
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2021

The Multiple Facets of Test Case Quality: Analyzing Effectiveness and
Going Beyond

Grano, Giovanni

Abstract: Nowadays, software pervades our life. Being software so deeply rooted into our society, software
failures can cause enormous consequences. Unit test cases represent the first line of defense against the
introduction of software bugs and a pillar of any software development pipeline. Higher is their quality,
the better they can fulfill their role. This research aims at supporting developers in measuring and
optimizing test suite quality. To fulfill this goal, we fist characterized the test code quality aspects
deemed important by practitioners. We learned that test quality does not have an exact definition and
includes a variety of different facets. We also discovered that, while developers value test effectiveness,
they believe it is not sufficient to achieve test quality since non-functional aspects also play a crucial role
in it. These insights motivated us to devise novel approaches to measure and optimize test effectiveness
and non-functional quality aspects both in the context of manually written and automatically generated
tests. While mutation testing is widely used to measure effectiveness, its computational cost hinders its
practical usage. We tackled the problem by exploiting machine learning (ML) models trained on source
code features to estimate test effectiveness. We relied on similar features to tackle the problem of code
coverage prediction in the context of test case generation (TCG). The ML models we proposed are able
to suggest developers whether TCG is able to produce satisfactory result for their software projects.
To optimize non-functional aspects along with code coverage in TCG, we proposed an adaptive search-
based algorithm suitable to arbitrary secondary objectives. We instantiated it to focus on test resource
demands, obtaining more parsimonious tests at equal levels of code coverage.

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-203161
Dissertation
Published Version

Originally published at:
Grano, Giovanni. The Multiple Facets of Test Case Quality: Analyzing Effectiveness and Going Beyond.
2021, University of Zurich, Faculty of Economics.

Department of Informatics

The Multiple Facets of Test Case Quality:
Analyzing Effectiveness and Going Beyond

Dissertation submitted to the Faculty of Business,
Economics and Informatics
of the University of Zurich

to obtain the degree of
Doktor der Wissenschaften, Dr. sc.
(corresponds to Doctor of Science, PhD)

presented by
Giovanni Grano
from Campobasso, Italy

approved in April 2021

at the request of
Prof. Dr. Harald C. Gall
Prof. Dr. Gordon Fraser
Prof. Dr. Alberto Bacchelli
Prof. Dr. Sebastian Proksch

The Faculty of Business, Economics and Informatics of the University of Zurich
hereby authorizes the printing of this dissertation, without indicating an opinion of
the views expressed in the work.

Zurich, April 7, 2021

The Chairman of the Doctoral Board: Prof. Dr. Thomas Fritz

Acknowledgments

No human being should be limited

in his thoughts.

Eliud Kipchoge

I strongly believe that no one can achieve great things on its own. I was

incredibly lucky to be surrounded by inspiring people along this journey.

First and foremost, I thank my advisor Harald Gall. We sometimes faced

turbulent times, but I always felt you on my side. I deeply appreciated your

unconditional support and your frankness. You encouraged me to keep pursuing

my athletic interests never doubting my commitment on research. I can’t say

how this was important to me. I hope I made you a two times prouder advisor.

Being part of your group has been a great honor.

I am deeply thankful to Fabio Palomba, a.k.a., the mentor. Having you in

Zurich had a crucial impact on my PhD journey. You gave me fresh motivations

at the moment when I needed them the most. You have always been there when

I needed, from the most trivial advice to the deepest discussion. My PhD would

have been different without having you around. I did find in you an inspiring

researcher but, more importantly, a sincere friend.

Thanks to my PhD committee for dedicating precious time in reviewing this

thesis. Thanks to Gordon Fraser. I started to play with EvoSuite since my

master studies. Your name has always been for me a synonym of excellent work.

I was humbled to have you as my examiner. Thanks to Sebastian Proksch for

ii

accepting with great enthusiasm to be my examiner, but even more for the fun

memories we collected over these years. Thanks to Alberto Bacchelli for being

always there when I needed some senior and impartial advices. Your presence

has been an incredible asset for me and my colleagues in these years.

Special thanks go to Maxim Mazin who hosted me for an internship at

JetBrains in Munich. Your combination of technical and human skills will inspire

me for the years to come.

A big thank goes to the current and former colleagues at SEAL. This adventure

would have been half the fun without you. I will never forget the jokes and the

special humor of Carmine, the time spent travelling with Christoph and the

one as office-mates with Gerald. Thanks to Adelina, Alexander, André, Carol,

Enrico, Fernando, Gül, Jian, Jürgen, Katja, Larissa, Linda, Pasquale, Pavlina,

Philipp, Sebastiano, Sebi, and Thomas.

During my PhD, I had the privilege to work with brilliant co-authors, with a

special mention to Simone. Thank you all for helping me move forward with my

research.

Thanks to my parents who never really understood what I was doing but

kept supporting me nevertheless, and to my brother Vincenzo.

I reserve my sweetest words to Martina. We found each other before all

this started. I still remember that sunny Sunday morning in Berlin when you

encouraged me to apply for that PhD position in Zurich. You have seen the

beginning and the end. I will always love you.

Finally, thanks to Mirottino for being so sweet and supportive.

Giovanni Grano

Zurich, 4 March 2021

Abstract

Nowadays, software pervades our life. Being software so deeply rooted into

our society, software failures can cause enormous consequences. Unit test cases

represent the first line of defense against the introduction of software bugs and a

pillar of any software development pipeline. Higher is their quality, the better they

can fulfill their role. This research aims at supporting developers in measuring

and optimizing test suite quality. To fulfill this goal, we fist characterized the test

code quality aspects deemed important by practitioners. We learned that test

quality does not have an exact definition and includes a variety of different facets.

We also discovered that, while developers value test effectiveness, they believe it is

not sufficient to achieve test quality since non-functional aspects also play a crucial

role in it. These insights motivated us to devise novel approaches to measure

and optimize test effectiveness and non-functional quality aspects both in the

context of manually written and automatically generated tests. While mutation

testing is widely used to measure effectiveness, its computational cost hinders its

practical usage. We tackled the problem by exploiting machine learning (ML)

models trained on source code features to estimate test effectiveness. We relied on

similar features to tackle the problem of code coverage prediction in the context

of test case generation (TCG). The ML models we proposed are able to suggest

developers whether TCG is able to produce satisfactory result for their software

projects. To optimize non-functional aspects along with code coverage in TCG,

we proposed an adaptive search-based algorithm suitable to arbitrary secondary

objectives. We instantiated it to focus on test resource demands, obtaining more

parsimonious tests at equal levels of code coverage.

Publications

Dissertation

This dissertation includes the following peer-reviewed publications. They form

the basis of the thesis and correspond to the chapters from 2 to 5.

Pizza versus Pinsa: On the Perception and Measurability of Unit Test

Code Quality by Giovanni Grano, Cristian De Iaco, Fabio Palomba, and Har-

ald C. Gall, published in the proceedings of the 36th International Conference

on Software Maintenance and Evolution (ICSME 2020) - Research Track.

[Grano et al., 2020]

Lightweight Assessment of Test-Case Effectiveness using Source-Code-

Quality Indicators by Giovanni Grano, Fabio Palomba, and Harald C. Gall

published in the IEEE Transactions on Software Engineering Journal (TSE). My

contribution comprises the design of the study, the entire data collection and

data analysis process, and the paper writing. [Grano et al., 2021]

Branch Coverage Prediction in Automated Testing by Giovanni Grano,

Timofey V. Titov, Sebastiano Panichella, and Harald C. Gall published in Jour-

nal of Software: Evolution and Process (JSEP). This paper is an extension of the

paper How High Will it Be? Using Machine Learning Models to Predict Branch

Coverage in Automated Testing [Grano et al., 2018b] published in the IEEE

Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE

vi

2018) Workshop. The overlap between the two paper being is limited to the core

approach. [Grano et al., 2019b]

Testing with Fewer Resources: An Adaptive Approach to Performance-

Aware Test Case Generation by Giovanni Grano, Christoph Laaber, Annibale

Panichella, and Sebastiano Panichella, published in the IEEE Transactions on

Software Engineering Journal (TSE). [Grano et al., 2019]

Additional Publications

While working on this dissertation, I was participated and published a number

of additional publications that are not directly related to this thesis.

Android Apps and User Feedback: a Dataset for Software Evolution

and Quality Improvement by Giovanni Grano, Andrea di Sorbo, Francesco

Mercaldo, Corrado Aron Visaggio, and Gerardo Canfora, published in the 2nd

ACM SIGSOFT International Workshop on App Market Analytics (WAMA

2017). [Grano et al., 2017]

Exploring the Integration of User Feedback in Automated Testing of

Android Applications by Giovanni Grano, Adelina Ciurumela, Sebastiano

Panichella, Fabio Palomba, and Harald C. Gall, published in the 25th IEEE

International Conference on Software Analytics, Evolution and Reengineering

(SANER 2018). [Grano et al., 2018]

How High Will It Be? Using Machine Learning Models to Predict

Branch Coverage in Automated Testing by Giovanni Grano, Timofey

Titov, Sebastiano Panichella, and Harald C. Gall, published in the 2nd Workshop

on Machine Learning Techniques in Software Quality Evaluation (MaLTeSQuE

2018). [Grano et al., 2018b]

vii

BECLoMA: Augmenting Stack Traces with User Review Information

by Lucas Pelloni, Giovanni Grano, Adelina Ciurumela, Sebastiano Panichella,

Fabio Palomba, and Harald C. Gall, published in the 25th IEEE International

Conference on Software Analytics, Evolution and Reengineering (SANER 2018).

[Pelloni et al., 2018]

An Empirical Investigation on the Readability of Manual and Gener-

ated Test Cases by Giovanni Grano, Simone Scalabrino, Rocco Oliveto, and

Harald C. Gall, published in the 26th International Conference on Program

Comprehension (ICPC 2018). [Grano et al., 2018a]

OCELOT: A Search-Based Test Data Generation Tool for C by Simone

Scalabrino, Giovanni Grano, Dario Di Nucci, Guerra Michele, Andrea De Lucia,

Harald C. Gall, and Rocco Olvieto, published in the 33rd IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE 2018).

[Scalabrino et al., 2018a]

Scented Since the Beginning: On the Diffuseness of Test Smells in

Automatically Generated Test Code by Giovanni Grano, Fabio Palomba,

Dario Di Nucci, Andrea De Lucia, and Harald C. Gall, published in the October

2019 issue of Journal of Systems and Software (JSS). [Grano et al., 2019a]

A Large-Scale Empirical Exploration on Refactoring Activities in Open

Source Software Projects by Carmine Vassallo, Giovanni Grano, Fabio

Palomba, Harald Gall, and Alberto Bacchelli, published in the July 2019 is-

sue of Science of Computer Programming (SCICO). [Vassallo et al., 2019]

On the Effectiveness of Manual and Automatic Unit Test Generation:

Ten Years Later by Domenico Serra, Giovanni Grano, Fabio Palomba, Filom-

ena Ferrucci, Harald C. Gall, and Alberto Bacchelli, published in the 16th

International Conference on Mining Software Repositories (MSR 2019).

viii

[Serra et al., 2019]

A New Dimension of Test Quality: Assessing and Generating Higher

Quality Unit Test Cases by Giovanni Grano, published in the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

2019) - Doctoral Symposium. [Grano, 2019]

Investigating the Criticality of User Reported Issues through their

Relations with App Rating by Andrea Di Sorbo, Giovanni Grano, Corrado

Aron Visaggio, and Sebastiano Panichella, published (online record) in September

2020 in Journal of Software: Evolution and Process (JSEP).

[Sorbo et al., 2020]

Contents

1 Synopsis 1

1.1 Hypotheses and Research Questions 7

1.2 Research Approach and Main Results 10

1.2.1 Perception and Measurability of Unit Test Code Quality 11

1.2.2 Predict Test Case Effectiveness 14

1.2.3 Predicting the Output of Test Case Generation Tools . . 16

1.2.4 Adaptive Optimization of Secondary Objectives in Test

Case Generation . 18

1.3 Background and Related Work 21

1.3.1 Measurement of Test Quality Features 21

1.3.2 Automated Test Case Generation 23

1.4 Scope of Work, Potential, and Limitations 24

1.4.1 Scope . 24

1.4.2 Limitations . 26

1.5 Scientific Implications . 29

1.6 Opportunities and Future Work 32

1.7 Thesis Roadmap . 34

2 Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality 37

2.1 Introduction . 38

2.2 Background And Related Work 40

2.3 Research Goal and Questions 42

x Contents

2.4 RQ1. The Practitioner’s Perspective 43

2.4.1 Research Methodology 43

2.4.2 Analysis of the Results 48

2.5 RQ2. The Research Perspective 55

2.5.1 Research Methodology 55

2.5.2 Analysis of the Results 59

2.6 Implication of the Study . 62

2.7 Threats to Validity . 64

2.8 Conclusion and Future Work . 66

3 Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indica-

tors 67

3.1 Introduction . 68

3.2 Related Work . 70

3.3 Empirical Study Variables . 73

3.3.1 Dependent Variable . 73

3.3.2 Independent Variables 74

3.4 Research Questions and Context 78

3.4.1 Context Selection . 79

3.4.2 Linking Production to Test Classes 80

3.5 On the Characteristics of Effective Tests 81

3.5.1 RQ1 Design: Factors Analysis 82

3.5.2 RQ1 Results: Factors Analysis 84

3.6 On the Estimation of Effective Tests 88

3.6.1 RQ2-RQ3 Design: Evaluating the Capabilities of a Test-

Case Effectiveness Estimation Model 89

3.6.2 RQ2-RQ3 Results: Evaluating the Capabilities of a Test-

Case Effectiveness Estimation Model 95

3.7 Discussion . 101

3.7.1 Why Source-Code Metrics can Estimate the Test Effective-

ness . 101

Contents xi

3.7.2 On the Practical Usage of the Model 104

3.8 Threats to Validity . 107

3.9 Conclusions & Future Work . 110

4 Branch Coverage Prediction in Automated Testing 113

4.1 Introduction . 114

4.2 Dataset and Features Description 117

4.2.1 Dependent Variable . 119

4.2.2 Independent Variables 120

4.3 Research Questions And Context 124

4.3.1 Context Selection . 126

4.3.2 Machine Learning Algorithms 127

4.4 Empirical Study Design . 130

4.4.1 RQ1/RQ2 Design: Performance of the Prediction with

Source-Code Metrics Features 131

4.4.2 RQ3 Design: Feature Analysis 134

4.5 Results . 135

4.5.1 RQ1/RQ2 - Performance of the Prediction with Source-

Code Metrics Features 135

4.5.2 RQ3 - Feature Analysis 141

4.6 Discussion and Practical Usage 143

4.7 Threats to Validity . 145

4.8 Related Work . 147

4.9 Conclusions & Future Work . 150

5 Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Gen-

eration 151

5.1 Introduction . 152

5.2 Background & Related Work . 156

5.3 Approach . 159

5.3.1 Performance Proxies . 160

5.3.2 Performance-Aware Test Case Generation 163

xii Contents

5.4 Empirical Study . 169

5.4.1 Subjects . 170

5.4.2 Experimental Protocol 172

5.5 Results & Discussion . 174

5.5.1 RQ1 - Effectiveness . 175

5.5.2 RQ2 - Fault Detection 177

5.5.3 RQ3 - Performance . 180

5.5.4 Discussion . 184

5.6 Threats to Validity . 187

5.7 Conclusions . 189

6 Conclusions 191

6.1 Open Research Data . 192

Contents xiii

List of Figures

1.1 Overview of the Research Questions. 8

1.2 Taxonomy of Unit Test Quality Features. 12

2.1 Number of occurrences of the factors deemed important in the

survey for each category and subcategory of the taxonomy. . . . 53

3.1 Distribution of the mutation score for the entire set, the first

(non-effective tests) and the fourth quartile (effective tests). . . . 83

3.2 10-fold nested cross-validation. The outer loop is contained in

the blue box, while the inner loop used for parameters tuning is

contained in the orange one. 92

3.3 Feature importance for the Random Forest Classifier with the

statement coverage . 99

3.4 Feature importance for the Random Forest Classifier without the

statement coverage . 100

4.1 Construction process of the training dataset 117

4.2 Distribution of the branch-coverage achieved by the two experi-

mented tools over the 4 different employed budgets 121

4.3 Nested Cross-Validation Procedure. The inner fold relies on a

5-fold cross validation while the outer fold on a 10-fold cross

validation. 132

4.4 Mean Average Error over cross-validation achieved by the Random

Forest Regressor for the EvoSuite and Randoop models . . . 136

4.5 Scatterplots representing the prediction errors for the EvoSuite

and Randoop models over 10-cross validation 139

4.6 Bar chart representing the most 20 important features according

to their Mean Decrease in Accuracy (MAE) score. 141

5.1 Comparison of target coverage achieved by Random Search, Dy-

naMOSA, and aDynaMOSA over 50 independent runs for the 109

studied subjects. 176

xiv Contents

5.2 Resource demands comparison for the suite generated by Dy-

naMOSA and aDynaMOSA for the JSONArray class over 1,000

independent runs. 182

5.3 Coverage scores achieved by the test suites generated by the

two approaches for the CUTs where DynaMOSA shows better

performance than aDynaMOSA. 183

List of Tables

1.1 Runtime and memory consumption comparison between aDy-

naMOSA and DynaMOSA . 20

1.2 Contribution to each chapter (and therefore, to each corresponding

publication) according to the Contributor Roles Taxonomy. . . . 35

2.1 Taxonomy of Unit Test Quality Features and Corresponding Mea-

surable Factors/Practices. 47

2.2 Demographic Information of Survey Participants. 52

2.3 Results of the regression model. Statistical significance codes:

.p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. 59

3.1 Characteristics of the projects used for the empirical study . . . 82

3.2 Relation between each factor and mutation score. Rel. = relation-

ship. “+” indicates that tests with higher mutation score have

significantly higher value on this factor; “-” indicates the opposite

case . 85

3.3 Performance of the RFC on nested cross-validation. We report

accuracy (Acc.), precision (Prec.), recall (Rec.), F1 Score (F1),

AUC-ROC (AUC), Mean Absolute Error (MAE) and Brier Score

(Brier) . 97

4.1 Package-level features computed with JDepend 122

4.2 CK and object-oriented feature descriptions 123

4.3 Halstead metrics descriptions 125

Contents xv

4.4 Projects used to build the ML models 127

4.5 Results for the Random Forest Regressor over nested cross-

validation. We report the statistics for each built model, i.e., 4

for each tool, according to the 4 experimented search-budgets . 137

4.6 Optimal parameter combinations for the Random Forest Re-

gressor over nested cross-validation. We set all the other pa-

rameters to their default value. We report the data for each

combination of tool and search-budget. 138

4.7 Analysis of the quartiles for the difference (in absolute value)

between the predicted achievable coverage and the actual measured

value. We report the data for each combination of tool and search-

budget. 139

5.1 Description of the performance proxies 163

5.2 Java Projects and Classes in Our Study 171

5.3 Comparison between Random Search, DynaMOSA, and aDy-

naMOSA on the considered criteria 175

5.4 Mean mutation score achieved for each project 178

5.5 Mean runtime and memory consumption comparison. 181

6.1 For each chapter in this thesis, and therefore, for each included

publication, we share the both the DOI of the replication package

and of the preprint . 193

Acronyms

aDynaMOSA Adaptive Dynamic Many-Objective Sorting Algorithm

AI Artificial Intelligence

AIC Akaike Information Criterion

AST Abstract Syntax Tree

AUC Area Under The Curve

CBO Coupling Between Objects

CD Continuous Deployment

CDG Control Dependency Graph

CFG Control Flow Graph

CI Continuous Integration

CPS Cyber-Physical Systems

CTG Continuous Testing Generation

CUT Class Under Test

DAC Data Abstraction Coupling

DIT Depth of Inheritance Tree

xviii Contents

DynaMOSA Dynamic Many-Objective Sorting Algorithm

ECGD Enhanced Control Dependency Graph

ESD Effect Size Difference

GA Genetic Algorithm

GC Garbage Collector

JVM Java Virtual Machine

KNN K-Nearest Neighbor

LCC Loose Class Cohesion

LCOM Lack of Cohesion Method

LOC Lines of Code

MAE Mean Average Error

MDA Mean Decrease in Accuracy

MDI Mean Decrease in Impurity

ML Machine Learning

MOSA Many-Objective Sorting Algorithm

MPC Message Passing Coupling

MSE Mean Squared Error

MSLE Mean Squared Log Error

NOPM Number of Public Methods

NOSI Number of Static Invocations

PP Percentage Points

Contents xix

RFC Response for Class

ROC Receiver Operating Characteristics

SBST Search-Based Software Testing

SVM Support Vector Machine

TCC Tight Class Cohesion

TCG Test Case Generation

VM Virtual Machine

WMC Weighted Methods per Class

WS Whole Test Suite Generation

WSA Archive Based Whole Suite

1
Synopsis

Nowadays, software pervades our lives and shapes our society. Every individual,

business or government institution implicitly or explicitly depends and relies

on some sort of software system. With software being so deeply rooted into

our society, the risks and the consequences connected to software reliability are

enormous. A report by Tricentis, a leader company in automated testing solutions,

revealed that software failures cost 1.1 trillion dollars to the US economy in

2016.1 The list of famous software failures (with the related economic damages)

grows every year, often finding space in the mainstream media:2 in 2018, GitLab

experienced a severe data loss resulting in an 18-hour outage with 300 GB of

customer data lost; in 2020, an IT system issue caused dozens of cancellations to

the UK flag carrier airline British Airways, with hundreds of other flights severely

delayed. Prior, the same airline company had to pay a fine of 200 million euros

for a data breach. Unfortunately, failures are inevitable, as bug free software

is a utopia. Indeed, software is written by people, and people make mistakes.

Despite many solutions (e.g., formal program verification [Davies et al., 2004]

or design-by-contract [Meyer, 1992]) have been devised to strengthen software

reliability, software testing remains the main weapon at software developers

disposal against the introduction of software bugs [Pinto et al., 2012]. Unit test

cases, in particular, constitute the first line of defense in such a war. In the

1https://icloud.pe/blog/the-glitch-economy-counting-the-cost-of-software-

failures/, Last Access: 21.01.21
2https://dzone.com/articles/the-biggest-software-failures-in-recent-years,

Last access: 21.01.21

2 Chapter 1. Synopsis

1 @Test

2 public void appendChar() throws Exception {

3 try (final StringBuilderWriter writer = new StringBuilderWriter();

4 final ProxyWriter proxy = new ProxyWriter(writer)) {

5 proxy.append(’c’);

6 assertEquals("c", writer.toString());

7 }

8 }

Listing 1.1: Unit test from the Apache Commons-IO project for the
ProxyWriter class.

remainder of this thesis we refer to unit test cases, if not explicitly differently

stated, when discussing tests or test cases. The goal of a unit test is to exercise

in isolation a part of a program to determine whether its behavior matches

the intended one [Meszaros, 2007]. Listing 1.1 shows an example of a unit test

from the Apache Commons-IO project for the ProxyWriter class. The test

exercises the append() method (at line 5) and verifies the intended behavior

with the assertion at line 6. Unit tests run in an automated fashion and are

meant to find problems early in the development cycle. Getting feedback earlier

is a key ingredient of agile software development [Meszaros, 2007] and gives

developers increasing confidence on the new features they implement. Emerging

practices like continuous integration (CI) stressed even further such a concept of

early feedback [Duvall et al., 2007]. In a typical continuous integration pipeline,

developers integrate their changes very frequently into their codebase. Each

time a new change is performed, unit tests automatically run to check whether

regression faults have been introduced [Pinto et al., 2012]. For these reasons,

test cases play a crucial role for the success of modern software development

practices [Gousios et al., 2015]. However, high test quality is of a paramount

importance to guarantee such a success for numerous reasons: effective tests

find defects earlier and avoid costly bugs to reach the production; readable

and understandable tests ease the localization of defects when a failure occurs;

maintainable tests require less effort to co-evolve along with the code they

exercise; reliable tests avoid costly build failures; fast tests contribute to keep

3

build times reasonably low. Traditionally, the burden of writing meaningful and

effective tests entirely falls on the shoulders of software developers. However,

automated test case generation has been extensively investigated and many

approaches have been devised with the sweet pledge of (partially) relieving

developers from such a burden. Given the crucial role tests play in development

practices, developers should spend adequate effort into writing good test code,

as they do for the production code. This is equally true for both manually

written and automatically generated tests. In a preliminary work [Grano et al.,

2018a], we used code readability as a proxy for code quality, and we showed

that tests—both manually written and generated—are less readable than the

production code they exercise. This finding might indicate that tests are not

always considered as first class citizens in software projects. The main goal

of our research is to support development teams in maximizing the quality of

their test suites. To do so, we focus on two dimensions: manually written and

automatically generated tests. For the former, we focus on assessing test case

quality with the aim to pinpoint low quality tests that need to be addressed by

developers. For the latter, we aim at introducing novel techniques leading to the

generation of higher quality tests.

Assessing Test Case Quality The concept of test case quality embraces two

different dimensions. On one hand there is test effectiveness, i.e., the ability of

detecting bugs in the production code, as a functional aspect. On the other hand

there is a number of other non-functional aspects, e.g., readability, understand-

ability, reliability, or running time, as a set of desirable properties that tests

should have. Finding bugs is the most important task that a test should fulfill.

Therefore, it is not surprising that the concept of test effectiveness often overlaps

with to the idea of test code quality. Unfortunately, it is not possible to know

a-priori whether a test will be effective or not. A variety of metrics have been

explored by both researchers and practitioners to estimate the effectiveness of a

test. Among them, code coverage—expressed as the percentage of production

code that a test is able to exercise—is largely used as the main indicator for test

code effectiveness [Cai and Lyu, 2005; Kochhar et al., 2015]. Industry standards

4 Chapter 1. Synopsis

often require minimum levels of code coverage in order to consider a software

project as trustworthy and to deliver certain features in production [Campos

et al., 2014]. Code quality continuous inspection platforms like SonarQube3

implement quality gates, i.e., required steps that needs to be fulfilled in the con-

tinuous integration pipeline. A determinate code coverage percentage is indeed

used oftentimes as a quality gate [Schermann et al., 2016]. While low coverage

numbers should definitively raise a warning, high values not necessarily are a

synonym of adequate testing. Indeed, code coverage shows important limitations.

At first, it only indicates which part of the production code has being exercised,

while it does not give any information about whether and how the intended

behavior is tested [Ellims et al., 2006]. For instance, the test showed in Listing 1.1

at page 2 covers respectively 77% and 100% of the statements of the append()

method and of the ProxyWriter constructor. While this information definitively

helps developers in understanding what has been tested, is the assertion at line

6 that effectively reveals the expected behavior of the tested method. Moreover,

high values of code coverage are sometimes easily reachable even with low quality

testing [Bowes et al., 2017]. Researchers looked at mutation testing as a better

alternative to code coverage [Jia and Harman, 2011]. Mutation testing is based

on the concept of mutants, i.e., artificially modified versions of the production

code that are designed to represent real faults [Jia and Harman, 2011]. The

effectiveness of a test suite is then assessed by computing the number of detected

(i.e., killed) mutants over the total number of generated ones: this ratio is called

mutation score [Jia and Harman, 2011]. While several studies assessed the benefit

of mutation analysis over code coverage [Offutt and Untch, 2001], the former is

still not widely adopted mainly due to a major limitation: mutation analysis

is both time and computational expensive and thus, hard to put in practice

especially when dealing with large systems and frequent commits [Budd, 1980].

So far, we discussed effectiveness as the main aspect related to unit test quality.

While effectiveness definitively remains crucial, it leaves us with an incomplete

picture of test quality. Non-functional aspects like test understandability [Setiani

et al., 2020] or test flakiness [Eck et al., 2019] have also been connected to test

3https://www.sonarqube.org, Last Access: 21.01.21

5

1 @Test

2 fun ‘ge query should match same value‘() {

3 val value = data.someValue()

4 val entity = newEntityWithPropertyValue(value)

5 assertThatQuery(ge(optionalPropertyName, value, value.javaClass.kotlin)).

containsExactly(entity)

6 assertThatQuery(ge(requiredPropertyName, value, value.javaClass.kotlin)).

containsExactly(entity)

7 }

Listing 1.2: Unit test from the Xodus project following the Kotlin test naming
convention.

code quality. For instance, let us imagine a developer inspecting a failing test.

Understandable tests, with clear naming and well documented assertions, will

probably lead to a faster diagnosis of the failure and, consequentially, to a faster

fix [Beller et al., 2017a]. No wonder that one of the Kotlin naming conventions4

suggests to use descriptive method names with spaces enclosed in backticks to

facilitate the diagnosis in case of a failure [Martin, 2008]. Listing 1.2 shows an

example of a test from the Xodus project following such a convention. JUnit 5

also implements a similar feature through the @DisplayName annotation.5 Along

the same line, non-deterministic outcomes might lead to waste time in debugging

false failures while, on the other hand, reduce developers’ confidence in the

test suite [Garousi and Küçük, 2018]. The research community investigated

the correlation between the metrics measuring several non-functional aspects

and the ability to find defects in the production code [Just et al., 2014b; Grano

et al., 2021]. The first two main challenges tackled in this thesis arise from the

described status quo. First, there is still a lack of understanding on which are the

quality aspects that practitioners value the most when assessing test code quality.

Moreover, it is not clear whether the current metrics match their perception of it.

Second, metrics connected to some quality aspects, e.g., mutation score for test

4https://kotlinlang.org/docs/reference/coding-conventions.html, Last Access:
21.01.21

5https://junit.org/junit5/docs/5.0.3/api/org/junit/jupiter/api/DisplayName.

html, Last Access: 21.01.21

6 Chapter 1. Synopsis

effectiveness, are computationally expensive to estimate, thus, hard to be used

in practical scenario, hampering the continuous assessment of test suite quality.

Automated Test Case Generation Automated generation of test code has been

one of the most widely investigated topic by software engineering researchers in

the last decades [McMinn, 2004]. The promises of test case generation sounds

as extremely appealing to developers. Even though these tests can be easily

generated, code quality is still of a crucial importance in automatically generated

tests for a number of reasons [Palomba et al., 2016c]. First, developers often have

to manually insert or check assertions to verify that the software implements

the correct behavior [Afshan et al., 2013]: understandability and test focus ease

these tasks. Moreover, these aspects are also important when a test fails in order

to locate the defect. Second, generated tests have to exhibit a deterministic

behavior, i.e., not be flaky, and have a runtime similar to manually written tests

in order to keep the builds fast and green. Finally, they have to be effective to

detect regression bugs. Despite test case generation tools are limited in creating

regression tests rather than exposing defects, they can be successfully applied to

legacy projects with none to scarce testing or repetitively used to keep high code

coverage while introducing new features [Campos et al., 2014]. Meta-heuristic

search techniques (like genetic algorithms (GA)) found a fertile breading ground

to solve the problem of automatically generating tests [McMinn, 2004]. They

allow finding close-to-optimum solutions within a reasonable computational time

by relying on a problem-specific fitness function that evaluate candidate solutions.

While discussing the problem of assessing test code quality, we highlighted the fact

that most of the research focused on measuring test effectiveness. The research

on test case generation has to face a similar problem: according to Fraser and

Rojas [Rojas and Fraser, 2017], this line of research is stuck in a local optimum.

Indeed, most of the approaches proposed to automatically generate test cases

focuses on maximizing test effectiveness through one or more coverage criteria

(e.g., branch coverage or mutation score) [Fraser and Arcuri, 2013; McMinn, 2004;

Campos et al., 2017]. Only recently some authors recognized the importance of

considering—and thus, optimizing—other non-functional quality aspects (e.g.,

1.1 Hypotheses and Research Questions 7

readability [Panichella et al., 2016], test code quality [Palomba et al., 2016c] or

execution time [Xuan and Monperrus, 2014]) in the evolutionary search along

with the code coverage. While previous work showed the feasibility of such a task,

the simultaneous optimization of code coverage and an arbitrary non-functional

quality aspect might be challenging. Indeed, it has been shown that this kind of

parallel optimization often harms the achievable level of code coverage [Ferrer

et al., 2012]. This is especially true when the non-functional aspect is orthogonal

to the code coverage, e.g., in the case of test running time. As an extreme

example, an empty test runs extremely fast but do not execute any production

code, thus achieving 0% of code coverage. The described premises highlight the

additional challenge we tackle in this thesis, i.e., the simultaneous optimization

of contrasting test quality aspects in automated test case generation.

1.1 Hypotheses and Research Questions

The goal of this research is to support development teams in maximizing the code

quality of their unit test suites. In particular, we are interested in understanding

what is developers’ concept of test code quality and consequentially, devise

approaches to both measure code quality aspects and generate tests that maximize

them. Therefore, we stated our three thesis hypotheses as follows:

H1: Test code quality is a multi-faceted concept. Non-functional aspects other

than test effectiveness are crucial to maximize test code quality.

Artificial intelligence (AI) techniques can be exploited to:

H2: estimate test quality facets particularly expensive to measure;

H3: optimize non-functional quality aspects in generated tests.

Our work is conceptually divided in three main episodes, as depicted in

Figure 1.1. Each of them contains a number of research questions with the aim of

investigating our hypotheses. This thesis starts in Episode 1 (1 in Figure 1.1)

8 Chapter 1. Synopsis

AI techniques

Features influencing test code quality

Predict test case effectiveness

Generate tests with lower resource demands

RQ1

RQ2

RQ4

1

Branch coverage prediction in automated testingRQ3

non-functional

quality facets

functional

2 3

Figure 1.1: Overview of the Research Questions.

by conducting an empirical work to broadly understand which are the test code

quality factors that practitioners value the most while evaluating test suites code

quality. This study tests our H1. Concretely, we answer the following research

question:

RQ1: Which are the features that influence unit test quality?

The research community has proposed different ways to support developers

in continuously monitoring test suite quality, among all, code and mutation

coverage [Cai and Lyu, 2005; Kochhar et al., 2015]. Despite that, little is known

on how developers really perceive and evaluate test code quality in their day-

to-day work. This empirical study focuses on the developers’ perspective of

the problem. We interviewed and surveyed experts and practitioners with the

aim of extracting a set of features deemed important to assess high-grade unit

tests. This empirical investigation confirmed that, while developers value test

effectiveness—mainly measured via code and mutation coverage—they suggest

that effectiveness alone is not sufficient to achieve test quality and non-functional

aspects play an important role in it. The insights of this first study motivated us

to devise novel approaches and techniques to measure and optimize functional

and non-functional test quality aspects both in the context of manually written

1.1 Hypotheses and Research Questions 9

and automatically generated tests, leading to the remaining research questions.

To do so, we exploited a variety of artificial intelligence approaches, mainly

machine learning and search-based techniques. In the second episode of this

thesis (2 in Figure 1.1) we focus on test case effectiveness. First, we exploited

machine learning approaches to predict test effectiveness, circumventing the usage

of expensive mutation analyses, by answering the following research question:

RQ2: Can we exploit source code metrics to estimate test case effectiveness?

Despite being considered as the high-end metric to capture test case effective-

ness [Jia and Harman, 2011], mutation testing has a major limitation that hinders

its widespread adoption: it is expensive both in terms of time and computational

resources. Several techniques tried to address this scalability issue [Offutt and

Untch, 2001]. In our work, we tackled the problem from an orthogonal point of

view: instead of measuring effectiveness, we experimented the usage of machine

learning models trained on source code quality indicators to classify a test as

either effective or non-effective, i.e., achieving a high or low mutation score,

respectively. This research question tests hypothesis H2.

In the second part of Episode 2 we focused on measuring test effectiveness

in the context of automatically generated tests. Automated test generation can

alleviate the burden of writing test cases on developers’ shoulders, especially

when dealing with legacy code with poor to non-existing test suite [Ramler

et al., 2012]. Unfortunately, test case generation is not a silver bullet: it is a

process that requires few minutes per each class under test (CUT) and, in some

circumstances, it may fail to achieve satisfactory results [Rojas and Fraser, 2017].

Knowing in advance the code coverage that can be achieved on a given set of class

might spare previous resources for developers interested in incorporating test

cases generation tools into their workflow. We tackle this problem by answering

our third research question:

RQ3: Can we predict the coverage achieved by automated test case generation

tools?

10 Chapter 1. Synopsis

The third episode of this thesis (3 in Figure 1.1) focuses on non-functional

test quality aspects. In particular, we narrowed the context of our research to

the automated test case generation. Despite test case generation has been one of

the most widely researched topic in software engineering [McMinn, 2004], large

part of the research effort has been devoted to generate tests with high code

coverage as a proxy for test effectiveness [Fraser and Arcuri, 2013; McMinn,

2004]. Recent studies attempted to simultaneously optimize other non-functional

test code quality aspects [Daka et al., 2015; Palomba et al., 2016c]. While these

work demonstrated the feasibility of simultaneously consider code coverage and

additional quality aspects, the problem remains open when the secondary quality

aspect is orthogonal, i.e., in contrast, with the code coverage [Ferrer et al., 2012].

We tackled this issue by investigating our fourth research question:

RQ4: Can we automatically generate test cases with lower resource demands

while retaining high code coverage?

Among the various non-functional test code qualities emerged from our

empirical study we decided to focus on test runtime and memory consumption.

This choice was mainly amenable to two particular reasons: First, execution time

was among the most cited non-functional qualities elicited in Episode I. Second,

as explained, optimizing tests resource demands is particularly challenging due

to its competition with code coverage. We maximized those aspects, along with

the code coverage, in aDynaMOSA, a novel search-based evolutionary algorithm.

This last research questions tests hypothesis H3.

The following section examines the methodological choices applied to address

our research questions and reports the main corresponding findings.

1.2 Research Approach and Main Results

To answer our research questions, we conducted an empirical study to understand

what is the developers’ opinion on test quality. Informed by these findings and

by exploring the research literature, we developed and evaluated techniques with

1.2 Research Approach and Main Results 11

the goal of supporting developers in maximizing the quality of their test suites.

In this section we describe the methodology and the findings with respect to the

research questions we introduced in Section 1.1.

1.2.1 RQ1: Perception and Measurability of Unit Test Code

Quality Chapter 2

Test cases are a pillar in any software development pipeline. To help in delivering

reliable software products, tests need to be of high quality. Research community

longly investigated metrics and approaches to assess test case quality. However,

more research is needed to understand which aspects are the most important

ones for developers while assessing the quality of their test suites.

Research Methodology To fix this gap and gain a deeper understanding of

developers’ perception of test quality, we proposed a mixed-method research

approach. This study had two main goals. First, we wanted to better comprehend

which are the features perceived as important from developers when it comes to

test code quality. Second, we wanted to understand whether the features proposed

by research and currently used by practitioners can successfully match developers’

perception of quality. To fulfill our first goal, we relied on a combination of semi-

structured interviews and surveys. We first interviewed 5 software testing experts

with the goal of understanding how they do define unit test code quality and (if)

how do they measure it. From such interviews, we devised an initial taxonomy

encompassing these factors. In a second step, we relied on a survey study to both

confirm the initial findings and to elicit eventually additional factors that did

not emerge from the interviews. We ran it for the entire month on March 2020

using the LimeSurvey6 platform, collecting a total of 70 complete answers, 80%

of which came from professional developers. The final outcome of this process

was a taxonomy of factors influencing test code quality, according to developers’

opinions. Thus, we moved towards our second goal, i.e., understanding whether

current features are a good proxy for developers’ perception of quality. With

6https://www.limesurvey.org, Last Access: 21.01.21

12 Chapter 1. Synopsis

 Unit Test Quality
 Features

 Behavioral

 Executional

 (Self-)validation

 Scope

 Effectiveness

 Diagnosability

 Execution Time

 Realiability

 Execution Infrastructure

 Structural

 Size

 Test Design

 Reusability

 Readability

 Maintainability

 Independence

Figure 1.2: Taxonomy of Unit Test Quality Features.

that aim, we included in the survey the source code of three test cases, blindly

taken from a set of 10 tests randomly extracted from the Apache Commons

Lang project.7 In particular, we asked them to rate the quality of such tests

on a Likert scale from 1 to 5. We relied on these answers to build a statistical

model that relates existing metrics that have been used to measure test quality

to the developers’ perception of it (measured via the quality score attributed

by the developers to the test snippets in the survey). We relied on a set of 11

different metrics that we used as independent variables for the statistical model.

As dependent variable, we relied on the developers’ evaluations collected via the

survey, i.e., the ordinal values on the Likert scale. To determine the relationship

between our dependent and independent variables, we exploited a proportional

odds model [Winship and Mare, 1984].

Results We collected the extracted features into a two level taxonomy, shown in

Figure 1.2, where the three categories of the first level are Behavioral, Structural,

and Executional. Behavioral features related to the nature and the behavior of

unit tests. Effectiveness, i.e., the ability of revealing faults is a typical example of

a quality feature that falls into this branch of the taxonomy. Structural features

instead, refers to factors related to the internal structure of a test. Sub-level

features of this branch include test size, test readability or test design (e.g.,

proper usage of assertions). Finally, Executional features relates to the execution

7https://github.com/apache/commons-lang, Last Access: 21.01.21

1.2 Research Approach and Main Results 13

of tests. Test running time and test reliability—intended as test flakiness—are

examples of sub-level features in this category. One of the key insights we

gathered from both the interviews and the surveys was that developers find

important to reach high value of code coverage for their test suites. However,

according to them, this does not guarantee its quality. Indeed, they also value

non-functional qualities like understandability or maintainability. In other words,

achieving test effectiveness is a necessary but not sufficient condition to reach a

desirable test code quality.

Looking at the results of our statistical model, we found out that the mutation

score resulted as the factor with the highest impact on developers’ perception

of quality. On the other hand, three independent variables showed an inverse

effect on the perceived test code quality: Coupling Between Objects (CBO),

Assertion Roulette, and Number Of Static Invocations (NOSI). High values of

CBO might indicate tests that have excessive broad scope; for this reason, they

are not focused on exercising a single functionality. The presence of the Assertion

Roulette smell implies a lack of asserts documentation that might make harder

to understand the responsibilities of a test. A high NOSI—highly related to the

number of assertions of a test—suggests that developers should carefully decide

how many assertions they want to place in a test case. In particular, such a

number should be proportional to its purpose and balanced with the assertion

density of the test. To get deeper insights, we also investigated the values of the

model’s intercepts for the various level of the dependent variable (i.e., the level

of the Likert scale). We discovered that the estimate of each level became less

statistically significant in the correspondence of higher values of the Likert scale.

In other word, our statistical model performed better in predicting low test code

quality than high one.

Answer to RQ1 Test code quality is a multi-faceted concept composed of

different aspects. Test effectiveness is a necessary but not sufficient condition to

achieve high quality. Non-functional aspects like readability, understandability,

and runtime also play a crucial role. The metrics that we currently use for

measuring high quality tests seem to be a good proxy for discerning low-quality

14 Chapter 1. Synopsis

tests from fair ones, while they are less effective in modeling tests of higher

quality.

1.2.2 RQ2: Predict Test Case Effectiveness Chapter 3

Revealing a fault is the most important task that unit tests should fulfill. There-

fore, it is not surprising that the research community focused on developing

approaches to evaluate test case effectiveness: mutation testing, in particular, is

widely recognized as the top-end technique for this task [Jia and Harman, 2011].

Unfortunately, mutation testing is expensive and, therefore, hard to put in prac-

tice. In our research, we aim at predicting test case effectiveness—via mutation

analysis—by exploiting machine learning models trained on source-code-quality

indicators computed on both production and test code. We define such approach

as lightweight given that most of the metrics we use can be calculated with

very little overhead and that the prediction times are negligible once a trained

machine model is available.

