v1). // pushing consuming transition §(q1,v1,¢c) = {q1,v17v1)
7

8

=
v R O ©

The code in the listing builds in a fluent APT fashion: the first three calls in the chain
define the initial state, the accepting state, and the initial stack symbol. Then follows
a series of calls to the JAvA function §(...). These are a piecemeal specification of the
transition function of the modeled automaton: the call §(q0,c,~v0,q1,v0,v1) is to say that
the automaton in state qg and ¢ at the stack top, moves to state g; and pushes back onto
the stack yg and then ;.

The final call in the above chain to go() concludes the construction, and the above code
stores the DPDA model in variable M of generic class DPDA.

We stress that the JAVA code produced by the automata compiler is not meant to be
run: the definitions in Jp (5 are incomplete, and even if completed, evaluation of the fluent
APIT expression does not produce any useful value, and will probably fail with run-time error.
The generated code is used solely for type checking. Sect. 5 describes a more practical tool
in which the evaluation of z(w) returns the AST of word w.

! https://github.com/0OriRoth/jdpda

2 This, just as other code excerpts in the paper, is drawn from the implementation. Note that JAvA
supports UTF characters

https://github.com/OriRoth/jdpda

Y. Gil and O. Roth

90 q2
— NN ———

q1
(
2 o 2 #
@ 90 q2
q0 q2 q0 q2 90,71
el0] — — ef2] ~ "
q0 q2
ad ad q1,71
q1
e Y
U eo] Y e Y el VY
’II\L (II\L (II\L

Figure 7 Partial evaluation of next(e({q1,v1715')),'(’) presented as a DAG whose leaves are the
implicit parameters (sub-trees) e[0], e[1] and e[2].

4.1 Intuition

Compilation is based on the emulation algorithm described in the previous section. The
main idea is partial evaluation: Instead of compiling to the type system the many details in
Alg. 2, Alg. 3, and Alg. 4, the compiler relies on partial evaluation and caching. The JAVA
type system is only used on the partially evaluation form.

Let ¢ € Q, o € I'" and o be fixed, and let e be defined by ¢ and o and some stack
remainder s’. Examining the three algorithms that make function next(e, o) we see that for
any such fixture the function constructs the same tree from the sub-trees e[0], ..., e[h].

Consider for example the language of Fig. 1 and its DPDA (Fig. 2.) Suppose that M is
in the consuming configuration (g1,7v17v1’), where s’ € {y9y1}* and that e is an encoding of
this configuration with stack prefix v = v1,71. Indeed, trees e[0], e[1], and e[2] depend on
the actual contents of s, but next never inspects the contents of these trees.

For these values of ¢, a and for o =‘(C, the call next(e, ¢) involves a call to consolidate,
which may even call itself recursively. Working out the details, one finds that next(e, ¢) is in
effect the transformation depicted in Fig. 7.

As shown in the figure, the net effect of next(e({(q1,v1v15')),'C is to transform the
tree encoding on the left to the tree encoding in the right.
not examine nodes e[0], e[1], and e[2] (marked in red in the figure). Partial evaluation
of next(e({q1,71v18')), (') is therefore an oblivious function of e[0], e[1] and e[2].

This transformation does

More generally, we have that for every ¢, a and o the partial evaluation of next has a
simple DAG structure that represents an oblivious function of e[0],...,e[h]. Our DPDA
to JAVA compiler computes and caches these DAGs for each combination of ¢, o, and o it
encounters.

Let D(q, o, 0) denote the DAG defined by ¢, o, and o. Note that function D(q, o,) may
also assume the special value L in the case that d(g,7,0) (v being the first symbol in «) is
undefined.

We argue that D has a finite representation: ¢ and ¢ are drawn from finite sets. To see
that the number of distinct stack prefixes « is finite, examine again lines 5, 11, 16, and 18
of Alg. 4 in which newNode is invoked: In all of these the stack prefix label attached to
the newly created node is either a label o/ of a certain transition of M, or 3, a suffix of an
existing label.

13:17

ECOOP 2019

13:18

Fling — A Fluent APl Generator

4.2 Structure of the encoding

The JAVA code emitted by the compiler contains these definitions:

1. A designated type that represents the (leaf) encoding L — the encoding of a rejecting

automaton.
interface ¢ { }
Notice that this designated type is not parametric.