Research Methodology Our study encompasses two different steps. In the

first one, we wanted to understand whether source code metrics could be used to

discern effective tests from non-effective ones. Thus, we studied the distribution

of different metrics for tests having low or high mutation score. We considered

67 different factors computed both on production and test code, coming from

5 different dimensions: code coverage, test smells, code metrics, code smells

and readability. Thus, we conducted a mutation analysis on 2,400 JUnit8 tests

extracted from 18 open source projects. We used the obtained mutation score to

divide such tests in two groups: the first quartile denoted the non-effective set

of tests, while the fourth quartile the effective one. Afterwards, we computed

the aforementioned metrics on the tests composing the two sets. Finally, we

applied the Wilcoxon Rank Sum statistical test [Conover, 1999] to compare the

distribution of each factor in the effective and non-effective set of tests. In a

second step, we explored the possibility of using machine learning classifiers to

8https://junit.org, Last Access: 21.01.21

1.2 Research Approach and Main Results 15

predict test effectiveness. Therefore, we built and evaluated a number of machine

learning models on the aforementioned 67 source-code metrics to predict whether

a test falls in the effective or non-effective set. We experimented three different

classifiers (Random Forest, K-Neighbors, and Support Vector Machines). For

each of them, we built two different models (thus, a total of 6 models): a static

model, that relies on all the features but the statement coverage and a dynamic

model that includes all of them. Indeed, we wanted to explore the possibility

of predicting the effectiveness only relying on metrics that could be statically

computed (note that statement coverage requires the execution of the tests).

We trained each model by applying a rigorous pipeline of preprocessing steps

including data normalization, feature selection and hyper-parameter tuning via

grid search. To train, evaluate and select the best algorithm, we adopted a

10-fold nested cross-validation approach [Stone, 1974]. Finally, we conducted a

feature analysis to determine which of the employed features are more relevant

for the accuracy of the model.

Results We discovered that effective tests statistically differ from non-effective

ones for 41 out of the 67 factors we investigated. In particular, we noticed that

tests cases report higher mutation score values when they achieve high statement

coverage and do not suffer from test smells. We could confirm the common

wisdom that finding faults is harder when the correspondent production code

is larger and more complex: indeed, 20 metrics related to production class size

and complexity showed a relevant impact on test case effectiveness. We found a

similar relationship looking at the code smells. Confident in such preliminary

results, we evaluated the performance of a machine learning classifier—built on

such features—in predicting whether a test fall in the effective or non-effective

set. Our results show that prediction models can be successfully exploited for

such a task. In particular, the random forest classifier resulted as the best overall

model. For the dynamic model, we achieved performances close to 95% both in

terms of F-Measure and AUC-ROC. On the other hand, the static model—that

did not use statement coverage as a feature—reported about 86% in both F-

Measure and AUC-ROC, i.e., a decrease of about 9% compared to the dynamic

16 Chapter 1. Synopsis

model. We argue that this latter model is still highly performing, but even

more important, more practical to use in a real-case scenario. Indeed, it does

not require at all the execution of the tests that is necessary to compute the

statement coverage. We analyzed the most important factors contributing to the

accuracy of the model by using the so-called Gini index (or Mean Decrease in

Impurity) [Grabmeier and Lambe, 2007]. As expected, in the dynamic model

the major contribution comes from the statement coverage, with a Gini index

equals to 0.7. In static model however, the classifier—missing the information

of the statement coverage— balances the contribution of all the other metrics.

In this case, production code factors related to code complexity (e.g., McCabe

cyclomatic complexity or Response for Class (RFC)) are the most relevant for

the accuracy of the model.

Answer to RQ2. Test cases tend to be more effective if they reach high

statement coverage and do not contain test smells. Effectiveness is also favored

by the absence of design flaws in the production code. Source code metrics

can be effectively exploited by machine learning models to predict whether a

test is effective or non-effective, i.e., achieves high or low values of mutation

score, respectively.

1.2.3 RQ3: Predicting the Output of Test Case Generation

Tools Chapter 4

Test case generation is a powerful technique aimed at reducing the developers’

burden of writing tests cases. However, the automatic generation of test cases is

a process that requires several minutes per each production class one wants to

test. Moreover, while test cases generations tools can successfully achieve high

coverage, they can fail short for some particular classes [Panichella, 2019]. A

prediction model able to tell a-priori if high coverage can be achieved on a given

target might save precious time by skipping the evolutionary process that would

lead to poor results.

1.2 Research Approach and Main Results 17

Research Methodology The fist step toward the definition of a branch coverage

prediction model was the identification of features representing the complexity of

a class target of automated generation test case tools. We identified a set of 79

different features coming from 4 different categories: (i) Package Level Features,

meant to represent the quality of a package, e.g., features that measure the

responsibility and the independence of a package, (ii) CK and Object-Oriented

features [Chidamber and Kemerer, 1994] meant to represent the complexity of

a class, (iii) Java Reserved Keywords, previously used in Information Retrieval

(IR) as features [Sanderson and Croft, 2012], and (iv) Halstead Metrics, a set of

complexity metrics developed by Maurice Halstead [Halstead et al., 1977]. Relying

on these features, we trained a number of machine learning models to predict the

branch coverage that EvoSuite [Fraser and Arcuri, 2011] and Randoop [Pacheco

and Ernst, 2007], two of the most used test data generation tool, would achieve

over a set of 3,105 Java classes extracted from 7 different open source projects.

As a first step, we ran the two tools over the collected classes, measuring

the achieved coverage. For both tools, we adopted their default configuration.

The achieved branch coverage represents the dependent variable in our models.

Afterwards, we trained, evaluated and compared four different machine learning

algorithms, namely Huber Regression [Hampel et al., 2011], Support Vector

Regression [Chang and Lin, 2011], Multi-Layer Perceptron [Rumelhart et al.,

1986], and Random Forest Regressor [Sammut and Webb, 2017]. In particular,

we relied on a nested cross-validation process [Rumelhart et al., 1986] using

the MAE (Mean Absolute Error) to evaluate the inner cross-validation loop.

For the outer one, we relied on different indicators, i.e., R2 Score, MSE (Mean

Squared Error), MSLE (Mean Squared Log Error) and MAE [Baeza-Yates et al.,

1999]. In addition, we also applied the grid-search method [Hsu et al., 2003] for

the hyper-parameter optimization of the employed classifiers as well as feature

scaling [Hall, 1999] of the features vector. Finally, we conducted a fine-grained

analysis to understand the feature that influence the most the accuracy of the

model. To this aim, we relied on the Mean Decrease in Accuracy (MDA) [Guyon

and Elisseeff, 2003] approach. MDA estimates the importance of a certain feature

by permuting its values and estimating the loss in accuracy for the model.

18 Chapter 1. Synopsis

Results The Random Forest Regressor resulted as the best model among the

four experimented ones. In particular, it achieved a MAE of 0.191 and 0.205

for the branch coverage achieved by EvoSuite and Randoop, respectively. Such

a result confirmed the feasibility of using code metric features to predict the

branch coverage that test data generation tools can achieve on their targets. It

is worth to note that these results improved the ones presented in the seminal

paper [Grano et al., 2018b]: indeed the usage of Random Forest resulted in a 23%

reduction in MAE over the Support Vector Regressor previously employed [Grano

et al., 2018b]. Our feature analysis revealed that coupling-related features like

RFC (Response for Class) or CBO (Coupling Between Objects) have the bigger

impact on the accuracy of the model. We observed a similar feature importance

distribution for both the EvoSuite and the Randoop model.

Answer to RQ3. Source code metrics can be successfully exploited as

features for machine learners with the goal of predicting the branch coverage

that automated test generation tools are able to achieve on a Java classes.

Random Forest Regressor is the most accurate classifier for this task for both

EvoSuite and Randoop, with a MAE of 0.191 and 0.205, respectively.

1.2.4 RQ4: Adaptive Optimization of Secondary Objectives

in Test Case Generation Chapter 5

In recent years, we witnessed a strong adoption of search-based optimization

techniques [Harman and Jones, 2001] to automate the generation of test cases.

The largest body of research focused on maximizing different code coverage

criteria like code coverage or mutation score [McMinn, 2004; Fraser and Ar-

curi, 2013, 2011] as they have been traditionally used as a proxy for test case

effectiveness [Wei et al., 2012]. While research investigated the optimization of

additional non-functional properties (like readability [Daka et al., 2015], test

code quality [Palomba et al., 2016c] or execution time [Xuan and Monperrus,

2014]) along with traditional coverage criteria, the problem of combining cov-

erage with non-coverage criteria without harming the former remains an open

1.2 Research Approach and Main Results 19

challenge [Lakhotia et al., 2007; Ferrer et al., 2012]. To tackle this problem,

we devised and introduced aDynaMOSA, a novel adaptive algorithm able to

optimize a secondary objective without any detrimental effect on the achieved

code coverage. In our case study we focused on resource demands, i.e., test

runtime and heap memory consumption, as secondary objectives to optimize.

Research Methodology We implemented aDynaMOSA on the top of Dy-

naMOSA [Panichella et al., 2018b], the state-of-art evolutionary algorithm in

unit test case generation. aDynaMOSA uses an adaptive approach to decide

dynamically—i.e., during the evolutionary process—whether optimize for the

secondary criteria (i.e., runtime and heap memory consumption) or to only favor

code coverage. For the former optimization, we devised a set of lightweight

performance indicators that can be computed in the loop of the genetic algorithm

with negligible overhead. We compared aDynaMOSA against DynaMOSA and

random search with a large scale experiment involving 110 Java classes from

27 open source Java projects. As a first step, we made sure to check whether

aDynaMOSA can achieve high code coverage despite the contemporary optimiza-

tion of a secondary objective. To do that, we first ran the three approaches for

each class, collecting the achieved code coverage. In particular, we measured

branch, line, weak mutation, method, input, output, exception and mutation

coverage. To account for the intrinsic randomness of genetic algorithms, we

repeated such a process for 50 times. Thus, we used the non-parametric Wilcoxon

Rank Sum Test [Conover, 1999] and the Vargha-Delaney statistic [Vargha and

Delaney, 2000] to evaluate the differences—and their magnitude—of the collected

coverage values among the three approaches. We further evaluated whether

aDynaMOSA can generate tests with lower resource demands while retaining

high code coverage. Thus, we measured runtime and heap memory consumption

of the previously generated tests by transforming their source code to allow

performance measurements. We ran these modified tests 1.0000 times each on a

bare-metal server collecting JVM (Java Virtual Memory) heap size, number of

garbage collections and current time stamps. We then processed these data by

computing the diff of those measurements for each test and by summing together

20 Chapter 1. Synopsis

Table 1.1: Runtime and memory consumption comparison between aDynaMOSA
and DynaMOSA

better worse no diff

runtime 41 (71.93%) 12 (22.81%) 3 (5.26%)

heap memory 40 (70.18%) 14 (24.56%) 3 (5.26%)

the values of all tests in a given suite. With this approach, we collected the

overall runtime and heap memory consumption for each profiled test suite. To

compare the differences in these measurements, we relied again on the Wilcoxon

Rank Sum [Conover, 1999] and Vargha-Delaney [Vargha and Delaney, 2000] tests.

For the latter analysis, we did not include the random approach.

Results The first analysis involving the comparison between aDynaMOSA,

DynaMOSA, and random search showed that the former two achieve similar level

of coverage over the 8 different criteria we investigated. At the same time, both

clearly outperformed random search. Table 1.1 shows the comparison between

runtime and heap memory consumption for the tests generated by aDynaMOSA

and DynaMOSA. We observed that the runtime of the tests generated by our

algorithm is lower in about the 72% of the classes we investigated. Similar results

can be pictured looking at the heap memory consumption. In particular, the test

suites generated by aDynaMOSA reports, on average, 24% lower runtime and

15% lower memory consumption without statistically significant differences in the

achieved code coverage. Further, we manually investigated the few cases in which

our approach generated more demanding tests compared to the baseline. We

figured out that, in those cases, the test suites generated by aDynaMOSA were

statistically significantly larger, while this was not the case where aDynaMOSA

outperformed the baseline.

Answer to RQ4. Exploiting an adaptive optimization of the secondary

objective and a lightweight performance score we are able to generate tests

1.3 Background and Related Work 21

with lower resource demands, i.e., runtime and heap memory consumption,

while retaining the same high level of code coverage.

1.3 Background and Related Work

The work related to our research can be categorized in two main different

categories, i.e., work discussing (i) the measurement of test code quality features

and, (ii) the quality aware generation of unit tests. Following, we offer a brief

description of the main work falling in these categories. More details about the

work closer to the papers included in this dissertation can be found in the specific

chapters.

1.3.1 Measurement of Test Quality Features

A large body of research focused on assessing different software quality facets.

In the remaining of this section, we describe the main approaches proposed

by research to measure test effectiveness and other non-functional test quality

aspects.

Test Effectiveness Among the various proxies for test case effectiveness, code

coverage is the metric that received most attention from researchers, being

relatively easy to both interpret and use in practice [Wei et al., 2012]. Its

connection with fault localization [Wong et al., 2007] and detection [Cai and Lyu,

2005] has also been object of empirical studies. Unfortunately, code coverage

fails short at consciously verifying the behavior of the code under test [Rojas

and Fraser, 2017]. Mutation analysis attempts to tackle such a limitation [Just

et al., 2014b; Jia and Harman, 2011]. Indeed, it is widely considered as the best

technique to capture this quality facet [Jia and Harman, 2011]. Despite being an

extremely powerful technique, mutation testing has a not-negligible computational

cost that hinders his practical usage [Jia and Harman, 2011]. Many approaches

have been developed to speed up mutation analysis. Offutt and Untch [Offutt

and Untch, 2001] categorized them in three different categories: do fewer, do

22 Chapter 1. Synopsis

smarter, and do faster. The first one aims at reducing the number of mutants

that needs to be checked [Kurtz et al., 2015; Strug and Strug, 2012; Just et al.,

2014a]. The second one includes approaches like weak mutation [Fleyshgakker

and Weiss, 1994] or distributed execution [Byoungju and Mathur, 1993] while

the latter is based on techniques like compiler integration [DeMillo et al., 1991].

A machine learning approach to the problem has been proposed by Zhang et

al. [Zhang et al., 2018]. They relied on a set of static and dynamic features (e.g.,

coverage and mutation operator) to predict whether a generated mutant might

be killed or not.

Non-Functional Aspects A large body of research focused on non-functional

facets related to test code quality. In his seminal book, Beck first suggested how a

good design plays an essential role in granting test code quality [Beck, 2003]. With

test smells we intend deviations from such good design practices [Van Deursen

et al., 2001]. Several authors studied their connection with test code quality: both

Bavota et al. [Bavota et al., 2012] and Spadini et al. [Spadini et al., 2018] showed

that they hinder test maintainability and can be related to fault-proneness. Test

readability has also been connected to test quality. Grano et al. [Grano et al.,

2018a] suggested that developers might put more attentions to the quality of

production code that the one of tests: they showed that the former has, on

average, higher readability than the latter. Indeed, readability is yet another

quality facets that has been proven to be related to fault-proneness [Marcus et al.,

2008]. Usage and role of assertions has also been widely investigate in relation to

test case quality. In particular, it has been showed that higher assertion density

correlates to lower fault-proneness of the production code [Kudrjavets et al.,

2006; Hoare, 2003]. We have not been the fist to rely on machine learning models

to assess non-functional test aspects. Recent studies relied on them to define

automated approaches to measure code readability. Buse and Weimer [Buse

and Weimer, 2010] built a dataset of snippets manually tagged as readable or

non-readable by 120 human participants. They exploited a set of structural

features to train classifiers to predict readability, showing the feasibility of the

task. Scalabrino et al. [Scalabrino et al., 2018b] introduced a set of textual

1.3 Background and Related Work 23

features based on source code lexical analysis to further improve the accuracy

of readability prediction. Test flakiness is a good case in point of a test quality

features that is hard to measure. Many papers devised automated techniques

to locate flaky tests. Bell et al. [Bell et al., 2018] proposed an approach looking

at the achieved branch coverage of executed tests: they marked newly failing

tests as flaky if they did not execute any new change. Lam et al. [Lam et al.,

2019] proposed iDFlakies to dynamically detect flaky tests and classify them in

ordinal dependent and non-ordinal dependent ones. Other work followed the

line of exploiting machine learning approaches to predict flakiness. Herzig and

Nagappan [Herzig and Nagappan, 2015] relied on association rule learning to

identify patterns of failing steps for false alarms. Similarly, King et al. [King

et al., 2018] leveraged Bayesian networks for the prediction of flaky tests. Finally,

Pinto et al. [Pinto et al., 2020] achieved a 0.95 F-measure in prediction by

exploiting random forest classifier trained on features extracted from source code

like stemmed tokens.

1.3.2 Automated Test Case Generation

Test data generation has been a widely investigated topic of research in the last

decade [McMinn, 2004]. Most of the techniques proposed to solve this task relied

on some sort of search-based algorithm, mainly genetic algorithms [McMinn,

2004]. These approaches can be either single or multi-target: in the former,

the algorithm tries to satisfy one target at the time, while in the latter all the

targets are optimized simultaneously. Generally, multi-target techniques are

able to achieve better coverage results [Panichella et al., 2018a]. Fraser and

Arcuri [Fraser and Arcuri, 2013] introduced Whole test suite generation, the

first notable multi-target approach for test case generation. Their idea was

further refined by Panichella et al. [Panichella et al., 2015] in MOSA. Instead of

a scalar value, their formulation uses a vector of objectives, one for each target

to satisfy. A further evolution of MOSA called DynaMOSA [Panichella et al.,

2018b] represents the state-of-art for multi-objective approaches for test data

generation. DynaMOSA uses a control dependency graph to focus its search on a

narrower set of targets that is then iteratively expanded. Beyond code coverage

24 Chapter 1. Synopsis

goals, approaches have been proposed to consider simultaneously coverage and

non coverage criteria. For instance, some work attempted at maximizing coverage

while minimizing the number of tests [Oster and Saglietti, 2006] (as a proxy for

oracle cost) while other focused on reducing test memory consumption [Lakhotia

et al., 2007]. Readability of generated tests has also been tackled by previous

research. Afshan et al. relied on natural language models to generate human-

readable string inputs easier to comprehend [Afshan et al., 2013]. Daka et al.

used linguistic model to improve code readability as a post-processing step at

the bottom of the code generation process [Daka et al., 2015]. With the goal

of generating more maintainable tests, Palomba et al. [Palomba et al., 2016c]

exploited the usage of cohesion and coupling metrics within MOSA. Despite the

aforementioned studies demonstrate the feasibility of incorporating code and non

coverage objective, empirical results shows that this task might be detrimental

for the final code coverage Ferrer et al. [2012], especially for many-objective

algorithms and for objectives that can compete between each other.

1.4 Scope of Work, Potential, and Limitations

In this section we discuss the scope of this dissertation, the potential for industrial

adoption and the main limitations of our research.

1.4.1 Scope

This dissertation discusses the multiple facets of unit test case quality, with a

particular focus on test effectiveness and test resource demands. Some of our

findings might apply to other kind of tests, e.g., integration tests. However, this

is out of the scope of this dissertation and would require additional research. Our

goal is to help development teams in assessing test effectiveness and optimizing

non-functional quality aspects in generated tests, with the final aim of releasing

reliable production code. The first step we took into this direction was an

empirical investigation involving numerous practitioners. The derived taxonomy

of test quality features is applicable to any software project that relies on unit test,

1.4 Scope of Work, Potential, and Limitations 25

independently of the application domain and technology used. Our approach to

predict test effectiveness relies on source code features that are language agnostic.

While we narrowed our case study to Java programs, these agnostic features

potentially extends the applicability of our technique to any arbitrary object-

oriented language, provided the availability of a mutation analysis tool to collect

the dependent variables. aDynaMOSA, our automated test case generation

approach, can be used to generate unit tests for any software project developer in

Java. The reduced runtime and memory consumption of the generated test might

be particularly beneficial in the domains where tests are particularly expensive

to run, i.e., in cyber-physical systems [Törngren and Sellgren, 2018]. While we

experimented aDynaMOSA in the context of reducing tests resource demands,

our adaptive technique is generally adaptable to arbitrary secondary objectives.

Potential for Industrial Adoption In the context of this thesis, we built two

different prediction models, a test effectiveness and a branch coverage prediction

model. We envision a number of practical real-world applications for these two

prediction approaches. In particular, they are particularly well suited to be

integrated into analytic dashboards, e.g., Bitergia.9 This step would come

naturally, since both models are heavily based on source code metrics that come

basically for free when static analysis tools like SonarQube are used, especially

in a continuous integration pipeline. Therefore, little to no overhead would be

required. Our test effectiveness prediction model would enable the possibility to

raise warnings towards non-effective tests for the developers. This information

would support them in taking informed decisions when it comes to test selection

and test prioritization. Those aspects are especially important when tests have

to run in a CI/CD scenario. This kind of model could also have an impact

on how development teams approach and action mutation analysis. Indeed, a

fully-fledged mutation analysis could be reserved for the tests marked as non-

effective to properly diagnose why several mutants cannot be killed by the test

suites. Our branch coverage prediction model, for the same reasons, could be

easily integrated in existing analytic dashboards. We argue this could boost the

9https://bitergia.com, Last Access: 21.01.21

26 Chapter 1. Synopsis

adoption of test case generation techniques. While their potential benefits have

been largely discussed by previous literature [Rafi et al., 2012], as discussed in

Section 1.2.3, test case generation does not unfortunately achieve solid results

in all domains. Our branch coverage prediction model could help to filter out

the classes for which generation approach would be ineffective: this would tackle

one of the limitation of these approaches, i.e., the search budget required by

the evolutionary search. The focus of aDynaMOSA is on generating unit tests

with lower resource demands, namely runtime and heap-memory consumption.

While this is generally favorable (e.g., reduced runtime might result in shorter

build times), our approach is particular promising in contexts like cyber-physical

systems (CPS). Indeed, the testing of this kind of systems often requires complex

simulations and hardware into the loop [Törngren and Sellgren, 2018]. Under

these premises, even a small reduction (in percentage) of the time required for

tests to run would significantly improve the testability of these systems [Törngren

and Sellgren, 2018].

1.4.2 Limitations

We present here the main limitations of our research. We also introduce the

threats to validity. A detailed discussion, along with the strategies we used to

mitigate them, will follow in the dedicated chapters.

Programming Languages and Testing Frameworks The work included in

this dissertation have a strong focus on the Java programming language. Several

factors led us to this choice. Java is today a relevant programming language.

The TIOBE index,10 a program community index rating programming language

popularity, ranks (at December 2020) Java as the second most popular pro-

gramming language after C. Similarly, the 2020 Developer Ecosystem Survey,11

an annual report presented by JetBrains indicates Java as the most popular

primary programming language. Java has mature and well adopter build systems,

e.g., Maven and Gradle, that facilitated the implementation of the tooling we

10https://www.tiobe.com/tiobe-index/, Last Access: 21.01.21
11https://www.jetbrains.com/lp/devecosystem-2020/java/, Last Access: 21.01.21

1.4 Scope of Work, Potential, and Limitations 27

present in this dissertation. We mainly focus on JUnit as testing framework

for Java. This choice is due to the extreme popularity of JUnit across Java

developers.11 Despite our research has heavily been focused towards the Java

ecosystem, the approaches we proposed could easily be re-implemented and repli-

cated in different programming languages, given the availability of the necessary

tooling, e.g., mutation testing frameworks. The same reasoning can be applied

to our contribution towards automated test case generation: our approaches

could be re-implemented in tools targeting different programming languages, e.g.,

OCELOT [Scalabrino et al., 2018a] for C.

Test Case Generation Tools and Techniques We built two branch coverage

prediction models, one for EvoSuite [Fraser and Arcuri, 2011] and one for

Randoop [Pacheco and Ernst, 2007]. They represent two of the most well-known

and top performing tools currently available for this task [Devroey et al., 2020].

Give that the features used by these models only come from the classes and

the systems under test, we see building prediction models for other test case

generation tools (e.g., JtExpert [Sakti et al., 2015]) as a feasible task. We

implemented aDynaMOSA on the top of DynaMOSA [Panichella et al., 2018b]

since the latter represents the state-of-the-art when it comes to achieved code

coverage. It is worth to note that both techniques are implemented in EvoSuite.

While the lightweight performance indicators we propose as a proxy for a rigorous—

but extremely time-consuming—performance measurement could be generally

exploited by other search strategies, the dynamic approach—that is key to avoid

any detrimental effect on the code coverage—is tightly built to the algorithmic

design of DynaMOSA, built on its own on the peculiarities of MOSA [Panichella

et al., 2015].

Lightweight Estimation of Secondary Objectives aDynaMOSA builds its

effectiveness on two aspects: an adaptive optimization technique and a lightweight

performance score. While the former is a general approach applicable to a variety

of contexts, the latter specifically tackles the problem of reducing the resource

demands of generated tests. The measurement of the secondary objective to

28 Chapter 1. Synopsis

optimize is crucial: it should be done with the lowest overhead as possible to

avoid a detrimental effect of the number of generations done by the genetic

algorithm on a certain time budget. Researchers and practitioners interested in

instantiating aDynaMOSA to optimize secondary objectives other than resource

demands will have to implement a metric to measure such an objective, tackling

the trade of between accuracy and computational complexity.

Reproducibility of Machine Learning Results In this thesis we exploited the

application of machine learning techniques to software engineering problems.

Ensuring reproducibility of machine learning approaches is of a paramount

importance, since these techniques are stochastic by nature and heavily depending

on data sampling and hyper-parametrization. To tackle this challenge, we took

a number of methodological steps while training and evaluating the machine

learning models presented in this thesis. At first, we always relied on hyper-

parameter tuning—via grid search—to optimize the prediction performances of

our models. Moreover, we reported the values of the best found configurations

in our replication packages (see Section 6.1). To avoid any leak of data from the

tuning phase, we adopted a nested-cross validation [Stone, 1974] strategy where

the inner loop is only used to tune the parameters and the outer loop only to

evaluate the models. Moreover, we applied a 10-fold approach both for the inner

and the for the outer loop, while we relied on a random stratified split technique

to separate our data. All the machine learning models presented in this thesis

have been developed with sklearn [Pedregosa et al., 2011].

Recruiting Study Participants The number of participants in the empirical

study we used to answer our first research question is limited: first, we interviewed

five experts; then, we surveyed 70 practitioners. Our open interviews had a

duration of about 1 hour. We made sure of recruiting high profile candidates with

a diverse and broad experience on the topic. These factors significantly limited

the number of participants we could recruit. However, this kind of interviews

allowed us to gather in-depth insights and to foster a discussion that would

have not been possible otherwise [Taylor, 1983]. Our online survey collected

1.5 Scientific Implications 29

complete responses from 70 practitioners. We did not make any question of the

survey mandatory: this might have reduced the number of complete answers

but ensured a high level of commitment from the participants. It is worth to

note we collected more than 200 incomplete responses. Despite these limited

numbers, about the 80% of the participants were professional developers with a

wide spectrum of experience and seniority.

Missing Test Quality Facets From the empirical study conducted to answer

RQ1 we built a taxonomy of the test quality aspects deemed as important by

developers. Therefore, in the second and third episode of this thesis, we exploited

AI techniques to estimate or optimize some of these aspects in the context of

manually and automatically generated tests. Addressing all the quality facets

emerged from RQ1 was an unfeasible task. Moreover, some of them have been

already tackled by previous research, e.g., understandability [Scalabrino et al.,

2017]. Therefore, we focused on test effectiveness, as functional aspect, and on

test resource demands as a non-functional one. The core ideas underlying the

proposed approaches, i.e., exploit source code indicators as ML features and rely

on adaptive search-based techniques to optimize arbitrary secondary objectives,

could serve as a baseline for future research aiming at addressing other quality

facets.

1.5 Scientific Implications

The work presented in this thesis has a number of implications for development

teams interested in maximizing the quality of their unit test suites. In the

following, we briefly both discuss these implications and reflect on some lesson

learned.

Test code quality is a multi-faced concept Our empirical analysis aimed at

understanding the factors that developers take into account while evaluating

test code quality suggests how test quality itself is a complex and multi-faceted

concept. While the main goal of unit tests it to prevent the introduction of

30 Chapter 1. Synopsis

bugs in software systems, developers are not merely focused on test effectiveness

when they value test quality. Indeed, they also esteem orthogonal non-functional

tests features such as understandability and readability. For instance, several

developers highlighted the importance of using unit tests to document the

production code they exercise. We could also derive interesting findings about

the relevance of existing code quality metrics. Practitioners mostly rely on

coverage metrics that are, however, unable to model the number of dimensions

embraced in the concept of test quality. While there has been research focusing

on isolation on some of these dimensions, a comprehensive model for test code

quality is still missing.

Predictive metrics enable the continuous monitoring of test quality Con-

tinuous improving code quality witnessed a huge boost in recent years from the

widespread adoption of continuous integration (CI) practices. The final aim of CI

is to frequently integrate commits in a shared repository while running tests and

assessing code quality via static analysis tools like SonarQube [Vassallo et al.,

2018]. Such tools have a particularly important role in guaranteeing high quality

of the production code: they implement quality gates ensuring that the software

is mature enough to be delivered and aim at preventing the accumulation of

technical debt. Unit tests play a crucial role in such a continuous improvement

cycle. For instance, one of the main quality gate is a certain code coverage thresh-

old for newly committed code. While being effective in monitoring production

code quality, these analytic dashboards fail short in monitoring the one of unit

tests. In a metaphor, one would constantly need good guardians to guarantee

the quality of the guarded. Analytic dashboards could incorporate a number of

approaches to achieve such a goal. Our machine learning approach to predict test

effectiveness, as discussed, is a good example of a model that could be fruitfully

exploited to monitor and prevent the degradation of the test suites quality.

Source code metrics can predict test quality facets While some test quality

aspects can be effectively measured with well-known software complexity metrics,

other aspects are hard to measure because either (i) there is no well-defined

1.5 Scientific Implications 31

metric to do so, or (ii) such a measurement is hard to put in practice. In these

cases, machine learning models come in great help. For the first case, previous

research successfully demonstrated the feasibility of the task relying on a number

of features extracted from source code [Scalabrino et al., 2017]. In this thesis,

we demonstrate how is possible to predict test effectiveness as an alternative

(or complementary) to expensive mutation testing. Research should strive for

adopting similar strategies and build models that help with dimensions that

practitioners struggle to tangle, e.g., flakiness.

Arbitrary secondary objectives can be optimized with adaptive approaches

Manually writing unit tests is perceived by developers as an extremely tedious

tasks, especially when legacy systems with poor to non-existing tests of docu-

mentation are involved [Ramler et al., 2012]. Search-based algorithms have been

extensively employed to automatically generate unit tests with good results in

terms of achieved code coverage. However, unit test case generation did not

witness a broad adoption from practitioners [Rojas and Fraser, 2017] for a number

of reasons. Rojas and Fraser suggested that this line of research is stuck in a

local optimum that prevents such a strong adoption in real scenarios [Rojas and

Fraser, 2017]. In their position paper, they reported a number of challenges that

research should tackle in order to move forward the entire test case generation

field, e.g., optimize non-functional qualities like test readability. In thesis, we

took a step into this direction by proposing an adaptive search-based approach

that can be adapted to many contexts. However, devising efficient metrics

to measure these non-functional qualities is still an open challenge for many

domains. Research should strive for general approaches able to tackle such a

challenge. For instance, we envision the usage of machine learning models into

the loop of genetic algorithms to measure—and therefore, maximize—arbitrary

non-functional aspects, a promising path to be explored.

An Integrated Approach Towards Test Quality In this thesis we present a

number of techniques aiming at maximizing test code quality. Like most of the

previous research on software testing, we evaluated each of these approaches as

32 Chapter 1. Synopsis

a stand-alone tool in its own domain and context. A major design goal of our

research is the unification of a variety of approaches into analytic dashboards

working together in an integrated fashion to boost the overall test suites quality.

As an example, code quality prediction models could be instantiated in CI

pipelines and continuously evaluate different test quality aspects. Eventual

criticalities could be either redirected to developers’ attention or immediately

tackled with automated approaches, e.g., automated refactoring techniques or

automated test case generation focused on the optimization of a specific quality

aspect.

1.6 Opportunities and Future Work

In the following, we discuss the possible extensions to our work that future

research might further explore.

Comprehensive model of test quality Developers rely on existing test quality

metrics to diagnose the quality of their test suites. Our research partially

confirmed their usefulness but also highlighted important limitations. Indeed,

existing metrics fail at providing a comprehensive and complete model of test

code quality. In particular, they fail short in characterizing high quality unit

tests. A multi-dimensional metric able to capture the different facets of test

code quality could be of a paramount importance for developers in a number of

tasks. Its integration in analytic dashboards would enable a continuous quality

assessment of unit test suites across all quality dimensions, thus increasing

developers’ confidence in their testing process.

Test documentation mechanisms A key factor connected to test code quality

relates to the explanatory power of a test, intended as its ability to describe which

production scenario has been exercised. This is especially important when a test

assertion fails with little to no documentation associated. Summarization mecha-

nisms come to a great help when it comes to document test behavior [Panichella

et al., 2016]. Research should further utilize these techniques to both describe the

1.6 Opportunities and Future Work 33

scope of a test and to fix undocumented assertions as well as describe quantitative

test metrics to enhance their understanding when presented to developers.

Interpretable machine learning models This thesis proposes and relies on

machine learning models exploited to solve software engineering tasks. Despite

some algorithms (e.g., random forests) have built-in mechanism to report the

importance of the used features [Grabmeier and Lambe, 2007], machine learning

models, especially the more complex ones, are often used as a black-box [Du

et al., 2019]. A better interpretability of these model would dramatically increase

their usefulness. Knowing which specific factor influences a given outcome might

be of a paramount importance. Such an information would allow developers to

take directly improve the limiting factors suggested by the model and increase

the effectiveness of their tests.

Automated test refactoring Having interpretable machine learning models

integrated in analytic dashboards unlocks the possibility to apply automated

refactoring operations in a continuous integration pipeline to continuously improve

test suite quality. For instance, operations like Extract Class Refactoring could

be automatically applied in cases if the prediction model indicates the lack of

cohesion as a limiting factor for test effectiveness.

Prediction of complex metrics In this thesis we showed the feasibility of using

source code factors that can be easily computed with little to no overheard

to predict some sort of test code quality. In particular, we focused on test

effectiveness proposing a lightweight machine learning model that can be seen

as complementary with respect to fully fledged mutation analysis. We envision

the application of a similar approach to a number of other quality dimensions,

especially the ones that are particularly complex to measure: good examples are

test understandability [Scalabrino et al., 2017] and test flakiness.

Test generation beyond code coverage In our work on test code generation

with a focus on resource demands, we proposed a dynamic approach that si-

multaneously maximize code coverage and an orthogonal secondary objective.

34 Chapter 1. Synopsis

While we solved the problem of measuring resource demands with little overheard

by proposing a set of lightweight indicators, the general problem of assessing

additional secondary objectives in the loop of genetic algorithms is far from been

fully solved. Future research should tackle this challenge. The integration of

machine learning models able to predict code qualities in the loop of search

algorithms is a promising research direction that deserves further investigation.

1.7 Thesis Roadmap

The remainder of this thesis is formed by four chapters, each one corresponding

to a peer-reviewed publication accepted in an internationally renowned journal

or conference. There is a one-to-one association between each chapter and one of

the research questions presented in Section 1.1.

Chapter 2 analyzes the most valuable test quality features from developers’

perspective and presents a taxonomy of aspects deemed important by practitioners

when assessing unit test case quality. It answers RQ1. This work was published in

the 36th IEEE International Conference on Software Maintenance and Evolution

(ICSME). This work was done in collaboration with Cristian De Iaco, a former

bachelor student at University of Zurich that I co-supervised, Fabio Palomba, a

former post-doc at the University of Zurich, and my supervisor Harald Gall.

Chapter 3 presents machine learning models able to estimate test effectiveness

(via mutation analysis) exploiting the usage of source code features. It answers

RQ2. This work was published in IEEE Transactions on Software Engineering

(TSE). This work was done in collaboration with Fabio Palomba, a former

post-doc at the University of Zurich, and my advisor Harald Gall.

Chapter 4 presents machine learning models that predict the performances of

test case generation tools, intended as achievable branch coverage. It answers

RQ3. This work was published in Journal of Software: Evolution and Process

(JSEP). This work was done in collaboration with Timovey Titov, a former

1.7 Thesis Roadmap 35

Table 1.2: Contribution to each chapter (and therefore, to each corresponding
publication) according to the Contributor Roles Taxonomy.

C
on

ce
pt

ua
liz

at
io

n

D
at

a
C

ur
at

io
n

Fo
rm

al
A

na
ly

si
s

Fu
nd

in
g

A
cq

ui
si

ti
on

In
ve

st
ig

at
io

n

M
et

ho
do

lo
gy

P
ro

je
ct

A
dm

in
is

tr
at

io
n

R
es

ou
rc

es

So
ft

w
ar

e

Su
p

er
vi

si
on

V
al

id
at

io
n

V
is

ua
liz

at
io

n

W
ri

ti
ng

-
or

ig
in

al
dr

af
t

W
ri

ti
ng

-
re

vi
ew

&
ed

it
in

g

Chapter 2 * * * * * * * * * * *

Chapter 3 * * * * * * * * * * *

Chapter 4 * * * * * * * * * * * *

Chapter 5 * * * * * * * * * *

master student at University of Zurich, Sebastiano Panichella, a former post-doc

at University of Zurich, and my advisor Harald Gall. This paper is an extension

of our seminal work [Grano et al., 2018b], in which we firstly proposed to predict

the branch coverage that will be achieved by test data generation tools. The

novel contributions of this paper in respect to the original one are: (i) a new set

of features, i.e., the Halstead metrics [Halstead et al., 1977], (ii) the introduction

of a Random Forest Regressor algorithm, (iii) a fine-grained analysis aiming at

understanding the importance of the features employed in the prediction, (iv)

the experimentation of multiple search budgets, and (v) a larger dataset. In this

thesis we only include the latest journal extension.

Chapter 5 presents aDynaMOSA, an adaptive search-based algorithm that

automatically generate unit test cases with lower resource demands and high code

coverage. It answers RQ4. This work was published in IEEE Transactions on

Software Engineering (TSE). This work was done in collaboration with Christoph

Laaber, a Ph.D. student in my same lab at University of Zurich, Annibale

36 Chapter 1. Synopsis

Panichella, a professor from Delft University of Technology, and Sebastiano

Panichella, a former post-doc at the University of Zurich.

Table 1.2 specifies my contributions for each of the mentioned chapters,

according to the Contributor Roles Taxonomy.12

12http://credit.niso.org, Last Access: 21.01.21

2
Pizza versus Pinsa: On the

Perception and Measurability
of Unit Test Code Quality

Giovanni Grano, Cristian De Iaco, Fabio Palomba, Harald C. Gall
Published in the Proceedings of the 36th IEEE International Conference on Software

Maintenance and Evolution (ICSME 2020)

Abstract

Test cases are an essential asset to evaluate software quality. The research

community has provided various alternatives to help developers assessing the

quality of tests, like code or mutation coverage. Despite the effort spent so far,

however, little is known on how practitioners perceive unit test code quality

and whether the existing metrics reflect their perception. This paper aims at

addressing this gap of knowledge. We first conduct semi-structured interviews

and surveys with practitioners to establish a taxonomy of relevant factors for

unit test quality and collect a dataset of tests rated by developers based on their

perceived quality. Then, we devise a statistical model to measure how the metrics

available in literature reflect the perceived quality of test cases. The findings

of our study show that readability and maintainability are the key aspects for

developers to diagnose the outcome of test cases and drive debugging activities.

On the contrary, code coverage metrics are necessary but not sufficient to evaluate

the capability of tests. Finally, we discover that available metrics are effective

38

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

in characterizing poor-quality tests, while limited in distinguishing high-quality

ones.

2.1 Introduction

During software evolution, developers perform multiple changes to the codebase

to enhance existing features, implement new ones, and fix emerging defects

[Lehman, 1980]. In this context, they periodically run test cases to verify that

new changes do not introduce regressions [Pinto et al., 2012]. Both development

and selection of tests to be run are oftentimes driven by their ability to actually

catch defects in the codebase [Aggrawal et al., 2004; Kim, 2003; Srikanth et al.,

2005]. As it is not possible to know a-priori the fault detection capabilities of

tests, researchers have been devising metrics to estimate the quality of tests.

Among all, code coverage, i.e., the amount of production code exercised by a

test, is considered the main indicator for test code quality [Cai and Lyu, 2005;

Kochhar et al., 2015] and, indeed, researchers and tool vendors used it to assist

practitioners during all the activities connected to testing, from test selection

to analysis of production code fault-proneness [Aggrawal et al., 2004; Lawrence

et al., 2005; Yu et al., 2016]. However, code coverage only indicates which part

of the production code is exercised, failing to provide indications on whether its

intended behavior is actually tested: as an example, Ellinms et al. [Ellims et al.,

2006] found faults in projects having a high code coverage.

The main research alternative to code coverage is represented by mutation

testing: in this case, defects are artificially seeded into the production code to

quantify the ability of tests to find them [Offutt and Untch, 2001]. While it is a

more powerful metric for test case quality [Just et al., 2014b], its practical usage

is still under debate [Grano et al., 2021; Jia and Harman, 2011]. Other metrics,

e.g., test flakiness [Eck et al., 2019; Luo et al., 2014] or test smells [Meszaros,

2007], have been also connected to software quality.

Recognizing the effort spent by the research community in devising test code

quality metrics, we identify a common limitation with respect to the way the

usefulness of these metrics has been evaluated. Most of them, indeed, have been

2.1 Introduction 39

experimented in vitro with empirical studies aiming at measuring their correlation

with the fault-proneness of production code (e.g., [Aggrawal et al., 2004; Grano

et al., 2021; Just et al., 2014b]). On the contrary, there is still a lack of knowledge

on (i) how practitioners define unit test code quality and (ii) whether the existing

metrics match their perception, hence being considered useful in practice. An

improved understanding of these aspects would be beneficial to comprehend the

way the research community supports practitioners and if additional instruments

would be worthwhile.

In this paper, we propose a mixed-method research approach in order to

(i) elicit a taxonomy of factors deemed relevant by practitioners for unit test

code quality and (ii) understand how the metrics defined in literature match the

developer’s perception of unit test code quality. We start our investigation by

interviewing five software testing experts to let them elaborate a set of factors

influencing the quality of test cases. Once established an initial taxonomy of

these factors, we run a survey study that involves 70 practitioners in which we (i)

evaluate the taxonomy on a larger-scale and (ii) ask them to rate 210 test cases,

overall, according to their perception of quality. As a final step, we compute

state-of-the-art test code metrics on the built dataset to study how they are

statistically related to what developers perceive as test code quality.

The key results of our study first report that code and mutation coverage

are necessary but not sufficient indicators of the quality of tests. We discover

that test code design-related attributes, like readability and maintainability, can

better pinpoint test cases useful to discover defects in production code. Finally,

metrics defined in literature only partially align with the developer’s perception

of test code quality. As such, a novel, more comprehensive set of test code metrics

should be devised to better assist practitioners when dealing with development

and assessment of test cases.

To sum up, this paper provides three main contributions:

1. A novel taxonomy of factors deemed important by practitioners for assessing

test code quality;

40

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

2. A statistical study of how currently existing metrics support the developer’s

needs in test code assessment;

3. A research roadmap that researchers should follow to better fit the practi-

tioner’s needs.

2.2 Background And Related Work

Test code quality represents a multi-faceted concept able to express how useful

a test will be for developers during the understanding of the production code

[Spadini et al., 2019], the debugging activities [Yamaura, 1998; Jin and Zeng,

2011], and the early catching of defects [Gopinath et al., 2014]. Over the last

decade, a number of researchers have been studying test code quality with the

aim of defining metrics able to characterize it under different perspectives.

In the first place, code coverage has been widely used in practice to assess the

quality of test suites, as it is easy to compute (e.g., by continuous integration tools)

and easy to interpret [Wei et al., 2012]. Similarly, a large body of research focused

on the relationship between code coverage and test quality and, in particular,

previous work investigated the role of code coverage in fault localization [Wong

et al., 2007, 2010] and detection [Cai and Lyu, 2005]. However, code coverage

has been shown to be an insufficient indicator when it comes to assess test

quality [Inozemtseva and Holmes, 2014]. Rojas and Fraser [Rojas and Fraser,

2017] stated that its main limitation is the inability to verify the intended

behavior while merely looking at the executed code. Mutation testing, based on

the idea of mutants, represents the best alternative to code coverage [Jia and

Harman, 2011; Just et al., 2014b; Andrews et al., 2005]. However, it still suffers

from scalability issues—despite the attempts done by researchers to alleviate this

problem [Offutt and Untch, 2001; Zhang et al., 2018; Grano et al., 2021].

On another note, Beck [Beck, 2003] suggested that good design principles,

understandability, and maintainability are desirable properties of test cases.

For this reason, researchers [Van Deursen et al., 2001; Meszaros, 2007] devised

catalogs of poor design solutions named test smells. Bavota et al. [Bavota et al.,

2.2 Background And Related Work 41

2012] investigated the diffusion of test smells in large open source projects showing

how their presence has a negative impact on program comprehensibility and

maintainability. Along this line, Spadini et al. [Spadini et al., 2018] studied

the relationship between smells and change- and fault-proneness of both test

and production code, reporting similar findings. Our work aims at investigating

test code quality not only looking at its design, but also considering the other

aspects deemed important by developers. As such, our paper can be considered

as complementary with respect to the ones on test smells and, indeed, it considers

these smells along with the other factors that the research community has shown

to be impactful for unit test code quality.

Another perspective of test code quality relates to the role of assertions.

Kudrjavets et al. [Kudrjavets et al., 2006] showed a relationship between assertion

density, defined as the number of assertions over the KLOC of a class, and

the decrease of faults in production code. Their main finding is the inverse

relationship between bugs and assertion density, i.e., the higher the number of

assertions, the lower the fault-proneness of production code. Similarly, Hoare

[Hoare, 2003] focused on the number of pre- and post-conditions in the context

of 21 different software projects, showing a positive correlation between their

number and the stability of those projects. Moreover, previous work studied

the relationship between the usage of assertions and experience of software

programmers [Catolino et al., 2019] reporting that experienced developers tends

to rely more on assertions.

Source code readability is an important property when it comes to perform

maintenance and evolution tasks [Lui and Chan, 2006]. Previous research showed

that readability metrics correlate to the fault-proneness of source score [Marcus

et al., 2008; Scalabrino et al., 2018b]. Grano et al. [Grano et al., 2021] investigated

this aspect in the context of test code, showing that developers tend to neglect

the readability of test cases. In so doing, they relied on the state-of-art model

for readability [Scalabrino et al., 2016b]: being trained on both production and

test code snippets, it is suitable to analyze test readability as well [Grano et al.,

2018a].

42

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

From an empirical viewpoint, Nagappan et al. [Nagappan et al., 2005] were

the first trying to capture the quality of test suites using a variety of product

and assertion-related metrics. While sharing a similar long-term objective, our

goal is to better analyze the practitioner’s perspective with respect to unit code

quality in order to understand how they assess tests in practice. Finally, the

closest related work is the one by Bowes et al. [Bowes et al., 2017]. The authors

reported the results of a two-day workshop with practitioners in which they

elicited a set of testing principles that not only address code coverage-related

metrics, but also other quality facets of testing. As a result, they identified 15

principles that range from keeping maintainability into account to the need for

considering happy and sad paths when testing production code. This work can

be considered as complementary since we aim at gaining a broader understanding

of how developers perceive unit test code quality and how the metrics defined in

literature match this perception.

2.3 Research Goal and Questions

The goal of the empirical study is to (i) elicit the factors deemed important by

practitioners when assessing the quality of unit tests and (ii) understand how

the test code quality metrics defined in literature align with those considered

relevant in practice. The purpose is to study if additional, complementary test

code metrics should be devised or whether the assistance currently provided is

sufficient. The perspective is mainly that of researchers interested in analyzing

the support they currently provide to developers with respect to test code metrics.

Our study is structured around two main research questions. We start by focusing

on the practitioner’s perspective of test code quality, trying to investigate and

extract a set of features that developers consider relevant when assessing the

goodness of unit tests. Hence, we ask:

RQ1: What are the features of unit tests that, according to developers, have

an influence on unit test quality?

2.4 RQ1. The Practitioner’s Perspective 43

Afterwards, we turn our attention on the research perspective of test code

quality, namely we analyze the support that is currently provided by the research

community with respect to the assessment of test code quality as well as the

alignment between the metrics proposed in literature and the features deemed

important by developers in practice:

RQ2: Do existing test code quality metrics match the developer’s perception of

test code quality?

To address the two research questions, we feature a mixed-method research

approach [Creswell, 1999] that combines insights from semi-structured interviews

and surveys with statistical results investigating how existing test code quality

metrics match the developer’s perception of test code quality.

2.4 RQ1. The Practitioner’s Perspective

As a first part of our investigation, we study what developers perceive as important

when it turns to test code quality.

2.4.1 Research Methodology

To address our first research question, we need to capture a broad variety of

practitioner’s opinions on test code quality.

Semi-structured Interviews. First, we conduct semi-structured interviews

with software testing experts in order to start elaborating an initial taxonomy

reporting the factors that should matter when assessing the quality of unit tests.

This research approach is often used in exploratory investigations to understand

phenomena and seek new insights [Weiss, 1995]. In our case, we decide to start

with semi-structured interviews as we prefer letting emerge possible factors

influencing test code quality directly from the opinions of experts rather than

from our own view of the phenomenon: this reduces the introduction of possible

sampling and inclusion biases [Smith and Noble, 2014], other than favoring the

44

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

emergence of factors actually used by practitioners in their daily development

activities.

The general structure of the interviews is composed of three parts. After

some background questions aimed at characterizing the sample of the involved

practitioners, the first part consists of a general discussion on the practices

applied when developing unit tests, with a particular focus on (i) the granularity

adopted to create unit tests (e.g., if they develop test cases targeting specific

production methods or follow a different approach) and (ii) the tools used to assess

state and quality of test cases. In the second part, we discuss the developer’s

definition of a high quality unit test. Once provided a high-level interpretation,

we ask the interviewee to show and describe us one of her/his unit tests which

s/he deems to be of a high quality: in so doing, we expect the interviewee to

provide further and finer-grained insights into the aspects that leads to good tests.

Finally, in the last part of the interview we ask the participants to summarize

their thoughts on high quality unit tests into measurable factors or software

engineering methodologies that may possibly assess or foster test case quality.

The three parts, altogether, aim at contributing to the construction of an initial

taxonomy of factors influencing test code quality.

After designing the structure of the interviews, we define the recruitment

strategy. Ours can be considered as a convenience sample [Kam et al., 2007],

in which we invite five software testing experts from our personal industrial

contacts. One of them hold a Bachelor degree in Computer Science, two a Master

degree, and the remaining two a Ph.D. degree in Software Engineering. Overall,

they have between 3 and 10 years of experience in testing and typically develop

multiple unit tests per day.

The semi-structured interviews have a duration from 40 to 60 minutes and

are conducted between December 2019 and January 2020 through an either

face-to-face meeting or remote Skype call in which at least two of the authors

of this paper participate. All interviews are recorded and then transcribed for

analysis, preserving the anonymity of the interviewees. We share these transcripts

in our appendix.1

1https://doi.org/10.5281/zenodo.3999060, Last Access: 21.01.21

2.4 RQ1. The Practitioner’s Perspective 45

The collected data are then analyzed by the first two authors of this paper

adopting the following methodology:

Step 1 - Summarization: Initially, one inspector summarizes the semi-structured

interviews and groups the available pieces of information into three categories:

(1) ‘Applied practices’, (2) ‘Definition of unit test code quality’, and (3) ‘Possi-

ble features to compute it’. These correspond to the three main parts of the

interviews.

Step 2 - Microanalysis: The same inspector starts extracting relevant pieces

of information and assigns temporary labels that represent concepts emerging

from the interviews that may be relevant for the assessment of test code quality.

Step 3 - Categorization: The two inspectors jointly analyze the labels as-

signed in the previous step in order to cluster those that are semantically

similar or even identical [Harispe et al., 2015]. This step also allows the second

inspector to double-check the operations done in the previous steps.

Step 4 - Saturation: The two inspectors iterate over the labels assigned so far

until they can reach a full agreement with respect to names and meanings of

all of them. This step leads to a theoretical saturation [Walker, 2012], namely

the phase where the analysis does not propose newer insights and all concepts

expressed by the interviewees are well-developed.

Step 5 - Taxonomy Building: Based on the labels assigned, the two inspec-

tors proceed with the construction of the initial taxonomy, i.e., they specify

the factors deemed important for test code quality by the interviewees.

Confirmatory Survey Study and Dataset Collection. While the semi-

structured interviews lead to an initial taxonomy of factors contributing to test

code quality, we conduct a larger-scale survey study aimed at (i) confirming the

validity of the initial findings, (ii) suggesting additional factors not covered by

the interviews, and (iii) building a dataset of unit test cases rated by developers

according to their perceived quality.

46

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

The survey is composed of three main sections—for the sake of space limi-

tations, we report the full list of questions included in the survey.1 In the first

one, we ask the participant’s opinion on the features that most influence test

code quality: particularly, we not only seek opinions on the features considered

relevant, but also on whether they are effectively measured in the working envi-

ronment of the participants and, if so, how. In this stage, we allow participants to

report a maximum of six factors each. In the second section, instead, we propose

the source code pertaining to three unit test cases, along with information about

their code and mutation coverage, and ask participants to rate them based on

(i) their overall quality and (ii) the features mentioned in the first section of

the survey. The test cases proposed to each participant are randomly selected

from a pool of ten open-source tests that we mine from systems of the Apache

ecosystem. We only proposed three tests to avoid having an excessively long

survey which may have resulted in an increase of the abandonment rate [Flanigan

et al., 2008]. In particular, before running the survey we first extract all unit

test cases (along with the corresponded exercised classes [Grano et al., 2021])

belonging to Apache Commons. Then, we randomly pick ten distinct tests

coming from different suites: these tests form the pool used in the survey.1 The

selection of Apache Commons is based on two main reasons: first, it contains a

set of libraries that are widely used by practitioners worldwide [Qiu et al., 2016],

possibly letting survey participants to know (or to be able to acquire knowledge

on) the considered systems; second, it contains a large amount of test cases

written by hundreds of different contributors [Goeminne and Mens, 2013], hence

increasing the diversity of the unit tests analyzed. It is important to note that

we cannot provide developers with tests developed by their own as the survey is

intended to be disseminated at large scale. Overall, we collect 210 evaluations

that are used later in the context of RQ2. We prefer collecting multiple ratings

for a pool of unit tests rather than individual scores on a larger amount of tests

because in this setting we can also analyze the variance of the ratings and provide

insights into the agreement reached on the sample tests. Finally, the last section

of the survey aims at collecting background information on the participants.

2.4 RQ1. The Practitioner’s Perspective 47

Table 2.1: Taxonomy of Unit Test Quality Features and Corresponding Measur-
able Factors/Practices.

Category Sub-Level Description Measurable factors/practices

Behavioral

(Self-)validation A test should behave as expected, i.e., it must
not be defective

Test code review

Scope Extent of the code under test exercised by a
single unit test

Code coverage; Test case complexity

Effectiveness Ability of revealing fault in the exercised pro-
duction code

Code coverage; Mutation coverage;
Purpose

Diagnosability Features that facilitate fault detection and
solving

Comments to assertions; Failure repro-
duction; Test code review

Structural

Size Size of the unit test case Lines of Code

Test Design Features about the general structure of a test Assertion density; Comments to asser-
tions; Test code complexity; Lines of
Code

Reusability Reusability of unit tests in other suites

Readability Readability of the test code Readability

Maintainability Maintainability and evolvability of the test
code.

Test smells; Time required to fix an
assertion

Independence Degree of isolation of a unit test with respect
to the other tests of the suite

Coupling metrics, like CBO [Chi-
damber and Kemerer, 1994]

Executional

Execution Time Time taken by a unit test to be executed Execution time

Reliability Unit tests should always produce the same re-
sults

Test code flakiness

Execution Infrastruc-
ture

Availability of information about the execution
environment of a test

Statistics of Continuous Integration
servers

The survey is implemented using LimeSurvey.2 It is made available from

March 1st to 31st, 2020 and advertised through personal contacts and social

network accounts of the authors, i.e., Facebook, Twitter, Reddit, and

LinkedIn.

All in all, we receive 70 fully compiled questionnaires. The same authors

who were involved in the analysis of the semi-structured interviews analyzed

the survey responses. In so doing, they apply exactly the same methodology

described for the analysis of the semi-structured interviews when considering the

factors emerged from the surveys. The only additional step performed in this

case is the activity of merging the factors emerged from the survey with those

highlighted by the interviews in case the same concepts were expressed. The

final outcome consists of a validated taxonomy of factors influencing test code

quality, which we describe in the following section. As for the collected dataset,

this is described and analyzed when addressing RQ2 (see Section 2.5).

2https://www.limesurvey.org, Last Access: 21.01.21

48

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

2.4.2 Analysis of the Results

This section discusses the main findings for RQ1.

A taxonomy of unit test quality features. Five testing experts were initially

interviewed with the final aim of deriving a set of features that impact on the

quality of unit tests. In the first place, however, it is worth to briefly discuss

the main outcomes coming from the analysis of the practices they typically use

to develop test cases as well as the tools employed to assess state and quality

of the test suites. As a matter of fact, all our interviewees declared that they

prefer adopting an approach which is mostly inspired to test-driven development

[Beck, 2003], meaning that they like to start writing test cases before production

code or, at very least, proceeding with a test-as-you-write strategy, i.e., they

develop production and test code in parallel. The testing experts revealed that

such a strategy typically allow them to spot edge cases first, being therefore

able to produce higher-quality production code. Hence, our findings seem to

confirm previous quantitative results showing the positive effects of test-driven

development on source code quality [Marchenko et al., 2009; Rafique and Mišić,

2012]. Furthermore, our interviewees reported that they typically start creating

test cases by focusing on individual use case scenarios of the production code,

only later extending the test suites to incorporate additional scenarios: for

example, interviewee #5 explained that s/he starts testing by developing one

single scenario, with a single assertion, per test.

Secondly, our interviewees reported the use of a wide range of testing frame-

works, from test automation (like testing in continuous integration pipelines) to

mocking frameworks usable to effectively isolate the scope of unit tests. They

pointed out that these tools are necessary to enable the creation of effective tests

having a high fault detection capability.

Finally, Table 2.1 overviews the features characterizing unit test code quality

as well as how to measure/deal with them according to the opinions of our

interviewees. As shown in the table, the extracted features could be classified

into three main categories such as ‘Behavioral’, ‘Structural’, and ‘Executional’,

which we further analyze in the following.

2.4 RQ1. The Practitioner’s Perspective 49

Behavioral features. The first category is composed of four macro-factors that

relate to the nature and behavior of unit tests. According to the involved

testing experts, one of the key characteristics making a test of high-quality is

its ability of being (self-)validated: this implies that the test should neither

be defective nor require additional checks (e.g., other pieces of code) to be

verified. This aspect, besides being somehow expected to be critical for the

development of good tests, is actually one of the F.I.R.S.T. (Fast, Independent,

Repeatable, Self-validating, Thorough) principles which originally inspired

born and rise of test-driven development [Beck, 2003]. The (self-)validation

of test cases was mentioned by three of the experts, who all reported code

review as the software engineering practice that could assist the assessment of

test cases—thus, suggesting that tests should also be part of the code review

process [Spadini et al., 2019].

The scope of a test was the factor mentioned by all interviewees. This refers to

the extent to which the behavior of the unit under test is actually exercised by a

test. In other words, a critical factor for developers concerns with the ability of

assessing whether a unit test actually exercises the corresponding unit and, if so,

how many use case scenarios it covers. Accordingly, the first metric mentioned

was code coverage, i.e., how many lines of production code are touched by

a unit test. Nevertheless, the experts also pointed out that the complexity

of a test plays a role in this case: indeed, the higher the complexity of the

test, the lower the developer’s ability to understand its scope, and therefore

its target. In a complementary manner, the experts revealed the estimation of

the effectiveness of a unit test as a critical factor to consider. In so doing, all

experts mentioned code coverage as a metric to use for this purpose. However,

all of them agreed on the fact that this is just to consider a proxy measure that

is necessary to use, but definitively not sufficient. To make her/his reasoning

more practical, interviewee #3 reported the case of a critical system:

“So, if we are building a critical system, then you should have a

decent branch coverage, because I mean it is a critical system. So,

you really need to test it very well. And in that case, branch coverage

50

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

is not really a good metric of how good your test suite is, because I

can easily have 100% test coverage.”

The experts reported the lack of alternative metrics able to provide more

insightful indications of how effective a test actually is. Only one of the experts

reported to use mutation coverage, i.e., the number of artificially created defects

that a test can find [Offutt, 2011], in specific cases to better understand the

effectiveness of tests—somehow confirming the limitations of mutation analysis

in practice [Andrews et al., 2005; Grano et al., 2021; Delahaye and Bousquet,

2015]. Finally, the purpose of the test, i.e., the requirement that a unit test is

exercising, was suggested by two experts as an ideal metric to verify that a unit

suite can actually exercise the corresponding code in a thoroughly manner.

Last but not least, all experts agreed that the diagnosability of the test outcome

is key to enable the detection and fixing of faults. In this case, they suggest

that test code documentation and, in particular, the addition of comments

to assertions can substantially help to understand why a test fails. The

reproducibility of a test is also a factor deemed to be relevant: two of the

experts referred to test flakiness [Luo et al., 2014] as a metric to use to estimate

how reproducible unit tests are. Interviewee #1 recommended test code review

as a practice to spot possible threats to test reproducibility.

Structural features. This category collects the factors that concern with the

internal structure of a unit test. According to our experts, structural aspects

can influence not only the understandability of a unit test, but also the overall

resulting effectiveness in both fault detection and diagnosability. For example,

they suggest that keeping the size low is a good way to create concise tests

that increase comprehensibility of the target behavior of the production code.

Similarly, the experts expressed the need for readable test code which can

be quickly interpreted in case of failure as well as maintainability properties

that enable tests to be evolved in an easier manner: in these cases, they also

named specific metrics such as readability [Buse and Weimer, 2010] and test

smells [Meszaros, 2007], respectively. Interestingly, we noticed that all experts

were aware of the concept of test smells and their potential negative effects.

2.4 RQ1. The Practitioner’s Perspective 51

While this seems to be in contrast with previous work reporting that developers

cannot often recognize smells in test code [Tufano et al., 2016], our findings

suggest that experience matters and that developers used to develop test cases

are more sensible to design issues and can recognize them as a threat.

Besides the factors discussed above, all interviewees reported that test design is

crucial for the development of high quality tests. According to them, producing

tests having a good assertion density, i.e., the number of assertions per test

case size [Kudrjavets et al., 2006], is important but, at the same time, these

assertions should always be accompanied by some form of documentation that

can clearly point out which of them fails as well as the reason behind the

failure. This aspect is strictly connected to the Assertion Roulette test smell,

which appears when a test includes a number of assertions without comments

[Meszaros, 2007]. Finally, avoiding the creation of complex tests reduces the

cognitive load needed to understand them.

The independence of unit tests was also named by three experts. This basically

refers to having poorly coupled tests that do not interact between them. In this

respect, interviewee #4 reported that this reduces the risk of interference of

some unit tests toward others, which can normally cause forms of test flakiness

[Luo et al., 2014]. Finally, interviewee #2 mentioned reusability: in her/his

opinion, having the possibility to reuse tests in other suites leads to two benefits:

(i) it reduces the risk due to a new implementation and (ii) increases the chance

of relying on and evolving effective tests that can be used to catch defects in

various parts of the code. Nonetheless, the expert could not report a possible

metric or practice that could help to measure reusability.

Executional features. The last category refers to the execution of the tests. While

all experts agreed that the reliability of a unit test is a relevant factor to avoid

flaky tests, i.e., intermittent tests that pass and fail with the same code [Luo

et al., 2014], only interviewee #5 suggested two additional aspects. First, s/he

reported that the execution time of a unit test should be kept low to have

a quick feedback on the production code quality. Second, the availability of

52

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

Table 2.2: Demographic Information of Survey Participants.

Education Experience (years)

High School or eq. 12 17.14% 1-5 24 34.29%

Bachelor 28 40.00% 6-10 15 21.43%

Master 17 24.29% 11-20 10 14.29%

Ph.D 8 11.43% 20+ 5 7.14%

Other 4 5.71%

Current Employment Team Size

Student 15 21.43% 1-4 12 17.14%

Researcher 6 8.57% 5-10 22 31.43%

Prof. (paid) Dev. 55 78.57% 11-20 10 14.29%

Prof. (unpaid) Dev. 1 1.43% 20+ 10 14.29%

information about the infrastructure environment could provide additional

knowledge of whether a test risks being flaky.

Insights from the survey. Once created an initial taxonomy of factors con-

tributing to unit test code quality, we proceeded with a larger-scale validation

through a survey study which involved 70 developers worldwide. Table 2.2

summarizes descriptive statistics of the survey participants: most of them are

currently professional developers working in teams composed of 5-10 members

and with an experience of up to 5 years. It is worth noting that we did not make

background questions mandatory in the survey since some participants might not

feel comfortable providing information about their status [Converse and Presser,

1986]; hence, the table includes data concerning the participants willing to fill

the background part out.

Figure 2.1 shows the results achieved when inquiring the participants on the

features they consider important for unit test code quality. We could immediately

see an almost perfect match between their opinions and the initial taxonomy

extracted through the semi-structured interviews. Indeed, after merging the

factors named in the survey with those mentioned by the testing experts, we

2.4 RQ1. The Practitioner’s Perspective 53

S
co

pe
Te

st
 D

es
ig

n
R

ea
da

bi
lit

y
In

de
pe

nd
en

ce
E

xe
cu

tio
n

R
es

ul
t

E
x.

 T
im

e
B

.E
xe

c.
 C

om
pr

eh
.

M
ai

nt
ai

na
bi

lit
y

D
ia

gn
os

ab
ili

ty
E

x.
 In

fra
st

r.
(S

el
f-)

va
lid

at
io

n
S

iz
e

R
eu

sa
bi

lit
y

0

10

20

30

40

50

60

70

oc

cu
rr

en
ce

s
pe

r s
ub

-c
at

eg
or

y

Structural
Behavioral
Executional

S
tru

ct
ur

al

B
eh

av
io

ra
l

E
xe

cu
tio

na
l

U
nc

la
ss

ifi
ed

0

20

40

60

80

100

120

140

160

oc

cu
rr

en
ce

s
pe

r c
at

eg
or

y

Figure 2.1: Number of occurrences of the factors deemed important in the survey
for each category and subcategory of the taxonomy.

discovered that the survey participants had comparable thoughts when discussing

test code quality. For instance, the need for understanding the scope of a unit

test was mentioned 76 times by our survey participants, i.e., some of them

named multiple times characteristics falling under the “Scope” sub-level. Survey

participants named much more frequently metrics related to structural properties

of unit tests rather than those belonging to other categories. This result suggests

that test code design is among the most pressing contributors to unit test quality,

as confirmed by the amount of characteristics falling under the “Test design” and

“Independence” sub-levels named by the survey participants. At the same time,

maintainability and readability aspects are considered important as well: as a

54

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

matter of fact, the “Readability” sub-level represents the third most frequent

aspect mentioned in the survey.

A few exceptions to this general discussion were also registered. In 18 cases,

survey participants defined characteristics that could not be assigned to any of

the categories of the initial taxonomy—column “Unclassified” in Figure 2.1.

These answers, however, did not provide any additional aspect to consider for

unit test code quality but rather reported either too generic considerations (e.g.,

one participant explained that tests “should be treated as a first-class citizen just

as production code”) or the description of philosophies to use when developing

source code (e.g., one of them suggested test-driven development when inquired

about the characteristics of high quality unit tests). As such, those answers could

not be considered for extending the taxonomy. To conclude this first analysis, we

can therefore say that the initial taxonomy was extensive enough to be considered

complete by the larger crowd of developers involved in the survey study.

RQ1 Summary. In the first place, RQ1 confirms the idea that test code

quality represents a multi-faceted concept which is composed of a number of

different aspects and characteristics that can, to some extent, be measured.

Not only tests should effectively exercise the production code and be able to

detect faults, but developers tend to be much more focused on non-functional

aspects of test code. Indeed, it is possible to delineate a trend in the answers

of testing experts and survey participants: readability and understandability

of tests are key factors, perhaps even more important than their ability to

cover specific paths of the production code. These characteristics enable a

finer-grained verification of the executed paths and would allow to have a

clearer idea of what tests should be added to properly exercise the source code;

this is not always the case of quantitative code coverage metrics, which cannot

“explain” and make immediately “comprehensible” the production code that is

exercised. In the second place, our findings confirm that test code design and

smells play a role toward the making of meaningful test cases.

2.5 RQ2. The Research Perspective 55

2.5 RQ2. The Research Perspective

In RQ2 we exploit a statistical model relating existing metrics to the developer’s

perception of unit test code quality.

2.5.1 Research Methodology

Response Variable Definition. It is represented by 210 scores about perceived

code quality given to 10 test cases (fully detailed in our replication package1)

by the participants of the study. We presented to each participant three of

them, along with the correspondent production classes to give them the necessary

context for their understanding. The participants rated them by selecting a

value on a Likert scale. They also had the possibility to leave the question blank

or to answer with “I do not know”. After cleaning the results of the survey by

discarding such cases, we ended up with 199 different evaluations lying on a

Likert scale from 1 to 5, representative of the following values: very poor, poor,

fair, good, and very good. We report the descriptive statistics for the collected

evaluations in our replication package,1 describing for each rated test the mean

of the attributed scores along with the median, the standard deviations and the

total number of evaluations. From their analysis, we could observe that the scores

given to the tests have a standard deviation of ≈1, meaning that the developers

tend to assess the quality of the unit tests in a similar manner—hence, we have

a homogeneous dataset that does not present outliers and that can be actually

useful to understand which are the features related to the general perception

that developers have of unit test quality.

Independent Variables Definition. We use the outcome of RQ1 to establish

a set of computable metrics that may relate to the dependent variable. This

leads to the definition of 11 metrics, described as follows.

Mutation score. This is the ratio between the mutants, i.e., artificially created

defects seeded in production code, effectively detected by the test over the

total number of generated mutants [Offutt, 2011]. This is considered the

high-end criteria when it comes to measure test code quality [Jia and Harman,

56

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

2011] and, according to the results of RQ1, testing experts suggested that

this metric could be actually used to assess test effectiveness. We compute

the mutation score relying on PIT [Coles et al., 2016]. This choice is due to

the fact that PIT has been employed in previous research about mutation

testing [Grano et al., 2021; Zhang and Mesbah, 2015; Inozemtseva and Holmes,

2014]. Moreover, it represents the most reliable and mature mutation testing

engine freely available [Delahaye and Bousquet, 2015].

Code coverage. This metric is largely used in practice to assess test code quality

and report immediate feedback to developers [Wei et al., 2012]. The testing

experts interviewed in RQ1 reported that it may be useful to measure scope

and effectiveness of unit tests. In this work, we use line coverage, i.e., the

percentage of lines of code covered on the production code by the execution of

a test, computing it using PIT.

Code metrics. We select a set of 5 code metrics related to code complexity (RFC,

WCM, NOSI), coupling (CBO) and size (LOC). We include these metrics

because (i) testing experts reported them to be potentially useful for test code

quality and (ii) they capture various structural aspects of source code that may

contribute to the response variable. To compute those metrics, we rely on the

ck tool developed by Aniche.3 It is worth to remark we calculate those metrics

at method level, i.e., uniquely on the test methods included in the study and

rated by the participants.

Test smells. Test smells are sub-optimal implementation choices related to

tests [Van Deursen et al., 2001; Meszaros, 2007; Tufano et al., 2016]. Pre-

vious research showed that they affect maintainability and effectiveness of test

code [Bavota et al., 2015; Spadini et al., 2018]. Based on the results from RQ1,

we first consider the Assertion Roulette smell [Van Deursen et al., 2001]: this

smell is detected when a test has a number of assertions without explanation.

As such, we can capture the impact of (lack of) assertion documentation, which

has been mentioned by testing experts as a relevant factor for unit test quality.

3https://github.com/mauricioaniche/ck, Last Access: 21.01.21

2.5 RQ2. The Research Perspective 57

Secondly, we consider Eager Test [Van Deursen et al., 2001], which affects

unit tests exercising more than one production method: this may affect the

maintainability of tests but also intuitively hinder the identification of the

scope of a test. To compute test smells, we rely on the detection tool proposed

by Bavota et al. [Bavota et al., 2012], which has been largely exploited and

validated by previous studies [Grano et al., 2021; Tufano et al., 2016].

Assertion density. For a test class Ti, assertion density is defined as the number

of assertions in Ti over the thousands lines of code of Ti [Kudrjavets et al.,

2006]. Previous research has shown that high value of assertion density relates

to fewer faults in production code [Catolino et al., 2019; Kudrjavets et al.,

2006]. Furthermore, it was mentioned in RQ1 as a potential factor contributing

to test code quality.

Readability. This has been not only highlighted by testing experts in RQ1, but

also considered as one of the most important factors by the survey participants

as it eases maintenance and evolution tasks [Lui and Chan, 2006]. To compute

the readability we rely on the original implementation of the state-of-the-art

model proposed by Scalabrino et al. [Scalabrino et al., 2016b]. This model

outputs a readability score in the [0, 1] range and can be used on test code,

since it has been trained on both production and test code snippets [Grano

et al., 2018a].

From the model we exclude some factors mentioned in the context of RQ1

such the executional factors and reusability. As for the former, the main reason

for this choice lies in our willingness to avoid the presentation of information that

developers could not directly access and assess by looking at the evaluated code,

e.g., they could only analyze the unit test and its corresponding production class

but could not assess its execution time or whether it had an intermittent behavior.

If we had included those pieces of information, we would have potentially risked

the introduction of the so-called extreme bias [Paulhus, 1991], which is a type

of cognitive bias where participants decide based on information they could

not have access to. To further examine the role of behavioral metrics on unit

58

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

test quality, our future research agenda includes the execution of a controlled

study where developers actively perform tasks on unit tests before assessing their

quality. As for reusability, none of the involved developers was able to provide

us with a concrete metric to compute it.

Control Variable Definition. While the taxonomy proposed in this paper

reflects the developer’s opinions on unit test code quality, it is worth remarking

that their perception and, thus, the scores they assigned to the evaluated snippets

may be a reflection of their experience with testing software systems. In other

words, it could be possible that their expertise has influenced the way they

evaluated unit test code quality. For this reason, we decide to account for this

aspect and consider the experience developers declare while compiling the survey

as a control factor of the model: in this way, we verify the effect of developer’s

experience on the response variable.

Statistical Modeling. After selecting and computing the model variables, we

devise a proportional odds model [Winship and Mare, 1984] to determine the

relation between the perceived test quality and the test code metrics. Proportional

odds model is a class of generalized linear model that is used to predict an ordinal

variable, i.e., a variable that assumes values on an ordinary scale where the

ordering of the values is relevant, on a set of discrete or continuous independent

values [Winship and Mare, 1984]. This kind of regression fits our problem, being

our response variable a value on a Likert scale. More formally, let indicate with

Y a possible outcome with J different categories, where |J | ≥ 2. Let define

γj = P (Y ≤ j) as the cumulative probability of an outcome Y less than or equal

to a specific category j ∈ 1, ..., J − 1. Note that P (Y ≤ J) = 1. The general form

of a linear logistic model for the jth cumulative response can be formalized as

logit(γj) = αj − βT
j x in which both the intercept α and the covariate coefficients

β depend on the category j. Since in a proportional odds model the intercepts

depend on j but the slopes are equals, the odds ratio of an outcome Y ≤ j can

be simplified as αj − βT x.

To implement the model, we use the polr function from the MASS R package.

We check the assumption of absence of multicollinearity, occurring when two

or more covariates are highly correlated to each other [O’brien, 2007]. This

2.5 RQ2. The Research Perspective 59

Table 2.3: Results of the regression model. Statistical significance codes: .p<0.1;
∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001.

Estimate Std Sig.

Ass. Roulette −2.002 0.792 *

Ass. Density 4.165 2.649

Readability −2.349 1.614

CBO −0.944 0.462 *

WMC −0.095 0.143

RFC −0.247 0.151

NOSI −0.162 0.071 *

LOC 0.051 0.043

Mut. Score 2.886 1.256 *

Experience −0.010 0.020

v.poor | poor -8.887 2.589 ***

poor | fair -7.338 2.562 **

fair | good -5.926 2.524 *

good | v.good -4.418 2.253 .

might cause problems in understanding the contribution of each variable in

explaining the dependent one as well as issues in estimating the coefficients of

the regression [O’brien, 2007]. To this aim, we first apply hierarchical clustering,

based on the Spearman’s rank correlation coefficient ρ [Spearman, 1904], on the

independent variables by using the varclus function from the Hmisc R package.

Thus, we inspect pairs of variables with ρ > 0.6 and we exclude one of them from

the model, keeping the simplest and easier to interpret for the model results.

2.5.2 Analysis of the Results

Table 2.3 shows the results of the proportional odds model. The table lists

the independent factors, the control variable and the intercepts. For each of

them, we report the estimate in the model, the standard error and the statistical

60

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

significance. The statistical significance is given by the number of stars as

reported in Table 2.3: ‘***’ indicates p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05,

and ‘.’ indicates p < 0.1. From the hierarchical cluster analysis we discovered

high correlation between line coverage and mutation score, in line with what

suggested by previous research [Grano et al., 2021]. Thus, we decided to keep

only the latter factor in the model. Also, we excluded Eager Test because all

the tests were affected by this smell, hence not allowing the model to use it as

an independent variable.

Proportional odds models report the covariate coefficients scaled in terms of

logs, making their interpretation harder. For this reason, to ease the discussion

of the results we converted the coefficients into the odds ratio by exponentiating

the estimates—using the exp R command. The resulting proportional odds

ratios (ORs) have the same interpretation as the odds ratios in a binary logistics

regression [Winship and Mare, 1984].

Looking at the results, we could find that mutation score has the highest

proportional odds ratio (OR = 17.92) amongst the significant covariants, with a

p < 0.05: this indicates that a higher mutation score increases the probability of

having a high quality unit test, as perceived by developers. This is in line with

previous research showing that mutants can be a valid mechanism to assess unit

test quality [Just et al., 2014b]. As explained above, we excluded line coverage

from the model because of its correlation with the mutation score. To verify

the impact of this choice on the statistical results, we experimented with an

alternative model which includes line coverage as a feature and discards the

mutation score instead. We observed that both this model and the original

one, i.e., the one including mutation score, have the same Akaike Information

Criterion (AIC) estimate of 482.17 and similar odds ratios for the two metrics,

meaning that line coverage has a similar correlation with the scores given by

developers.

Three independent variables show an inverse effect of the perceived test code

quality (all with p < 0.05). Specifically, higher values of CBO (Coupling Between

Objects) decrease the probability of observing high quality scores (OR = 0.39).

This somehow confirms what developers reported in the context of RQ1. Indeed,

2.5 RQ2. The Research Perspective 61

tests with high CBO might either interact with other tests or with multiple

production classes. Therefore, they might have an excessively broad scope or

exercise multiple functionalities.

Similarly, the presence of the Assertion Roulette smell, i.e., tests where

assertions are not documented, negatively impacts test quality perception (OR =

0.13). This is again in line with the results of RQ1, where developers reported

that lack of assert documentation represents a key problem for understanding

what the test is supposed to do.

Finally, a similar relationship was observed when considering NOSI (Number

Of Static Invocations) (OR = 0.85) — this metric turned out to be highly

correlated with the absolute number of assertions in a test. Interestingly, however,

the assertion density variable, despite an insignificant p-value and a high standard

error, had a strong positive estimate. At first glance, these two results seem to

contrast each other. On the one hand, the lower the NOSI, the higher the quality.

On the other hand, the higher the assertion density, the higher the quality.

However, we can intuitively say that our findings suggest that the number of

assertions to put in a unit test should be proportioned to its purpose. Indeed,

according to our findings, too many assertions are correlated with a decrease of

perceived quality but, if the assertion density is proportioned, then the resulting

quality is perceived differently.

On the other side, we discovered that all other metrics (size, complexity,

and readability) are not statistically related to the developer’s perception of

test code quality. Particularly interesting is the case of readability: despite

it was mentioned multiple times as a relevant feature by developers in RQ1,

the statistical results are not aligned. This finding is likely due to the poor

ability of current readability metrics, as well as proxy indicators of this aspect

like complexity metrics, to capture the actual understandability of source code

[Scalabrino et al., 2017; Pantiuchina et al., 2018]. In other words, our findings

support the claim for which novel metrics should be devised to better capture

both structural and conceptual aspects of test code. As a final note, the control

variable selected, i.e., the developer’s experience, did not appear as significant,

meaning that this factor did not act as confound for the response variable.

62

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

To broaden the scope of the discussion, let consider the value of the intercepts

for the categories. Recall that each intercept corresponds to P (Y ≤ j), i.e., the

cumulative probability of an outcome being a category lower or equals than Y

against being in categories above. As an example, the 〈very poor | poor〉 boundary

corresponds to the probability of an outcome Y to be not better than very poor

against being in a category from poor above. Looking at Table 2.3, it is interesting

to note that the estimate of each level becomes less and less statistically significant

as the Likert scale increases. Indeed, we observe a p < 0.001 for the first level, i.e.,

the model is able to predict a very poor outcome by exploiting the variables we

presented. At the level 〈poor | fair〉, the model starts losing statistical significance

(p < 0.01), meaning that it becomes less capable of discriminating tests whose

quality was categorized between poor and fair. The statistical significance lowers

even more when considering the boundaries 〈fair | good〉 (p < 0.05) and 〈good |

very good〉 (p < 0.1).

RQ2 Summary. The results of the intercepts suggest an interesting finding:

the main factors defined by researchers as a proxy for unit test quality succeed

to discern low-quality tests from fair ones, while they are less effective in doing

the same for tests of higher quality. This finding aligns with what observed

in RQ1: widely used metrics, e.g., code coverage ones, are often necessary

but not sufficient to guarantee high test code quality. Mutation score is the

factor with the highest predicting power for high perceived quality, while high

test coupling and undocumented assertions show an opposite impact. Our

analysis partially confirms the usefulness of existing metrics but, at the same

time, reveals a limitation: these metrics fail at providing a comprehensive and

complete model of perceived test quality.

2.6 Implication of the Study

The results of our study provided a number of implications for the software

engineering research community.

2.6 Implication of the Study 63

The existing metrics are not enough. From the results coming from

both RQ1 and RQ2 we could derive important insights into the practical relevance

of existing test code quality metrics. The practitioners involved in our study

first highlighted how code coverage metrics are necessary since they provide

information on the amount of exercised production code. However, they are not

enough to guarantee neither the diagnosability of the faults discovered nor the

understandability of the code under test. Furthermore, mutation coverage is

rarely applied in practice and, indeed, developers tend to assess unit test quality

by using different metrics. For example, the testing experts involved in our study

suggested that important facets of test code quality are currently either under-

investigated, e.g., readability, or not considered yet, e.g., reusability. Moreover,

these alternative aspects seem to be among the most important for practitioners:

as a matter of fact, when inquired about the factors influencing unit code

quality, the survey participants often mentioned readability and maintainability

as top factors influencing unit code quality. Perhaps more importantly, from the

statistical exercise of RQ2 we discovered that code and mutation coverage, as

well as other metrics defined by the research community, e.g., assertion density,

effectively support developers in detecting unit tests having a low code quality.

We argue it would be equally important to provide them with metrics able to

better characterize high quality tests: First, such metrics could support selecting

and/or prioritizing testing activities. Second, features characterizing high quality

tests could provide a guideline for developer in writing more effective tests

or improving existing ones. To sum up, our findings represent a call for new

metrics that can enact a more comprehensive view of the unit test code quality

phenomenon, but also better characterize high quality unit tests.

Toward explainable testing metrics. According to our findings, a key

factor influencing unit test quality is represented by the explanatory power of

a test, i.e., by its ability to describe which use case scenario or part of the

production code is exercised. Both testing experts and participants involved in

RQ1 reported the need for mechanisms fostering the explainability of a unit test.

This aspect also emerged in RQ2, where we observed that the absence of assertion

documentation (i.e., the presence of the Assertion Roulette smell) was one of the

64

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

few significant factors of our statistical model. These findings directly impact

the research community and, more particularly, the way testing metrics should

be presented to developers. In the first place, quantitative metrics should be

combined with summarization mechanisms able to describe them as well as their

effects on production code. As such, our study promotes and further stimulates

the research done on source code summarization [Gambhir and Gupta, 2017].

At the same time, our findings also stimulate the research around the under-

investigated field of test code refactoring: in particular, automated solutions able

to recommend appropriate assertion descriptions could be worthwhile to improve

the overall test code quality.

Design for test code quality. The ability of designing high quality test

cases is considered relevant by practitioners. According to the findings of RQ1 and

RQ2, this is especially true when considering specific aspects like test coupling

and complexity. Besides the definition of novel metric able to better model these

aspects, our study leans toward the definition of more structured methodologies

to develop and maintain test cases. This represents a crucial challenge for the

research community. While our findings motivate the growing research area

around test code design (e.g., how to best generate tests automatically [Fraser

and Zeller, 2011; Fraser and Arcuri, 2013; Grano et al., 2019a]), we believe that

further efforts should put in place for the definition of best and bad practices that

can help developers writing high quality unit tests, e.g., novel test code design

patterns.

2.7 Threats to Validity

A number of factors could have influenced our findings.

Construct Validity. These threats refer to the research instruments used.

Our confirmatory survey was conducted in a remote setting: as such, we could

not verify the level of engagement of the participants or their behavior while

working on the study. To tackle this issue, we did not include any mandatory

questions other than discarding the incomplete submissions (more than 200 in

total). To avoid any problem with the survey infrastructure, we ran preliminary

2.7 Threats to Validity 65

tests amongst the authors as well as two external participants prior the public

release of the survey. Similarly, we conduct a first pilot interview to consolidate

and practice its structure. We advertised the survey on several social media

platforms: the majority of our participants engaged to the study via Reddit,

an independent forum that has been largely used in the past to ask for experts

opinion about research topics [Vassallo et al., 2020].

External Validity. In our study we first interviewed 5 expert with different

background and level of experience. Our survey collected answers from 70

participants with a diverse range of experience, employment, and team size,

limiting possible threats to the validity of the given answer. Broader replications

would be still be profitable to corroborate our findings. We selected 10 unit

tests coming from the Apache ecosystem. We tackle this threat by applying a

random sampling of the tests while ensuring to not select more than one test

from the same suite. In our future agenda we plan to both enlarge and diversify

the application domain for the selected systems.

Conclusion Validity. With respect to the relation between treatment and

outcome, the main threat is the selection of a wrong statistical model. To this

aim, we verified the assumptions made by a proportional odds model [Williams,

2006]. In the first place, our dependent variable is naturally measured at an

ordinal level. Secondly, we checked for multicollinearity amongst the covariants

by exploiting hierarchical clustering based on the Spearman’s rank correlation

coefficient [Spearman, 1904]. In particular, we discarded one variable for each

pair having a ρ > 0.6. Finally, we check the assumption of proportional odds

implying that the relationship between each pair of the outcome groups is the

same. This assumes that the independent variables have the same effects on

the odds regards the considered level. We test this assumption with the Brant

test [Brant, 1990] implemented in the brant R package. We took some additional

measures to avoid conclusion biases: in particular, we define the experience of

the developer as control factor.

66

Chapter 2. Pizza versus Pinsa:

On the Perception and Measurability of Unit Test Code Quality

2.8 Conclusion and Future Work

In this paper, we investigated how developers perceive unit test code quality and

how the metrics defined in literature match this perception. We discovered that

existing metrics only partially match with the developer’s perception of unit test

quality, which should be complemented with (i) alternative/additional metrics

to diagnose the actual usefulness of tests and (ii) automated documentation

mechanisms that help developers understanding various aspects of test code,

including assertions. These findings represent the main input for our future

research agenda, which will be devoted to the development of novel metrics and

mechanisms supporting developers with the assessment of test code quality.