2. A designated type that represents the (leaf) encoding T — the encoding of an accepting
automaton.

interface $ { }
Again, this designated type is not parametric.

3. Parametric state types, each designating an encoding label {q,a), ¢ € Q and o € I'", and
each taking |@| unbounded type parameters. As a matter of convention, the name of this
type is the string of symbols qa separated by underscores: For example, for the encoding
label (g1,71v1) (described in Fig. 7) the compiler generates the parametric type

interface ql_vy1_v1<e0, el, e2> {...}

4. A start variable (named __ in the implementation), from which fluent API chains start.
This variable is one of the generated parametric state types: specifically, the state type
that bears the label of the initial configuration (go,Yo)-

The values of the parameters are either the rejection or the accepting designated types,
depending on whether the state corresponding to the parameter is accepting or not (as in
Alg. 1). In our example,

q0_~0<$, g, #>__= ...;

With these we have a representation of the tree encodings of configurations of M as a
type obtained from the instantiation of of an appropriate JAVA generics: An encoding e with
state label ¢, state prefix label a = 172 - - - v% and children e[0],. .., e[h] is represented by
the following instantiation of the parametric state type
QY1 _y2- - _Yk<To, T1, -+.5 TH>
with actual type parameters 7, 71,...,7n being the type representation of child encod-
ings €[0], ..., e[h].

Alg. 1, the emulation of M with tree encoding is done step by step by the fluent APT call
chain: If M is in a configuration c after reading the input o105 ---0;, and e is the encoding
of c. Then, the type of the fluent API call chain

__.010.020.---.0;0 (7)

is precisely the type representation of e: A call to a method named ¢() in the chain represents
the consumption of input letter o; the type that the method returns is the type encoding
of the subsequent consuming configuration. It is the chief duty of the compiler to correctly
generate this type. For each generic class t with certain ¢ and «a, the compiler examines
every o € X:
If D(q,a,0) # L, the compiler generates a method o () in ¢, and uses D(q, o, o) to specify
the return type of o in terms of the type parameters of ¢t. In the example of Fig. 7, the
compiler generates in q1_v1_v1<e0, el, e2> a method c() whose return type is the
JAVA representation of the DAG in Fig. 7:
ql_vy1_71<q0_~y1<e0, el, e2>, ql_vy1<e0, el, e2>, e2> c();
Examine, e.g., the first type argument of the return type of c(): The value of this type
argument is q0_vy1<e0, el, e2> which is exactly the gy child of the root of the DAG of
the figure.

Y. Gil and O. Roth 13:19

Conversely, if D(q,«,0) = L, the compiler sets the return type of o() to the rejection
type @.

After constructing the variable M in List. 2 the call M. compile () returns a text including
JAVA definitions for the fluent API of M. The code is shown in List. 3.

Listing 3 Output of the automata compiler for the DPDA of Fig. 2.

interface g { } // designated type denoting rejection
interface $ { } // designated type denoting acceptance

q0_~v0<$, @, > __ = null; // Initial configuration

interface q0_v0<e0, el, e2> { // (1) configurations {(qo,vos")

ql_v1_70<e0, el, e2> c(); // ‘c’ is the only input letter allowed in this state
$ 80 ; // Input may end in this configuration
}
10 interface ql_vyl_v0<e0, el, e2> { // (2) configurations (q1,y1v1s")
11 ql_y1_7v1<q0_~0<e0, el, e2>, q0_vy0<e0, el, e2>, q0_y0<e0, el, e2>> c();
12 q0_v0<e0, el, e2> o2();
13 q0_v0<e0, el, e2> D();

}

15 interface ql_yl_vy1<e0, el, e2> { // (3) configurations (q1,y1y1s")
16 ql_vy1_7v1<q0_~y1<e0, el, e2>, ql_v1<e0, el, e2>, e2> c();
17 ql_vy1<e0, el, e2> o5();

18 e2 00);

19}

20 interface q0_7y1<eO, el, e2> extends $ { // (4) Configurations (qo,vy1s")
21 $ 80 ; // Input may end in this configuration

22 // No other input letter is legal here

24 interface ql_vy1<e0, el, e2> { // (5) configurations {q1,v1s")
25 ql_vy1_v1<e0, el, e2> c();

26 el 20);
27 e2 0();
28}

Observe in the code the two designated types for acceptance and rejection, and the
start variable whose type is the initial configuration; then follow five parametric state types
(interface q0_vy<e0, el, e2> through ql_~1<e0, el, e2>). Also notice that classes of
configurations with state gg € F offer a function $() returning the special type $.