Acknowledgements

This paper has been financially supported by the Hasler Foundation through the

Project No. 19085. The authors gratefully acknowledge the support of the Swiss

National Science Foundation through the projects No. PZ00P2_186090 (TED)

and No. 200021-166275 (SURF). The authors would also like to thank Alberto

Bacchelli for the feedback provided on a preliminary version of the work and

Martina Occelli for the suggestions given on the statistical modeling.

3
Lightweight Assessment of

Test-Case Effectiveness using
Source-Code-Quality

Indicators

Giovanni Grano, Fabio Palomba, Harald C. Gall
Published in IEEE Transactions on Software Engineering, Volume 47, 758-774, 2021

Abstract

Test cases are crucial to help developers preventing the introduction of software

faults. Unfortunately, not all the tests are properly designed or can effectively

capture faults in production code. Some measures have been defined to assess test-

case effectiveness: the most relevant one is the mutation score, which highlights

the quality of a test by generating the so-called mutants, i.e., variations of the

production code that make it faulty and that the test is supposed to identify.

However, previous studies revealed that mutation analysis is extremely costly

and hard to use in practice. The approaches proposed by researchers so far have

not been able to provide practical gains in terms of mutation testing efficiency.

This leaves the problem of efficiently assessing test-case effectiveness as still open.

In this paper, we investigate a novel, orthogonal, and lightweight methodology

to assess test-case effectiveness: in particular, we study the feasibility to exploit

production and test-code-quality indicators to estimate the mutation score of a

68

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

test case. We firstly select a set of 67 factors and study their relation with test-

case effectiveness. Then, we devise a mutation score estimation model exploiting

such factors and investigate its performance as well as its most relevant features.

The key results of the study reveal that our estimation model only based on

static features has 86% of both F-Measure and AUC-ROC. This means that

we can estimate the test-case effectiveness, using source-code-quality indicators,

with high accuracy and without executing the tests. As a consequence, we can

provide a practical approach that is beyond the typical limitations of current

mutation testing techniques.

3.1 Introduction

Software testing is a crucial part in the process of evolving and delivering high

quality software, especially when catching regression faults [Pinto et al., 2012].

Development teams rely on test case results and code reviews to decide on whether

to merge a pull request [Gousios et al., 2015] or to deploy a system [Beller et al.,

2017b]; moreover, their productivity is partly dependent on the quality of tests

[Zhang and Mesbah, 2015]. Thus, being able to assess the reliability of a test

case is of a paramount importance for a number of software maintenance and

evolution activities.

In recent years, the research community heavily investigated novel approaches

for automatically evaluating the quality of tests [Jia and Harman, 2011]. Amongst

the others, mutation testing is widely recognized as the high-end test coverage

criteria [Jia and Harman, 2011]: the basic concept of mutation testing is the

creation of artificially modified versions of the source code, called mutants [Offutt,

2011]. Changes in the production code are introduced by mutation operators

to mimic real faults [Just et al., 2014b]; at the end, the test suite is executed

against such mutants and evaluated according to the resulting mutation score,

i.e., the ratio of detected (i.e., killed) mutants over the total number of generated

ones. Previous studies showed that mutation testing provides developers with

a better and trustworthy test-case effectiveness measure with respect to other

3.1 Introduction 69

code coverage criteria (e.g., branch or block coverage) [Andrews et al., 2005; Just

et al., 2014b].

Despite being so powerful, mutation testing still has one major limitation:

it is an extremely expensive activity since it requires (i) the generation of the

mutants, (ii) their compilation, and (iii) the execution of the test suites against

each of them. Given its nature, this process becomes harder and harder as the

size of a system increases during its evolution or when the frequency of commits

is high [Budd, 1980].

To address the scalability limitation of mutation testing, researchers investi-

gated three types of approaches [Offutt and Untch, 2001]: (i) the “do fewer” ones,

where the goal is to select a subset of mutants to evaluate; (ii) the “do smarter”

ones, that exploit run-time information to avoid unnecessary test executions;

and (iii) the “do faster” ones, that aims at reducing the execution time for

each single mutant [Zhu et al., 2018]. While these approaches provided some

promising results, Gopinath et al. [Gopinath et al., 2017] showed that most of

them do not provide enough practical gain in terms of mutation testing efficiency

if compared with a random selection of mutants. As a consequence, the problem

of automatically assessing test-case effectiveness in a timely and efficient manner

is still far from being solved.

In this paper, we present a novel methodology to assess test-case effectiveness,

which is orthogonal to existing approaches. Rather than working on the quality

or quantity of mutants to generate, we investigate to what extent we can estimate

test-case effectiveness—as indicated by mutation analysis—by using source-code-

quality indicators computed on both production and test code (e.g., quality

metrics [Chidamber and Kemerer, 1994] or code/test smells [Fowler and Beck,

1999; Van Deursen et al., 2001]). It is important to immediately point out that

the use of Machine Learning (ML) techniques in the context of mutation testing

has been initially explored by Zhang et al. [Zhang et al., 2018], who proposed a

classification model aiming at selecting the most powerful mutants by predicting

whether a mutant will be killed or not. Their technique, therefore, can be seen as

an assistant tool for other mutation testing assessment techniques, which can use

the model to speed up their performance. The goal of this paper is diametrically

70

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

different, as we aim at studying the possibility to devise an estimation model

able to directly estimate the mutation score of test classes relying on source-code-

quality metrics. We argue that such a predictive model might be exploited (i)

to limit the use of mutation analysis, e.g., by focusing expensive computations

only on some specific tests, and (ii) to support developers in understanding what

are the characteristics (i.e., the features used by the estimation model) of both

production and test code that limit/boost test-case effectiveness.

With this aim, we firstly conduct an exploratory study to understand the

relation between 67 different factors and test-case effectiveness. On the basis of

this preliminary study, we then propose and evaluate a Machine Learning model

to discern effective tests from non-effective ones.

The key results of our study reveal significant differences between effective

and non-effective test code with respect to a number of test and production-code

factors, which can be thus further explored. A test-code effectiveness estimation

model exploiting static code-quality metrics can achieve about 86% of both

F-Measure and AUC-ROC; moreover, when compared with a model that also

includes statement coverage as predictor (i.e., the coverage criterion that is more

related to test-code effectiveness according to recent findings [Gopinath et al.,

2014; Zhang et al., 2018]), we observe that the use of dynamic information can

only provide partial improvements, thus not being extremely needed for obtaining

better performance. We argue that the devised static model can be practically

useful to assess test-case effectiveness in a real-case scenario, since it does not

require the execution of the test cases.

Replication package To enable full replicability of this study, we publish all

the data extraction and analysis scripts in our replication package.1

3.2 Related Work

Mutation testing is an expensive activity and, thus, research has been conducted

in last years to reduce its computational cost. In this section, we present an

overview of the various approaches presented to achieve such a goal. For the sake

1https://doi.org/10.5281/zenodo.2571468, Last Access: 21.01.21

3.2 Related Work 71

of space limitation, we do not discuss previous work having as goal the definition

of techniques for improving mutation testing. However, a complete overview on

these approaches is available in the survey conducted by Jia and Harman [Jia

and Harman, 2011].

Offutt and Untch [Offutt and Untch, 2001] grouped techniques for speeding-up

mutation analysis into three distinct categories, i.e., do fewer, do smarter, and do

faster. The first category has been the most investigated one: It aims at reducing

the number of mutants to be evaluated. Kurtz et al. [Kurtz et al., 2015] relied on

symbolic execution to build static subsumption graphs, where a mutant subsumes

another if tests that kill the first also kill the second one. Such graphs are then

used to reduce the number of mutants to consider for the mutation analysis.

Strug and Strug [Strug and Strug, 2012] used machine learning classification

algorithm to detect and discard similar mutants. The proposed approach relies

on a hierarchical graph representation of mutants, representing a graph kernel

using to compute the similarity. Just et al. [Just et al., 2014a] exploited run-time

information in order to reduce the number of mutant executions. When two

mutants lead to the same state, only one execution is needed, while the other

can be inferred. Recently, Gopinath et al. [Gopinath et al., 2017] empirically

showed that common mutation reduction techniques do not give advantage over

random sampling, given the tiny effectiveness improvements and the considerable

introduced overhead. Zhu et al. [Zhu et al., 2018] showed how to improve

the efficiency of mutation testing adopting Formal Concept Analysis to cluster

mutants and test cases based on reachability (code coverage) and necessity

(weak mutation) conditions. Their results show that the approach can speed up

mutation analysis up to 94 times, maintaining an accuracy > 90%. The papers

discussed above share the goal of reducing the computational time required to

apply mutation testing and assess test-case effectiveness. Our work has the same

underlying objective: nonetheless, we propose a drastically different alternative,

namely a lightweight estimation model exploiting static source-code-quality

attributes as opposed to more expensive compression or dynamic approaches.

The closest work to the proposed one is the study of Zhang et al. [Zhang

et al., 2018]. They devised a classification model relying on 12 static and dynamic

72

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

features to estimate whether a mutant will be killed or not, showing that code

coverage can be a powerful indicator for assessing the quality of single mutants.

Therefore, the approach aims at selecting the most powerful mutants in order

to reduce the overall cost of mutation analysis. While Zhang et al. [Zhang

et al., 2018] initially showed the suitability of Machine Learning techniques in

the context of mutation testing, they limit the approach to the evaluation of

the quality of single mutants, as opposed to test cases. Moreover, they need

to collect a series of dynamic information about code coverage and execute

mutation testing, which still remains computationally costly besides requiring

the exploitation of several tools for gathering the features to be used in the model

and possibly hampering its applicability in a real-case scenario. Conversely, our

work has a different and more comprehensive goal, namely the one of exploiting

Machine Learning models to (i) estimate the overall effectiveness of test cases

without performing any mutation analysis and (ii) support developers in the

understanding of the key factors to take into account while developing test cases.

Furthermore, other Machine Learning applications have been experimented

for software testing. Daka et al. [Daka et al., 2015] adopted the readability

prediction model originally proposed by Buse and Weimer [Buse and Weimer,

2010] in the context of automatic test case generation with the goal of improving

the comprehensibility of the generated tests, while Grano et al. [Grano et al.,

2018b] preliminarily assessed the feasibility of branch coverage prediction models,

showing promising results. Our work can be seen as complementary with respect

to these papers, as it aims at estimating test-case effectiveness as measured by

mutation score.

Finally, it is worth to remark that the proposed model could be helpful to

filter out non-effective test cases. This potentially makes it suitable for improving

existing test-case selection, minimization, and prioritization approaches [Yoo

and Harman, 2012]. As an example, the output of our model could be employed

within search-based solutions (e.g., [Li et al., 2007; Yoo and Harman, 2007]) as

an additional fitness factor.

3.3 Empirical Study Variables 73

3.3 Empirical Study Variables

The first step of our analysis is the selection of dependent and independent

variables.

3.3.1 Dependent Variable

As dependent variable we use the mutation score, i.e., the percentage of killed

mutants over the total of number of generated mutants [Jia and Harman, 2011].

The choice is driven by previous research in the field of software testing, which

reports mutation score to be the most important code coverage criterion [Jia

and Harman, 2011] as well as one the most relevant indicators for developers

[Andrews et al., 2005; Just et al., 2014b]. To compute the mutation score, we rely

on PiTest2 (or PIT). This choice is due to the fact that PIT was found to be

the most mature publicly available mutation testing tool [Delahaye and Bousquet,

2015] and has been shown to limit the generation of equivalent mutants [Fernandes

et al., 2017]. Moreover, it has been employed by most studies concerning mutation

testing in the last years [Zhang and Mesbah, 2015; Inozemtseva and Holmes, 2014;

Shi et al., 2014]. PIT generates mutants via bytecode manipulation and provides

a wide set of built-in mutators. It provides a total of 13 mutation operators: 7

are active by default, i.e., Conditional Boundary, Increments, Invert Negatives,

Math, Negate Conditional, Return Values and Void Method Calls Mutator ; 6

are by default deactivated, i.e., Constructor Calls, Inline Constant, Non Void

Method Calls, Remove Conditionals, Member Variable and Switch Mutator. In

the context of this work, we apply all the 13 mutators provided by the tool: in

this way, we can have a representative set of mutants. Indeed, we consider both

line-related operators (e.g., Invert Negatives) and class-related ones (e.g., Member

Variable Mutator), thus covering a wider range of operators that better simulate

the presence of real faults in production code. For the sake of space, we do not

report a complete description of the operators in the paper; however, this can be

found —along with code examples— in the PIT website.3 For each production

2http://pitest.org, Last Access: 21.01.21
3http://pitest.org/quickstart/mutators/, Last Access: 21.01.21

74

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

class being mutated, we only execute the corresponding test case—retrieved

according to the strategy explained in Section 3.4.1—rather than executing every

time all the test cases of the considered projects (including those that are not

related to the mutated production class).

3.3.2 Independent Variables

In the context of this study, we consider a total of 67 factors along 5 dimensions

i.e., Code Coverage, Test Smells, Code Metrics, Code Smells and Readability. On

the one hand, we consider all the code quality dimensions that include metrics

statically computable: test smells, production and test-code metrics, code smells,

and readability. Such metrics allow us to test whether the test effectiveness

can be actually related to source-code quality. On the other hand, we select

statement coverage with the aim of evaluating whether it is actually needed to

assess test effectiveness (more details later in Section 3.4). Our final goal is to

define a lightweight estimation model only relying on static code-quality features

that can be quickly computed on the current version of test classes. Therefore,

we exclude from our analysis the so-called process metrics (e.g., code churn

or historical metrics about the pass/fail results of the tests). In the following

sections, we briefly discuss the selection of the factors and their extraction. For

the sake of space, we report the detailed definition of the metrics, as well as the

exact versions and parameters used by the data extraction tools, in the wiki page

of our replication package.1

Code Coverage

Code coverage describes the degree to which the production code is executed when

a particular test case runs, and has been largely used in software engineering to

decide on the quality of a test suite [Wei et al., 2012]. We compute the statement

coverage, i.e., the number of production code statements executed by a test

case, rather than other types of code coverage (e.g., branch or block coverage)

because of several reasons: (i) Gopinath et al. [Gopinath et al., 2014] showed

that this type of coverage is the most related to test-case effectiveness, (ii) it is

3.3 Empirical Study Variables 75

fast computable by PIT and (iii) it has a direct relation with mutation operators

that act at line-level [Gopinath et al., 2014].

Test Smells

Test smells represent sub-optimal design or implementation choices applied by

developers when defining test cases [Van Deursen et al., 2001; Meszaros, 2007;

Tufano et al., 2016]. On the one hand, previous research showed that the presence

of test smells can lead the test code to be less maintainable [Bavota et al., 2015;

Palomba et al., 2016a; Spadini et al., 2018]. On the other hand, recent work

demonstrated that test smells can be related to problems like test flakiness or

fault-proneness of test and production code [Palomba and Zaidman, 2017; Spadini

et al., 2018]. Thus, test smells may negatively influence the overall ability of

a test case to find faults in production code. We investigate 8 different test

smell types originating from the catalog by van Deursen et al. [Van Deursen

et al., 2001] and that, together with the others included in the catalog, have been

shown to be either related to maintainability or effectiveness issues [Bavota et al.,

2015; Palomba and Zaidman, 2017; Spadini et al., 2018], i.e., Assertion Roulette,

Eager Test, Lazy Test, Mystery Guest, Sensitive Equality, Resource Optimism,

For Testers Only, and Indirect Testing. A description of these factors is available

in the wiki page of our replication package.1

To detect these smells, we employ the detection tool proposed by Bavota

et al. [Bavota et al., 2015], which has been employed in several previous works

in the area [Bavota et al., 2015; Tufano et al., 2016; Palomba and Zaidman,

2017]. Unlike other existing detection tools (e.g., [Greiler et al., 2013], [Palomba

et al., 2018], or [Van Rompaey et al., 2007]), this tool can identify all the test

smells considered in this study with a high precision and recall (88% and 100%,

respectively). To ensure the validity of the tool in the context of our study, we

re-evaluate the precision of the detector4 on a statistically significant sample of

330 test smell instances it identified over the considered systems (more details

on them in Section 3.4). Such a set is a 95% statistically significant stratified

4The recall cannot be evaluated because of the lack of an oracle of test smells for the
considered projects.

76

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

sample with a 5% confidence interval of the 2,323 total smell instances detected

by the tool. The validation has been independently manually conducted by two

authors of this paper, who verified each test method and confirmed/refused the

recommendation given by the detector. We evaluate the resulting validation

agreement using the Krippendorff’s alpha Krα [Klaus, 1980], a test that is

generally more reliable than other existing ones (e.g., Cohen’s k) [Klaus, 1980].

The agreement was equal to 0.94, considerably higher than the 0.80 standard

reference score for Krα [Klaus, 1980]. The remaining instances were discussed

until an agreement was reached. As a result, the precision of the approach on

our dataset is 85%, thus sufficiently accurate for performing our study.

Production and Test Code Metrics

This set is composed of 21 factors measuring both size and complexity of the

code in various ways. We compute those metrics separately for both production

and test code. Most of them belong to the object-oriented (OO) metric suite

proposed by Chidamber and Kemerer [Chidamber and Kemerer, 1994], while

others capture complementary aspects (e.g., the McCabe cyclomatic complexity

[McCabe, 1976]) or are an evolution of the original OO metrics (e.g., the LCOM5

defined by Henderson-Sellers [Henderson-Sellers, 1995]). The rationale for using

these metrics is twofold. Firstly, larger and more complex production classes

might be harder to test, and, as a consequence, writing effective test cases for

such classes might be harder [Lo and Shi, 1998]. Secondly, large and complex

test cases might deeper exercise the code under test (CUT), leading to a better

fault revelation capability.

Code Smells

Code smells indicate symptoms of the presence of poor design and implementation

choices [Fowler and Beck, 1999]. Previous research demonstrated that they

contribute to the technical debt of a system, possible affecting its maintainability

[Kruchten et al., 2012; Palomba et al., 2017]. For this reason, we include code

smells into the considered factors; our hypothesis is that writing tests for smelly

3.3 Empirical Study Variables 77

code is harder, and therefore, tests tend to be less effective. In the context of this

work, we consider a total of 8 code smells, i.e., Class Data Should Be Private,

Complex Class, Blob, Spaghetti Code, Message Chain, Long Method, Feature

Envy, Functional Decomposition. Again, a detailed description of these smells is

available in the shared wiki page. The choice of selecting this wide range of code

smells is driven by the willingness of reaching a high degree of representativeness

with respect to the entire set of code smells available in literature. Indeed, we

consider design flaws that affect most of the suboptimal aspects of object-oriented

design: from methods and classes having poor cohesion and/or high coupling and

complexity to methods and classes presenting symptoms of poor encapsulation

or, again, developed using a different programming paradigm. Furthermore,

these smells have different levels of granularity and have been shown to be highly

harmful for both maintainability [Palomba et al., 2017] and comprehensibility

[Abbes et al., 2011; Palomba et al., 2014].

We employ Decor [Moha et al., 2010] to identify instances of the considered

code smells. While the authors of Decor already showed its accuracy (F-

measure=≈80%), we also re-evaluated its precision in the context of our work

to ensure that this is the right tool to use. We follow a similar process as the

one described for test smells: We manually validate a sample composed of 322

code smell instances output by Decor. Also in this case, the stratified sample

is deemed to be a 95% statistically significant (confidence interval=5%) of the

1,967 code smell instances detected. The Krα agreement between the two authors

was 0.96. In this case, the precision reached 75%: While this value can be

considered pretty high, we are aware of the existence of other detection tools

that might perform better (e.g., [Palomba et al., 2015, 2016b]). Nevertheless,

we still preferred Decor because it is lightweight and fast, as opposed to other

approaches (e.g., the ones that analyze the entire change history of systems

[Palomba et al., 2015]).

Readability

The final dimension investigates the readability of both test cases and production

code. Besides being a desirable property to have while performing maintenance

78

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

and evolution tasks [Lui and Chan, 2006], readability-based metrics have been

related in the past to the fault-proneness of source code [Marcus et al., 2008].

Thus, it is reasonable to think that might be easier to write effective unit tests

for readable production code [Grano et al., 2018a]. At the same time, test cases

with poor readability can be harder to be evolved and maintained [Grano et al.,

2018a], becoming less effective overtime. To compute the readability scores on

both tests and CUTs, we rely on a state-of-the-art model defined by Scalabrino et

al. [Scalabrino et al., 2016b]. This model improves the seminal work by Buse and

Weimer [Buse and Weimer, 2010] by (i) adding textual-based features, being able

to be more precise in the assessment of readability, and (ii) training the model on

both production and test code, allowing its usability in both the contexts. The

approach computes the continuous readability level r ∈ [0, 1] as the probability

for a given class to be readable. It is worth noting that we employed the original

tool made available by Scalabrino et al. [Scalabrino et al., 2016b] with the aim

of avoiding biases due to re-implementation.

3.4 Research Questions and Context

The goal of the empirical study is to gain a deeper understanding about the

factors that might affect the effectiveness of test cases, i.e., the ability to reveal

faults, with the purpose of devising an automated approach able to support

developers when assessing the goodness of test cases. The perspective is of both

researchers and practitioners: The former are interested in evaluating the extent

to which lightweight code quality indicators can be exploited as an alternative

to standard mutation analysis to assess test-case effectiveness; The latter are

instead interested in more scalable solutions to be adopted in a real use-case

scenario.

To achieve our goal, we formulated three research questions (RQs). The first

one represents a preliminary analysis of the relation between the 67 independent

variables selected and discussed in Section 3.3 and test-case effectiveness—as

indicated by the mutation score. In particular, we aim at understanding whether

and to what extent the distribution of the independent variables values differ

3.4 Research Questions and Context 79

for test cases having high or low mutation scores. If so, this might indicate a

dependence between independent and dependent variables considered that can

be further explored:

RQ1: Is there a relationship between the selected code-quality factors and

test-case effectiveness?

Once established the value of code quality metrics in the context of test-

case effectiveness assessment, we move toward the definition of an automated

technique, based on Machine Learning approaches [Goldberg and Holland, 1988],

able to estimate whether a test is effective or not, based on its mutation score.

This leads to our second research question:

RQ2: To what extent can we estimate the effectiveness of test cases?

Besides evaluating the mutation score estimation model as a whole, we then

conduct a fine-grained analysis aimed at investigating which are the most relevant

features employed by the devised approach. This can provide further information

for developers with respect to the source code aspects to keep under control to

make a test case effective. Thus, we formulate our third research question:

RQ3: What are the important code-quality factors that can indicate that a test

case is effective?

The following sections examine the methodological choices applied to address

our three research questions.

3.4.1 Context Selection

The context of the study is composed of 18 different Java open source projects

whose characteristics are reported in Table 3.1. Specifically, the column “build”

reports the build tool (either Maven or Gradle) used by the selected projects;

the column “pairs” reports the number of 〈CUT, test〉 analyzed, i.e., the pairs

of associated production and test classes; the columns “LOC CUTs” and “LOC

Tests” report the overall size of production and test classes in the considered

80

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

systems; the column “mutants” shows the number of mutants generated for every

project. We select such projects as follows: at first, we select 8 Java open source

projects from the list of projects used by previous mutation testing studies [Just

et al., 2014b; Romano and Scanniello, 2017; Just, 2014]: these are marked with

a ‘*’ symbol in Table 3.1. Then, we rely on Google BigQuery5 to select the most

popular—based on the number of stars—GitHub’s Java projects in 2017. We

include the SQL query in our replication package.1

3.4.2 Linking Production to Test Classes

We consider the mutation score achieved by a test case when exercising the

correspondent CUTs as a proxy measure of test-case effectiveness. Hence, starting

from the JUnit test classes belonging to the considered systems, we need to

identify the production class associated with each of them, i.e., we need to link

each test class to a production class.

To select such pairs, depending on the build tool, we rely either on the

pom (for the Maven projects) or on the build.gradle file (for the Gradle

ones). They contain the rules to identify the test classes to execute when the

projects need to be built or packaged. We proceed as follows: At first, we identify

all the production and test classes by scanning the pom or the gradle.build

file, e.g., looking for the sourceDirectory and testSourceDirectory fields, in

the former case. They indicate the location of the production and test code,

respectively. If those fields are not explicitly reported, we consider the default

source and test directories. After that, we use the include and exclude tag of

the maven-test-plugin (or of the test task, in the case of Gradle), so that

we consider only the test cases that are actually ran when the project is built.

In other words, we consider all test cases that developers of the subject systems

ran when they test them, discarding those that are likely to be not reliable from

the developers’ perspective [Beller et al., 2017a]. Once completed this filtering

phase, we use a pattern matching approach based on naming conventions to

find the production class related to a certain test class, as done in many other

5https://cloud.google.com/bigquery/, Last Access: 21.01.21

3.5 On the Characteristics of Effective Tests 81

previous work [Tufano et al., 2016; Lubsen et al., 2009; Marsavina et al., 2014].

Such an approach has been previously empirically assessed [Qusef et al., 2013],

showing an accuracy close to 85%, that is comparable with more sophisticated

but less scalable techniques (e.g., the slicing-based approach proposed by Qusef

et al. [Qusef et al., 2011]). We report in the following an example of pom file that

refers to the Apache Commons Beanutils project.

1 <plugin>

2 <groupId>org.apache.maven.plugins</groupId>

3 <artifactId>maven-surefire-plugin</artifactId>

4 <configuration>

5 <includes>

6 <include>**/*TestCase.java</include>

7 </includes>

8 <excludes>

9 <exclude>**/*MemoryTestCase.java</exclude>

10 </excludes>

11 ...

12 </plugin>

It declares the include pattern **/*TestCase.java. We remove the detected

pattern from the test filename, and we use the obtained name to match the test

with its CUT. For instance, given a test case DoubleConverterTestCase.java

and the pattern **/*TestCase.java, we remove the word TestCase to determine

the name of the CUT, i.e., DoubleConverter.java. While most of the projects

use the default *Test.java pattern, we rely on the described approach to tackle

non-default text matching. In case of no include tags, we assume the default

behavior.

3.5 On the Characteristics of Effective Tests

This section reports empirical study design and results aimed at answering to

our RQ1.

82

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

Table 3.1: Characteristics of the projects used for the empirical study

project build pairs LOC CUTs LOC Tests mutants

RxJava Gradle 442 109,978 159,044 21,181

cat Gradle 62 11,918 5,052 9,850

checkstyle* Maven 228 61,931 46,995 64,330

closure-compiler* Maven 308 140,264 165,600 95,742

commons-beanutils* Maven 56 15,293 20,465 5,542

commons-collections* Maven 103 27,950 23,344 9,957

commons-io* Maven 61 11,397 9,088 4,315

commons-lang* Maven 109 75,160 52,610 39,975

commons-math* Maven 409 133,248 95,589 88,865

fastjson Maven 64 30,107 6,376 36,903

gson Gradle 23 8,691 4,979 6,347

guice Maven 24 6,641 10,685 2,649

javapoet Maven 12 3,589 4,938 2,789

jfreechart* Maven 315 165,631 67,185 86,912

joda-beans Maven 11 3,939 2,712 3,038

jsoup Maven 23 9,872 5,861 7,974

junit4 Maven 48 6,898 5,599 3,066

opengrok Gradle 113 36,342 20,912 25,049

Total - 2,411 858,849 707,034 514,484

3.5.1 RQ1 Design: Factors Analysis

With our first research question, we are interested in understanding to what

extent the distribution of the values related to the 67 considered factors differs

for test cases having high or low mutation scores. To this aim we build two sets

of test cases, named effective and non-effective, starting from the all test cases

in the exploited dataset. To assign test cases to one of the two sets, we use the

quartiles of the mutation score: those falling within the first quartile are assigned

to the non-effective set, while the ones in the fourth quartile to the effective

set. In this process, we discard test cases that fall between the first and fourth

quartiles. This is a conscious design decision based on what has been reported in

previous software engineering literature [Tian et al., 2015; Shirabad et al., 2000]

with respect to the so-called discretization noise [Sun et al., 2017]. This term

3.5 On the Characteristics of Effective Tests 83

All 1Q 4Q

0

0.2

0.4

0.6

0.8

1 All
1Q
4Q

%
 m

ut
at

io
n

sc
or

e

Figure 3.1: Distribution of the mutation score for the entire set, the first (non-
effective tests) and the fourth quartile (effective tests).

refers to the introduction of biases in the data analysis due to the presence of

data points that are not clearly assignable to a certain class. Since we aim at

studying the characteristics of effective and non-effective tests, then we accept to

not consider test classes having an average effectiveness and focus only on those

that can be considered as having a high- or low-quality. Note that the impact of

this design decision is further analyzed in Section 3.8. At the end of this process,

the effective set is composed of 604 test classes, while the non-effective one of

605 tests. It is worth to remember that every test in those set comes with its

correspondent CUT.

Figure 3.1 shows the distribution of mutation scores considering the entire

dataset (“All”), the first (“1Q”), and the fourth (“4Q”) quartiles. As it is possible

to observe, the effective set contains test classes often reaching the maximum

mutation score (median = 0.97), meaning that they can actually considered as

good test classes able to reveal faults in production code. As for the non-effective

84

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

set, we observe that the mutation score is much more scattered (median = 0.28)

and has 0.48 as maximum value: this means that the set contains test classes

that are at most able to “kill” almost half of the mutants generated on the

production class.

To answer RQ1, we compare the distribution of each factor in the two sets of

test classes applying the Wilcoxon Rank Sum statistical test [Conover, 1999] with

α-value = 0.05 as significance threshold. Since we performed multiple tests, we

adjusted ρ-values using the Bonferroni-Holm’s correction procedure [Holm, 1979]:

it firstly sorts the ρ-values resulting from n tests in ascending order of values,

multiplying the smallest ρ-value by n, the next by n − 1, and so on. Then, each

resulting ρ-value is then compared with the desired significance level (i.e., 0.05)

to determine whether there is statistically significant difference in the distribution

of two factors within the two sets of test classes. In the second place, we also

estimated the magnitude of the observed differences using the Cliff’s Delta (or d),

a non-parametric effect size measure for ordinal data [Grissom and Kim, 2005].

We interpret the effect size values following well-established guidelines [Grissom

and Kim, 2005], i.e., small for 0.147 < d < 0.33, as medium for 0.33 ≤ d < 0.474

and large for d ≥ 0.474. If the differences in the metric distributions of effective

and non-effective tests are statistically significant and with a large effect size,

then we verify the possible existence of a relationship between a certain factor

and the effectiveness of test cases.

3.5.2 RQ1 Results: Factors Analysis

Table 3.2 reports the results achieved for RQ1. For the sake of space, we only show

the factors having statistically significant difference, i.e., p < 0.05 and at least a

small effect size. Factors having a d ≥ 0.33, i.e., at least a medium effect size

between effective and non-effective tests are presented in bold. The relationship

direction is also reported: A “+” sign indicates a positive relationship, i.e., that

tests with higher mutation scores exhibit higher values for the correspondent

factor; On the contrary, a “-” sign indicates a negative relationship, i.e., when

the test is more effective, the factor tends to be lower.

3.5 On the Characteristics of Effective Tests 85

Table 3.2: Relation between each factor and mutation score. Rel. = relationship.
“+” indicates that tests with higher mutation score have significantly higher value
on this factor; “-” indicates the opposite case

Dimension Metrics Rel d-value

Coverage statement coverage + 0.84 (large)

Test Smells Eager Test - 0.31 (small)

CUT’s Code Metrics

LOC - 0.43 (medium)

HALSTEAD - 0.40 (medium)

RFC - 0.62 (large)

CBO - 0.38 (medium)

MPC - 0.58 (large)

IFC - 0.29 (small)

DAC - 0.35 (medium)

DAC2 - 0.34 (medium)

LCOM1 - 0.60 (large)

LCOM2 - 0.49 (large)

LCOM3 - 0.38 (medium)

LCOM4 - 0.49 (large)

CONNECTIVITY - 0.15 (small)

LCOM5 - 0.39 (medium)

COH - 0.37 (medium)

TCC - 0.33 (medium)

LCC - 0.39 (medium)

ICH - 0.36 (medium)

WMC - 0.61 (large)

NOA - 0.35 (medium)

NOPA - 0.23 (small)

NOP - 0.44 (medium)

McCABE - 0.62 (large)

Test Code Metrics

LOC + 0.22 (small)

HALSTEAD + 0.17 (small)

RFC + 0.37 (medium)

MPC + 0.34 (medium)

LCOM1 + 0.44 (medium)

LCOM2 + 0.40 (medium)

LCOM4 + 0.34 (medium)

CONNECTIVITY + 0.25 (small)

LCC + 0.35 (medium)

ICH + 0.19 (small)

WMC + 0.45 (medium)

McCABE + 0.40 (medium)

Code Smell
MC + 0.33 (medium)

FE - 0.31 (small)

Readability
production - 0.19 (small)

test - 0.18 (small)

86

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

From the results we can observe that in most cases (41 factors out of 67, i.e.,

≈61%) the differences between the distributions of effective and non-effective

tests are statistically significant. Perhaps more importantly, 21 factors report a

medium effect size and 8 a large one. This result seems highlighting that the

two sets of test classes have relevant differences with respect to the qualitative

parameters taken into account, possibly indicating the relevance of source-code-

quality metrics —of both production and test code— for assessing test-case

effectiveness. Deeper investigating the single dimensions, interesting findings

arise. The first noticeable one is the relationship between statement coverage

and mutation score, which is the strongest achieved in the entire set of collected

factors (d = 0.84), i.e., the difference in terms of statement coverage between

effective and non-effective tests is large and statistically significant. From the

relationship direction we can claim that the more the statements executed by a

test case, the higher its effectiveness. It is worth noting that this result partially

contradicts studies that found code coverage to be not associated to the ability

of tests to reveal faults in production code [Inozemtseva and Holmes, 2014; Wei

et al., 2012]. On the contrary, we can rather confirm the findings obtained by

Gopinath et al. [Gopinath et al., 2014] and Zhang et al. [Zhang et al., 2018] on

the relevance of statement coverage as a metric related of test-case effectiveness.

A second noticeable finding concerns the relation between test-case effec-

tiveness and the metrics representing code complexity. Looking at the metrics

computed on the production classes, 20 of them seem to have a relevant impact

(i.e., medium at least) on test-case effectiveness: These are related to size (i.e.,

LOC), complexity (i.e., Halstead, RFC, WMC, and McCabe), coupling (i.e.,

CBO, MPC and DAC), cohesion (i.e., LCOM1, LCOM3, LCOM4, LCOM5, TCC,

and LCC). As for size and complexity, our results confirm the “common wisdom”

reporting that if the production code is large and complex, then test cases suffer

more and cannot properly reveal faults [Hovemeyer and Pugh, 2004]. Cohesion

and coupling metrics support the result obtained for complexity: indeed, low

cohesion and high coupling heavily contribute to the increase of source code

complexity as well the decrease of source code maintainability [Henry et al., 1981;

Briand et al., 2001].

3.5 On the Characteristics of Effective Tests 87

Similarly, we observe analogous relations between the code metrics computed

on test code: indeed, 8 metrics have at least a medium impact on test-effectiveness.

They are again mostly related to complexity (i.e., RFC, McCabe and WMC),

coupling (i.e., MPC) and cohesion (i.e., LCOM1, LCOM2, LCOM5 and LCC).

However, in this case the direction of the relations is positive: this seems to

suggest a tendency for which the higher the quality and the complexity of test code,

the higher its ability to find faults in the production code. We cannot confirm this

hypothesis based on our results, however we plan future studies on the relation

between test-code quality and test-case effectiveness.

Looking at the relation between test-effectiveness and test smells, we do not

observe important statistically significant differences. Nevertheless, we show

an almost medium result for the Eager Test smell. Such a smell arises when a

test checks more than one method of the class to be tested [Van Deursen et al.,

2001]. As reported in previous literature [Van Rompaey et al., 2007; Bavota

et al., 2012], eager tests are harder to understand, being therefore hardly usable

as documentation; moreover, production code tested by tests affected by this

smell tends to be more fault-prone [Spadini et al., 2018]. As a direct consequence,

the test is likely to not be well-designed to effectively find faults and, at the same

time, the production class badly-designed to be tested in isolation.

A similar phenomenon can be observed looking at code smells affecting the

production code. Indeed, 2 out of 8 factors in this dimension have a statistically

significant negative relationship with mutation score, meaning that the lower the

number of code smells, the higher the ability of tests to find faults. This result is

somehow expected, since code smells indicate the presence of design issues that

make the source code more complex and harder to maintain [Zazworka et al.,

2011], thus making the corresponding tests less effective.

Finally, we do observe a small difference in terms of readability between

effective and non-effective tests for both production and test code. This may

indicate that writing effective tests might be harder if the production code is less

readable; on the other hand, a low test readability can be a symptom of general

poor test quality [Grano et al., 2018a].

88

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

The results discussed so far estimate test effectiveness as mutation scores

obtained by using the 13 operators altogether. We also conduct additional

analysis to estimate the impact on the relation between factors and effectiveness

for each operator individually. This would indicate if, in practice, it would be

more convenient to exploit subsets of the considered factors to estimate the

effectiveness of tests with respect to specific mutations. To this aim, we re-run

the experiment done in RQ1 by considering as dependent variable the mutation

score achieved when running PIT on individual operators. Our analysis reveals

that the strength of the relation between the source code quality factors and

the mutation score is way lower than the one obtained when considering the

operators altogether. Note that having fewer operators would also decrease the

effectiveness of mutation testing itself [Just et al., 2014b]. This is true for all the

individual operators. From a practical perspective, this means that the larger

the number of mutation operators used to estimate the effectiveness of a test,

the higher the ability of source code quality indicators to be impactful in its

estimation. The detailed results of this additional analysis are available in our

replication package.1

In Summary. Effective tests statistically differ from non-effective ones for

41/67 of the investigated factors. A test case tends to be more effective when

it has a high statement coverage and does not contain test smells. The absence

of design flaws in the CUTs and its quality represent strong factors for test

effectiveness.

3.6 On the Estimation of Effective Tests

Based on the results achieved in RQ1, in this section we present design and

results of the empirical study conducted to answer RQ2 and RQ3.

3.6 On the Estimation of Effective Tests 89

3.6.1 RQ2-RQ3 Design: Evaluating the Capabilities of a Test-

Case Effectiveness Estimation Model

To answer RQ2 and RQ3, we (i) devise and evaluate a test-case effectiveness

estimation model only exploiting static code quality factors, (ii) compare the latter

with a model that includes the statement coverage as independent variable, and

(iii) analyze what are the most relevant features that allows the model to estimate

the effectiveness of tests. The following subsections detail the methodological

steps conducted to answer our research questions.

Independent and Dependent Variables

As independent variables, we evaluate two different configurations of the factors

selected in Section 3.3, leading to the construction of two test-case effectiveness

estimation models. In the first configuration, we consider all factors: while in our

preliminary study we already identified a number of relevant factors that might

be potentially used as predictors of test-case effectiveness, it is important to point

out that in this research question we are adopting Machine Learning algorithms,

which might (i) use different independent variables to properly estimate the

dependent variable [Goldberg and Holland, 1988; Blum and Langley, 1997; John

et al., 1994] and (ii) take into account interactions among independent variables,

as opposite to the individual statistical tests ran in RQ1. In other words, it is not

said that the relevant factors identified through statistical tests (RQ1) are the

same used by the Machine Learning algorithm to estimate test-case effectiveness

(RQ2). For this reason, we involved all the factors in the construction of the

first estimation model, letting the exploited classifier (Section 3.6.1) to decide on

their importance for classification. From now on, we refer to this model as the

dynamic one.

In the second configuration, we decide to exclude the statement coverage as

independent variable. This factor represents the only dynamic metric used in

the study: as such, in a real-case scenario it might be costly to compute since

it requires the execution of all test cases of a software system. For this reason,

we aim at measuring the extent to which an estimation model containing only

90

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

statically computable code-quality features can estimate test-case effectiveness as

opposed to a model that mixes both static and dynamic analysis being therefore,

more computationally intensive. As a side effect of this design choice, we can

also evaluate the actual gain (if any) given by code coverage to the performance

of the estimation model. In the remaining of this paper, we refer to this model

as static while we refer to the model exploiting statement coverage as dynamic.

As dependent variable we adopt the boolean classification of test-case effec-

tiveness coming from RQ1, i.e., non-effective and effective tests are based on the

first and fourth quartiles of the mutation score distribution, respectively—the

effect of discarding other tests is discussed in Section 3.8.

Selection of the Classifier

As shown in previous literature [Di Nucci et al., 2017], the classifier used for

prediction purposes can strongly influence the model performance. For this

reason, we test different classifiers before selecting the one that fits better

our estimation model: we compare Random Forest (RFC), K-Neighbors

(KNN), and Support Vector Machines (SVM), as these are (i) those more

frequently adopted for the prediction of testing-related properties (e.g., Zhang et

al. [Zhang et al., 2018] and Strug and Strug [Strug and Strug, 2012] exploited

these algorithms in their works), and (ii) they make different assumptions on the

underlying data, as well as have different advantages and drawbacks in terms of

execution speed and over-fitting [Goldberg and Holland, 1988]. The outcome of

this step is the creation of six combination of estimation models, i.e., dynamic

and static for each classifier, which are trained and evaluated as reported in the

following.

Preprocessing Steps

Before being able to properly evaluate the estimation models, some preprocessing

steps are required: Song et al. [Song et al., 2011] proposed a general framework

that defines an appropriate learning pipeline that includes (i) data normalization,

(ii) feature selection, and (iii) classifier configuration. In our work, we included

3.6 On the Estimation of Effective Tests 91

all these steps as detailed below. We do not apply any data balancing strategy

[Chawla et al., 2002], since the two classes—effective and non-effective tests—are

naturally balanced (604 vs 605).

Data normalization. In both the configurations of features we perform

the feature scaling (a.k.a., data normalization) [Hall, 1999], as recommended in

previous works [Menzies et al., 2010; Kocaguneli et al., 2010]. This technique

mutates the raw feature vector into a more suitable representation for the

downstream estimator: such a normalization is needed to contrast the fact that

different independent variables have a pretty different range of values, whose

make more likely the possibility that some of them get more influence than

they should [Hall, 1999]. We rely on the StandardScaler implemented in

scikit-learn that processes the features by removing the mean and scaling to

unit variance, thus centering the distribution around 0 with a standard deviation

of 1. This scalarization is important especially for Support Vector Machine

algorithms [Hsu et al., 2003], since they assume the data to be in a standard

range.

Feature Selection. While RFC is able to automatically filter out non-

relevant features—thus avoiding problems related to multi-collinearity [O’brien,

2007]—this is not true for KNN and SVM. To perform a fair comparison, in

these cases we apply the Wrapper feature selection algorithm [Goldberg and

Holland, 1988], that systematically exercises all the possible subsets of features

in order to identify the one giving the best performance.

Classifier Configuration. Finally, we also take into account the problem

of configuring the classifiers, as it has a strong impact on the final performance

achieved by estimation models [Tantithamthavorn et al., 2016]. To this aim, we ap-

ply to all the models—following the procedure described in the next section—the

well-known Grid Search method [Hsu et al., 2003], which performs a systematic

exploration of the parameter space to find the configuration giving the best

performance. We rely on the GridSearchCV utility6 provided by scikit-learn.

6https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

GridSearchCV.html, Last Access: 21.01.21

92

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

1 2 3 4 5 6 7 8 9 TEST F.

TEST F.

TEST F

Original Data

Outer Loop

1 2 3 4 5 6 7 8 VALID.F

VALID.F

VALID.F

Inner Loop

Figure 3.2: 10-fold nested cross-validation. The outer loop is contained in the
blue box, while the inner loop used for parameters tuning is contained in the
orange one.

Training and Testing Procedures

To train and validate the experimented models, we use a nested cross-validation

strategy [Stone, 1974]. This selection follows the advances achieved in the field of

Machine Learning research [Stone, 1974; Krstajic et al., 2014], which showed that

nested cross-validation allows to reliably estimate generalization performance

of a learning pipeline involving both parameters tuning and models evaluation.

Indeed, model selection without nested cross-validation uses the same data for

both the tuning and the evaluation: information might thus leak into the model

overfitting the data, depending on the dataset size and on the model stability

[Cawley and Talbot, 2010]. Nested cross-validation avoids that by using a set of

train, validation and test splits in two separate loops: (i) an inner loop, used

to tuning the model parameters and (ii) an outer loop, used to evaluate the

performance of the model. To better explain the procedure, Figure 3.2 shows

an example of 10-fold nested cross-validation. Assume we aim at tuning and

3.6 On the Estimation of Effective Tests 93

evaluating a certain model M that has a parameter k; and assume the goal is to

find an assignment of k in the set K = {10, 100, 1000, 10000} that maximize the

performance of the model.

The first step adopted by the nested cross-validation consists of dividing the

entire set of data in 10 folds. One of these folds is retained as test (the blue

box in Figure 3.2) and left untouched until the end of the computations done in

the inner loop. The remaining nine folds are instead used within the inner loop:

among them, one fold is reserved for the validation (the orange box in Figure

3.2), while eight of them are used to train M for each k ∈ K. Once the training

phase is completed, the resulting model is evaluated against the validation fold.

This gives as output four performance measurements, one for each value of k.

The procedure is repeated nine times, allowing each of the nine folds to be the

test set exactly once: this leads to 9 · 4 performance indicators (that is, nine folds

multiplied by four possible values of k). Afterwards, the k that minimizes the

average training error over the nine folds is selected and used to evaluate M on

the test folder previously left out the outer loop. Such a process is then repeated

ten times, so that each fold of the outer loop is used as test once. The overall

accuracy of the model is finally estimated using the mean of the evaluation

measures over the ten test folds, i.e., the model with the best average is chosen.

Nested cross-validation allows to select an arbitrary number of folds for the

inner and outer loop. In our study, we rely on 10-folds for both the two loops.

To obtain such folds, we use a random stratified split approach: in this technique,

each split contains approximately the same percentage of samples of each target

class as the complete set. To accurately evaluate the trained models, we rely on

7 different widely-adopted evaluation measures, i.e., accuracy, precision, recall,

F1 Score, AUC-ROC, Mean Absolute Error (MAE) and Brier Score [Baeza-Yates

et al., 1999]. From our experiments, the model based on the Random Forest

classifier performs better than the others in terms of all the evaluation metrics

considered. For the sake of space limitations, in the remaining of the paper we

only report and discuss the results for this model, while a detailed report of

the performance of the models built using the KNN and SVM as classifiers is

available in our replication package.1

94

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

Feature Analysis

Besides evaluating the test-case effectiveness estimation model as a whole, we

also conduct a fine-grained analysis to understand which are the most influential

factors it uses to actually estimate the dependent variable. This fine-grained

analysis aims at answering to RQ3.

To perform this examination, we rely on the built-in features of Random

Forest: as explained above, the model built using this classifier performs better

than the other experimented ones. Thus, we focus our feature analysis based

on the characteristics of this specific model. In particular, Random Forest

can automatically select the most relevant features that influence the dependent

variable. In doing so, it relies on the so-called Gini index (a.k.a., Mean Decrease

in Impurity) [Grabmeier and Lambe, 2007], which indicates the relevance of a

certain feature in terms of the reduction it provides to the overall entropy of

the model, i.e., how much the model gains by having a feature as independent

variable. By computing the Gini index for all the considered features during

every validation run of the model, we can assess the gain provided by each feature.

Then, we can rank the features according to the average Gini index achieved

over the 10 different validation runs. The scikit-learn implementation of the

Random Forest algorithm stores the information about the Gini index of each

feature in the feature_importances_ vector variable of the model.

It is worth noting that while with the Gini index we can precisely estimate the

contribution given by each predictor to the actual predictions performed by the

model and understand which factors are more relevant for the outcome, we cannot

statistically verify the importance of the features. For this reason, as suggested

in literature [Kabinna et al., 2018; Li et al., 2017] we complement our feature

importance analysis by adopting the Scott-Knott Effect Size Difference (ESD)

test [Tantithamthavorn et al., 2017], which allows us to verify the statistical

ranking of the model features with respect to their contribution. This test

represents an effect-size aware variant of the original Scott-Knott test [Scott and

Knott, 1974] that (i) uses hierarchical cluster analysis to partition the set of

treatment means into statistically distinct groups according to their influence in

the Random Forest classification, (ii) corrects the non-normal distribution of

3.6 On the Estimation of Effective Tests 95

an input dataset, and (iii) merges any two statistically distinct groups that have

a negligible effect size into one group to avoid the generation of trivial groups.

To measure the effect size, the tests uses the Cliff’s Delta [Grissom and Kim,

2005]. In this work, we employed the ScottKnottESD implementation7 provided

by Tantithamthavorn et al. [Tantithamthavorn et al., 2017].

3.6.2 RQ2-RQ3 Results: Evaluating the Capabilities of a Test-

Case Effectiveness Estimation Model

Table 3.3 shows the performance of the Random Forest classifier for the

seven considered evaluation metrics. As explained in Section 3.6.1, we build two

test-case effectiveness estimation models: one containing all the factors (row

dynamic in the table), one excluding the statement coverage (row static), i.e.,

the only dynamic metrics requiring the execution of the code.

As shown, the model exploiting both coverage and static metrics has extremely

strong performance, not only considering the F-Measure (95%) but also when

analyzing AUC-ROC, MAE and Brier Score for which we observe values reaching

95%, 0.053 and 0.037, respectively. These results clearly suggest that Machine

Learning methods can be effectively adopted to assess test-case effectiveness. It is

worth to note that we select projects coming from different domains; therefore,

we are confident that our estimation model might be generally usable in different

contexts.

To better understand the features allowing the model to be so performing,

Figure 3.3 depicts a bar plot showing the most 20 relevant features used by

the model together with the information about their Gini index. To show

the dominant contribution of the statement coverage, we plot two bars, one

for the statement coverage only, and one that stacks the remaining 19 factors.

Indeed, statement coverage is the feature providing the major contribution (Gini

index=0.7). On the one hand, this result confirms the observations made in

RQ1, where we found this measure to be the main characteristic discriminating

effective and non-effective tests. On the other hand, we can confirm again previous

7https://github.com/klainfo/ScottKnottESD, Last Access: 21.01.21

96

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

findings that reported on the usefulness of statement coverage in the context of

mutation testing [Gopinath et al., 2014; Zhang et al., 2018]. The second most

important feature is represented by the presence of Assertion Roulette instances,

while other features mainly used by the estimation model to classify effective and

non-effective tests regard both production and test code metrics. In particular,

our results show that cohesion, coupling, and complexity of both production and

test-source-code are three important aspects that developers should take into

account to ensure a high effectiveness of test cases.

Our findings are generally in line with those of RQ1, confirming that source

code quality indicators can be exploited to discriminate the effectiveness of tests.

Nevertheless, we notice some mismatches between the specific features assessed

in RQ1 and RQ3. These are basically due to test and code smells. While in

RQ1 the Eager Test feature had a statistically significant relation with test code

effectiveness, in RQ3 the smells considered by Random Forest are Assertion

Roulette and Mystery Guest. The likely reason behind this mismatch is the

interaction that occurs between the features: indeed, as shown by Tufano et

al. [Tufano et al., 2016], the presence of Assertion Roulette and Mystery Guest

instances induce the co-presence of an Eager Test instance, while Assertion

Roulette and Mystery Guest provide two orthogonal information on the quality

of tests. Thus, the proposed model exploits only two of the three features when

predicting the effectiveness of tests. Similarly, the absence of code smells from

the set of relevant features adopted by the Random Forest can be explained

by the relations that such smells have with the other production code metrics

considered. As an example, the Message Chains smell—that had a statistically

significant relation with test code effectiveness in RQ1—indicates the existence

of a long chain of external calls performed by a production method. This smell

is naturally related to complexity metrics like the Halstead or readability ones

[Fowler and Beck, 1999]; since our explanatory model considers the metrics

altogether, the contribution given by the smell is limited by the co-presence of

other complexity metrics.

The discussion on the most relevant variables done so far is also supported

by statistical analysis. Indeed, we observe that statement coverage consistently

3.6 On the Estimation of Effective Tests 97

Table 3.3: Performance of the RFC on nested cross-validation. We report accuracy
(Acc.), precision (Prec.), recall (Rec.), F1 Score (F1), AUC-ROC (AUC), Mean
Absolute Error (MAE) and Brier Score (Brier)

Acc. Prec. Rec. F1 AUC MAE Brier

Dynamic 0.948 0.940 0.960 0.949 0.949 0.051 0.035

Static 0.864 0.864 0.865 0.864 0.864 0.137 0.095

appeared in the top Scott-Knott ESD rank (which was computed on the basis

of the Gini index values), followed by the other metrics in the same order as

discussed above: for the top 20 factors, the test builds 10 distinct groups, where

the group 1, i.e., the most influent, contains the statement coverage only. We

report the script and the raw data needed to replicate such a statistical test in

our replication package.1

While the analysis of the dynamic model reports that statement coverage

represents a key indicator for predicting test-case effectiveness, we also investigate

whether its computation is actually needed to obtain good prediction perfor-

mance. Looking at the results achieved by the static model, we can claim that

the exclusion of statement coverage does not drastically decrease the prediction

capabilities of the devised model. More specifically, both F-Measure and AUC-

ROC reach 86%, being therefore ≈8% less accurate than the model including the

statement coverage, yet still highly performing. This is confirmed by both MAE

and Brier coefficients (0.14 and 0.10), that indicates how (i) the prediction error

done by the model is pretty limited and (ii) the accuracy of the predictions is

high. It is important to point out that the lower performance of the static model

is expected given the importance of code coverage for mutation testing. However,

in our opinion the results achieved by this model are much more important than

those of the dynamic one from a practical perspective. Indeed, they highlight

that developers can accurately estimate the effectiveness of test cases without

actually executing them.

Figure 3.4 shows the most relevant features for the static model. We observe

that it exploits test and code metrics in a more balanced way with respect to the

98

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

dynamic, i.e., there is no feature having a much higher Gini index with respect

to the others. In other words, the model has more difficulties in classifying the

effectiveness of test cases because of the lack of a strong information like the

statement coverage: for this reason it weights features differently in order to

gather sufficient knowledge to correctly perform a prediction. This is especially

true for the weights assigned by the model to production code attributes: indeed,

while in the dynamic model the four most relevant variables are all related

to test-related characteristics, the static one mainly relies on production code

complexity factors such the as McCabe and RFC metrics. This means that a

fully static model requires different information to balance the lack of statement

coverage, yet having high performance.

More in general, 11 of the top 20 features are related to production code

size, cohesion, coupling, and complexity. At the same time, it is interesting

to observe how also test-code quality comes into play: 9 test-related metrics

involving cohesion, coupling, and complexity of tests are still in the top 20 factors

according to their Gini index. The results are all statistically significant, and

the ranking provided by the Scott-Knott ESD test (reported in our replication

package1) reflects the most important features discussed so far: indeed, the same

top 20 factors are all reported in the first 10 groups created by the test.

To better understand the static model performance as compared to the

coverage-including one, the first two authors of the paper manually analyze all

the wrong predictions given by the two models. By relying on (i) the source code

of the misclassified tests and (ii) a document reporting the metrics computed on

each of them, they perform a code review of the tests aimed at understanding

which characteristics may have led to a misclassification. The process is conducted

in two joint meetings of eight hours each: this allows the two inspectors to discuss

together about the possible reasons behind the errors done by the static model

with respect to the dynamic one. As a result, we first observe that the number

of misclassified tests is balanced between the two models considering both false

negatives (FN), i.e., tests wrongly predicted as non-effective, and false positive

(FP), i.e., tests wrongly predicted as effective: we have 84 versus 82 FPs and 32

versus 22 FNs for the static and dynamic models, respectively.

3.6 On the Estimation of Effective Tests 99

0 0.2 0.4 0.6

stmt cov.

others

RFC test
WMC prod.
WMC test
COH prod.
HALSTEAD test
BUSWEIMER test
LCOM1 prod.
LCOM2 prod.
LOC prod.
prod readability
HALSTEAD prod.
RFC prod.
CONNECT. test
test readability
NOPA prod.
McCABE prod.
MysteryGuest
CBO test
AssertionRoulette
statement coverage

Mean Decrease in Impurity

Figure 3.3: Feature importance for the Random Forest Classifier with the
statement coverage

Considering the FN cases of the static model, we observe that in 94% of the

cases these predictions are biased by factors that characterize non-effective tests.

For instance, these tests have high values for production-code complexity-metrics

(e.g., RFC) and, at the same time, low values for test-code cohesion ones (e.g.,

LCOM metrics): from RQ1 we see that this is the case for non-effective tests.

Similarly, the CUTs have high values for complexity metrics, while the same is

not true for the correspondent test code. On the contrary, statement coverage is

high in 90% of those cases: while the static model misclassifies them, the dynamic

model is instead able to give correct predictions. Also, for false positive tests, the

static model misclassifies the ones having metric values that characterize effective

tests. Indeed, we observe that 88% of these tests (i) are not smelly, (ii) have a

pretty high complexity and coupling values, while the corresponding production

code has low complexity, and (iii) the cohesion and coupling metrics for the

100

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

0 0.05 0.1 0.15

McCABE prod.
RFC prod.
WMC test

LCOM1 test
LCOM1 prod.

WMC prod.
CBO prod.

test readability
LOC prod.

LCOM2 prod.
CBO test

McCABE test
MPC prod.

prod readability
LCOM2 test

HALSTEAD test
RFC test
LOC test

HALSTEAD prod.
COH prod.

Mean Decrease in Impurity

Figure 3.4: Feature importance for the Random Forest Classifier without the
statement coverage

production code are counterbalanced by similar values in the tests. In these cases,

the static model misclassifies the tests independently of their level of coverage;

on the contrary, the dynamic model misclassifies only those tests having a very

high coverage. While this qualitative analysis identifies some limitations of the

static model, it is important to point out that the number of misclassified cases

remains limited, thus indicating once again the high ability of source-code-quality

indicators to distinguish effective from non-effective tests.

In Summary. Estimation models can be effectively exploited to classify test-

case effectiveness. A model relying on both dynamic and static information

achieves performance close to 95% in terms of F-Measure and AUC-ROC, while

the performance of a model only using static indicators decreases of ≈9%, yet

being highly performing and a more practical solution in a real-case scenario.

3.7 Discussion 101

3.7 Discussion

The key result of our study points out the role of source code quality with

respect to the effectiveness of test cases. While the results reported so far already

demonstrate the accuracy of our automated technique, in this section we further

discuss our findings, especially in relation to the motivations behind the achieved

results and how the proposed model can be used by practitioners in a real-case

scenario.

3.7.1 Why Source-Code Metrics can Estimate the Test Ef-

fectiveness

The foremost finding of our analysis is concerned with the high ability of static

source-code metrics in predicting test-code effectiveness. On the one hand, this

is surprising since none of the considered source-code metrics explicitly take into

account the specific instruction types where a mutation can be injected (e.g.,

in if-statements). On the other hand, most of the considered factors have a

relation with the degree of source-code complexity (that directly impacts, for

instance, the number and quality of if-statements) as well as other properties

of production/test code that might have an effect on the effectiveness of test

cases. To better understand the motivations behind the performance of the

proposed estimation model, we perform a fine-grained qualitative analysis on

the tests of our dataset. More specifically, we cannot proceed in the same

way as the qualitative analysis presented in Section 3.6.2. Indeed, while the

number of misclassified tests was relatively low (116 and 104 for the static and

dynamic model, respectively), the number of correctly classified tests—which are

the subject of this analysis—is prohibitively large to be analyzed exhaustively

(i.e., the static model outputs 1,093 true positive predictions). For this reason,

we considered a set of 285 correct predictions: such a set represents a 95%

statistically significant sample with a 5% confidence interval of the 1,093 total

correct predictions of the model. Then, similarly to the previous qualitative

analysis, the first two authors of the paper jointly manually review the source

102

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

code of the sample tests, having the possibility to also analyze the metric values

associated with them. In this case, the process require four meetings of eight

hours each and allow them to discuss the characteristics and peculiarities that

make some metrics more effective in estimating the effectiveness of tests. As

a result, we identify five main motivation that give a rationale of the obtained

performance.

McCabe Cyclomatic Complexity. The McCabe cyclomatic complexity of

production code has a large explanatory power, according to the analysis done

in RQ1. Similarly, it is the most relevant factor employed by Random Forest

when a purely static model is trained (RQ3). These findings indicate that an

important aspect making test cases effective is represented by the complexity of

the source code under test. From a practical point of view, a high complexity

of production code indicates the presence of several linearly independent paths

[McCabe, 1976]. This aspect naturally makes the design of the corresponding

test harder, because it should be able to exercise every linearly independent path

present in the production code. Considering that the generated mutants can

be injected in an arbitrary linearly independent path, this makes complex tests

more prone to miss them. Thus, McCabe cyclomatic complexity is confirmed to

be a good indicator of testing effort, as indicated in the past [McCabe, 1976].

Response for a Class. The second most relevant metric of the purely static

model is RFC (Response for a Class), which measures the complexity of a class

in terms of method calls. A high RFC indicates that the production class has a

number of methods that can potentially be executed in response to a message

received by a test. Still in this case, designing effective tests is harder [Basili

et al., 1996] and this seems to have an important consequence: diving into our

data, we discovered that in such cases the generated mutants are more prone to

be left alive by a test because the production code executes paths that do not

include the mutated instructions, i.e., methods that do not contain mutants are

exercised instead of the one including the actual mutation.

Coupling-related Metrics. A similar discussion can be delineated in the

cases of CBO (Coupling Between Object Classes) and MPC (Message Passing

3.7 Discussion 103

Coupling): both these metrics assess the degree of coupling of a class. High

values indicate that a class makes several external invocations, thus reducing

the ability of tests to find mutants because the production code executes paths

that have not been mutated. In other words, the importance of complexity

and coupling metrics tell us that the number of paths possibly executed in the

production code represents an important aspect for test-case effectiveness. As a

consequence, these metrics are pretty useful for the prediction of the capabilities

of a test to find errors in production code.

Halstead Metrics. Another observation can be made when looking at the

results achieved by the Halstead metric. It measures the complexity of individual

expressions in terms of number of operands and operators. The higher the value

of the metric the higher the complexity of the lines of production code, i.e., the

likelihood to have complex statements in production code that are composed of

multiple operands and operators is higher. This aspect has a direct effect on the

likelihood of a test to kill a mutant: indeed, mutants can be injected in operands

that are not executed by the test (e.g., the right-hand side of an expression is not

executed in case of OR conditions). As such, the higher the value of this metric,

the lower the ability of a test to kill mutants. A similar discussion can be done

when considering the readability metric. In its formulation, it considers structural

features of the source code (e.g., number of parenthesis in a statement) that are

likely to increase the complexity of production lines of code. As a consequence,

mutations may be injected in statements that are not actually executed by a

test, limiting the effectiveness of the test itself.

Test-Case Design. The overall design of a test impacts its effectiveness. The

importance of test size, cohesion, and coupling metrics indicate that non-focused

tests have reduced capabilities in finding mutants in production code. Therefore,

they do not focus uniquely on testing the correspondent production code, thus,

limiting their scope. Recent findings have shown that this lack of focus influences

the fault-proneness of production code [Spadini et al., 2018]: our findings support

such a thesis by showing that the greedy nature of these tests also produces

reduced mutation testing capabilities. This aspect is also influenced by the fact

that cohesion (LCOM, LCOM1, LCOM2, COH) metrics play a role, as they have

104

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

the effect of leading a test to be not focused on a specific portion of code: indeed,

tests exercising non-cohesive classes naturally lead to exercise different methods

of the production code [Tufano et al., 2016].

All in all, both the performance of the model and the qualitative analysis

aimed at understanding the motivations behind our results suggest that keeping

source-code-quality under control it is possible to improve the effectiveness of

test cases. In the following section, we discuss how practitioners can actually use

the output of the proposed model in a real-case scenario.

3.7.2 On the Practical Usage of the Model

The test-case effectiveness estimation model proposed in this paper has a number

of concrete applications in practice. In the first place, it has the potential to raise

the developers’ awareness on the effectiveness of a test suite. We envision the

proposed model to be integrated within existing software analytics dashboard

(e.g., Bitergia8) from which practitioners can diagnose the health status of their

test suites, possibly becoming aware of the poor effectiveness of some tests.

Differently from existing mutation testing solutions, our technique allows a

lightweight feedback mechanism that might lead to speed-up the time required to

identify non-effective tests. Indeed, most of the metrics that we consider in the

static model are already computed by software analytics dashboards or can be

quickly calculated using widely-adopted static analysis tools like Checkstyle or

SonarQube: for this reason, the data required by our model is already available

to practitioners and this notably eases the construction of the estimation model,

as opposed to the execution of dynamic mutation testing tools.

The second practical application comes as a natural consequence of the first

one and involves different informed decisions that can be taken by developers.

More specifically, the output of the estimation model might be used by prac-

titioners for (i) test selection, i.e., to prevent non-effective tests from running

at every commit in Continuous Integration, (ii) scheduling preventive actions

to improve non-effective tests, and (iii) running additional mutation analysis to

8https://bitergia.com, Last Access: 21.01.21

3.7 Discussion 105

1 @Test

2 public void testDao() {

3 m_appDatabasePruner = lookup(TaskBuilder.class, AppDatabasePruner.ID);

4 Date period = ((AppDatabasePruner) m_appDatabasePruner).queryPeriod(-1);

5

6 try {

7 ((AppDatabasePruner) m_appDatabasePruner).pruneAppCommandTable(period, 1);

8 ((AppDatabasePruner) m_appDatabasePruner).pruneAppSpeedTable(period, 1);

9 } catch (DalException e) { e.printStackTrace(); }

10 }

Listing 3.1: Example of a non-effective test case from the cat project

understand which are the specific operators that a non-effective test is not able

to identify. To better explain a possible practical usage of the model, let consider

the test case shown in Listing 3.1.

This test belongs to the class AppDatabasePruner of the cat project, and has

been classified as non-effective by our technique. In this case PIT performed 73

mutations on the production code, 3 of which have been detected by the test; the

statement coverage is 24%. The test is clearly non-effective for various reasons.

At first, the test lacks of focus, as it calls three different production methods,

i.e., queryPeriod, pruneCommandTable and pruneAppSpeedTable. Secondly,

the test does not contain any assertion statement: it only calls the production

methods, without actually verifying their behavior. Moreover, the correspondent

production class suffers from poor cohesion (LCOM=45) and high complexity

(McCabe=27). On the basis of the corresponding production and test code

metrics, our technique estimates this test as non-effective with a probability

p=0.87.

In the first place, the information given by the devised test case effectiveness

model can be immediately exploited to decide on whether to remove a test from

the set of tests running in Continuous Integration pipelines. In particular, one of

critical problems when performing continuous testing is related to the excessive

time, combined with a limited time budget, required to run regression tests

106

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

[Nerur et al., 2005]: our model may be combined with other criteria (e.g., recency

or prior bug-proneness [Shi et al., 2014]) to improve test reduction techniques

and support developers in the removal of those tests whose impact is likely not

to produce effects, like the one shown in Listing 3.1. Similarly, test reduction

based on mutation score may be exploited in later stages of the testing process,

such as nightly testing or integration testing.

Secondly, practitioners can be preventively informed of the presence of non-

effective tests. As the model is based on quality-related attributes, developers

can act on non-effective tests to further diagnose and improve their design. As

an example, in the case of the test shown in Listing 3.1, a practitioner might

decide on devoting some maintenance effort to make the test more focused on

the production code (e.g., by applying an Extract Method refactoring [Fowler

and Beck, 1999]), or even if it is worth to apply refactoring operations targeting

the correspondent production code (e.g., through an Extract Class refactoring

[Fowler and Beck, 1999] it would be possible to make the production code more

cohesive and testable).

Finally, we argue that the proposed estimation model can be adopted as a

complementary alternative to standard mutation testing tools. More specifically,

when a new non-effective test is identified, a developer could be interested in

further diagnosing the issues of the test by running existing mutation testing tools

that provide a fine-grained overview of the reasons preventing the test to catch

faults. For instance, while source-code quality can be adopted—using the devised

model—for early estimation of test code effectiveness and for understanding the

quality-related factors that influence more the estimation, a practitioner can

analyze the case of Listing 3.1 employing PIT to have finer-grained information

on the mutation operators that the test is not able to identify. In this way, the

execution of more expensive mutation testing tools would be limited to those

tests that actually require further investigation. We believe that the reasons

above have the potential to make mutation testing more usable in practice.

3.8 Threats to Validity 107

3.8 Threats to Validity

A number of factors might have threatened our study.

Threats to construct validity. The main threats in this category regard

possible imprecision in the data extraction and analysis process. Besides consid-

ering 8 systems that were previously used in mutation testing studies, the dataset

selection process was performed by relying on Google BigQuery and aimed at

extracting the 10 open-source projects having the highest number of starts. This

might have introduced some sort of selection bias [Borges and Valente, 2018]:

however, our results hold on the entire dataset, including the 8 projects that

were not selected based on the number of stars. This make us confident of

the ecological validity of our findings; nevertheless, further replications would

be desirable. When extracting test classes from the subject systems we only

considered those tests available under the include tag of the Maven pom file.

We adopted this procedure to exclude tests that are not ran when the test or

package Maven commands are executed [Beller et al., 2017a].

To automatically compute the considered factors over the exploited dataset

we relied on existing tools. In this regard, we employed tools which have been

shown as effective in previous literature [Bavota et al., 2015; Moha et al., 2010;

Scalabrino et al., 2016b]. Whenever possible, we also evaluated their suitability

in the scope of our study, finding them to be a good choice for us. The prediction

model we used to compute the readability factor has been trained on about 600

code snippets from both production and test code [Scalabrino et al., 2018b]:

therefore, it can be generally used for both production and test readability. To

detect code smells, we relied on Decor: our re-assessment showed its high

accuracy; We do not believe that the results would have changed drastically in

case of a more accurate detector.

We approximated test-case effectiveness using the mutation score, relying on

the assumption that this measure can be actually representative of the quality of

a test case. We did so on the basis of existing literature that clearly demonstrated

how mutation score can be considered as the “high-end test coverage criterion”

[Zhu et al., 2018; Mathur and Wong, 1994; Frankl et al., 1997; Li et al., 2009].

108

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

Such mutation score has been computed at unit-test level: we cannot exclude

that a focus on integration testing would affect the observations provided in this

paper. Unfortunately, we do not have data to speculate on this point, since there

are no mature toolkits allowing to perform mutation testing at integration level

[Grechanik and Devanla, 2016]. Nevertheless, we still argue that our unit-test

level solution can be useful for developers and testers in order to improve the

quality of unit test cases and spread mutation analysis in practice.

To study the characteristics and the capabilities of estimation models in

predicting effective and non-effective tests, we excluded those tests having an

average effectiveness—as indicated by the distribution of mutation scores—in

order to account for the so-called discretization noise [Sun et al., 2017]. However,

this can be considered a threat: indeed, the statistically significant differences

found might have biased by the absence of several test classes. To measure the

extent to which this factor has influenced our findings, we completely re-ran the

analyses made in our study taking into account all tests, considering as effective

those having a mutation score higher than the median of the distribution, and

as non-effective those tests whose mutation score was lower than or equal to

the median. As a result, we did not observe important differences with respect

to the findings discussed herein, meaning that the factors that we found to be

important are actually confirmed to be significant even in presence of noise. The

scripts in our replication package allows the full replication of this additional

analysis.

Equivalent and duplicated mutants represent a common threat for studies

involving mutation testing. Determining whether a mutant is equivalent is

undecidable [Offutt and Pan, 1996] and, in practice, can involve considerably

human effort. As showed by a recent literature review on mutation testing

[Zhu et al., 2018], about half of the studies in the field does not adopt any

approach for solving the equivalent mutant problem. The remaining ones rely

either on manual analysis [Liu et al., 2006] or make some assumptions (treating

mutants not killed as either equivalent or non-equivalent [Rothermel et al., 2001]).

Given the enormous amount of mutants involved in our study (over 500,000),

a manual evaluation was not a feasible option. Therefore, as done in previous

3.8 Threats to Validity 109

work [Rothermel et al., 2001], we assume all mutants not killed as possibly

not-equivalent. Previous work estimated 20% of mutants generated by PIT to

be equivalent [Fernandes et al., 2017]: this might lead to underestimate the

mutation scores computed in our work. However, since this study focuses more

on using the mutation score to discern effective from non-effective tests, rather

than predicting its exact value, we do not believe that this would drastically

change our results.

Threats to conclusion validity. When investigating the differences in the

factors distributions between effective and non-effective tests, we employed a

well-established statistical test such as the Wilcoxon Rank Sum [Conover, 1999],

adjusting its results with the Bonferroni-Holm’s correction procedure [Holm,

1979]. Furthermore, we exploited the Cliff’s delta test [Grissom and Kim, 2005]

to assess the magnitude of the observed differences.

To estimate test-case effectiveness we compared Random Forest, K-

Neighbors and Support Vector Machine. To select and validate the

best model we used a nested cross-validation procedure with 10-folds for both

the inner and the outer loop: we configured the parameters of each model with

the aim of relying on the most effective configuration. Moreover, to reduce

interpretation biases and to deal with the randomness arising from using different

data splits we repeated the validation 10 times. Then, we exploited a number of

evaluation metrics, i.e., F1 Score, AUC-ROC, MAE and Brier Score, with the

aim of providing a wider overview of the performance of the devised model.

Finally, when evaluating the most relevant features adopted by the RFC

prediction model to estimate test-case effectiveness, we relied on the Gini index,

which has been shown to be an accurate measure [Grabmeier and Lambe, 2007].

Moreover, we statistically confirmed our observations by exploiting the Scott-

Knott ESD test [Tantithamthavorn et al., 2017].

Threats to external validity. We considered 67 factors related to 5

different categories: of course, there might be other additional factors influencing

test-case effectiveness that we did not consider. We plan to enlarge the set of

factors (e.g., considering the role of the complexity of code changes [Hassan,

2009]) as part of our future work. As for the size of the experiment, we analyzed

110

Chapter 3. Lightweight Assessment

of Test-Case Effectiveness using Source-Code-Quality Indicators

a dataset composed of 2,411 pairs of test and production classes coming from

18 different software systems using two different build tools. While this already

represents a large-scale empirical study, replications targeting different types of

projects are still desirable.

3.9 Conclusions & Future Work

In this paper, we first studied the relation between 67 factors —related to both

production and test code— and test-case effectiveness, measured by means

of mutation score. Then, we devised and evaluated a test-case effectiveness

estimation model able to distinguish effective and non-effective tests.

Summing up, the contributions made are as follows:

1. A large scale empirical study involving 2,411 pairs of test and production

classes, aimed at understanding the relation between 67 production and test

code metrics and test-case effectiveness. It revealed peculiar characteristics

distinguishing effective and non-effective tests, such as higher statement

coverage and higher quality of the corresponding production code.

2. A novel test-case effectiveness estimation model, only based on static

factors, i.e., practical to use for developers in a real-case scenario since it

does not require the execution of the tests. Such a model is able to achieve

about 86% of both F-Measure and AUC-ROC. Moreover, our study reveals

that the exclusion of dynamic attributes does not substantially decrease

the performance of the estimation model.

3. A comprehensive replication package,1 whose aim is twofold: ensuring the

full replication of our study and posing a baseline against which future

approaches aimed at more accurately classifying the effectiveness of test

code can be tested.

Our future research agenda considers the main output of this work. We aim at

enlarging the study by considering (i) how other additional factors influence the

effectiveness of test cases, possibly contributing to higher prediction performance,

3.9 Conclusions & Future Work 111

(ii) how the proposed model can be exploited to support different programming

languages, (iii) how it can be adopted at higher granularity levels (e.g., integration

mutation testing), and (iv) how it can be exploited for other testing-related

activities such as test case selection, minimization, and prioritization [Yoo and

Harman, 2012]. Moreover, we plan to work on improving existing code-quality

checkers to better support developers during the assessment of software reliability.

Finally, we also plan to exploit the technique proposed by Brown et al. [Brown

et al., 2017] to investigate how the proposed model works when predicting

potential faults that are more closely coupled with changes made by actual

programmers.

Acknowledgements

Grano and Gall acknowledge the support of the Swiss National Science Foundation

(SNSF) through the Project no. 200021_166275; Palomba acknowledges the

support of the SNSF through the Project no. PP00P2_170529.

4
Branch Coverage Prediction

in Automated Testing

Giovanni Grano, Timofey V. Titov, Sebastiano Panichella, Harald C. Gall
Published in Journal of Software: Evolution and Process (JSEP)

Volume 31, Issue 9, September 2019

Abstract

Software testing is crucial in continuous integration (CI). Ideally, at every commit,

all the test cases should be executed and, moreover, new test cases should be

generated for the new source code. This is especially true in a Continuous Test

Generation (CTG) environment, where the automatic generation of test cases is

integrated into the continuous integration pipeline. In this context, developers

want to achieve a certain minimum level of coverage for every software build.

However, executing all the test cases and, moreover, generating new ones for all

the classes at every commit is not feasible. As a consequence, developers have

to select which subset of classes has to be tested and/or targeted by test-case

generation. We argue that knowing a priori the branch-coverage that can be

achieved with test-data generation tools can help developers into taking informed-

decision about those issues. In this paper, we investigate the possibility to use

source-code metrics to predict the coverage achieved by test-data generation

tools. We use four different categories of source-code features and assess the

prediction on a large dataset involving more than 3’000 Java classes. We compare

114 Chapter 4. Branch Coverage Prediction in Automated Testing

different machine learning algorithms and conduct a fine-grained feature analysis

aimed at investigating the factors that most impact the prediction accuracy.

Moreover, we extend our investigation to four different search-budgets. Our

evaluation shows that the best model achieves an average 0.15 and 0.21 MAE

on nested cross-validation over the different budgets, respectively on EvoSuite

and Randoop. Finally, the discussion of the results demonstrate the relevance

of coupling-related features for the prediction accuracy.

4.1 Introduction

Software testing is widely recognized as a crucial task in any software development

process [Bertolino, 2007], estimated at being at least about half of the entire

development cost [Beizer, 1990; Hailpern and Santhanam, 2002]. In the last

years, we witnessed a wide adoption of continuous integration (CI) practices,

where new or changed code is integrated extremely frequently into the main

codebase. Testing plays an important role in such a pipeline: in an ideal world,

at every single commit, every system’s test case should be executed (regression

testing). Moreover, additional test cases might be automatically generated

to test all the new —or modified— code introduced into the main codebase

[Campos et al., 2014]. This is especially true in a Continuous Test Generation

(CTG) environment, where the generation of test cases is directly integrated

into the continuous integration cycle [Campos et al., 2014]. However, due to the

time constraints between frequent commits, a complete regression testing is not

feasible for large projects [Yoo and Harman, 2012]. Furthermore, even test suite

augmentation [Xu, 2011], i.e., the automatic generation considering code changes

and their effect on the previous codebase, is hardly doable due to the extensive

amount of time needed to generate tests for just a single class.

As developers want to ensure a certain minimum level of branch coverage

for every build, these computational constraints cause many challenges. For

instance, developers have to select and rank a subset of classes for which run

test-date generation tools, or again, allocate a search-budget (i.e., time) to

devote to the test generation per each class. Knowing a priori the coverage that

4.1 Introduction 115

will be achieved by test-data generation tools with a given search-budget can

help developers in taking informed decisions to answer such questions: we give

following some practical examples of decisions that can be taken exploiting such a

prediction. With the goal to maximize the branch-coverage on the entire system,

developers might want to prioritize the test-data generation effort towards the

classes for which they know a high branch-coverage can be achieved. On the

contrary, they would avoid spending precious computational time in running

test-case generation tools against classes that will never reach a satisfying level

of coverage; for these cases, developers will likely manually write more effective

tests. Similarly, knowing the achievable coverage given a certain search-budget,

developers might be able to allocate such a budget in a more efficient way, with

the goal to maximize the achieved coverage and to minimize the time spent for

the generation.

To address such questions, we built a machine learning (ML) model to

predict the branch coverage that will be achieved by two test-data generation

tools —EvoSuite [Fraser and Arcuri, 2011] and Randoop [Pacheco and Ernst,

2007]— on a given class under test (CUT). However, being the achievable branch-

coverage strongly depending on from the search-budget (i.e., the time) allocated

for the generations, we run each of the aforementioned tools by experimenting

four different search-budgets. It is important to note that the branch-coverage

achieved with every budget represents the dependent variable our models try to

predict. Therefore, in this study we train and evaluate four different machine

learning models for each tool, where every model is specialized into the prediction

of the achievable coverage given the allocated search-budget. It is worth to note

that this specialization is needed to address particular questions, like the choice

of the search-budget for each test-case generation.

To select the features needed to train the aforementioned models, we investi-

gate metrics able to represent —or measure— the complexity of a class under test.

This, we select a total of 79 factors coming from four different categories. We

focus on source-code metrics for the following reasons: (i) they can be obtained

statically, without actually executing the code; (ii) they are easy to compute,

and (iii) they usually come for free in a continuous integration (CI) environment,

116 Chapter 4. Branch Coverage Prediction in Automated Testing

where the code is constantly analyzed by several quality checkers. Amongst the

others, we rely on well-established source-code metrics such as the Chidamber

and Kemerer (CK) [Chidamber and Kemerer, 1994] and the Halstead metrics

[Halstead et al., 1977]. To detect the best algorithm for the branch-coverage

prediction, we experiment with four distinct algorithms covering distinct algo-

rithmic families. At the end, we find the Random Forest Regressor algorithm to

be the best performing ones in the context of branch-coverage prediction. Our

final model shows an average Mean Absolute Error (MAE) of about 0.15 for

EvoSuite and of about 0.22 for Randoop, on average over the experimented

budgets. Considering the performance of the devised models, we argue that

they can be practically useful to predict the coverage that will be achieved by

test-data generation tools in a real-case scenario. We believe that this approach

can support developers in taking informed decision when it comes to deploy and

practical use test-case generation.

Contributions of the Paper In this paper we define and evaluate machine

learning models with the goal to predict the achievable branch coverage by test-

data generation tools like EvoSuite [Fraser and Arcuri, 2011] and Randoop

[Pacheco and Ernst, 2007]. The main contributions of the paper are:

• We investigate four different categories of code-quality metrics, i.e., Package

Level, CK and OO, Java Reserved Keyword and Halstead metrics [Halstead

et al., 1977] as features for the machine learning models;

• We experiment the performance of four different machine learning algo-

rithms, i.e., Huber Regression, Support Vector Regression, Multi-Layer

Perceptron and Random Forest Regressor, for the branch prediction model;

• We perform a large scale study involving seven large open-source projects

for a total of 3,105 Java classes;

• We extensively ran EvoSuite and Randoop over all the classes of the

study context, experimenting four different budgets and multiple executions.

The overall execution was parallelized over several multi-core servers, as

4.2 Dataset and Features Description 117

3105 Java classes

from 7 projects
Final Dataset

Automated Testing Tools

EvoSuite

Randoop Jacoco Achieved Coverage

Metric Extractors

Observation Frame

2

1

4 budgets

Figure 4.1: Construction process of the training dataset

the mere generation of the such amount of tests would take months on a

single CPU setup.

Structure of the Paper Section 4.2 describes the features we used to train

and validate the proposed machine learning models; details about the extraction

process are also detailed in this section. Section 4.3.1 introduces the research

questions of the empirical study together with its context: we present there the

subjects of the study, the procedure we use to build the training set and the

machine learning algorithms employed. Section 4.4 describes the steps towards

the resolution of the proposed research questions, while the achieved results are

presented in Section 4.5; the practical implications of the main findings are then

discussed in Section 4.6. Section 4.7 discusses the main threats while related

work are presented in Section 4.8. At the end, Section 4.9 concludes the paper,

drawing the future work.

4.2 Dataset and Features Description

Supervised learning models —like the ones we employ in this study— are used

to predict a certain output given a set of inputs, learning from examples of

input/output pairs [Goldberg and Holland, 1988]. More formally, we define

x(i) as independent input variables —also called input features— and y(i) as

118 Chapter 4. Branch Coverage Prediction in Automated Testing

the output —also called dependent variable— that we are trying to predict. A

pair (x(i), y(i)) is a single training example and the entire dataset used to learn,

i.e., the training set is a list of m training examples {(x(i), y(i)), ∀i = 1, ..., m}.

The learning problem consists on learning a function h = X → Y with a good

accuracy of h in predicting the value of y.

In the context of this study, we build four different datasets, one for each

investigated search-budget, consisting of a tuple (x(i), y
(i)
b,t) for each class i, where:

• x(i) is a vector containing the values for all the factors we described in

Section 4.2.2, for a given class i;

• y
(i)
b,t is the branch-coverage value —in the range [0, 1]— of the test suite

generated by a test-data generator tool t, for the class i with the search-

budget b. This is the dependent variable we want to predict.

It is worth to note that we investigate the prediction performance for two tools;

since we experiment four search-budgets, we build a total of eight different

training sets. The process we use for the construction of such training sets is

depicted in Figure 4.1. At first, we execute the scripts needed for the extraction

of the factors described in Section 4.2.2 (2 in Figure 4.1); those values form

the {x(i), ∀i = 1, ..., m} features vector, one for each subject class i. It is worth

to note that the features vector is the same for all the budgets: indeed, all the

factors refers to the classes under test; thus, their value is not affected by the

used search-budget. Therefore, we compute the dependent variables, as explained

in Section 4.2.1, obtaining the {y
(i)
b,t , ∀i = 1, ..., m}, where y

(i)
b,t is the average

coverage obtained for the class i by the tool t with a search budget b. At the end

of the process, we result with a training dataset for each combination of tool and

budget. More formally, for each budget b and tool t, we have a training dataset

{(x(i), y
(i)
b,t), ∀i = 1, ..., m} where x(i) and y

(i)
b,t are respectively (i) the features

vector for the class i, and (ii) the average coverage achieved over the independent

runs by a test-data generator tool t, for a subject class i with a search-budget b.

The procedure we use to calculate the dependent variable is reported in Section

4.2.1.

4.2 Dataset and Features Description 119

4.2.1 Dependent Variable

As dependent variable, we use the branch coverage achieved by the two exper-

imented automated tools, i.e., EvoSuite and Randoop. We run both the

tools with four different budgets: default (i.e., 60 and 90 seconds, respectively

for EvoSuite and Randoop), 180 seconds (i.e., 3 minutes), 300 seconds (i.e.,

5 minutes) and 600 seconds (i.e., 10 minutes). We select these budgets for

the following reasons: 180 and 300 seconds have been the most used budgets

exploited in the literature so far [Panichella et al., 2015, 2018b; Scalabrino et al.,

2016a; Palomba et al., 2016c]; 10 minutes is a longer budget that we select

to have an intuition on what can be expected with extra time allowed for the

search. We do not experiment longer budgets because (i) the computation-time

needed to compute the dependent variable for such a longer budget, and (ii)

more importantly, the usage of test-data generation tools with such a long budget

would be hardly feasible in practice.

To collect the dependent variable —i.e., the variable we want to predict —

we run both the tools for 10 times on the CUTs used in the study, obtaining 10

different test suites (10 for each tool, i.e., 20 in total). We repeat this process

for each budget we experiment. It is worth to note that, for the 10 minutes

budget, we only generate 3 tests suites. To sum up, for each class in our dataset

we run each tool 33 times. Thus, averaging the branch coverage of those suites

by class, tool and budget, we obtain the {y
(i)
b,t , ∀i = 1, ..., m}, where y

(i)
b,t is the

average coverage obtained for the class i by a tool t with a search budget b. We

use the so computed dependent variable to build the different training datasets

as described above. We averaged the results of different generations due to the

non-deterministic nature of the algorithms underlying test-data generation tools.

It is worth to note that such a multiple execution represents an improvement

over our previous work [Grano et al., 2018b], where we executed the tools once

per class and with the default search-budget only.