4.3 Correctness
With this construction we can argue

» Lemma 6. The JAVA expression __.o1 (.09 .---.0; ()

1. does not compile, producing a missing method error message, if M aborts on o102---0},
1<=j <=1, or

2. is of a type that represents the encoding of the configuration of M after reading o109 -+ - 0);,
including the special type interface g denoting rejection.

Proof. Mundane, by induction on i: The type of __ represents the encoding of the initial
configuration. The return type of the call to method o; is, by construction, the type
representation of the encoding of M. |

In addition, if ¢ € F, the code generator adds to type t a method $() whose return type
is interface $, the special type denoting acceptance. This method marks the end of input
in the emulation.

With this addition, we have that the fluent API chain

_01()-020)- -0 ().3()

type checks, if and only if, word o109 -0, € L(M).

ECOOP 2019

13:20

Fling — A Fluent APl Generator

5 Fluent-API Generation in Fling

The contributions of tree encoding (Sect. 3) and automata compilation strategy (Sect. 4)
made it possible to develop FLING— a compiler-compiler in the vein of e.g., YACC and
ANTLR: FLING receives its input in a form suitable for clients — an EBNF grammar rather
than DPDA specification. It converts the grammar into an automaton, and generates the
fluent API type definitions for the language specified by the grammar.

FLING improves on the automata type compiler: Having recognized the fluent API chain
as a valid word, FLING also generates code to construct, at runtime, the AST of the chain,
and provides clients with means for traversing this tree.

FLING is more limited than the automata compiler, since it can only process LL(1)
grammars. The class of languages that can be expressed by such grammars is strictly
contained in the class of deterministic languages, which can all be recognized by the automata
compiler. However, the restriction to LL(1) grammars is not inherent — extending FLING
to support LR(1) grammars (and hence all deterministic languages) is technical (though
laborious): One needs to re-implement the classical LR(1) parser generator to produce its
output in the format expected by a DPDA compiler. The compiler-compiler features of
FLING that we describe here are applicable regardless of the parsing engine.

5.1 Embedding Datalog in Java using Fling

Our open source implementation of FLING® includes examples of a dozen or so (small)
languages. Here we describe in brief the embedding of DATALOG [2] in JAVA.

Recall that DATALOG is a simpler version of PROLOG [4] in that predicates cannot be
nested. List. 4 is a reminder of the syntax of DATALOG, depicting a simple program to
manage the ancestral relation, including two facts, three rules, and one query.

Listing 4 A DATALOG program managing an ancestral relation.

parent (john,bob) .

parent (bob,donald) .

ancestor (adam,X) .

ancestor(A,B) :- parent(A,B).

ancestor(A,B) :- parent(A,C), ancestor(C,B).
ancestor(john,X)?

(o N

List. 5 is the JAVA fluent API equivalent of the DATALOG program in List. 4. Code
comment show the DATALOG equivalent of fragments of the call chain.

Listing 5 A fluent API specification of the DATALOG program of List. 4.

1 Datalog program = datalog.

2 fact("parent").of ("john", "bob"). // fluent API of parent(john,bob) .

3 fact ("parent").of ("bob", "donald"). // fluent API of parent(bob,donald) .

4 always("ancestor").of (1("adam"), v("X")). // fluent API of ancestor (adam,X)
5 infer("ancestor").of (v("A"), v("B")). // fluent API of ancestor(A,B)

6 when("parent") .of (v("A"), v("B")). // fluent API of :- parent(A,B).

7 infer("ancestor").of (v("A"), v("B")). // fluent API of ancestor(A,B)

8 when("parent") .of (v("A"), v("C")). // fluent API of :- parent(A,C)

9 and("ancestor") .of (v("C"), v("B")). // fluent API of , ancestor(C,B).

0 query("ancestor").of (1("john"), v("X")); // fluent API of ancestor(john,X)?