To calculate the coverage for each run we proceed as follows (refer to 1 box

in Figure 4.1): while EvoSuite automatically reports such information in its

CSV report, we have to compile, execute and measure the achieved coverage for

120 Chapter 4. Branch Coverage Prediction in Automated Testing

the tests generated by Randoop. For the measurement step we rely on Jacoco.1

It is worth to note that we discard the data-points with branch coverage equals

to 0. It is also important to underline how time expensive the described process

is: we ran both EvoSuite and Randoop multiple times for the 3,105 classes we

use in the study, using four different search-budgets for about 820,000 executions.

In a nutshell, we estimate the entire test generation process to take about 250

days on single core machine. To speed up such process, we ran the generation

on an OpenStack cluster using three different 16 cores Ubuntu server, with

64GB of RAM memory each. Figure 4.2 shows the distribution of the achieved

branch-coverage for both EvoSuite and Randoop over the four experimented

budgets. On one hand, we can observe that EvoSuite consistently reaches

higher branch-coverage on the CUTs while the search-budget increases: indeed,

the mean of the achieved coverage ranges from 74% with the default budget

(i.e., 60 seconds) to the 81% with the 600 seconds (i.e., 10 minutes) budget.

On the other hand, the branch-coverage reached by Randoop does not seem

particularly influenced by the budget given to the search. It is worth to note

that we measure the achieved coverage for Randoop over the regression test

suites generated by the tool.

4.2.2 Independent Variables

In this study, we consider 79 factors belonging to 4 different categories, that

might be correlated with the coverage that will be achieved by automated testing

tools of a given target. We train our models on a set of features designed

primarily to capture the code complexity of CUTs. The first set of features

comes from JDepend2 and captures information about the outer context layer

of a CUT. We then use the Chidamber and Kemerer (CK) [Chidamber and

Kemerer, 1994] metrics —as depth of inheritance tree (DIT) and coupling between

objects (CBO)— along with other object-oriented metrics, e.g., number of static

invocations (NOSI) and number of public methods (NOPM). These metrics have

1https://www.jacoco.org, Last Access: 21.01.21
2https://github.com/clarkware/jdepend, Last Access: 21.01.21

4.2 Dataset and Features Description 121

default 180s 300s 600s

0

0.2

0.4

0.6

0.8

1 EvoSuite
Randoop

budgets

br
an

ch
 c

ov
er

ag
e

Figure 4.2: Distribution of the branch-coverage achieved by the two experimented
tools over the 4 different employed budgets

been computed using an open source tool provided by Aniche.3 To capture even

more fine-grained details, we include the counts for 52 Java keywords, including

keywords such as synchronized, import or instanceof. In addition to the ones

used in our preliminary study [Grano et al., 2018b], we also include the Halstead

metrics [Halstead et al., 1977]. These metrics aim at measuring the complexity

of a given program looking at its operators and operands.

Package Level Features Table 4.1 summarizes the features computed at

package-level calculated with JDepend.2 Originally, such features have been

developed to represent an indication of the quality of a package. For instance,

TotalClasses is a measure of the extensibility of a package. The features Ca and

3https://github.com/mauricioaniche/ck, Last Access: 21.01.21

122 Chapter 4. Branch Coverage Prediction in Automated Testing

Table 4.1: Package-level features computed with JDepend

Name Description

TotalClasses The number of concrete and abstract classes (and interfaces) in the package

Ca The number of other packages that depend upon classes within the package

Ce The number of other packages that the classes in the package depend upon

A The ratio of the number of abstract classes (and interfaces) to the number of
total classes in the analyzed package

I The ratio of afferent coupling (Ce) to total coupling (Ce+Ca), such that
I = Ce/(Ce + Ca)

D The perpendicular distance of a package from the idealized line A + I = 1

Ce respectively are meant to capture the responsibility and independence of the

package. In our application, both represent complexity indicators for the purpose

of the coverage prediction. Another particular feature we took into account was

the distance from the main sequence (D). It captures the closeness to an optimal

package characteristic when the package is abstract and stable, i.e., A = 1, I = 0

or concrete and unstable, i.e., A = 0, I = 1.

Is is worth to specify the way we map such package features to the single

classes. In particular, given a feature fi calculated for a package P, we assign

the same value for the feature fi to all the classes belonging to P .

CK metrics and object-oriented features This set of features includes the

widely adopted Chidamber and Kemerer (CK) metrics, such as WMC, DIT,

NOT, CBO, RFC and LCOM [Chidamber and Kemerer, 1994]. It is worth to

note that the ck tool3 calculates these metrics directly from the source code

using a parser. In addition, we included other specific object-oriented features.

Such a complete set, with the respective descriptions, can be observed in Table

4.2.

Java Reserved Keyword Features In order to capture additional complexity

in our model, we include the count of a set of reserved Java keywords, reported in

our replication package.4 Keywords have long been used in Information Retrieval

4https://doi.org/10.5281/zenodo.2548323, Last Access: 21.01.21

4.2 Dataset and Features Description 123

Table 4.2: CK and object-oriented feature descriptions

Acronym Name Description

CBO Coupling Between Objects Number of dependencies a class has

DIT Depth Inheritance Tree Number of ancestors a class has

NOC Number of Children Number of children a class has

NOF Number of Fields Number of field a class regardless the modifiers

NOPF Number of Public Fields Number of the public fields

NOSF Number of Static Fields Number of the static fields

NOM Number of Methods Number of methods regardless of modifiers

NOPM Number of Public Methods Number the public methods

NOSM Number of Static Methods Number the static methods

NOSI Number of Static Invocations Number of invocations to static methods

RFC Response for a Class Number of unique method invocation in a class

WMC Weight Method Class Number of branch instructions in a class

LOC Lines of Code Number of lines ignoring the empty lines

LCOM Lack of Cohesion Methods Measures how method access disjoint sets of instance variable

as features [Sanderson and Croft, 2012]. However, to the best of our knowledge,

Java reserved keywords have not been used in previous research to capture

complexity. Possibly, this is because these features are too fine-grained and do

not allow the usage of complexity thresholds, like for instance the CK metrics

[Benlarbi et al., 2000]. It is also worth to underline that there is definitively an

overlap for these keywords with some of the aforementioned metrics like, to cite

an example, for the keywords abstract or static. However, it is straightforward

to think about those keywords (e.g., synchronized, import and switch) as code

complexity indicators.

Halstead Metrics The Halstead complexity metrics have been developed by

Maurice Halstead [Halstead et al., 1977] with the goal to quantitatively measure

the complexity of a program directly from the source code. Ideated in 1977, they

represent one of the earliest attempt to measure code complexity. Halstead metrics

are calculated by processing the source code as a token sequence. Therefore, each

token is classifier as an operator or an operand. Being n1 the number of distinct

operators, n2 the number of distinct operands, N1 the total number of operators,

N2 the total number of operands, 6 different metrics can be determined with the

following formulas:

124 Chapter 4. Branch Coverage Prediction in Automated Testing

• Program vocabulary: n = n1 + n2;

• Program length: N = N1 + N2;

• Calculated program length: N̂ = n1log2n1 + n2log2n2;

• Volume: V = N × log2n;

• Difficulty Level D = n1

2
× N2

n2
;

• Effort: E = D × V .

Operators are syntactic elements such as +, -, <, >, while operands consists

of literal expressions, constants and variables. It is worth to note that, in

our definition of Halstead metrics, functions and method calls are handled as

operators, while parameters as operand. The main rationale behind the choice

of this set of metrics lies indeed in the fact that they use operands and operators

as atomic units of measurement. We argue that a class with more operands

and operators might tend to present more complex conditional expressions in

branching nodes (e.g., in if or on while nodes). Therefore, such complex

expressions might lead to a reduction in the coverage achieved by testing tools: in

fact, the problem of reaching the maximum coverage consists of no more than the

satisfaction of both the true and the false branch of every conditional statement.

Detailed explanation about the meaning of these metrics is shown in Table 4.3.

The tool we use to extract the Halstead metrics is publicly available on GitHub.5

4.3 Research Questions And Context

The goal of this empirical study is to define and evaluate machine learning

models able to predict the coverage that will be achieved by test-data generation

tools on a given class under test (CUT). In the context of this work, we focus

particular on EvoSuite [Fraser and Arcuri, 2011] and Randoop [Pacheco and

Ernst, 2007], two of the most well-known tools currently available. Moreover, we

5https://github.com/giograno/Halstead-Complexity-Measures, Last Access:
21.01.21

4.3 Research Questions And Context 125

Table 4.3: Halstead metrics descriptions

Acronym Name Description

N Program Vocabulary The vocabulary size is the sum of unique operators and operands
number

n Program Length The program length is the sum of the total number of operators
and operands in the program

N̂ Calculated Program Length According to Halstead, the length of a well-structured program is
function of the number of unique operators and operands

V Volume The program volume is the information contents of the program
measured in mathematical bits

D Difficulty Level The difficulty level is estimated proportionally to the number of
unique operators and to the ration between the total number of
operands and the number of unique operands

E Effort Halstead hypothesized that the effort required to code a program is
proportional to its size and difficulty level

explore four different search-budgets, i.e., the default one (60 and 90 seconds

respectively for EvoSuite and Randoop), 180 seconds, 300 seconds and 600

seconds. Formally, in this paper we investigate the following research questions:

RQ1: Can we leverage on well-established source-code metrics to train machine

learning models to predict the branch coverage that will be achieved by test

data generation tools?

The identification of the right features is the first step for any prediction

problem. In our study we rely on well-established source-code metrics aiming at

representing the complexity of a class we want to generate tests for. Moreover,

all of them can be computed statically: thus, our approach does not require

code execution. In detail, we select factors coming from four different categories:

Package Level Features, CK and OO Features, Java Reserved Keyword and

Halstead Metrics. Therefore, in our first research question, we aim at investigating

whether this kind of features can be successfully exploited to train machine

learning models to predict, with a certain degree of accuracy, the branch coverage

that test-data generation tools (EvoSuite and Randoop in our case) can

achieve on given CUTs with a given search-budget.

126 Chapter 4. Branch Coverage Prediction in Automated Testing

We use a nested cross-validation [Cawley and Talbot, 2010] approach to

train, tune, and evaluate several machine-learning algorithms relying on the

aforementioned features. This brings us to the second research in our study:

RQ2: Which is the best performing algorithm for the prediction of the branch

coverage achieved by test data generation tools?

We train and evaluate in total 8 different models: indeed, for each tool

(EvoSuite and Randoop, we build four different models, one for each search-

budget. Therefore, we investigate eventual differences in the prediction perfor-

mance of the two tools with different budgets allowed for the generation.

Once the best model for the prediction problem has been selected, we then

conduct a fine-grained analysis aimed at investigating which are the most relevant

features employed by the devised approach. Thus, we formulate our third research

question:

RQ3: What are the most important factors affecting the accuracy of the

prediction?

In the context of this research question, we further elaborate on the impact

in the prediction accuracy given by the set of features introduced in this work,

with respect to the previous study [Grano et al., 2018b].

4.3.1 Context Selection

The context of this study is composed by 7 different open source projects: Apache

Cassandra,6 Apache Ivy,7 Google Guava,8 Google Dagger,9 Apache-Commons

Lang,10 Apache-Commons Math,11 and Joda-Time.12 We selected those projects

due to their different domain; moreover, the Apache-Commons is quite popular

6http://cassandra.apache.org, Last Access: 21.01.21
7http://ant.apache.org/ivy/, Last Access: 21.01.21
8https://github.com/google/guava, Last Access: 21.01.21
9https://github.com/google/dagger, Last Access: 21.01.21

10https://commons.apache.org/lang, Last Access: 21.01.21
11https://commons.apache.org/math, Last Access: 21.01.21
12http://www.joda.org/joda-time/, Last Access: 21.01.21

4.3 Research Questions And Context 127

Table 4.4: Projects used to build the ML models

Guava Cassandra Dagger Ivy Math Lang Time

LOC 78,525 220,573 848 50,430 94.410 27.552 28.771

Java Files 538 1,474 43 464 927 153 166

#classes employed 449 1,278 14 410 668 124 142

in software evolution and maintenance literature [Bavota et al., 2013]. Apache

Cassandra is a distributed database; Apache Ivy a build tool; Google Guava a set

of core libraries; Google Dagger a dependency injector; Joda-Time a replacement

for the Java date and time class; Commons-Lang provides helper utilities for

Java core classes while Commons-Math is a library of mathematics and statistics

operators. Table 4.4 summarizes the Java classes and the LOC used from the

above projects to train our ML models. The LOC and the total number of Java

files has been calculated with the cloc13 tool. To foster full replicability of the

results, we share the aforementioned projects —along with their correspondent

versions— in our replication package.4 For different reasons, not all the classes

of a project might be testable. To obtain the list of testable classes, we exploit a

feature of EvoSuite: the tool is able to scan a given class-path and return the

list of classes that EvoSuite thinks are testable (e.g., public). It is worth to

note that, for this reason, the number of classes (reported in the row #classes

employed in Table 4.4) we use for our study is lower than the total number of

classes available in the selected projects. With this approach, we ended with

3,105 different classes as a context of this study.

4.3.2 Machine Learning Algorithms

In this section we present the four algorithms used in our study and the parameters

we tune during the training process: i.e., Huber regression [Hampel et al., 2011],

Support Vector Regression [Hsu et al., 2003], Multi-layer Perceptron [Nassif et al.,

2013] and Random Forest Regressor [Sammut and Webb, 2017]. With these four

13http://cloc.sourceforge.net, Last Access: 21.01.21

128 Chapter 4. Branch Coverage Prediction in Automated Testing

ML algorithms we cover four different ML families, i.e., a robust regression, a

SVM, a neural network, and an ensemble algorithm. We selected the mentioned

algorithms for different reasons: first, they have been previously used in Software

Engineering studies, showing to be highly efficient approaches [Gayathri and

Sudha, 2014; Nassif et al., 2013; Svetnik et al., 2003; Khoshgoftaar et al., 2007;

Gray et al., 2009; Jørgensen, 2004]. In particular, we include the Random Forest

since (i) it is able to automatically filter out non-relevant features, avoiding

problems related to multi-collinearity [O’brien, 2007] and (ii) its results are easier

to interpret than other classifiers [Riley et al., 2011]. We use the implementation

of the Python’s ScikitLearn Library [Pedregosa et al., 2011], being an open source

framework widely used in both research and industry.

Huber Regression

Huber Regression [Hampel et al., 2011] is a robust linear regression model designed

to overcome some limitations of traditional parametric and non-parametric models.

In particular, it is specifically tolerant to data containing outliers. Indeed, in case

of outliers, the least square estimation might be inefficient and biased. On the

contrary, Huber Regression applies only linear loss to such observations, therefore

softening the impact on the overall fit. The only parameter to optimize in this

case is α, a regularization parameter that avoid the rescaling of the epsilon value

when the y is under or over a certain factor [Hampel et al., 2011]. We investigated

the range of 2 to the power of linspace(-30, 20, num = 15). It is worth to

specify that linspace is a function that returns evenly spaces number over a

specified interval. Therefore, in this particular case, we used 2 to the power of

15 linearly spaced values between -30 and 20.

Support Vector Regression

Support Vector Regression (SVR) [Hsu et al., 2003] is an application of Support

Vector Machine algorithms, characterized by the usage of kernels and by the

absence of local minima. The SVR implementation in Python’s Scikit library

we used is based on libcsv [Hsu et al., 2003]. Amongst the various kernels,

4.3 Research Questions And Context 129

we chose a radial basis function kernel (rbf), which can be formally defined as

exp(−γ||x − x′||2), where the parameter γ is equal to 1/2σ2. This approach

basically learns non-linear patterns in the data by forming hyper-dimensional

vectors from the data itself. Then, it evaluates how similar new observations

are to the ones seen during the training phase. The free parameters in this

model are C and ǫ. C is a penalty parameter of the error term, while ǫ is the

size within which no penalty is associated in the training loss function with

points predicted within a distance epsilon from the actual value [Hsu et al., 2003].

Regarding C, just like Huber Regression, we used the range of 2 to the power

of linspace(-30, 20, num = 15). On the other side, for the parameter ǫ, we

considered the following initial parameters: 0.025, 0.05, 0.1, 0.2 and 0.4.

Multi-Layer Perceptron

Multi-layer Perceptron (MLP) [Rumelhart et al., 1986] is a particular class of

feedforward neural network. Given a set for features X = x1, x2, ..., xm and a

target y, it learns a non-linear function f(·) : Rm → Ro where m is the dimension

of the input and o is the one of the output. It uses backpropagation for training,

and it differs from a linear perceptron for its multiple layers (at least three layers

of nodes) and for the non-linear activation. We opted for the MLP algorithm since

its different nature compared to two approaches mentioned above. Moreover,

despite they are harder to tune, neural networks usually offer good performances

and are particularly fitted for finding non-linear interactions between features

[Nassif et al., 2013]. It is easy to notice how such a characteristic is desirable for

the kind of data in our domain. Also in this case we performed a grid search

to look for the best hyper-parameters. For the MLP we had to set α (alpha),

i.e., the regularization term parameter, as well the number of units in a layer

and the number of layers in the network. We looked for α again in the range of

2 to the power of linspace(-30, 20, num = 15). About the number of units

in a single layer, we investigated range of 0.5x, 1x, 2x and 3x times the total

number of features in out model (i.e., 73). About the number of layers, we took

into account the values of 1, 3, 5 and 9.

130 Chapter 4. Branch Coverage Prediction in Automated Testing

Random Forest Regressor

Random Forest Regressor (RFR) [Sammut and Webb, 2017] represents one of

the most effective ensemble machine learning method. An ensemble method uses

multiple learning algorithms to obtain better predictive performance. Indeed,

a random forest fits classifying decision trees on a sub-sample of the dataset

and then uses averaging to improve the final prediction and control overfitting.

More formally, the final model g(x) can be defined as g(x) = f0(x) + f1(x) +

f2(x) + ... + fn(x) where the various fi are the simple decision trees fi. We

include RFC in our study given its capability to handle numerical features,

to capture non-linear interaction between the features and the target and to

automatically filter out non-relevant features, thus avoiding problems related to

multi-collinearity [O’brien, 2007]. We tune this model looking at four different

parameters:

• n_estimators, that represents the number of trees in the forest; we exper-

imented the values in the set Sp1
=

{

2 · x|x ∈
[

1, ..., 10
]

}

;

• n_features, that is the number of features to consider when looking at

the best split; we considered the values in the set Sp2
=

{

(m//10) · x|x ∈
[

1, ..., 10
]

}

, where m is the number for features available;

• max_depth, that is the maximum depth of each decisional tree; we experi-

mented the values in the set Sp3
=

{

5 · x|x ∈
[

1, ..., 10
]

}

;

• min_sample_leaf, that is the minimum number of sample required to be

at a leaf node; we tried the set of values Sp4
=

{

x|x ∈
[

1, ..., 5
]

}

.

4.4 Empirical Study Design

The process we use to answer our research questions is composed by the following

steps: at first —as detailed in Section 4.2— we build a different training sets (i)

extracting the described features for the classes under test and (ii) computing

the coverage achieved by the testing tools on the same classes with a given

4.4 Empirical Study Design 131

search-budget. Therefore, we use a nested-cross validation [Cawley and Talbot,

2010] procedure to tune the parameters of the four employed algorithms and, at

the same time, selecting and evaluating the performance of the best one. At the

end, we rely on such a best model to compute the importance ranking of the

various features for the prediction.

4.4.1 RQ1/RQ2 Design: Performance of the Prediction with

Source-Code Metrics Features

The goal of the first two research questions is twofold: at first, we want to explore

the feasibility for source-code metrics to be used as features for machine learning

models in order to predict the achievable branch coverage. Therefore, we aim to

detect the best algorithm to tackle such a problem given the presented features.

To train and validate the experimented models we use nested cross-validation

[Stone, 1974]. This choice is due to advances achieved in Machine Learning

research [Stone, 1974; Krstajic et al., 2014] showing that nested cross-validation

allows to reliably estimate generalization performance of a learning pipeline

involving different steps like preprocessing, features and model selection [Krstajic

et al., 2014]. In fact, model selection without nested cross-validation (e.g., the

classical 10-fold cross validation) would rely on the same data to both tune the

parameters of the models and to evaluate their performance: this might risk

to optimistically bias the model evaluation, leading to overfit the data [Cawley

and Talbot, 2010]. To avoid such a problem, nested cross-validation uses a set

of train/validation/test splits in two separate loops. In particular, we adopt a

5-fold cross-validation for the inner loop and a 10-fold cross-validation [Efron,

1983] for the outer loop. The correspondent process is depicted in Figure 4.3.

Nested cross-validation works as follows: at first, an inner cross-validation loop

fits a model —one for each algorithm and combination of parameters— for

each training set. Thus, the best configuration is selected over the validation

set (the orange boxes on Figure 4.3). Therefore, the outer loop estimates the

generalization error by averaging the test score over several test splits (the boxes

in blue on Figure 4.3).

132 Chapter 4. Branch Coverage Prediction in Automated Testing

1 2 3 4 5 6 7 8 9 TEST F.

TEST F.

TEST F

Original Data

Outer Loop

Inner Loop

1 2 3 4 VALID. FOLD

VALID. FOLD

VALID. FOLD

Figure 4.3: Nested Cross-Validation Procedure. The inner fold relies on a 5-fold
cross validation while the outer fold on a 10-fold cross validation.

In detail, in our implementation we apply the well-known Grid Search method

[Hsu et al., 2003], consisting in training different models to explore the parameter

space to find the best configuration. To this aim, we rely on the GridSearchCV

utility14 provided by sciknit-learn. It is worth to note that, for every com-

bination of parameters, we train two different models, one with feature scaling

(a.k.a., data normalization) preprocessing [Hall, 1999] and one without. Feature

scaling mutates the raw feature vector into a more suitable representation for

the downstream estimator: such a normalization is needed to contrast the fact

that different independent variables have a pretty different range of values and

14https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

GridSearchCV.html, Last Access: 21.01.21

4.4 Empirical Study Design 133

it is important especially for Support Vector Machine algorithms [Hsu et al.,

2003], since they assume the data to be in a standard range. We rely on the

StandardScaler implemented in scikit-learn [Pedregosa et al., 2011] that

processes the features by removing the mean and scaling to unit variance, thus

centering the distribution around 0 with a standard deviation of 1.

For the outer loop, we use the cross_validate function provided by the

sklearn.model_selection module.15 It is worth to note that, to cope with

the randomness arising from using different data splits [Pinto et al., 2012], we

repeat the outer cross-validation loop 10 times. We use the Mean Absolute Error

(MAE) as test score to evaluate the inner cross-validation. The MAE is formally

defined as:

MAE =
∑n

i+1 |yi − xi|

n

where y is the predicted value, x are the observed values for the class i and n is

the entire set of classes used in the training set. We rely on MAE since is easy

to interpret, being in the same unit of the target variable, i.e., branch coverage

fraction. MAE ranges between 0 and 1, where a MAE of 0 indicates a perfect

prediction, and a MAE of 1 refers to the worst possible one (i.e., actual coverage

0%, with the model predicting 100%, and vice versa). Practically speaking,

a MAE = 0.10 indicate that our model predicts on average the achievable

coverage either as 10% higher or lower than the actual value. Moreover, previous

research recommends MAE to compare the performance of prediction models,

given its unbiased nature towards over and underestimation [Sarro et al., 2016].

In addition to MAE, outer loop relies on different performance indicators, i.e.,

R2 Score, Mean Squared Error (MSE), Mean Squared Log Error (MSLE) and

Median Absolute Error (MedianAE) [Baeza-Yates et al., 1999].

15http://scikit-learn.org/stable/modules/cross_validation.html, Last Access:
21.01.21

134 Chapter 4. Branch Coverage Prediction in Automated Testing

4.4.2 RQ3 Design: Feature Analysis

In addition to the first two research questions, we conduct a fine-grained analysis

to understand which are the most influential factors uses by the trained model to

actually predict the output variable, i.e., the achievable branch coverage. This

fine-grained analysis aims at answering our RQ3.

In order to detect the most relevant features influencing the prediction, we

rely on the Mean Decrease in Accuracy (MDA) approach [Guyon and Elisseeff,

2003]. MDA estimates the importance of a certain feature in terms of the

reduction it provides to the overall accuracy of the model. Algorithm 1 shows

the pseudo-code of the entire process. The approach trains n different models,

where n is the number of the features. Each feature f is represented by a vector

f = 〈f1, f2, ..., fm〉 where m is the number of classes and fi is the value of the

feature f for the class i. For each feature j = 1, ..., n, the correspondent fj

feature vector is randomly permuted (i.e., the vector is shuffled and thus the

features assume wrong values for the classes) and the accuracy is again computed

[Friedman et al., 2001] (lines 8-9 of Algorithm 1). The MDA score for the variable

j is computed as:

MDA(j) =
accj − acc

acc

where accj is the accuracy computed with the permuted values of the feature j

and acc is the accuracy computed on the original train set (line 10 of Algorithm 1).

Clearly, for important variables such a permutation will have significant effects

on the accuracy of the model, while for unimportant variables the permutation

should have little effects. For the calculation of the prediction accuracy, we rely on

the R2 score (R-squared) [Baeza-Yates et al., 1999]. In order to have more precise

results, we repeat such a process for k-times using a 10-fold cross-validation

process, averaging the results over the separate runs (line 13 of Algorithm 1). It

is worth to note that sklearn does not expose any implementation for MDA;

we share our implementation in the replication package.4

4.5 Results 135

Algorithm 1: Mean Decrease in Accuracy (MDA) algorithm
Input : training data X and desired output values vector Y
Result: feature MDA scores F
begin

for k ∈ k-fold validations do
Xtrain, Xtest ←− train_test_split(train_size=0.7, test_size=0.3); // split 70/30 into

train and test set

Ytrain, Ytest ←− train_test_split(train_size=0.7, test_size=0.3)
model←− fit the regressor
acc←− Ytest− prediction on Xtrain; // accuracy computed with R2 score

for f features do
Xnew ←− permute values of f
accnew ←− Ytest− prediction on Xnew; // new accuracy with permutation on

feature f
F [f]←− F [f] ∪ (accnew − acc/acc)

end

end
average F [f] over the k-folds

end

4.5 Results

In the following section we report the results of the four discussed research

questions; therefore, we present and discuss the related main findings.

4.5.1 RQ1/RQ2 - Performance of the Prediction with Source-

Code Metrics Features

To answer both RQ1 and RQ2 we rely on nested cross-validation, an approach

able to tune, train and evaluated different algorithms with different configurations

of parameters, giving in output the best model overall. At the end of such

a procedure, the Random Forest Regressor results the best algorithm

for our prediction model: indeed, it achieves the best Mean Average Error

(MAE) for all the possible models built experimenting the two tools and the

four search-budget. It is worth to note that is the first improvement over our

previous work [Grano et al., 2018b]. In fact, in this study we introduce the

RFC, comparing it with the three algorithms previously evaluated, i.e., Huber

Regression, Support Vector Regression and Multi-Layer Perceptron. Given this

result, only we focus and discuss the performance of this model in the remaining

of the paper. However, detailed results concerning the remaining algorithms

136 Chapter 4. Branch Coverage Prediction in Automated Testing

0.1505 0.152 0.1499 0.1461

0.2167 0.2211 0.2176
0.2246

default 180s 300s 600s
0

0.05

0.1

0.15

0.2

EvoSuite
Randoop

budgets

m
ea

n
av

er
ag

e
er

ro
r

Figure 4.4: Mean Average Error (MAE) over cross-validation for the Random
Forest Regressor. The blue bar refers to the model trained on the EvoSuite

outcomes, while the orange bar refers to Randoop. The MAEs are grouped
according to the search-budget used to train the models.

can be found in our replication package.4 Table 4.5 shows the performance of

the Random Forest Regressor for the five considered evaluation metrics

at the end of nested cross-validation, for each investigated configuration. As

explained in Section 4.4, we build 8 different models: four based on the coverage

achieved by EvoSuite with the four different search-budgets; four based on

the one achieved by Randoop over the same four budgets. Figure 4.4 shows

the Mean Average Error (MAE) achieved over the cross-validation for all the

aforementioned eight models: the five metrics we use for the evaluations are

reported in the rows, while the columns report their values for each combination

of tool/budget. In addition, we report in Table 4.6 the optimal combination of

4.5 Results 137

Table 4.5: Results for the Random Forest Regressor over nested cross-
validation. We report the statistics for each built model, i.e., 4 for each tool,
according to the 4 experimented search-budgets

default 180s 300s 600s

EvoSuite Randoop EvoSuite Randoop EvoSuite Randoop Evosuite Randoop

Mean Abs. Error 0.151 0.217 0.152 0.221 0.150 0.218 0.146 0.225

Mean Sqr. Error 0.044 0.071 0.046 0.073 0.046 0.073 0.046 0.077

Mean Sqr. Log Error 0.019 0.033 0.020 0.034 0.020 0.034 0.019 0.037

Mean Abs. Error 0.110 0.192 0.110 0.197 0.104 0.185 0.097 0.195

R2-Score 0.525 0.364 0.479 0.348 0.452 0.358 0.412 0.322

parameters resulting by the employed nested cross-validation procedure following

the same structure of Table 4.6.

In detail, we observe a MAE of about 0.15 for EvoSuite on average over

the different search-budgets. In this case, the performance of the predictions

tends to be slightly better when the search-budget increases: indeed, for the 10

minutes budget, we observe MAE = 0.146. Despite this improvement is only

marginal, we attribute it to the nature of the genetic algorithms (GA) used by

EvoSuite. Indeed, more search-budget given to the search, more time for the

GA to explore all the possible solutions in the search-space. On the contrary, in

case of lower budget, the search is still largely influenced by the initial solutions

randomly generated at the beginning of the evolutionary search. Observing the

MAEs achieved by the Randoop models, we notice that there is no trend in the

performance related to the changes in the employed search-budgets. Randoop

relies on random-search: this means that the additional budget given to the

search is merely used to generate additional random inputs, without any guidance

towards better solutions. We argue that the intrinsic randomness of Randoop

makes harder the prediction of the achievable branch-coverage, compared to

EvoSuite. It is worth to remark that, in our previous work [Grano et al.,

2018b], we achieve a MAE of 0.291 and 0.225 respectively for the EvoSuite

and Randoop model (only trained with the default-budget). Therefore, in this

work we are able to significantly improve the performance for the prediction

of the coverage reached by EvoSuite, with about the 48% of MAE reduction

for the default budget. On the contrary, the prediction of Randoop with the

138 Chapter 4. Branch Coverage Prediction in Automated Testing

Table 4.6: Optimal parameter combinations for the Random Forest Regres-

sor over nested cross-validation. We set all the other parameters to their default
value. We report the data for each combination of tool and search-budget.

default 180s 300s 600s

EvoSuite Randoop EvoSuite Randoop EvoSuite Randoop Evosuite Randoop

n_estimators 16 14 16 16 20 6 8 4

max_features 71 55 71 71 79 55 63 79

max_depth 45 40 25 35 30 30 45 35

min_sample_leaf 1 3 1 1 1 1 1 3

default budget only shows a very marginal improvement (about 3.6% of MAE

reduction). As mentioned before, we believe that the prediction for a totally

random algorithm is intrinsically harder. Moreover, that the greater improvement

of the EvoSuite model, compared to the Randoop one, might also depend

on the stability of the achieved coverage over the 10 runs. Indeed, EvoSuite

has higher standard deviation and therefore, averaging the dependent variable

different runs might noticeably foster the accuracy of the ML model. It is worth

to remember that, in our previous work [Grano et al., 2018b], we run the testing

tools only once per each class.

The presented results also strengthen the findings arose in our original paper.

In particular, we confirm the possibility to use traditional code-metrics as features

in order to train machine learning models able to predict the coverage that will be

achieved by automated testing tools. It is also worth to note that the Random

Forest Regressor we introduce in this study performs better than the three

algorithms investigated in our previous work [Grano et al., 2018b].

To provide a deeper understanding of the prediction performance and comple-

ment the evaluation based on the mere MAE metric, we report in Table 4.7 the

quartiles for the differences between the predicted and the measured values of

achieved coverage. Moreover, we visualize the results of the predictions relying

on scatterplots, showed in Figure 4.5. In particular, the subfigure 4.5a refers to

the predictions given by the EvoSuite model, while subfigure 4.5b refers to the

prediction given by the Randoop one. It is worth to note that both of them show

the predictions of the model trained with the search-budget of 300 seconds. For

4.5 Results 139

Table 4.7: Analysis of the quartiles for the difference (in absolute value) between
the predicted achievable coverage and the actual measured value. We report the
data for each combination of tool and search-budget.

default 180s 300s 600s

EvoSuite Randoop EvoSuite Randoop EvoSuite Randoop Evosuite Randoop

Q1 (0.25) 0.032493 0.089104 0.033553 0.090193 0.030084 0.083736 0.020833 0.085119

Q2 (0.50) 0.108008 0.191158 0.104393 0.199465 0.100278 0.188710 0.098958 0.175827

Q3 (0.75) 0.222223 0.297596 0.219620 0.313606 0.211624 0.323992 0.214683 0.323685

0.0 0.2 0.4 0.6 0.8 1.0
Measured

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

(a) Prediction errors for the EvoSuite

model trained with 300 seconds a search-
budget.
The MAE for such a model is equal to
0.150.

0.0 0.2 0.4 0.6 0.8 1.0
Measured

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

(b) Prediction errors for the Randoop

model trained with 300 seconds a search-
budget.
The MAE for such a model is equal to
0.210.

Figure 4.5: Scatterplots representing the prediction errors of two models over 10-
cross validation. Subfigure 4.5a shows the predictions for the EvoSuite model,
while subfigure 4.6b shows the same data for the Randoop model. Both the
subfigures refer to the correspondent models trained with a search-budget of 300
seconds. More accurate the predictions, closer the blue dots to the black-dotted
line.

the sake of space we do not include the plots for all the combination tool/budget

in the paper; however, they can be found in our replication package. Nevertheless,

the distribution of the predictions and their pattern is similar to the one showed

in the paper. Such scatterplots are particularly helpful to visualize the prediction

errors of the trained models: the dashed-black line represents a perfect prediction.

140 Chapter 4. Branch Coverage Prediction in Automated Testing

Each point is represented by a blue dot in terms of x and y coordinates, where x

and y denote respectively the measured and the predicted value for a given point.

Obviously, closer is a blue dot to the black line, more accurate is the prediction.

The coverage values on both axes are represented in a scale between 0 and 1

(i.e., from 0% to 100% of coverage over the CUT). It is worth to recall that the

mean average error for the two models is respectively 0.150 and 0.218 (see table

4.5). A MAE = 0.15 simply means that the prediction is, on average, wrong by

15% in absolute value (i.e., the measured coverage is either 15% higher or lower

than the predicted one). Interesting findings arise looking at the distribution

of the predictions; indeed, the pattern that arises from both the scatterplots

shoes that generally the models tend to slightly over-estimate the prediction

for lower values of measured coverage. Obviously, on the contrary, when the

measured value of the achieved coverage is high, the error in the prediction is

mostly by underestimation. As said, a very similar pattern is observed for each

other search-budget we experimented.

Despite the average accuracy of the prediction, the plots in Figure 4.5 also

show that in some cases the absolute value of the difference between the predicted

and the measured value is quite high: 0.9 and 0.82 are the worst cases respectively

for EvoSuite and Randoop, measured for the classes JarResource and Ivy14,

both from the ivy project. We plan to explore the utility of clustering in reducing

error for the cases where our approach poorly performs [Trivedi et al., 2015]. In

detail, clustering algorithms could be used to group classes with similar structural

properties and therefore, ad-hoc models can be trained over the resulting clusters.

In summary: We confirm the feasibility of code-metrics as features for the

achievable coverage prediction problem. Random Forest Regressor is the

most accurate algorithm amongst the considered ones, scoring an average 0.15

and a 0.21 MAE respectively for the EvoSuite and the Randoop model over

the different search-budgets. Comparing these performances to the Support

Vector Regressor model proved to the best in our previous work, we

report a significant MAE reduction regarding the EvoSuite model; for the

Randoop ones, on the contrary, the improvement is only marginal.

4.5 Results 141

0 0.02 0.04 0.06 0.08 0.1 0.12

rfc
Ce

import
cbo

D
return

try
I

calculated_length
public
nopm

A
private

loc
for

vocabulary
dit

difficulty
nom
new

mean decrease in accuracy

fa
ct

or
s

(a) Top 20 features for the EvoSuite

model trained with 300 seconds as search-
budget

0 0.05 0.1 0.15

rfc
import

Ce
assert
public

A
cbo

double
loc

private
return

difficulty
nopm

for
lcom

I
calculated_length

D
try

wmc

mean decrease in accuracy

fa
ct

or
s

(b) Top 20 features for the Randoop

model trained with 300 seconds as search-
budget

Figure 4.6: Bar chart representing the most 20 important features according to
their Mean Decrease in Accuracy (MAE) score. Sub-figure 4.6a reports such
scores for the model trained on EvoSuite, while Sub-figure 4.6b reports the
top scores for the Randoop one. Both the models have been trained with a
search-budget of 300 seconds.

4.5.2 RQ3 - Feature Analysis

To answer our third research question we rely on the Random Forest Re-

gressor algorithm we found to be the best performing one from the previous

research questions. Figure 4.6 depicts a bar plot showing the most 20 relevant

features, according to their Mean Decrease in Accuracy, used by the two models,

respectively by EvoSuite (4.6a) and by Randoop (4.6b). The MDA varies in

a range between 0 and 1 and has the following interpretation: omitting from the

training the feature f , with a MDA equals to x, will approximate results in a loss

of prediction accuracy equal to x. It is worth to note that both the figures refer to

the models trained with 300 seconds as a search-budget. In order to investigate

the impact of different budgets in the relevant features, we compute the mean

decrease in accuracy for every configuration of tool and budget. Our analysis

shows that the most relevant features tend to be same varying the search-budget.

Looking at the most relevant features for the EvoSuite model, we observe

that the CK and the Object-Oriented metrics are amongst the most important

142 Chapter 4. Branch Coverage Prediction in Automated Testing

ones, with 6 out of the top 20 features. In particular, we notice that coupling-

related metrics like CBO (Coupling Between Objects) RFC (Response for a

Class) and Ce (afferent coupling) are immediately ranked at the top of the MAE

ranking. Package-level and keyword features counts respectively for 4 and 7 out

of the top 20 features. Looking at the Halstead metrics we introduce in this

work, we observe that 3 of them (out of 6), namely the program vocabulary (n)

the calculated program length (N̂) and difficulty level (D) are ranked amongst

the top 20.

Figure 4.6b shows the top 20 most important features for the model trained

on the Randoop tool. We observe a similar distribution of features compared

to the EvoSuite model: coupling-related factors like RFC and Ce are still at

the top of the ranking. CK and Object-Oriented features take 6 out of the 20

metrics, while package-level and keywords features counts for 4 and 7 out of 20,

respectively. Regarding the Halstead metrics, for this model both the program

difficulty (D) and the calculated program length (N̂) metrics are present in the

top 20 ranking.

To strengthen the analysis performed relying on the Mean Decrease in Accu-

racy, we take advantage of a built-in feature of Random Forest. In particular,

a RFR is able to automatically discern the most relevant features influencing

the prediction. In doing so, it relies on the Gini index, also referred as Mean

Decrease in Impurity (MDI) [Grabmeier and Lambe, 2007]. MDI indicates the

importance of a given features in respect to the overall entropy of the model.

Therefore, to confirm the results provided by the MAEs, we execute 10 different

validation runs computing, for each of them, the Gini index for each feature. It

is worth to note that, for every model training, the sklearn implementation of

the Random Forest automatically computes and stores the information about

the Gini index in a feature_importance vector. The results provided by the

MDI analysis (fully reported in our replication package4) essentially confirm the

most important features discussed so far. Indeed, for the EvoSuite model 18

out of 20 most important features according to the Gini index are present in

the MDA ranking showed in Figure 4.6a. On the other hand, 15 out of 20 top

4.6 Discussion and Practical Usage 143

features according to the Gini index overlap with the ones in the MDA ranking

showed in Figure 4.6b.

In Summary. Coupling-related features like RFC, CBO and Ce are the most

important features for the branch coverage prediction. This result is valid

for both the EvoSuite and the Randoop model. Some Halstead metrics

we introduce, like calculated program length, program vocabulary and program

difficulty, appear amongst the 20 most important features for both the MDA

and the MDI analysis. The most related features are not influenced by the

search-budget given to the search.

4.6 Discussion and Practical Usage

The prediction model for the achievable branch-coverage by automated test-

ing tools might have different concrete applications in practice. At first, it is

important to underline that predictions are intrinsically dependent to the search-

budget these tools use for the search. Indeed, the problem we investigate is the

prediction of the achievable branch-coverage as dependent variable. Such a value

is obviously influenced by the search-budget employed for the search: more the

budget, higher the chances to reach higher coverage values. This is the reason

why we have to train different models for each experimented search-budget. This

is particularly crucial for one of the applications we further discuss, i.e., the

problem of allocating a proper budget to the test-case generation.

We list following some possible practical applications of the proposed models.

Generating vs Manually-Writing Tests. Test-case generation has the pri-

mary goal of alleviate developers burden for manually writing test cases. One of

the possible applications of a prediction model might help developers to decide

for which classes spend some manual effort in writing tests and, on the other side,

for which others exploit testing tools to automate the generations of tests. To

take such an informed decision, we envision the two following scenarios: In the

first case, our model predicts a-priori that the coverage reached by an automated

144 Chapter 4. Branch Coverage Prediction in Automated Testing

tool will be low; thus, developers would manually write tests for the these classes,

saving at all the cost (i.e., time) deriving from running a test-case generation

tool. In the opposite case, the model predicts high coverage for a given set of

classes. Then, developers might decide to rely on the tests generated by the tool,

only checking and/or adding assertions to the generated tests.

Search-Budget Allocation. As said, generally more the search-budget given

for the search, higher the achieved branch coverage. While this relation is not

always true for Randoop, it absolutely holds for EvoSuite and other similar

tools that rely on guided-search algorithms. However, in some cases —especially

for a very trivial class— a testing tool achieves a high-level of coverage in a

short amount of time, sometimes even the 100% of coverage with the default

search-budget. The same might happen also for classes that are generally trivial

to cover, except for a couple of very hard-branches to hit. In these cases,

the coverage is never maximized: it immediately reaches high level and then

does not substantially increase even with more search-budget allocated for the

generation. We report some related examples from our context of study: for

the class Equivalence of the guava project, EvoSuite reaches about 60% of

branch-coverage with all the experimented search-budgets (i.e., 1, 3, 5 and 10

minutes). The same happens for the class TypeSizes of the cassandra project:

here the branch-coverage reached with all the budgets by EvoSuite remains the

same, i.e., about 72%. In cases like the aforementioned ones, choosing a smaller

search-budget would allow to reach the same coverage with a noticeable saving in

computational time. In this study, we build several models trained on different

search-budgets. We argue that the prediction for the achievable coverage under

different budgets might help developers in properly allocating the time to spent

for test-case generation for different CUTs.

Delta Generation. The execution of test cases takes place in different phases

of the software development pipeline. In continuous integration, tests usually

run every time new code is committed. Often, integrated automation servers like

Jenkins16 rely on plugins (e.g., Cobertura17) to generate trend reports of the

16https://jenkins.io, Last Access: 21.01.21
17http://cobertura.github.io/cobertura/, Last Access: 21.01.21

4.7 Threats to Validity 145

coverage. These reports are stored and developers rely on them to diagnose the

health status of the test suite. We envision our prediction model to be integrated

in such a process with the aim to increase the overall quality —expressed in terms

of covered code— of the exiting test suites. New plugins can be integrated in

automation servers like Jenkins: they would rely both on the coverage reports

automatically generated at every commit and on the predictions given by the

model with the goal to identify the classes for which new tests might be generated.

For instance, assume a test case t in the test suite that has a coverage value c for

a given production class. At the same time, the coverage prediction for the same

class is equal to c + x, where x is the delta between the actual coverage and the

predicted one. A potential plugin might automatically trigger the generation

of new tests for all the classes according to a given x delta. Moreover, such a

threshold might be set by the developers according to their personal needs.

4.7 Threats to Validity

In this section we analyze all the threats that might have an impact on the

validity of the results.

Threats to Construct Validity. To have a wide overview of the extent to which

a machine learning model might predict the branch coverage achieved test data

generation tools, we initially experimented 4 different algorithms, i.e., Huber

Regression [Hampel et al., 2011], Support Vector Regression [Hsu et al., 2003],

Random Forest [Sammut and Webb, 2017] and Vector Space Model [Nassif et al.,

2013]. Future effort will go in the direction of enlarging the number of algorithms

employed.

In our study we rely on two different test data generation tools: EvoSuite,

based on genetic algorithms, and Randoop, which implements a random testing

approach. Despite we rely on the most widely used tools in practice, we cannot

ensure the applicability or our findings to different generation approaches such

as AVM [Lakhotia et al., 2013] or symbolic execution [Albert et al., 2014].

146 Chapter 4. Branch Coverage Prediction in Automated Testing

The prediction of the achievable branch-coverage is dependent by the search-

budgets given to the tools for the generation. In the context of this work, we

investigate four different budgets: the default one; 3 minutes; 5 minutes; and 10

minutes. We select these budgets for the following reasons: the first three have

been previously exploited in research [Panichella et al., 2015, 2018b; Scalabrino

et al., 2016a; Palomba et al., 2016c] and represent a great balance between the

time spent for the generation and the coverage that can be achieved. 10 minutes

was selected to investigate the performance of the prediction given a longer

budget. We argue that relying on even longer budgets would make test-case

generation hardly doable in practice, especially in continuous integration scenario.

Different models built with different budgets might help developers to assign the

proper budget to test-case generation. We argue that the range of budgets we

investigate is broad enough to cover most of the concrete applications. However,

new models can be easily built with an ad hoc search-budgets, following the same

steps we describe in this paper.

Threats to Conclusion Validity. To select and validate the best model amongst

the four experimented algorithms, we used a nested cross-validation procedure

with 5-fold inner and a 10-fold outer cross-validation. Therefore, we configured

the parameters of each model with the aim of relying on the most effective

configuration. Moreover, to reduce the biases in the interpretation of the results

and to deal with the randomness arising from using different data splits we

repeated the validation 10 times. To properly interpret the prediction results,

we exploited a number of evaluation metrics, with the aim of providing a wider

overview of the performance of the devised model. Finally, when evaluating

the most relevant features adopted by the RFR prediction model, we relied on

both Mean Decrease in Accuracy [Guyon and Elisseeff, 2003] and on Gini index

[Grabmeier and Lambe, 2007].

Threats to External Validity. In this category, the main discussion point

regards the generalizability of the results. We conducted our study taking into

account 79 factors related to four different categories, i.e., package level features,

4.8 Related Work 147

CK and OO features, Halstead’s metrics and Java reserved keywords. To calculate

them we rely on the ck tool.3 Thus, metrics calculated with this tool may present

small variations compared to different tools. However, we argue that a possible

small variation for each metric/tool would not affect the results [Aniche et al.,

2016]. Of course, there might be other additional factors the achieved coverage

that we did not consider. About the threats to the generalizability of our findings,

we train our models with a dataset of 7 different open source projects, having

different size and scope. However, 4 out of these 7 projects belong to the Apache

Software Foundation; this might introduce some bias in the generalizability of the

results. Hence, we plan to enlarge the dataset by including projects of different

kind and domain.

4.8 Related Work

The closer work to what we present in this paper is the one of Ferrer et al. [Ferrer

et al., 2012]. They proposed the Branch Coverage Expectation (BCE) metric

as the difficulty for a computer to generate test cases. The definition of such a

metric is based on a Markov model of the program. They relied on this model

also to estimate the number of test cases needed to reach a certain coverage.

Differently for our work, they showed traditional metrics to be not effective in

estimating the coverage obtained with test-data generation tools. Phogat and

Kumar [Phogat et al., 2011] started from the study of the literature to list all the

existing object-oriented metrics related to testability. Shaheen and du Bousquet

investigated the correlation between the Depth of Inheritance Tree (DIT) and

the cost of testing [Shaheen and Du Bousquet, 2009]. Analyzing 25 different

applications, they showed that the DITA, i.e., the depth of inheritance tree of

a class without considering its JDK’s ancestors, is too abstract to be a good

predictor. Gu et al. [Gu et al., 1994] investigated the testability of object-oriented

classes. They observed that the most effective test cases consist of a tuple (s, ω)

where s is the class state and ω is a sequence of operations applicable to that

state. Kout et al. [Kout et al., 2011] adapted the Metric Based Testability Model

for Object-Oriented Design (MTMOOD) proposed by Khan et al. [Khan and

148 Chapter 4. Branch Coverage Prediction in Automated Testing

Mustafa, 2009] to assess the testability of classes at the code level. Khanna

[Khanna, 2014] used an Analytic Hierarchy Process (AHP) method to detect the

most used metrics for testability. It results that CK metrics and NOH metric,

i.e., number of class hierarchy in the design, have the higher priority. In her

work, du Bousquet [du Bousquet, 2010] followed a diametric approach: instead of

assessing the testability thought metrics, she first verified the good practices in

testing; therefore, she checked whether such practices are implemented in either

models or code.

Different approaches have been proposed to transform and adapt programs

in order to facilitate evolutionary testing [Harman et al., 2008]. McMinn et al.

conducted a study transforming nested if such that the second predicate can

be evaluated regardless the first one has been satisfied or not [McMinn et al.,

2009]. They showed that the evolutionary algorithm was way more efficient in

finding test data for the transformed versions of the program. Similarly, Baresel

et al. applied a testability transformation approach to solve the problem of

programs with loop-assigned flags [Baresel et al., 2004]. Their empirical studies

demonstrated that existing genetic techniques were more efficiently working of

the modified version of the program.

Test-Case Generation Tools. In this study, we rely on EvoSuite [Fraser

and Arcuri, 2011] and Randoop [Pacheco and Ernst, 2007]. In last years the

automated generation of test cases has caught growing interest, by both researches

and practitioners [Fraser and Arcuri, 2011; Scalabrino et al., 2017; Panichella

et al., 2015]. Search-based approaches have been fruitfully exploited for such

goal [McMinn, 2004]. Indeed, current tools have been shown to generate test

cases with a high branch coverage and helpful to successfully detect bugs in real

systems [Shamshiri et al., 2015a], even if in some cases these test cases are difficult

to understand [Panichella et al., 2016; Grano et al., 2018a] or maintain [Fraser

et al., 2015]. Proposed approaches can be categorized into two formulations:

single-target and multi-target. In the former, evolutionary algorithms aim to

optimize one single coverage target (e.g.,, branch) at one time [McMinn, 2004;

Scalabrino et al., 2016a]. Fraser and Arcuri were the first to propose a multi-

4.8 Related Work 149

target approach, which optimizes all coverage targets simultaneously [Fraser

and Arcuri, 2013]. They propose the Whole-suite (WS) generation. With this

technique, GAs evolve entire test suites rather than single test cases. The search

is guided by a suite-level fitness function that sums up all the branch distances) in

the CUT. It is worth to note that WS is the default approach used by EvoSuite.

Following the idea of targeting all branches at once, Panichella et al. [Panichella

et al., 2015] addressed the test-case generation problem in a many-objective

fashion proposing a many-objective genetic algorithm called MOSA. Also, this

algorithm has been implemented in EvoSuite.

Some approaches try to estimate the difficulty to cover a target during the

test-data automatic generation process. Xu et al. [Xu et al., 2017] designed an

adaptive fitness function that is based on the branch hardness. They rely on

the expected number of visit to compute such a metric for each branch. Their

experimental results indicate that the newly proposed fitness function is more

effective for some numerical programs.

As well as search-based approaches, also symbolic executions has been fruit-

fully exploited with the aim to automatically generate test cases [Sen et al., 2005].

The key idea behind symbolic execution is to use symbolic values, instead of con-

crete values, to represent the values of program variables as symbolic expressions

over the symbolic input values [Cadar and Sen, 2013]. Modern symbolic exe-

cutions techniques can be discerned in concolic testing and execution-generated

testing (EGT) [Cadar and Sen, 2013]. In the former, symbolic execution is

performed dynamically, with the program executed on concrete input variable:

DART [Godefroid et al., 2005] (directed automated random testing) and CUTE

[Sen et al., 2005] are two of the most important tools proposed in the past years

falling in this category. The latter maintain a distinction between the concrete

and the symbolic state in a program by dynamically checking whether the values

involved in a symbolic execution are all concrete. Notable tools belonging to this

category are EXE [Cadar et al., 2008b] and KLEE [Cadar et al., 2008a].

150 Chapter 4. Branch Coverage Prediction in Automated Testing

4.9 Conclusions & Future Work

In a continuous integration environment, knowing a priori the coverage that will

be achieved by test-data generation tools would allow them to take informed

decisions. For instance, they would be able to: (i) proper allocate the budget for

the generation, reaching the optimal balance between branch-coverage and time

saving, and (ii) select the subset of classes for which run the test-case generation.

In this paper, we extend our previous work taking the first steps toward the

prediction of achievable the branch coverage by test-data generator tools, using

machine learning approaches and source-code features experimenting four different

search-budget. Due to the non-deterministic nature of the algorithms employed

for this purpose, such prediction remains a troublesome task. We selected four

different categories of metrics designed to capture the complexity of a given

class. Therefore, we performed a large-scale study aiming at comparing four

different algorithms trained of such features. This study improves the results

we achieved in our previous work: we get a MAE reduction achieved using

a Random Forest Regressor and the new set of metrics. Moreover, our

fine-grained features analysis proves the importance of coupling-related feature

in ensuring a good performance for the prediction. Future efforts will involve

both the horizontal and the vertical extension of this work: with the former, we

plan to still enlarge the training dataset; with the latter we aim at detecting

even more sophisticated features aimed at improving the precision of the model.

Acknowledgements

We acknowledge the Swiss National Science Foundation (SNSF) under project

named “SURF-MobileAppsData” (Project no. 200021-166275) and the Swiss

Group for Software Engineering (CHOOSE).

5
Testing with Fewer Resources:

An Adaptive Approach to
Performance-Aware Test Case

Generation

Giovanni Grano, Christoph Laaber, Annibale Panichella, Sebastiano Panichella
Published in IEEE Transactions on Software Engineering (Early Access 2019)

Abstract

Automated test case generation is an effective technique to yield high-coverage

test suites. While the majority of research effort has been devoted to satisfying

coverage criteria, a recent trend emerged towards optimizing other non-coverage

aspects. In this regard, runtime and memory usage are two essential dimensions:

less expensive tests reduce the resource demands for the generation process and

later regression testing phases. This study shows that performance-aware test case

generation requires solving two main challenges: providing a good approximation

of resource usage with minimal overhead and avoiding detrimental effects on

both final coverage and fault detection effectiveness. To tackle these challenges,

we conceived a set of performance proxies —inspired by previous work on

performance testing— that provide a reasonable estimation of the test execution

costs (i.e., runtime and memory usage). Thus, we propose an adaptive strategy,

called aDynaMOSA, which leverages these proxies by extending DynaMOSA,

152

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

a state-of-the-art evolutionary algorithm in unit testing. Our empirical study

—involving 110 non-trivial Java classes— reveals that our adaptive approach

generates test suite with statistically significant improvements in runtime (-25%)

and heap memory consumption (-15%) compared to DynaMOSA. Additionally,

aDynaMOSA has comparable results to DynaMOSA over seven different coverage

criteria and similar fault detection effectiveness. Our empirical investigation also

highlights that the usage of performance proxies (i.e., without the adaptiveness)

is not sufficient to generate more performant test cases without compromising

the overall coverage.

5.1 Introduction

From Waterfall to Agile, software testing has always played an essential role

in delivering high-quality software [Fowler and Foemmel, 2006]. Integrating

automated test case generation tools [Fraser and Arcuri, 2013; Panichella et al.,

2015] in software development pipelines (e.g., in continuous software development

(CD) [Vassallo et al., 2016]) could potentially reduce the time spent by developers

writing test cases by hand [Campos et al., 2014]. Hence, research and industry

have heavily focused on automated test generation in the last decade [McMinn,

2011], mainly employing evolutionary search (e.g., genetic algorithms (GA)) to

produce minimal test suites that satisfy some testing criteria [McMinn, 2004].

While most of the research effort has been devoted to maximizing various

code coverage criteria [McMinn, 2004; Campos et al., 2017; Fraser and Arcuri,

2011, 2013], recent work showed that further factors need to be considered for

the generation of test cases [Lakhotia et al., 2007; Afshan et al., 2013; Xuan and

Monperrus, 2014; Panichella et al., 2016]. Specifically, recent research investi-

gated additional factors such as data input readability [Afshan et al., 2013], test

readability [Daka et al., 2015; Panichella et al., 2016], test code quality [Palomba

et al., 2016c], test diversity [Albunian, 2017], execution time [Xuan and Monper-

rus, 2014], and memory usage [Lakhotia et al., 2007]. An early attempt to reduce

the resource demand of generated tests is the work by Lakhotia et al. [Lakhotia

et al., 2007]. The authors recast test data generation as a bi-objective problem

5.1 Introduction 153

where branch coverage and the number of bytes allocated in the memory are

two contrasting objectives to optimize with Pareto-efficient approaches. Their

results show that multi-objective evolutionary algorithms are suitable for this

problem. Following this line of research, other works also used multi-objective

search to minimize test execution time [Pinto and Vergilio, 2010] or the number

of generated tests, used as a proxy for the oracle cost [Oster and Saglietti, 2006;

Ferrer et al., 2012].

While the aforementioned works showed the feasibility of lowering the cost

(e.g., execution time) of the generated tests, they all pose two significant challenges

on the full code coverage [Ferrer et al., 2012]. The first challenge stems from

empirical results showing that combining coverage with non-coverage criteria

is harmful to the final coverage compared to traditional strategies that target

coverage only [Lakhotia et al., 2007; Oster and Saglietti, 2006; Ferrer et al., 2012;

Palomba et al., 2016c]. These approaches implement the classic one-branch-

at-a-time (or single-target) approach, which consists of running bi-objective

meta-heuristics (e.g., GA) multiple times, once for every code branch, while

performance aspects are other dimensions to optimize for each branch separately.

However, recent studies [Rojas et al., 2017; Panichella et al., 2018a; Campos

et al., 2017] empirically and theoretically showed that single-target approaches

are less effective and efficient than multi-target approaches (e.g., the whole suite

approaches and many-objective search) in maximizing coverage. The second

challenge to address regards how to inject test performance analysis into the

main loop of multi-target strategies without incurring in a penalizing overhead.

Generated tests with lower resource demand might decrease the cost of

introducing test case generation into continuous integration (CI) pipelines. Hilton

et al. [Hilton et al., 2017] showed that acquiring hardware resources for self-

hosted CI infrastructure is one of the main barriers for small companies when

implementing CI policies: more performant tests would require fewer hardware

resources, and therefore testing in CI would be more cost-effective. Despite the

theoretical benefits, the precise measurement of memory and execution time

costs adds considerable overhead since it requires running each test case multiple

times [Raz, 1992]. Consequently, there is a need for approaches that minimize the

154

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

test resource demand [Ferrer et al., 2012] without penalizing the final coverage

nor the fault detection capability of generated tests.

We extend the current state-of-the-art by proposing a novel adaptive approach,

called aDynaMOSA (Adaptive DynaMOSA), to address the two challenges

described above. In designing our approach, we focus on (i) test execution

time (runtime from now on), (ii) memory usage, (iii) code coverage, and (iv)

fault detection capability as four relevant testing criteria in white-box test

case generation. To tackle the second challenge, we explored recent studies in

performance testing [de Oliveira et al., 2017] and symbolic execution [Albert et al.,

2011] that investigate suitable approaches to estimate the computational/resource

demands of test cases. In particular, we adopted three performance proxies —

computable with low overhead— introduced by Albert et al. [Albert et al., 2011]

for symbolic execution. Besides, we developed four additional performance

proxies that provide an indirect approximation of the test execution costs (i.e.,

runtime and memory usage). These proxies, obtained through instrumentation,

measure static and dynamic aspects related to resource usage through a single

test execution: the number of objects instantiated (for heap memory), triggered

method calls, and executed loop cycles and statements (for runtime).

Recent work in the field explored alternative ways to integrate orthogonal

objectives into the fitness function, which are based on the idea of using non-

coverage aspects as a second-tier objective [Palomba et al., 2016c]. To address

our first challenge, aDynaMOSA extends DynaMOSA [Panichella et al., 2018b]

—the most recent many-objective genetic algorithm for test case generation— by

using the performance proxies as second-tier objectives while code branches are

the first-tier objectives. aDynaMOSA uses an adaptive strategy where the second

objective can be temporarily disabled in favor of achieving higher coverage values

(which is the primary goal). We integrated an adaptive strategy in aDynaMOSA

since our initial results show that when the second objective strongly competes

with the primary one (i.e., coverage), which is the case for performance, an

adaptive strategy is preferable to a non-adaptive approach [Palomba et al.,

2016c].

5.1 Introduction 155

To evaluate aDynaMOSA, we conduct an empirical study with 110 non-trivial

classes from 27 open-source Java libraries to show the usefulness of aDynaMOSA

compared to the baseline DynaMOSA in terms of branch coverage, runtime,

memory consumption, and fault-effectiveness (i.e., mutation score). Our study

shows that the test suites produced with aDynaMOSA are significantly less

expensive to run for 72% (for runtime) and 70% (for heap memory consumption)

of the classes compared to DynaMOSA. Besides, aDynaMOSA achieves similar

code coverage compared to DynaMOSA over seven different testing criteria. We

demonstrate that the devised approach does not reduce the fault-effectiveness of

the generated tests: aDynaMOSA achieves a similar or higher mutation score for

~75% of the subjects under tests.

Contributions. We summarize the main contributions of this work in the

following:

• We propose a performance-score aggregating a set of performance proxies

with low overhead as an indirect approximation of the computational

demand for a generated test case.

• We devise an adaptive test case generation technique that leverage such

performance proxies to optimize secondary objectives orthogonal to code

coverage, without any negative effect on the latter.

• We instantiate our approach to the problem of reducing the resource

demand of generated test suites while maintaining high test coverage and

fault detection capability.

• We show that the usage of performance proxies is not sufficient to achieve

the best results. The key aspect of aDynaMOSA is its adaptive mechanisms

that dynamically enables or disables the second objective depending on

whether search stagnation of the coverage criteria is detected or not.

Replication package. To enable full replicability of this study, we publish all

the data used to compute the results and a runnable version of the implemented

approach in a replication package.1

1https://doi.org/10.5281/zenodo.3477414, Last Access: 21.01.21

156

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

5.2 Background & Related Work

Last decade witnessed extensive research on test data generation [McMinn,

2011; McMinn, 2004] aiming at generating tests with high code coverage, mea-

sured according to various code coverage criteria such as branch [Tonella, 2004],

statement [McMinn, 2004], line, and method [Campos et al., 2017] coverage.

Search-based algorithms —GAs in particular [Goldberg, 1989]— had a strong

pull on the automation of such a task [McMinn, 2011].

Proposed approaches can be categorized into two formulations: single-target

and multi-target. In the former, evolutionary algorithms (or more general meta-

heuristics) aim to optimize one single-coverage target (e.g., branch) at one time.

The single target b is converted into a single function (fitness function) measuring

how close a test case (or a test suite) is to cover b [McMinn, 2004]. The “closeness”

to a given branch is measured using two white-box heuristics [McMinn, 2004]:

the approach level and the normalized branch distance. Fraser and Arcuri were

the first to propose a multi-target approach, which optimizes all coverage targets

simultaneously in order to overcome the disadvantages of targeting one branch

at a time [Fraser and Arcuri, 2013]. In their approach, called whole test suite

generation (WS), GAs evolve entire test suites rather than single test cases. The

search is then guided by a suite-level fitness function that sums up the coverage

heuristics (i.e., branch distances) for all the branches of the class under test

(CUT). A later improvement over WS, called archive based whole suite approach

(WSA), focuses the search on uncovered branches only and uses an archive to

collect test cases reaching uncovered branches [Rojas et al., 2017].

Many-objective search. Following the idea of targeting all branches at

once, Panichella et al. [Panichella et al., 2015] addressed the test case generation

problem in a many-objective fashion proposing a many-objective genetic algorithm

called MOSA. Different from WS (or WSA), MOSA evolves test cases that are

evaluated using the branch distance and approach level for every single branch in

the CUT. Consequently, the overall fitness of a test case is measured based on a

vector of n objectives, one for each branch of the production code. Thus, the goal

is finding test cases that separately satisfy the target branches [Panichella et al.,

5.2 Background & Related Work 157

2015], i.e., tests T having a fitness score fi(T) = 0 for at least one uncovered

branch bi. To focus/increase the selection towards tests reaching uncovered

branches, MOSA proposes a new way to rank candidate test cases [von Lücken

et al., 2014], called preference criterion. Formally, a test case x is preferred over

another test y for a given branch bi (or x ≺bi
y) iff fi(x) < fi(y) [Panichella

et al., 2015], i.e., its objective score is lower (main criterion). In addition, if

the two test cases x and y are equally good in terms of branch distance and

approach level for the branch bi (i.e., fi(x) = fi(y)), the shorter test is preferred

(secondary criterion). In other words, the preference criterion promotes test cases

that are closer to cover some branches if possible and have minimal length.

MOSA works as follows2: a starting population is randomly generated and

evolved through some generations. For each generation, new offsprings are

created through crossover and mutation. Then, the new population for the next

generation is created by selecting tests among parents and offsprings as follows:

a first front F0 of test cases is built by using the preference criterion. Following,

the remaining tests are grouped in subsequent fronts using the traditional non-

dominated sorting algorithm [Deb et al., 2002]. The new population is then

obtained by picking tests starting from the first front F0 until reaching a fixed

population size M . To enable diversity and avoid premature convergence [Kifetew

et al., 2013; Albunian, 2017], MOSA also relies on the crowding distance, a

secondary heuristic that increases the chances to survive in the next generation

for test cases that are the most diverse within the same front. The final test

suite is the archive, an additional data structure that stores test cases that reach

previously uncovered branches. If a new test t hits an already covered branch bi,

t is stored in the archive if and only if shorter (secondary criterion) than the test

case stored in the archive for the same branch bi.

Panichella et al. [Panichella et al., 2018b] improved the MOSA algorithm

by presenting DynaMOSA. Relying on the control dependency graph (CDG),

DynaMOSA narrows the search towards the uncovered targets free of control

dependencies. New targets are then iteratively considered when their dominators

are satisfied. In particular, the difference between DynaMOSA and MOSA is the

2See Algorithm 1 in [Panichella et al., 2015] for full detail.

158

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

following: at the beginning of the search, DynaMOSA tries to hit only the targets

free of any control dependencies. Therefore, at every iteration, the current set

of targets U∗ is updated based on the execution results of the newly generated

offsprings: being ui a newly hit target, the targets dominated by ui are added to

U∗. This approach does not impact the way MOSA ranks the generated solutions,

but rather speeds up the convergence of the algorithm, while optimizing the

size of the current objects. Empirical results show that DynaMOSA performs

better than both WSA and MOSA in terms of branch [Panichella et al., 2018b;

Campos et al., 2017], statement [Panichella et al., 2018b], and strong mutation

coverage [Panichella et al., 2018b].

Recently, Panichella et al. [Panichella et al., 2018c] further improved Dy-

naMOSA with the goal of maximizing different coverage criteria simultaneously

(e.g., branch, line, and weak mutation coverage, at the same time). The latest

variant of DynaMOSA relies on the enhanced control dependency graph (ECDG)

enriched with structural dependencies among the testing targets. These objec-

tives to optimize are dynamically selected using the ECDG while exploring the

covered control dependency frontier incrementally. Empirical results show that

even though the multi-criteria variant may result in few cases in a lower branch

coverage than DynaMOSA, it reaches higher coverage on all the other criteria as

well as showing better fault detection capability [Panichella et al., 2018c]. We

use this many-criteria version of DynaMOSA both as a baseline and a starting

point for implementing the proposed adaptive approach.

Large-scale studies. Campos et al. [Campos et al., 2017] and Panichella

et al. [Panichella et al., 2018a] conducted two large-scale empirical studies com-

paring different approaches and meta-heuristics for test case generation. Their

results showed that: (1) multi-target approaches are superior to the single-target

approaches, and (2) many-objective search helps to reach higher coverage than

alternative multi-target approaches for a large number of classes. Besides, no

search algorithm is the best for all classes under test [Campos et al., 2017]. These

recent advances motivate our choice of focusing on many-objective search.

Non-coverage objectives. In recent years, several works focused on non-

coverage aspects in addition to reaching high coverage. Lakhotia et al. proposed a

5.3 Approach 159

multi-objective formulation optimizing branch coverage as primary and dynamic

memory consumption as secondary objective [Lakhotia et al., 2007]. Ferrer et al.

proposed a multi-objective approach aiming at simultaneously maximizing code

coverage and minimizing oracle cost [Ferrer et al., 2012]. Afshan et al. focused on

code readability as a crucial secondary objective to foster maintainability [Afshan

et al., 2013]. In particular, their approach generates readable string inputs

exploiting natural language models. Despite empirical research showed the

difficulty of effectively balancing two contrasting objectives without penalizing

the final code coverage [Ferrer et al., 2012], the mentioned studies all gave

the same weight to coverage and non-coverage objectives. Furthermore, these

studies used a single-target approach rather than multi-target ones. Palomba

et al. [Palomba et al., 2016c] incorporated test cohesion and coupling metrics

as secondary objectives within the preference criterion of MOSA to produce

more maintainable test cases, from a developer point of view. Their approach

produces more-cohesive and less-coupled test cases without reducing coverage.

More recently, Albunian [Albunian, 2017] investigated test case diversity as a

further objective to optimize together with coverage in WSA.

Our work. We propose aDynaMOSA, a novel test case generation algorithm

that optimizes a secondary objective besides code coverage. Differently from

most previous attempts of combining non-coverage with coverage objectives,

aDynaMOSA relies on many-objective search. To balance the two orthogonal

objectives, it adaptively enables or disables the optimization of the secondary

objective when adverse effects on the code coverage are detected during the

generation. In this work, we instantiate aDynaMOSA to focus on the performance

—i.e., runtime and heap memory consumption— of generated tests. To achieve

this goal, we utilize metrics approximating test case performance while having

low analysis overhead (section 5.3.1).

5.3 Approach

This section introduces the performance proxies, their rationale, and how we

integrated them in DynaMOSA.

160

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

5.3.1 Performance Proxies

The accurate measurement of software system performance is known to be

challenging: it requires measurements to be performed over multiple runs to

account for run-to-run variations [Raz, 1992]. This means that we would need

to re-run each generated test case hundreds of times to have rigorous runtimes

and memory usages. This type of direct measurement is unfeasible for test case

generation, where each search iteration generates several new tests that are

typically executed only once for coverage analysis.

While a direct measurement is unfeasible in our context, various test case

characteristics can be used to indirectly estimate the cost (runtime and memory)

of the generated tests. According to Jin et al. [Jin et al., 2012], about 40% of

real-world performance bugs stem from inefficient loops, while uncoordinated

method calls and skippable functions account for respectively one third and a

quarter of performance bugs. Object instantiations impact the heap memory

usage [Shirazi, 2002], and the number of executed statements has been used in

previous regression testing studies as a proxy for runtime [Yoo and Harman,

2007]. Multiple studies investigate the performance impact prediction in the

context of software performance analysis [de Oliveira et al., 2017; Huang et al.,

2014; Mostafa et al., 2017] but to the best of our knowledge, no prior work

combined it with evolutionary unit test generation.

The closest studies are the ones from De Oliveira et al. [de Oliveira et al.,

2017] and Albert et al. [Albert et al., 2011], which fit the context of this study.

However, both studies leveraged only a subset of proxies investigated in this

paper and focused on different testing problems and techniques. De Oliveira et

al. [de Oliveira et al., 2017] investigated performance proxies in the context of

regression testing. Albert et al. [Albert et al., 2011] proposed three performance

proxies for symbolic execution and showed their benefits on example programs.

Symbolic execution can be used as an alternative technique to generate test cases

rather than GAs; however, it has various limitations widely discussed in the

literature [Chen and Kim, 2015; Soltani et al., 2018], such as the path explosion

problem, it cannot handle external environmental dependencies, and complex

objects.

5.3 Approach 161

In this paper, we extend the set of performance proxies proposed in previous

studies [Albert et al., 2011] and incorporate them within evolutionary test case

generators in an adaptive fashion. We designed the performance proxies with

the idea of estimating a test case’s performance (i.e., runtime and/or memory

consumption) unobtrusively. We implemented two types of proxies: (i) Static

proxies that utilize static analysis techniques such as AST parsing. (ii) Dynamic

proxies that rely on the instrumentation facilities available in EvoSuite [Fraser

and Arcuri, 2011]. We extract the control flow graph (CFG) and the number

of times each branch in the CFG is covered by a given test t (frequency). All

production code proxies are dynamic while proxies related to the test code are

static.

Table 5.1 summarizes the performance proxies. In the following, we describe

them separately and discuss which dimension (memory or runtime) they affect.

Number of executed loops (I1). This counts the number of loop cycles in

the production code which are executed/covered by a given test case t. Higher loop

cycle counts influence the runtime of the test case. To this aim, at instrumentation

time, we use a depth-first traversal algorithm to detect loops in the CFG. When

a test case t is executed, we collect the number of times each branch involved in

a loop is executed (execution frequency). Thus, the proxy value for t corresponds

to the sum of the execution frequencies for all branches involved in loops. To

avoid a negative impact on coverage, we require each loop to be covered at least

once. Therefore, this proxy only considers loops with a frequency higher than

one.

Number of method calls [Albert et al., 2011]. We implement two types

of method call proxies: covered method calls (I2), which is related to method

calls in the paths of the CFG that are covered by a test t; and test case method

calls (I3), which counts method calls in t. Notice, the former proxy considers

the number of calls to each production method (i.e., the frequency) rather than

a single boolean value denoting whether a method has been called or not, as

in method coverage [Campos et al., 2017]. This is because a method can be

invoked multiple times by either indirect calls or within loops. Method calls

directly impact the memory usage [McAllister, 2008]: every time a method is

162

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

invoked, a new frame is allocated on top of the runtime stack. Further, method

calls are dynamically dispatched to the right class, which might influence the

runtime. Thus, fewer method calls should result in shorter runtimes and lower

heap memory usage due to potentially fewer object instantiations.

Number of object instantiations (I4). Objects instantiated during test

executions are stored on the heap. Thus, reducing the number of instantiated

objects may lead to decreased usage of heap memory. The fourth proxy counts

the number of object instantiations triggered by a test case t. It analyzes the basic

blocks of the CFG that t covers and increments a counter for every constructor

call and local array definition statement. Notice that we consider the frequency

(e.g., the number of constructor calls) rather than a binary value (i.e., called or

not called). Moreover, the constructor call counter excludes calls and local array

definitions with a frequency of one, as we want to cover them at least once. We

do not consider the instantiated-object size as it would require more complex and

heavier instrumentation. We also do not consider primitive data types which use

memory as well, because their influence is negligible compared to objects [Shirazi,

2002].

Number of statements [Albert et al., 2011]. Statement execution frequency

is a well-known proxy for runtime [Yoo and Harman, 2007]. Similarly to the

proxies for number of method calls, we implement two types of statement-

related proxies: Covered statements (I5), which counts the statements in the

production code covered by a test case. This proxy utilizes the dynamically-

computed CFG for counting the covered statements. Test case statements (I6),

which corresponds to the number of non-method-call statements in a generated

test case. This number is statically determined by inspecting the abstract syntax

tree of the test case.

Test case length (I7). This counts the LOC (size) of a test case and

therefore represents a superset of test case method calls (I7) and test case

statements (I6). We include this proxy for two reasons: First, it is a good

performance proxy: longer tests mean more method and statement calls. Second,

DynaMOSA uses test case length as a secondary objective in order to reduce the

5.3 Approach 163

Table 5.1: Description of the performance proxies

ID Performance Proxy Description

I1 Number of Executed Loops Counts the number of loop cycles in the production code
executed by a given test t

I2 Covered Method Calls Counts the number of times a method of the production
code is called during the execution of a test t

I3 Test Case Method Calls Counts the number of methods calls contained in a test t

I4 Number of Object Instantiations Counts the number of objects (not primitive data type)
instantiated during the execution of a test t

I5 Covered Statements Counts the number of statements of the production code
executed running a test t

I6 Test Case Statements Counts the number of non-method-call statements in a
test t

I7 Test Length Counts the lines of code (LOC) of a test t

oracle cost [Barr et al., 2015]. Thus, we rely on the same metric to have a fair

comparison.

5.3.2 Performance-Aware Test Case Generation

To successfully generate test suites with high target coverage and, at the same

time, low computational requirements, we incorporate the performance proxies,

described in section 5.3.1, into the main loop of DynaMOSA [Panichella et al.,

2018b]. We opt for DynaMOSA since it has been shown to outperform other

search algorithms (e.g., WS, WSA, and MOSA) in branch and mutation coverage,

positively affecting the test generation performance [Panichella et al., 2018b].

Additionally, its basic algorithm (i.e., MOSA) was used in prior studies to

combine multiple testing criteria [Rojas et al., 2015; Palomba et al., 2016c].

Multiple approaches could be followed to this aim. One theoretical strategy

consists of adding the performance proxies as further search objectives in addition

to the coverage-based ones, merely following the many-objective paradigm of

MOSA. This leads to a trade-off search between coverage and non-coverage

objectives that is not meaningful in testing [Palomba et al., 2016c]. Test cases

that reduce the memory usage but at the same time reduce the final coverage

164

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

are of less interest. Therefore, considering coverage and non-coverage criteria

as equally important objectives results in tests with decreased coverages [Ferrer

et al., 2012; Lakhotia et al., 2007; Pinto and Vergilio, 2010; Oster and Saglietti,

2006; Albunian, 2017].

For these reasons, we investigate an alternative strategy where performance

proxies are considered as secondary objectives while coverage is the primary

objective. At first, we experiment with the most straightforward possible approach,

i.e., using the performance proxies as secondary criteria, as proposed in a prior

study [Palomba et al., 2016c]. However, due to the negative impact of the proxies

on the final coverage, we refine this strategy by using an adaptive mechanism that

enables and disables the proxy usage depending on whether search stagnation is

detected or not. We refer to this adaptive strategy as aDynaMOSA (Adaptive

DynaMOSA) (section 5.3.2).

Performance-Score as Secondary Objective

We first integrate the performance proxies using the methodology proposed in a

prior study [Palomba et al., 2016c]. This approach replaces the original secondary

criterion of MOSA (test case length) with a quality score based on test method

coupling and cohesion. Therefore, it uses the new secondary criterion in two

points: (i) in the preference criterion to build the first front F0, selecting the

test case with the lowest quality score in the case many of them have the same

minimum object value for an uncovered branch bi; and (ii) in the routine used to

update the archive.

In this first formulation, we adopt the same methodology replacing the quality

score with the performance-score computed for each test case t as follows:

performance-score(t) =
∑

Ik∈I

Ik(t)
Ik(t) + 1

(5.1)

where I denotes the seven proxies described in section 5.3.1. To deal with

different magnitudes, each proxy value Ik(t) is normalized in Equation 5.1 using

the normalization function f [Ik(t)] = Ik(t)/[Ik(t) + 1] [McMinn, 2004; Arcuri,

2010].

5.3 Approach 165

A preliminary evaluation of this strategy showed that the performance proxies

—i.e., even as a secondary criterion— lead to a dramatic reduction of branch

coverage. We observed that the performance proxies strongly compete with

coverage, e.g., test cases that trigger fewer method calls likely lead to lower code

coverage. For this reason, we devise a second approach called aDynaMOSA that

overcomes this limitation. We include the preliminary approach’s results in the

replication package.1

Adaptive DynaMOSA (aDynaMOSA)

aDynaMOSA uses an adaptive mechanism to decide whether to (not) apply the

performance proxies depending on the search improvements done during the

generations. We devise this strategy because continuously selecting test cases

with the lowest performance proxies value leads to reduced code coverage.

The pseudo-code of aDynaMOSA is outlined in Algorithm 2. We highlight in

bold the modifications over the original DynaMOSA algorithm. aDynaMOSA

first builds the ECDG (line 2 of Algorithm 2) as done in DynaMOSA [Panichella

et al., 2018c]. The initial set of coverage targets (objectives) is selected using

the ECDG [Panichella et al., 2018c] (line 4). Subsequently, an initial population

of M test cases is randomly generated (line 5), and the archive is updated by

storing tests that reach previously uncovered targets (line 6). In each iteration,

aDynaMOSA updates the set of objectives to optimize based on to the test

execution results [Panichella et al., 2018b,c] (lines 6 and 10 of Algorithm 2). The

while loop in lines 8-25 evolves the test cases until all the objectives are satisfied or

the search budget is over [Panichella et al., 2018c]. New test cases (offsprings) are

synthesized in line as done in DynaMOSA [Panichella et al., 2018c]: (i) selecting

parents with a tournament selection, (ii) combining parents with a single-point

crossover, and (iii) further mutating the generated offspring tests with the uniform

mutation. Newly generated tests are executed against the CUT [Panichella et al.,

2018c]. Besides, the corresponding objective scores [Panichella et al., 2018c] and

performance proxy values are also computed at this stage.

Next, parents and offsprings are ranked into non-dominance fronts (line 13)

using the preference sorting algorithm and non-dominated sorting algorithm as

166

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

Algorithm 2: aDynaMOSA Pseudo-Algorithm
Input : B = {τ1, ..., τm}: set of coverage targets of a program

Population size M
CDG = 〈N, E, s〉: control dependency graph of a program

Result: A test suite T
begin

φ← EXTEND-CDG(CDG, B)
i← 0
B∗ ← ENTRY-POINTS(CDG, φ, B)
Pi ← RANDOM-POPULATION(M)
Archive ← PERFORMANCE-UPDATE-ARCHIVE(Pi, ∅)
B∗ ← UPDATE-TARGETS(B∗, CDG, φ)
while not(search budget consumed) AND (B 6= ∅) do

Oi ← GENERATE-OFFSPRING(Pi)
Archive ← PERFORMANCE-UPDATE-ARCHIVE(Oi, Archive)
Hi ← GET-SECONDARY-HEURISTIC(Oi, i)
B∗ ← UPDATE-TARGETS(B∗, CDG, φ)

F← PREFERENCE-SORTING(Pi

⋃

Oi, B∗)

Pi+1 ← ∅
d← 0
while |Pi+1|+ |Fd| ≤M do

if Hi is crowding-distance then
CROWDING-DISTANCE-ASSIGNMENT(Fd)

else
PERFORMANCE-SCORE-ASSIGNMENT(Fd)

Pi+1 ← Pi+1

⋃

Fd

d← d + 1

Sort(Fd) /* according to Hi */

Pi+1 ← Pi+1

⋃

Fd[1 : (M − |Pi+1|)]

i← i + 1

return T

done in MOSA [Panichella et al., 2015] and DynaMOSA [Panichella et al., 2018b].

The main difference between aDynaMOSA and DynaMOSA lies in the secondary

heuristic used to rank parent and offspring tests. In MOSA, the secondary

heuristic is the crowding distance, which promotes more diverse test cases within

the same front. The crowding distance is responsible for ensuring diversity among

the selected tests [Deb et al., 2002], which is a critical aspect of evolutionary

algorithms [Črepinšek et al., 2013]. A lack of diversity leads to stagnation in

local optima [Črepinšek et al., 2013; Panichella et al., 2018b], which could reduce

the probability to cover feasible branches.

In aDynaMOSA, we use both the crowding distance and the performance prox-

ies as secondary heuristics. aDynaMOSA uses the routine GET-SECONDARY-

HEURISTIC (lines 11 and 17-20 of Algorithm 2) to decide which of the two

5.3 Approach 167

Algorithm 3: GET-SECONDARY-HEURISTIC
Input : Qi: new offsprings; i: the current iteration;

B = {τ1, ..., τm}: set of coverage targets of a program
Result: Hi: heuristic for the current generation
begin

if i==0 then
// Counters for generations with stagnation

performance-counter ← 0
crowding-counter ← 0
return performance-heuristic /* Initial heuristic */

stagnation ← TRUE
for b ∈ B and b is not covered do

if best objective value for b in Qi better than in Qi−1 then
stagnation ← FALSE

if stagnation then
// Heuristic with the lowest stagnation counter

if Hi−1 is performance-heuristic then
performance-counter ← performance-counter+1

else
crowding-counter ← crowding-counter+1

if performance-counter ≤ crowding-counter then
return performance-heuristic

else
return crowding-distance

else
// Heuristic used in the previous iterations

if Hi−1 is performance-heuristic then
performance-counter ← 0

else
crowding-counter ← 0

return Hi−1

alternative secondary heuristics to apply, which depends on whether search

stagnation is detected or not. Algorithm 3 depicts the pseudo-code of the routine

GET-SECONDARY-HEURISTIC. In the first generation, the default secondary

heuristic is the one based on performance proxies (lines 2-5 of Algorithm 3).

For the later generations, the secondary heuristic is chosen by (i) analyzing

the current objective scores to detect stagnation and (ii) taking into account

which heuristics were used in the previous generations. Stagnation is detected

when no improvement is observed for all uncovered branches (lines 7-9), i.e.,

the fitness functions for all coverage criteria are unchanged over the last two

generations. Then, two counters are used to keep track of how often (i.e., in

how many iterations) stagnation was detected when either applying the crowding

distance or using the performance proxies. In case of stagnation, the algorithm

168

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

selects a new secondary heuristic with the lowest stagnation counter (lines 11-18

of Algorithm 3). Otherwise, the secondary heuristic for the current generation i

remains the same as used in the previous iteration i − 1 (lines 20-24).

Once the secondary heuristic for the current iteration is selected, aDynaMOSA

assigns a secondary score to every test case in each dominance front Fd (lines 18

and 20 of Algorithm 2) based on either the crowding distance or the performance

proxies. If the employed secondary heuristic is the crowding distance, the

secondary score of the tests corresponds to the crowding distance scores computed

using the subvector dominance assignment by Köppen et al. [Köppen and Yoshida,

2007; Panichella et al., 2018b]. Otherwise, if the performance proxies are selected

for the secondary heuristic, the secondary score for each test case t is computed

as follows:

performance-heuristic(t) =
∑

Ik∈I

Imax
k (Fd) − Ik(t)

Imax
k (Fd) − Imin

k (Fd)
(5.2)

where Ik(t) is the value of the k-th proxy for the test t; Imax
k (Fd) and Imin

k (Fd)

are the maximum and the minimum values of the k-th proxy among all tests

in the front Fd. The performance-heuristic takes a value in [0; 7]; a zero value

is obtained when the test case t has the largest (worst) proxy values among all

tests within the same front Fd, i.e., ∀Ik, Ik(t) = Imin
k (Fd); a maximum value

of seven (corresponding to the total number of proxies) is obtained when t has

the lowest (best) proxies values among all tests within the same front Fd, i.e.,

∀Ik, Ik(t) = Imax
k (Fd). Therefore, higher values of the performance-heuristic are

preferable.

Crowding distance and performance-heuristic are then used in lines 21 and

23 of Algorithm 2 to select test cases from the fronts F0-Fk until it reaches a

maximum population size of M . When the crowding-distance is used, more

diverse tests within each front have a higher probability of being selected for the

next population. On the other hand, when the performance-heuristic is used,

the tests with lower predicted resource demands are favored. Note, we update

the archive based on the predicted performance of the executed test cases, The

update of the archive works as follows: when a test case t satisfies an uncovered

5.4 Empirical Study 169

branch bi, t is automatically added to the archive. Otherwise, if a new test t

hits an already covered branch bi, t is added to the archive if and only if its

performance-score (Equation 5.1) is lower than the score of the test case in the

archive for bi. On the contrary, DynaMOSA employs the preference-criterion.