To create the fluent API demonstrated in List. 5, we start with the names of the methods
involved in the chain. These are precisely the terminals (tokens) of the grammar that

3 https://github.com/OriRoth/fling

https://github.com/OriRoth/fling

Y. Gil and O. Roth

generated the fluent API. We therefore write an enum definition that enumerates all these
methods:
enum Terminals implements Fling.Terminals { infer, fact, query, of, and, when, always, v, 1 }

Notice that the methods in fluent API for writing embedded DATALOG code take para-
meters, infer ("ancestor") and of ("bob", "donald"). To understand why, recall that
grammars of programming languages such as PAscaL [21] and C++ use two kinds of
non-terminals:

2N
)

Keywords such as begin, var, punctuation such as ;7, ‘7, and operators such as ‘;’
can appear in only one form in the program code. We call these vacuous tokens. Vacuous
tokens can appear in programs in only one way; they serve as parsing aide in the concrete
grammar, but are omitted from the abstract syntax tree.

In contrast, tokens such as StringLiteral and Identifier carry additional information: A
string literal token carries its content, and an identifier literal token carries its name. We

call tokens of this sort informational tokens.

Grammars of fluent APIs tend to use informational tokens more than vacuous tokens.
Compiler compilers such as YACC use a distinct lexical analyzer to specify the many shapes
any informational token may take. FLING has no accompanying lexical analyzer. However,
since terminals of fluent API are method names, the contents of an informational token is
supplied as argument to the method. For example, an identifier token in a fluent API is
typically written as id("fubar").

Fig. 8 is the EBNF grammar of the fluent API used for embedding DATALOG in JAVA (e.g.,
List. 5). The grammar makes frequent use of informational tokens: writing 1("thingy") is
to say that the string parameter is a literal, while v("thingy") is to say that it is a literal.
Also, the (Fact) symbol is composed of two informational tokens: method fact in which
the DATALOG predicate name is supplied as argument, and method of in which the literal
parameters are supplied.

(Program) ::=(Statement) + (WithBody) ::=(RuleHead) (RuleBody)
(Statement) ::=(Fact) | (Query) | (Rule) (RuleHead) ::=infer({String)) of({Term)™)
(Fact) ==fact((String)) of((Literal)™) (RuleBody) ::=(FirstClause) (AdditionalClause)”
(Query) :=query((String)) of((Term)™) (FirstClause) ::=when((String)) of({Term)™)
(Rule) ::=(Bodyless) | (WithBody) (AdditionalClause) ::=and((String)) of({Term)")
(Bodyless) ::=always((String)) of ((Term)™) (Term) ::=v((String)) | 1({String))

Figure 8 EBNF grammar of embedding DATALOG in JAVA.

Observe that the same token may take different arguments in different contexts, e.g.,
token of any number of plain strings when it is part of a (Fact) , and any number of { Term)
values when it appears as part of a (Rulehead) . Notice that symbol (Term) is also defined
by the grammar in Fig. 8: In general, the information that accompanies a token is not limited
to lexical values, and may be defined by its own grammar.

The specification of the grammar of Fig. 8 requires an enum definition of the list of
symbols

enum Symbols implements Fling.Symbols {
Program, Statement, Rule, Query, Fact, Bodyless, WithBody,
RuleHead, RuleBody, FirstClause, AdditionalClause, Term }

List. 6 uses enum Tokens and enum Symbols in a fluent API chain of methods used to
describe to FLING the grammar in the Fig. 8.

13:21

ECOOP 2019

13:22 Fling — A Fluent API Generator

Listing 6 A fluent API specifying the DATALOG grammar of Fig. 8.

1 BNF bnf = bnf(Terminals.class, Symbols.class). // Create a BNF with these terminals and symbols
2 start(Program). // (Program) is the start symbol

3 derive (Program) .to(one0rMore (Statement)). // (Program) ::= (Statement)™

4 specialize(Statement).into(Fact, Query, Rule). // (Statement) ::= (Fact) | (Query) | (Rule)
5 derive(Fact) .to(fact.with(String)) .and(of .many(String)) .

6 // (Fact) ::= fact((String)) of((Literal)™)

7 derive (Query) .to(query.with(String)) .and(of .many(Term)) .

8 // (Query) ::= query((String))of({Term)™)

9 specialize(Rule) .into(Bodyless, WithBody). // (Rule) ::= (Bodyless) | (WithBody)
10 derive(Bodyless) .to(always.with(String)) .and(of .many(Term)) .

11 // (Bodyless) ::= always((String)) of ({Term)™)

12 derive (WithBody) .to(RuleHead) .and (RuleBody) .

13 // (WithBody) ::= (RuleHead) (RuleBody)

14 derive (RuleHead) .to(infer.with(String)) .and(of .many(Term)) .

15 // (RuleHead) ::= infer((String)) of({Term)™)

16 derive (RuleBody) .to(FirstClause) .and (oneOrMore (AdditionalClause)) .

17 // (RuleBody) ::= (FirstClause) (AdditionalClause)”™

18 derive(FirstClause).to(when.with(String)) .and(of .many(Term)).

19 // (FirstClause) ::= when((String)) of ({Term)™)

20 derive(AdditionalClause) .to(and.with(String)) .and(of .many(Term)).

21 // (AdditionalClause) ::= and((String)) of({Term)™)

22 derive(Term) .to(and.with(String)) .and(of .many(Term)) ;

23 // (Term) ::= 1({String))| v({String))

FLING offers its own DSL, written in fluent API style, for grammar specification. The
following notes, along with code comments in the listing should make this language clear:
Token derive in FLING’s DSL denotes a grammar derivation; the information it carries is the
left hand side of a derivation rule. Information attached to token to (that follows derives)
is the first element in the right hand side of the rule. In writing to(infer.with(String))
we use informational token to to specify that the grammar admits an infer token with
information of type String. Similarly, writing and(of .many(Term) we use informational
token and to specify that the grammar admits an of token with information that consists of
any number of occurrences of symbol Term.

5.2 Code generation

Having created a BNF description of DATALOG as in List. 6, the execution of bnf . generate ()
will make FLING generate all the definitions required for the code in List. 5 to compile correctly.

Moreover, FLING will generate definitions that make it possible to analyze DATALOG
programs produced by the fluent API. Variable program of type Datalog produced in List. 5
is an abstract syntax tree (AST) of the program.

As part of the code generation process, similarly to JAMOOS [7] and SOOP [6] FLING
implements an AST class for every symbol in the grammar specification. These classes
uses lists for repetitions, omit vacuous tokens, and may stand in inheritance relation: The
sub-expression

specialize(Statement) .into(Fact, Query, Rule)
in List. 6 specifies not only grammatical alternation but also inheritance, i.e., class Fact
inherits from abstract class Statement.

Along with these AST classes, FLING generates a template of an AST visitor that clients
may use for processing a DSL program supplied in fluent API form. List. 7 demonstrates the
use of this visitor to actually run from within JAVA the DATALOG program of List. 4.

Y. Gil and O. Roth

Listing 7 ASTVisitor running DATALOG programs created via fluent API using Jatalog.

ASTVisitor runner() {
Jatalog j = new Jatalog();
return new ASTVisitor(DatalogAST.class) {

public boolean visit(Fact f) throws DatalogException {
j.fact(f.fact, f.of);
print(f);
return true;

}

public boolean visit(Bodyless r) throws DatalogException {
j.rule(Expr.expr(r.always, r.of1));
print(r);
return true;

}

public boolean visit(WithBody r) throws DatalogException {
j.rule(Expr.expr(r.infer, r.ofl), getExprRightHandSide(r));
print(r);
return true;

}

public boolean visit(Query q) throws DatalogException {
print(q);
print (j.query(Expr.expr(q.query, q.0f)));
return true;

}

© W N oW N

L I S N e R S
B WNRO®O®WNO® O RK®NRO

g
}

N
o

Our demonstration of DATALOG employs Jatalog?, an open source DATALOG engine
to make the DATALOG embedding complete. The first three methods in the visitor object
returned by List. 7 store (and print) facts and rules in the Jatalog engine. The last method
asks the engine to compute the query, and then prints the result.

When this visitor is applied to variable program we obtain the output of shown in List. 8.

Listing 8 Output of List. 7 when run on the embedded DATALOG program produced by the fluent
APT of List. 5.

Jatalog:Fling$ parent (john,bob).

Jatalog:Fling$ parent (bob,donald) .

Jatalog:Fling$ ancestor(A,B) :- parent(4,B).

Jatalog:Fling$ ancestor(A,B) :- parent(4,C), ancestor(C,B).
Jatalog:Fling$ ancestor(john,X)?

---[{X=bob}, {X=donald}]

[3 NSV VI

6 Discussion and Further Work

We showed that any deterministic pushdown automaton can be emulated by a realtime
device using the tree encoding data structure. The tree encoding is exponential in the input
size, but has a compact DAG representation. An interesting topic in theory of automata is
investigation of this data structure, comparing its computational power with that of a stack.
For example, one can ask whether PDAs, deterministic or not, can recognize more languages
if the pushdown structure is replaced with that of a tree or a DAG.

A crucial observation in our construction is that the tree data structure can be written
as a multi-level instantiation of a generic datatype, and that the kind of tree transformations
applied in the emulator can also be written as the return type of methods in this data type.
This observation was demonstrated in the automata compiler, which in turn made possible
the theoretical result of encoding DCFLs in an unbounded polymorphic type system.

The automata compiler was employed in FLING— the first general and practical compiler-
compiler of fluent APIs. FLING can be easily extended to support other programming
languages, including ML [17], C#, and C++ . With some engineering effort FLING can be
extended to LR(1) grammars as supported by YACC does.

4 https://github.com/wernsey/Jatalog

13:23

ECOOP 2019

https://github.com/wernsey/Jatalog

13:24

Fling — A Fluent APl Generator

FLING is weaker in its expressive power than the DPDA compiler, supporting only LL(1)
grammars. However, we observed the construction in FLING is slightly more useful, in that
auto-completion is more accurate. The fluent API problem, as defined here, does not concern
itself with auto completion. It would be interesting to study a version of the in which an
auto completion feature is required.

In a case study, we showed how FLING is used for embedding DATALOG in JAVA, and
how such programs can be written and run from within JAVA.

Our description of the embedding, FLING itself, and of the automata compiler also
demonstrate the usability of fluent API and the specific syntax flavor they induce. See
listings 1, 2, 5 and 6. In the context of this style, we coined the term “ informational tokens”.
Unlike traditional lexical analyzers, in FLING information that these tokens carry is not
restricted to plain literals and may be defined by their own grammar. In this respect, FLING
supports nested and even recursive grammars: The information that a token carries may be
defined by the grammar in which the token participates.

We believe that the theoretical result may be also useful in designing extensible languages
and languages whose syntax may be extended by their programs. Designers of such languages
may choose to use the type system instead of a dedicated parsing engine for the unknown
portion of their grammar.

In our implementation we encountered a weakness of the implementation of the to the
discussion type system in the javac compiler. As noticed previously by Gil and Levy [5], this
compiler represents instantiated generics by value, and admits no sharing.

Consider for example the test program in List. 9.

Listing 9 Fluent interfaces exponential type complexity test case.

1 public class BinaryTreeTypeTest {

2 interface Binary<Left,Right> {

3 Binary<Binary<Left,Right>,Binary<Left,Right>> b();

4 +

5 public static void main(String[] args) {

6 System.out.println(((Binary<?,?>)null).b().b().b()....b()); // Use chain of length n
7 }

s }

Type interace Binary is a generic type. Method b() in this type is such that in a given
instantiation Binary, it returns an instantiation of this type which is twice the size. Thus, a
sequence of n fluent calls to b(), as in function main in the figure, will return an instantiation
of Binary of size 2”.

Fig. 9 shows the compile time of List. 9 as a function n on various compilers. Measurements
were conducted on JAva 1.8.0_131, ECJ 3.11.1 and GCJ 6.3.0.

2¢ 2¢

A A
ST

20 20
1 2 4 8 16 32 1 2

(a) javac compiler (Oracle). (b) Eclipse Java compiler (ECJ). (c¢) Gnu JAVA compiler GCJ.

Figure 9 Compilation time in seconds of BinaryTreeTypeTest List. 9 vs. length of fluent API
call chain on various compilers.

As can bee seen in the figure, compilation time grows exponentially on javac. With ECJ
and GCJ, these remain constant. Perhaps this work would encourage the makers of javac to
use the compact DAG representation of types demonstrated above in Fig. 5.

Y. Gil and O. Roth

—— References

10

11

12
13

14

15

16

17

18

19
20

21
22

Ken Arnold and James Gosling. The JAVA Programming Language. Addison Wesley, 1996.
Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic programming and databases. SVNY,
1990.

Bruno Courcelle. On jump-deterministic pushdown automata. Theory of Computing Systems,
11(1):87-109, 1977.

Pierre Deransart, Laurent Cervoni, and AbdelAli Ed-Dbali. Prolog: The Standard: reference
manual. Springer-Verlag, 1996.

Yossi Gil and Tomer Levy. Formal language recognition with the Java type checker. In 30th
European Conference on Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

Yossi Gil and David H Lorenz. SOOP — A Synthesizer of an Object-Oriented Parser. TOOLS’95
FEurope, pages 81-96, 1995.

Yossi Gil and Yuri Tsoglin. JAMOOS - A Domain-Specific Language for Language Processing.
Journal of Computing and Information Technology, 9(4):305-321, 2001.

Radu Grigore. Java generics are Turing complete. In Andrew D. Gordon, editor, (POPL’17),
pages 73—-85, 2017.

Zvi Gutterman. Symbolic Pre-computation for Numerical Applications. Master’s thesis,
Technion, 2004.

Matthew Harren, Mukund Raghavachari, Oded Shmueli, Michael G Burke, Rajesh Bordawekar,
Igor Pechtchanski, and Vivek Sarkar. XJ: facilitating XML processing in Java. In Proceedings
of the 14th international conference on World Wide Web, pages 278-287. ACM, 2005.
Anders Hejlsberg, Scott Wiltamuth, Peter Golde, and Mads Torgersenby. The C# Programming
Language. Addison-Wesley Publishing Company, 2°¢ edition, 2003-10.

ISE. ISE EIFFEL The Language Reference. ISE, 1997.

Donald E Knuth. On the translation of languages from left to right. Information and control,
8(6):607-639, 1965.

Tomer Levy. A Fluent API for Automatic Generation of Fluent APIs in Java. Master’s thesis,
Technion, 2016.

Erik Meijer and Brian Beckman. Xling: Xml programming refactored (the return of the
monoids). In Proceedings of XML, volume 5, 2005.

Erik Meijer, Wolfram Schulte, and Gavin Bierman. Unifying tables, objects, and documents.
In Workshop on Declarative Programming in the Context of Object-Oriented Languages, pages
145-166. Citeseer, 2003.

R. Milner and M. TofteD. MacQueen. The Definition of Standard ML (Revised). MIT Press,
1997.

Tomoki Nakamaru, Kazuhiro Ichikawa, Tetsuro Yamazaki, and Shigeru Chiba. Silverchain:
a fluent API generator. Proceedings of the 16%" ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences - GPCE 2017, pages 199211, 2017.
URL: http://dl.acm.org/citation.cfm?doid=3136040.3136041.

Bjarne Stroustrup. The C++ programming language. Pearson Education India, 2000.

Peter Thiemann. A typed representation for HTML and XML documents in Haskell. Journal
of functional programming, 12(4-5):435-468, 2002.

N. Wirth. The programming language Pascal. Acta informatica, 1:35—63, 1971.

Hao Xu. EriLex: an embedded domain specific language generator. In International Conference
on Modelling Techniques and Tools for Computer Performance Evaluation, pages 192-212.
Springer, 2010.

13:25

ECOOP 2019

http://dl.acm.org/citation.cfm?doid=3136040.3136041

	Introduction
	Contribution
	Previous work

	Pushdown Automata
	Example
	Deterministic pushdown automata
	Deterministic languages
	Simplification of DPDAs

	Realtime emulation of DPDAs with tree encoding
	Encoding configurations as trees
	Emulating a DPDA with tree encoding
	Computing the next encoding
	Correctness of the emulation
	Use of memory

	Compiling a Tree Encoding to Java
	Intuition
	Structure of the encoding
	Correctness

	Fluent-API Generation in Fling
	Embedding Datalog in Java using Fling
	Code generation

	Discussion and Further Work