5.4 Empirical Study

Our empirical evaluation compares aDynaMOSA with DynaMOSA along three

dimensions: (i) seven different coverage criteria (the default ones of EvoSuite),

(ii) fault detection effectiveness measured by strong mutation, and (iii) resource

usage measured by runtime and heap memory consumption. Therefore, we

investigate the following research questions:

RQ1: (Effectiveness) What is the target coverage achieved by aDynaMOSA

compared to DynaMOSA?

We evaluate the seven default criteria that are available in EvoSuite opti-

mized by aDynaMOSA via many-objective optimization. The criteria are: branch,

line, weak mutation, method, input, output, and exception coverage [Rojas et al.,

2015; Panichella et al., 2018c]. With RQ1, we investigate whether and to what

degree the introduction of the performance proxies affects the target coverage of

each criterion.

RQ2: (Fault Detection) What is the mutation score achieved by aDynaMOSA

compared to DynaMOSA?

The second research question extends the comparison between aDynaMOSA

and DynaMOSA by focusing on fault detection. Tests generated using the

proposed performance-aware approach might have a different structure (e.g.,

contain fewer statements and method calls). Therefore, we conduct a mutation-

based analysis assessing whether optimizing performance proxies impact the fault

detection capability of the generated tests.

170

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

RQ3: (Performance) Does aDynaMOSA help to reduce test runtimes and heap

memory consumption?

The last research question investigates whether the approach is able to

generate tests with reduced resource usage. In particular, we investigate two

dimensions: time, measuring runtime; and memory looking at the heap memory

consumption of the generated tests.

For both RQ1 and RQ2, we also compare our approach with random search,

which is a common baseline when using search-based techniques [Arcuri and

Briand, 2011].

Prototype tool. We implemented aDynaMOSA in a prototype tool extending

the EvoSuite test suite generation framework, as explained in section 5.3.2.

The source code of the prototype tool is available on GitHub.3 All experimental

results reported in this paper are obtained using this prototype tool. Moreover,

a runnable version of the tool itself is available for download in the replication

package.1

5.4.1 Subjects

Our benchmark consists of Java classes from different test benchmarks widely

used in the SBST (Search-Based Software Testing) community: (i) the SF110

corpus [Fraser and Arcuri, 2014], (ii) the 5th edition of the Java Unit Testing Tool

Competition at SBST 2017 [Panichella and Molina, 2017], and (iii) benchmarks

used from previous papers about test data generation [Panichella et al., 2018b,

2015]. The SF110 benchmark4 is a set of Java classes, extracted from 100 projects

in the SourceForge repository [Rojas et al., 2017; Shamshiri et al., 2015b]. We

randomly sampled Java classes from the benchmarks discarding the trivial ones

[Panichella et al., 2018b], i.e., the classes having cyclomatic complexity below five.

In total, we selected 110 Java classes from 27 different projects, having 29,842

branches and 139,519 mutants considered as target coverage in our experiment.

Table 5.2 reports the characteristics of the classes grouped by project.

3https://github.com/giograno/evosuite, Last Access: 21.01.21
4http://www.evosuite.org/experimental-data/sf110/, Last Access: 21.01.21

5.4 Empirical Study 171

Table 5.2: Java Projects and Classes in Our Study

Project # Branches Mutants

Min Max Mean Min Max Mean

a4j 2 30 124 77 15 911 463

bcel 4 52 890 475 408 1,523 1,043

byuic 1 722 722 722 2,173 2,173 2,173

fastjson 10 20 2,880 564 36 13,152 2,078

firebird 3 90 194 131 347 441 392

fixsuite 1 32 32 32 110 110 110

freehep 6 48 160 92 112 807 297

freemind 1 170 170 170 2,427 2,427 2,427

gson 4 60 660 285 126 2,870 1,212

image 7 34 274 140 214 1,676 589

javathena 1 230 230 230 752 752 752

javaviewcontrol 2 212 2,360 1,286 2,058 4,972 3,515

jdbacl 2 170 174 172 595 700 648

jiprof 1 816 816 816 6,420 6,420 6,420

jmca 2 198 1,696 947 2,436 9,669 6,052

jsecurity 1 52 52 52 165 165 165

jxpath 3 98 102 100 204 449 312

la4j 7 20 280 135 196 3,217 1,122

math 4 14 238 92 135 1,274 443

okhttp 5 64 542 194 200 2,571 846

okio 9 24 562 126 34 4,271 1,009

re2j 8 68 646 178 148 2,096 1,129

saxpath 1 458 458 458 659 659 659

shop 4 38 182 102 175 465 302

webmagic 4 10 142 84 29 337 201

weka 10 212 778 359 255 13,263 2,220

wheelwebtool 7 24 804 331 75 3,898 1,637

Total 110

172

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

5.4.2 Experimental Protocol

We run DynaMOSA, aDynaMOSA, and random search for each class in the

benchmark, collecting the resulting code coverage and mutation score. For this,

the generated test cases/suite are post-processed in EvoSuite: input data

values and method sequences are minimized after the search process terminates.

More precisely, redundant statements that do not satisfy any additional coverage

targets (e.g., branches) are discarded. These post-processing steps are applied

for both search algorithms under study [Fraser and Arcuri, 2013]. We set the

maximum search time to 180 seconds [Campos et al., 2017]. Hence, the search

stops either if the 100% coverage is reached or the time budget runs out. We set

an extra timeout of 10 minutes at the end of the search for mutation analysis.

We use this budget because of the additional overhead required to re-execute

each test case against the target mutants. To deal with the non-determinism of

the employed algorithms, each run is repeated 50 times [Campos et al., 2017].

We adopt the default GA parameters used by EvoSuite [Fraser and Arcuri,

2013] since they provide good results [Arcuri and Fraser, 2013].

We rely on the non-parametric Wilcoxon Rank-Sum Test [Conover, 1999]

with significance level α=0.05. We formulate three null hypotheses, one for

each research question, i.e., that the compared algorithms achieve the same

target coverage (RQ1), the same strong mutation coverage (RQ2), and the

same runtime and heap memory consumption (RQ3). p-values<0.05 allow us

to reject these null hypotheses. Moreover, we rely on the Vargha-Delaney (Â12)

statistic [Vargha and Delaney, 2000] to estimate the effect size of the differences

between the achieved distributions. It has the following interpretation: for the

coverage criteria and mutation score Â12 ≥ 0.50 when DynaMOSA—or the

random search— achieves a higher coverage than aDynaMOSA while Â12 < 0.50

means the opposite. For runtime and memory consumption Â12 ≥ 0.50 indicates

that the suites generated by aDynaMOSA run faster or use less memory than

the ones generated by DynaMOSA. Vargha-Delaney (Â12) statistic also returns a

categorical estimation of the effect size values [Vargha and Delaney, 2000], with

negligible, small, medium, and large as possible levels.

5.4 Empirical Study 173

Mutation-based analysis. To evaluate the fault detection effectiveness of

aDynaMOSA, we rely on strong mutation analysis, due to several reasons: (i)

Multiple studies showed a significant correlation between mutant detection and

real-fault detection [Just et al., 2014b; Andrews et al., 2005]. (ii) Mutation

testing is broadly recognized as an upscale coverage criterion [Jia and Harman,

2011], and it was shown to be a superior measure of test case effectiveness

compared to other criteria [Wei et al., 2012; Inozemtseva and Holmes, 2014]. The

underlying idea of mutation testing is the creation of modified versions of the

original source code, called mutants [Offutt, 2011]. These changes are introduced

in the production code by mutation operators, aiming to mime real faults [Just

et al., 2014b]. (iii) Each test suite is run against the generated mutants and

evaluated based on its mutation score, i.e., the ratio of killed (detected) mutants

and the number of generated ones.

To perform our analysis, we rely on EvoSuite’s built-in mutation en-

gine [Fraser and Arcuri, 2015], implementing eight different mutation operators,

i.e., Delete Call, Delete Field, Insert Unary Operator, Replace Arithmetic Opera-

tor, Replace Bitwise Operator, Replace Comparison Operator, Replace Constant,

and Replace Variable. We opt for EvoSuite’s engine for two reasons: First,

it makes strong mutation analysis straightforward. Second, it was shown that

the mutation scores computed by EvoSuite are close to results on real-world

software [Fraser and Arcuri, 2015], which motivated recent works to rely on

it [Panichella et al., 2018b,c].

Performance measurement. To evaluate the performance, we compare the

runtimes and heap memory usages of the test suites generated by DynaMOSA

and aDynaMOSA. An ideal comparison would require measuring two identical

test suites —for each subject and approach— in terms of branch coverage

and statements executed. However, this is impossible in practice due to the

algorithms’ randomness. To have a fair comparison, we conduct our performance

analyses selecting the test suites with statistically equivalent branch coverage.

We first select the classes with no statistical difference (i.e., p-value>0.05) in

branch coverage; and then for each subject and approach, we select the test

suites with the median coverage over 50 runs for performance profiling and

174

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

comparison. The median coverage was preferred over the average, because using

the average coverage could result in slightly more diverse (i.e., incomparable)

test cases in terms of actual coverage. To profile the performance of the test

suites, we proceed as follows: We transform the source code files for performance

measurements, compile the augmented versions, and run the test suites with

the EvoSuite standalone runtime. The transformer employs JavaParser5 for

AST transformations. It adds for every test case a method before (@Before) and

after (@After) its execution, which reports the current performance counters.

These counters, as reported by Java’s MXBeans (RuntimeMXBean, MemoryMXBean,

GarbageCollectorMXBean, and OperatingSystemMXBean), are: the current time

stamp (in nanoseconds), the heap size (in bytes), the garbage collector (GC)

count (number of garbage collections since the virtual machine started), and

the GC time (in milliseconds). We executed the performance measurements on

a bare-metal machine reserved exclusively for the measurements, i.e., without

user-level background processes (except ssh) running. The machine has a 12-core

Intel Xeon X5670@2.93GHz CPU with 70 GiB memory, runs ArchLinux with a

kernel version 5.2.9-arch1-1-ARCH, and uses a Samsung SSD 860 PRO SATA

III disk.

We execute and measure each test suite 1000 times (forks), in a fresh Java

Virtual Machine (JVM), resembling the methodology proposed by Georges et

al. [Georges et al., 2007]. In a post-processing step, we compute the diffs for each

test case and calculate the sum of all test cases to retrieve the overall performance

(i.e., runtime and heap size) of each test suite. As heap memory diffs might be

influenced by GC activity and therefore invalid, we replace the heap memory diff

of affected methods with the median of the other forks’ valid results (i.e., not

affected by GC activity).

5.5 Results & Discussion

This section discusses the results of the study answering the research questions

formulated in section 5.4. In the following, we will only refer to 109 classes since

5https://github.com/javaparser/javaparser, Last Access: 21.01.21

5.5 Results & Discussion 175

Table 5.3: Comparison between Random Search, DynaMOSA, and aDynaMOSA
on the considered criteria

Criterion Average Coverage vs Random vs DynaMOSA

Random DynaMOSA aDynaMOSA #B. #W. #N.D. #B. #W. #N.D.

Branch 0.67 0.72 0.72 77 5 27 11 19 79

Line 0.71 0.76 0.77 80 2 27 16 17 76

Weak Mutation 0.71 0.77 0.78 91 0 18 15 15 79

Method 0.93 0.97 0.97 59 0 50 2 4 103

Input 0.55 0.83 0.83 103 0 6 16 11 82

Output 0.41 0.54 0.54 91 0 18 22 7 80

Exception 0.99 0.98 0.99 3 7 99 14 3 92

1 class in our sample led to EvoSuite crashes caused by internal errors [Panichella

et al., 2018b].

5.5.1 RQ1 - Effectiveness

Table 5.3 summarizes the code coverage achieved by random search, DynaMOSA,

and aDynaMOSA according to the different coverage criteria. For each approach,

we report (i) the mean coverage for each criterion over the 109 CUTs and (ii)

the number of classes for which aDynaMOSA is statistically better, worse, or

equivalent than random search and DynaMOSA, according to the Wilcoxon test.

Furthermore, we discuss the Â12 effect size. Full results at the class level are

reported in the replication package.1

Table 5.3 compares DynaMOSA and aDynaMOSA. For branch coverage, the

two algorithms are almost equivalent: on average, they achieve the same coverage

(i.e., ~72%) with a median of about 81% and 80%, respectively for aDynaMOSA

and DynaMOSA. The latter is statistically significantly better for 19 out of

109 classes (~18%); over such classes, it achieves +2 percentage points (pp) in

terms of branch coverages. Vice versa, aDynaMOSA significantly outperforms

DynaMOSA in 11 out of 109 classes (~10%) with an average difference of +3pp.

For the vast majority of the subjects, (i.e., ~ 78%) there is no statistical difference

between the two algorithms. Similar results can be observed for line and weak

mutation coverage, where for the 70% and 72% of the subjects the two approaches

176

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

Branch Line Weak M. Method Input Output Excep.Strong M.
criteria

0.0

0.2

0.4

0.6

0.8

1.0

co
ve

ra
ge

approach
DynaMOSA
aDynaMOSA
Random

Figure 5.1: Comparison of target coverage achieved by Random Search, Dy-
naMOSA, and aDynaMOSA over 50 independent runs for the 109 studied
subjects.

do not show a statistically significant difference, respectively. aDynaMOSA only

achieves on average +1pp for both line and weak mutation coverage over the

entire set of classes: i.e., ~77% vs. ~76% and ~78% vs. ~77%, respectively for

line and weak mutation coverage. For the remaining criteria, i.e., method, input,

output, and exception, the number of subjects with no statistically significant

difference increases, ranging from 73% to 94% of the CUTs. For only three classes,

DynaMOSA covers more exceptions than aDynaMOSA. Overall, for none of the

investigated coverage criteria we observe large differences between DynaMOSA

and aDynaMOSA.

Comparing branch coverage of aDynaMOSA and random search (Table 5.3),

aDynaMOSA achieves on average +5pp over all the subjects. 77 out of 109 classes

are statistically significantly better (~70%), while only 5 out of 109 classes are

5.5 Results & Discussion 177

worse. For 62 of these 77 subjects, the magnitude of the difference is large. The

largest improvement is obtained for ICSSearchAlgorith (weka project) where

aDynaMOSA covers 31% more branches on average. We observe similar results

for all other criteria but the exception coverage where random search is not

statistically significantly different for 103 out of 109 subjects. aDynaMOSA

achieves +6pp and +7pp for line and weak mutation coverage, respectively; while

aDynaMOSA reaches +4pp for the method coverage criterion, it achieves +28pp

and +13pp for input and output coverage, respectively.

Figure 5.1 depicts an overview of the coverage scores achieved by the three

approaches over the distinct criteria. It highlights that DynaMOSA and aDy-

naMOSA have similar distributions for the different target coverages. On the

other and, except for the exception coverage, aDynaMOSA leads to larger cover-

age scores compared to the random search.

Finding 1. Across seven criteria, aDynaMOSA achieves similar levels of

coverage compared to DynaMOSA, while both outperform random search.

5.5.2 RQ2 - Fault Detection

Figure 5.1 shows the distributions of the mutation scores (i.e., strong mutation

coverage) using box-plots —on the extreme right, along with the other criteria—

achieved by the approaches for the 109 subjects over 50 runs. We notice that the

distributions of aDynaMOSA and DynaMOSA are similar: the former achieves

+1pp mutation scores compared to the baseline. The medians of the distributions

are ~33% and ~32%, respectively. Both approaches considerably outperform

random search which achieves a median of ~27%.

Table 5.4 reports the fine-grained results of strong mutation achieved by

random search, DynaMOSA, and aDynaMOSA. We report (i) the mutation

scores averaged over the different projects and (ii) the number of cases in each

project where aDynaMOSA is better (#B.), worse (#W.), or equivalent (#N.D.)—

according to the Wilcoxon test—compared to random search and DynaMOSA.

We share the full results at class level in the replication package.1

178

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

Table 5.4: Mean mutation score achieved for each project

Project Cl. Mutation Score Â12 Statistics

Random DynaMOSA aDynaMOSA vs Random vs DynaMOSA

#B. #W. #N.D. #B. #W. #N.D.

freehep 6 0.25 0.37 0.36 5 0 1 1 2 3

fastjson 10 0.28 0.36 0.35 10 0 0 1 2 7

weka 10 0.21 0.24 0.25 9 0 1 2 1 7

re2j 7 0.31 0.34 0.35 5 0 2 1 1 5

bcel 4 0.33 0.42 0.39 3 0 1 1 2 1

wheelwebtool 7 0.24 0.33 0.32 7 0 0 2 3 2

javathena 1 0.22 0.24 0.25 1 0 0 1 0 0

math 4 0.31 0.35 0.36 4 0 0 2 0 2

image 7 0.29 0.37 0.36 6 0 1 2 1 4

webmagic 4 0.40 0.43 0.44 3 0 1 0 0 4

jdbacl 2 0.37 0.44 0.43 2 0 0 0 1 1

okio 9 0.24 0.32 0.34 8 0 1 2 0 7

okhttp 5 0.28 0.34 0.34 5 0 0 0 1 4

shop 4 0.34 0.40 0.39 4 0 0 0 3 1

jsecurity 1 0.29 0.34 0.34 1 0 0 0 0 1

fixsuite 1 0.06 0.09 0.12 1 0 0 0 0 1

javaviewcontrol 2 0.12 0.16 0.15 2 0 0 0 1 1

byuic 1 0.08 0.11 0.10 1 0 0 0 1 0

gson 4 0.16 0.21 0.19 3 0 1 0 2 2

firebird 3 0.48 0.52 0.51 3 0 0 0 1 2

jxpath 3 0.51 0.55 0.57 3 0 0 1 0 2

a4j 2 0.24 0.19 0.27 1 0 1 2 0 0

jmca 2 0.19 0.29 0.28 2 0 0 0 0 2

freemind 1 0.19 0.21 0.25 1 0 0 1 0 0

la4j 7 0.25 0.33 0.34 3 0 4 0 0 7

saxpath 1 0.57 0.60 0.59 1 0 0 0 1 0

jiprof 1 0.06 0.13 0.13 1 0 0 0 0 1

Mean 0.27 0.32 0.33

No. cases aDynaMOSA is better than Random 95 (87.16%)

No. cases Random is better than aDynaMOSA 0 (0.0%)

No. cases aDynaMOSA is better than DynaMOSA 19 (17.43%)

No. cases DynaMOSA is better than aDynaMOSA 23 (21.1%)

From Table 5.4 we observe that aDynaMOSA significantly outperforms ran-

dom search in 95 out of 109 cases, corresponding to ~87% of all the CUTs. For

these subjects, the test suites generated by aDynaMOSA achieve from +1pp to

+29pp higher mutation scores compared to the ones generated by the baseline,

with an average improvement of ~7%. In 78 out of these 95 cases, the magni-

5.5 Results & Discussion 179

tude of the difference is large. Random search is never significantly better than

aDynaMOSA.

Comparing aDynaMOSA and DynaMOSA, in more than half of the cases

(i.e., ~61%) there is no statistical difference between the mutation score of the

two approaches, which is in line with what we observed in RQ1. For ~23%

of the subjects, DynaMOSA scores a significantly higher in strong mutation.

However, for about half of these cases (10 out of 23 subjects) the magnitude of

the difference is small. The suites generated by DynaMOSA achieve from +0.3pp

to +8pp higher mutation score, with an average improvement of ~3%. On the

other hand, in ~17% of the subjects, aDynaMOSA outperforms the baseline. In

these, 19 out of 109, the suites generated by aDynaMOSA achieve from +0.8pp

to +15pp (for the class Product) higher mutation score, with a mean of ~4%.

In the few cases where aDynaMOSA performs worse than DynaMOSA, the

difference is due to a slight difference in branch coverage. There is a direct

relation between code coverage and fault effectiveness: if a mutant is not covered,

it cannot be killed. For example, let us consider the class Parser from re2j,

which has 667 branches and 501 mutants. aDynaMOSA achieves 63.0% average

branch coverage compared to 63.7% achieved by DynaMOSA. However, neither

set of mutants killed by one of the two approaches is a subset of the other

approach’s set. aDynaMOSA kills nine mutants not killed by DynaMOSA while

DynaMOSA kills 18 mutants not killed by aDynaMOSA. Listing 5.1 shows an

example of mutants killed by DynaMOSA only.

The mutant is injected into the first if statement of the private method

removeLeadingString. Both approaches cover the statement through indirect

method calls; however, only the test cases produced with DynaMOSA are able to

kill the mutant. The reason for this is that the if-condition requires to instantiate

an object of class Regexp with proper attributes op and subs. This can be done

by invoking additional methods of Regexp. aDynaMOSA is designed to reduce

the number of method calls (to reduce heap memory consumption); therefore, in

some runs, it generates tests without setting the input object re. This example

suggests that there is room for further improvement of aDynaMOSA by handling

180

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

1 public class Parser {

2 ...

3 private Regexp removeLeadingString(Regexp re, int n) {

4 // original code:

5 // if ((re.op == Regexp.Op.CONCAT) && (re.subs.length == 0))

6 // mutant:

7 if ((op == Regexp.Op.CONCAT) && (subs.length > 0)) { ... }

8 ...

9 }

Listing 5.1: The listing shows a mutant generated by EvoSuite’s mutation engine.
While the suites generated by DynaMOSA are able to it, the mutant survives to
the ones generated by aDynaMOSA.

method calls differently, depending on whether they are required for fixture or

for exercising the CUT behavior.

Finding 2. aDynaMOSA achieves similar levels of mutation score compared

to DynaMOSA, while both outperform random search.

5.5.3 RQ3 - Performance

In this section, we compare the runtime and heap memory consumption of

the test suites generated by aDynaMOSA and DynaMOSA. Recall that we

restrict this analysis to the CUTs with no statistical difference in branch coverage

(see section 5.4.2); thus, we pick the suite with the median coverage for each

subject.

Table 5.5 summarizes the performance results of the suites generated by

the two approaches, aggregated by project. We first discuss the cases where

aDynaMOSA outperforms DynaMOSA. Table 5.5 shows that the test suites

generated by aDynaMOSA have shorter runtimes in about 72% of the cases.

For these suites, runtime decreases on average by ~24% (with a median of

~13%), ranging from -1pp to -79pp (for the class JSONArray). Regarding heap

memory consumption, aDynaMOSA outperforms DynaMOSA for ~70% of the

5.5 Results & Discussion 181

Table 5.5: Mean runtime and memory consumption achieved for each project.

Project Cl. Runtime (in ms) Memory Consumption (in) Â12 Statistics

DynaMOSA aDynaMOSA DynaMOSA aDynaMOSA Runtime Memory Consumption

#B. #W. #N.D. #B. #W. #N.D.

jmca 2 130.87 155.12 590.46 607.21 1 1 0 1 1 0

jdbacl 1 14.32 2.28 2.84 5.68 0 0 1 0 0 1

javaviewcontrol 1 169.81 112.79 244.47 204.48 1 0 0 1 0 0

jsecurity 1 552.76 490.33 392.03 349.12 1 0 0 1 0 0

freemind 1 781.37 1,188.46 305.05 384.81 0 1 0 0 1 0

shop 3 57.18 75.42 285.34 281.42 2 1 0 2 1 0

bcel 1 91.87 84.41 568.01 488.62 1 0 0 1 0 0

a4j 1 49.26 48.75 22.78 22.83 1 0 0 0 0 1

firebird 2 83.36 50.27 270.44 235.88 2 0 0 2 0 0

fastjson 7 444.47 174.20 1,129.95 515.34 6 1 0 4 3 0

webmagic 2 121.20 172.61 281.55 258.76 1 1 0 1 1 0

okio 7 125.32 105.05 524.28 456.86 4 2 1 7 0 0

math 2 295.59 286.86 181.71 177.68 1 1 0 1 1 0

image 5 53.51 50.62 290.56 261.89 3 2 0 4 1 0

jxpath 2 126.13 66.42 196.70 191.80 2 0 0 1 1 0

gson 2 72.53 45.51 199.58 178.30 2 0 0 2 0 0

freehep 4 229.75 172.33 152.33 136.53 4 0 0 3 1 0

la4j 6 215.93 164.51 238.67 226.45 6 0 0 4 1 1

re2j 4 50.12 48.81 262.36 254.76 2 2 0 3 1 0

okhttp 2 49.18 45.46 129.87 125.13 1 1 0 2 0 0

weka 1 0.49 389.94 0.00 92.30 0 0 1 0 1 0

Mean 176.91 187.15 298.52 259.8 41 (71.93%) 13 (22.81%) 3 (5.26%) 40 (70.18%) 14 (24.56%) 3 (5.26%)

classes. Among these subjects, the suites generated by aDynaMOSA show a

~15% decrease in heap memory consumption (with a median of ~11%), ranging

from -1.6pp to -86pp (for the class JSONArray).

Figure 5.2 shows the example of the class JSONArray, plotting the runtime

and heap memory consumption distributions over 1000 independent runs of

the generated suites by DynaMOSA and aDynaMOSA. The two profiled suites

achieve similar levels of coverage over the seven different criteria. However, the

median runtime is ~511 milliseconds (ms) for aDynaMOSA versus ~2,429 ms

for DynaMOSA, while the median heap memory consumption is ~694 megabyte

(MB) for aDynaMOSA versus ~5,429 MB for DynaMOSA.

To have a fair performance analysis, we compare test suites achieving the

closest —ideally identical— branch coverage (see section 5.4.2). However, due to

intrinsic randomnesses of GAs, this is practically infeasible. Thus, we extend our

analysis by looking at the differences in code coverage for the cases in which the

suites generated by aDynaMOSA show lower resource demands than the ones

generated by DynaMOSA. The goal is to verify whether the decreased runtime

(or heap memory consumption) is caused by tests having lower code coverage,

182

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

DynaMOSA aDynaMOSA
approaches

500

1000

1500

2000

2500

ru
nt

im
e

(in
 m

s)

DynaMOSA aDynaMOSA
approaches

1000

2000

3000

4000

5000

6000

he
ap

 m
am

or
y

co
ns

um
pt

io
n

(in
 M

B)

Figure 5.2: Comparison of runtime and heap memory consumption for the suite
generated by DynaMOSA and aDynaMOSA for the JSONArray class over 1,000
independent runs.

which may result in fewer statements being executed. Despite faster runtime

and lower memory consumption, this analysis shows there is no decrease on

any target criterion. This is evident if we look at the median and the mean of

differences in branch and line coverage achieved by the two approaches. The

mean of the differences is below 1% —0.5% and 0.8%, respectively for branch

and line coverage— while the median of the differences is exactly 0.0% for both

the criteria.

Finding 3. The suites generated by aDynaMOSA have lower runtimes and

heap memory consumption, respectively, for ~72% and ~70% of the subjects

while achieving the same levels of code coverage.

Regarding the CUTs where the test suites generated by DynaMOSA have

better performance than the ones generated by aDynaMOSA: Table 5.5 shows

that the suites generated by DynaMOSA outperform the ones generated by

5.5 Results & Discussion 183

Branch Line Weak M. Strong M.
criteria

0.2

0.4

0.6

0.8

co
ve

ra
ge approach

DynaMOSA
aDynaMOSA

Figure 5.3: Coverage scores achieved by the test suites generated by the two
approaches for the CUTs where DynaMOSA shows better performance than
aDynaMOSA.

aDynaMOSA in ~22% of the (negative) cases. For these subjects, the runtime of

DynaMOSA decreases on average by ~20%, ranging from -0.5pp to -48pp (for the

class JSTerm). Similarly, the test suites generated by DynaMOSA show lower

heap memory consumption for ~24% of the cases, with a decrease ranging from

-0.2pp to -39pp (for the class JSONLexerBase).

To understand the reason of these few negative results, we analyze the

code coverage achieved by both approaches. Figure 5.3 shows the branch and

line coverage and weak and strong mutation score distributions achieved for

the subjects where DynaMOSA produces more performant tests. Although

aDynaMOSA generates suites with inferior performance it reaches higher code

coverage, i.e., +4pp branch and +9pp line coverage. Each suite generated by

aDynaMOSA contains 17 tests more on average than the ones generated by the

184

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

baseline (154 vs. 137). This indicates that the suites generated by aDynaMOSA

execute more production code, thus, executing more statements, resulting in

higher resource demands.

Recall that we profile the test suites with the median branch coverage for the

subjects that do not show statistically significant differences (i.e., p-value > 0.05)

(see section 5.4.2). This allows for fair profiling and comparison of test suites

with similar code coverage. However, with a significance level of 0.05, we include

subjects in the performance analysis that show marginal statistical significance

(i.e., 0.05 < p-value < 0.1) in branch coverage. Consequently, in these cases we

select and profile test suites with a non-negligible difference in code coverage.

In our analysis, we observe a marginal statistical difference in branch coverage

for ~60% of the CUTs where the baseline outperforms aDynaMOSA in resource

usage. A representative example is the class JSONLexerBase, which has the worst

heap memory consumption achieved by aDynaMOSA compared to the baseline.

However, this generated suite achieves +5pp branch coverage and contains 34

more test cases on average.

Finding 4. The suites generated by aDynaMOSA have slower runtimes

and higher heap memory consumption for ~22% and ~24% of the subjects,

respectively. However, in these cases they achieve higher code coverage and

contain more test cases.

5.5.4 Discussion

Listing 5.2 depicts two test cases for the class GaussianSolver (from la4j)

generated by DynaMOSA and aDynaMOSA. The test case generated by the

former is the one with both slower runtime and higher heap memory consumption

having about 39ms and 38MB on average over 1000 runs. First, it creates a

Matrix with a diagonal and size equal to 1349 (line 3 of Listing 5.2). Second, it

creates an object of the class SparseVector with size and capacity equal to 1349

(line 4 of Listing 5.2). Thus, it instantiates an object of the class GaussianSolver

from the matrix above (line 5 of Listing 5.2). Finally, it executes the method

5.5 Results & Discussion 185

solve that solves the corresponding linear system (line 6 of Listing 5.2). The test

generated by aDynaMOSA for the same class builds the GaussianSolver using

a very small matrix (line 13 of Listing 5.2). Similarly, a smaller SparseVector

is then instantiated in line 14 of Listing 5.2. At the end, the solve method is

again called to solve the linear system (line 16 of Listing 5.2).

Despite implementing a similar behavior, the test generated by DynaMOSA

runs almost 20 times slower (and using 8 times more heap memory) —on average

over the 1000 runs— than the one generated by aDynaMOSA. This improvement

is due to a better input value selection for the methods directly or indirectly

invoked by the generated tests. While the algorithm has no direct control over

this selection, the selective pressure applied by the performance proxies favors

the individuals with better inputs —from a performance perspective— that

randomly appear in the population. For this reason, we expect aDynaMOSA to

be particularly more effective in scenarios where the input space is not trivial

(i.e., most inputs are primitive values and the CUT does not handle large arrays

or objects).

Need for an adaptive approach. As explained in section 5.3.2, we considered

an adaptive approach that disables/enables the performance heuristics depending

on whether the search stagnates, i.e., there is no improvement in the objective

values for subsequent generations. To provide empirical evidence for the need for

an adaptive approach, we conducted an additional study by running aDynaMOSA

and disabling the GET-SECONDARY-HEURISTIC procedure (see section 5.3.2):

i.e., the algorithm always uses the heuristic based on the performance proxies.

Our results show the expected decrease in code coverage: for branch coverage,

the non-adaptive version of aDynaMOSA achieves on average -18pp in 52 out of

109 cases (~48%). On the contrary, DynaMOSA never achieves higher branch

coverage. We observe a similar situation for weak mutation coverage: the non-

adaptive version of aDynaMOSA achieves on average -25pp in 48 out of 109 cases

(~44%), while the opposite never happens.

Oracle cost. Quantitative human oracle cost reduction aims at reducing test

suite and test case size to consequently diminish the amount of human effort

required to check the candidate assertions (the oracle problem) [Barr et al., 2015].

186

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

1 // test case generated by DynaMOSA

2 public void test03() throws Throwable {

3 Matrix matrix = Matrix.unit(1349, 1349);

4 SparseVector sparseVector = SparseVector.zero(1349);

5 GaussianSolver gaussianSolver = new GaussianSolver(matrix);

6 gaussianSolver0.solve(sparseVector);

7 }

8

9 // test case generated by aDynaMOSA

10 public void test12() throws Throwable {

11 MockRandom mockRandom = new MockRandom(1);

12 DenseMatrix denseMatrix = DenseMatrix.randomSymmetric(1, mockRandom);

13 GaussianSolver gaussianSolver = new GaussianSolver(denseMatrix);

14 SparseVector sparseVector = SparseVector.zero(1, 1);

15 try {

16 gaussianSolver0.solve(sparseVector);

17 ...

18 }

Listing 5.2: Test cases for the GaussianSolver class.

Test suite size has often been used in literature as a proxy for oracle cost [Harman

et al., 2010; Ferrer et al., 2012]. A simple solution for alleviating this issue is to

reduce the size of the generated test suites [Harman et al., 2010]. To investigate

the oracle cost for DynaMOSA and aDynaMOSA, we compare the size of the

generated suite with the Wilcoxon test [Conover, 1999]. We observe that the test

suites generated by aDynaMOSA are significantly smaller in 69 out of 109 cases

(~63%), while the opposite happens in only 6 cases. The average test case length

is 98 and 91 statements for DynaMOSA and aDynaMOSA, respectively. These

results give us confidence that our approach —as a collateral effect— might

help to reduce the human oracle cost to a greater extent than DynaMOSA.

Note that the test suites generated by both DynaMOSA and aDynaMOSA are

post-processed for test minimization. Therefore, the differences observed in terms

of test suite size are due to the adaptive strategies and the performance proxies

implemented in aDynaMOSA. We report the full results at class level in the

replication package.1

5.6 Threats to Validity 187

Trade-off between coverage and performance. Our results show that

aDynaMOSA achieves similar levels of coverage while optimizing runtime and

memory consumption. Despite aDynaMOSA finding a good compromise between

primary and secondary objectives, in a few cases the performance optimization

results in slightly lower coverage. The acceptable level of performance and

coverage depends on the system domain. For instance, in the development

context of cyber-physical systems (CPS), tests can be particularly expensive

to run, especially when they involve hardware or simulations [Törngren and

Sellgren, 2018]. Thus, the resource demands for testing systems in this domain

are dramatically higher compared to non-CPS-based applications. Adaptive

approaches focusing on performance while keeping high levels of coverage might

improve the testability of CPS [Abbaspour Asadollah et al., 2015; Törngren and

Sellgren, 2018].

5.6 Threats to Validity

Threats to construct validity regard the way the performance of a testing technique

is defined. To compare the effectiveness of the different algorithms, we rely

on metrics extensively exploited in the literature [Panichella et al., 2018b].

For RQ1, we evaluate aDynaMOSA relying on the seven default criteria of

EvoSuite, i.e., branch, line, weak mutation, method, input, output, and exception

coverage. In RQ2, we use strong mutation coverage. To give a reasonable

estimation of the performance of the generated test suites, we use runtime and

heap memory consumption in RQ3. The usage of different tools might influence

the results. To tackle this threat, all the algorithms we compare are implemented

in EvoSuite [Fraser and Arcuri, 2011].

Threats to internal validity concern lurking variables that might influence

our results. A common threat that arises dealing with genetic algorithms is

related to their intrinsic randomness. To deal with it, we repeated each run

50 times [Campos et al., 2017]. We discuss the average results paired with

statistical significance tests. Different factors might have also influenced the

performance measurements, such as the order in which the tests are executed.

188

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

Due to dynamic compiler optimizations, different execution orders might change

the runtime results of individual runs. We tackle this threat by repeating the

measurements for 1000 times. Another threat concerns the memory measurements

where garbage collector activity invalidates the heap diff computed for every

test method. We address this threat by replacing the measurements for the

methods that trigger the GC with the other valid forks’ average heap utilization.

To lower the resources demand of generated tests, we aggregate seven different

proxies in a performance score optimized as a secondary objective. To investigate

their impact in isolation, we run aDynaMOSA with a single proxy enabled at a

time. Then, we measure the runtime and the achieved branch coverage of the

generated tests, averaged over five different runs (measured in EvoSuite). While

the average runtime varies across the different proxies, we observe that their

usage in isolation always results in lower values of branch coverage compared to

their usage in aggregation.

To investigate the oracle cost of aDynaMOSA, we compare the size of the

generated suites to the ones produced by DynaMOSA. Previous research relied

on test suite size as a proxy for the oracle cost [Harman et al., 2010]. We can only

empirically claim that aDynaMOSA generates smaller suites and are therefore

confident that aDynaMOSA might help to reduce the oracle cost. However, too

many other factors prevent us from making a definitive claim. Conducting a

study with developers to confirm this assumption is part of our future agenda.

Threats to External Validity regard the generalizability of the results. We

conduct our experiment on randomly selecting Java classes from four different

datasets [Fraser and Arcuri, 2014; Panichella and Molina, 2017; Panichella et al.,

2018b, 2015] used in several previous works on test case generation. In total, we

selected 110 classes from 27 different projects coming from different domains,

discarding the trivial ones with cyclomatic complexity lower than 5 [Panichella

et al., 2018b]. While this represents already a variegate and large-scale empirical

study, replications targeting different types of projects are still desirable.

Threats to conclusion validity stem from the relationship between the treat-

ment and the outcome. To analyze the results of our experiments, we use

appropriate statistical tests coupled with sufficient repetitions [Campos et al.,

5.7 Conclusions 189

2017]. We rely on the Wilcoxon Rank-Sum Test [Conover, 1999] for the statistical

significance, and we only discuss the statistically significant results. Moreover,

we estimate the differences of the distributions for the observed metrics relying

on the Vargha-Delaney effect size statistic [Vargha and Delaney, 2000].

5.7 Conclusions

This paper introduces aDynaMOSA, an adaptive search-based algorithm that

optimizes a secondary objective orthogonal to code coverage without any negative

effect on the latter. We instantiate aDynaMOSA to the problem of generating

tests with lower resource demands, focusing on runtime and heap memory con-

sumption along with seven different coverage criteria. To avoid the overhead

of precise performance measurements, we introduce a set of low-overhead per-

formance proxies that estimate computational demands of tests. aDynaMOSA

incorporates these proxies into the main search loop, enabling/disabling them as

a substitute of the crowding distance depending on whether search stagnation is

detected or not.

Our empirical study on 110 Java classes shows that aDynaMOSA achieves

results comparable to DynaMOSA over seven different coverage criteria. When

reaching a similar level of branch coverage, the test suites produced by aDy-

naMOSA are less expensive to run in 72% (for runtime) and in 70% (for heap

memory consumption) of the CUTs. In these cases, we observe a decrease of

~24% and ~15% in runtime and heap memory consumption, respectively. More-

over, we evaluate the fault effectiveness of the generated test suites to avoid

counter-effects due to the performance optimization: we show that aDynaMOSA

achieves similar or higher mutation scores for ~75% of the classes under test.

Based on these results, we plan to investigate different directions for future

work: (i) investigate new proxies, evaluate their individual impact and resolve

eventual multicollinearity [O’brien, 2007], (ii) horizontally enlarge our study

by including further Java classes from different projects and domains, and (iii)

instantiate our adaptive approach to other secondary objectives orthogonal to

coverage.

190

Chapter 5. Testing with Fewer Resources:

An Adaptive Approach to Performance-Aware Test Case Generation

Acknowledgements

Laaber acknowledges the support of the SNSF through project MINCA (no.

165546).

6
Conclusions

Unit tests for the first line of defense against the introduction of bugs in software

systems. To properly fulfill their goal, developers must strive to achieve the

highest possible test code quality. Test quality does not have a precise definition

and encompasses a variety of different facets. A deeper understanding on which

of these facets are particularly important for practitioners if of a paramount

importance to adequately support them in a number of different tasks. We

started this dissertation with an empirical analysis aimed at understanding

the developers’ perspective on unit test quality. We built a taxonomy of the

aspects they deemed important and discussed if and how they do measure them.

Furthermore, we merged the insights gathered from this study with the ones from

previous research. To assist developers in maximizing the test suite quality we

proposed (i) a machine learning approach, complementary to mutation testing,

to predict test effectiveness, (ii) a machine learning approach that estimates

how good is—in terms of achieved code coverage—the outcome of test case

generation tools applied to arbitrary Java classes, and (iii) an adaptive search-

based algorithm able to generated tests with lower resource demands and, at the

same time, high code coverage. In summary, we made the following contributions:

• a taxonomy of factors deemed important by developers for assessing test

code quality;

• a test effectiveness estimation model, based on source code factors, useful

for practical scenario as a complementary tool with respect to mutation

analysis;

192 Chapter 6. Conclusions

• a machine learning model, based on source code features, able to predict

the branch coverage that test case generation tools are able to achieve on

a given class under test;

• an adaptive search-based algorithm exploiting a lightweight performance

score to optimize resource demands as a secondary objective orthogonal to

code coverage in unit test case generation;

• a research roadmap for further studies and techniques in the field of software

analytics and software testing;

• a collection of datasets and replication packages for each of the studies

included in this thesis available for future research (see Section 6.1).

6.1 Open Research Data

One of the most important feature that a research work must have is replicability.

A body of research is replicable when the authors spend adequate effort in

sharing all the possible details about their work in order to allow other researchers

to repeat it. The Software Evolution & Architecture Lab (s.e.a.l.)1 at the Univer-

sity of Zurich spends a considerable effort in making its research publicly available

and accessible. The University of Zurich demands a version of all published

work to be deposited in the Zurich Open Repository and Archive (ZORA),2

according to the Open Access policies of the specific journal or conference. The

Swiss National Science Foundation (SNF),3 that founded most of the work in

this thesis, also requires all publications to be freely accessible.

We share the raw data, the source code and the tools used to conduct the

studies presented in this thesis via online replication packages. Each of them

contains a well detailed description of all the included artifacts as well as of the

1https://www.ifi.uzh.ch/en/seal.html, Last Access: 21.01.21
2https://www.zora.uzh.ch, Last Access: 21.01.21
3http:www.snf.ch, Last Access: 21.01.21

6.1 Open Research Data 193

Table 6.1: For each chapter in this thesis, and therefore, for each included
publication, we share the both the DOI of the replication package and of the
preprint

Chapter Replication Package Preprint

Chapter 2 https://doi.org/10.5281/zenodo.3999060 https://doi.org/10.5167/uzh-192001

Chapter 3 https://doi.org/10.5281/zenodo.3938011 https://doi.org/10.5167/uzh-169143

Chapter 4 https://doi.org/10.5281/zenodo.2548323 https://doi.org/10.5167/uzh-169144

Chapter 5 https://doi.org/10.5281/zenodo.3477414 https://doi.org/10.5167/uzh-176230

steps to be taken in order to reproduce the experiments. We relied on Zenodo4

to permanently archive them with an assigned Digital Object Identifiers (DOI).

4https://zenodo.org, Last Access: 21.01.21

Bibliography

[Abbaspour Asadollah et al., 2015] Abbaspour Asadollah, S., Inam, R., and

Hansson, H. (2015). A survey on testing for cyber physical system. In

Proceedings of the 27th IFIP WG 6.1 International Conference on Testing

Software and Systems - Volume 9447, ICTSS 2015, pages 194–207, New York,

NY, USA. Springer-Verlag New York, Inc.

[Abbes et al., 2011] Abbes, M., Khomh, F., Gueheneuc, Y.-G., and Antoniol,

G. (2011). An empirical study of the impact of two antipatterns, blob and

spaghetti code, on program comprehension. In Software maintenance and

reengineering (CSMR), 2011 15th European conference on, pages 181–190.

[Afshan et al., 2013] Afshan, S., McMinn, P., and Stevenson, M. (2013). Evolving

readable string test inputs using a natural language model to reduce human

oracle cost. In Proceedings of the 2013 IEEE Sixth International Conference

on Software Testing, Verification and Validation, ICST ’13, pages 352–361,

Washington, DC, USA. IEEE Computer Society.

[Aggrawal et al., 2004] Aggrawal, K., Singh, Y., and Kaur, A. (2004). Code

coverage based technique for prioritizing test cases for regression testing. ACM

SIGSOFT Software Engineering Notes, 29(5):1–4.

[Albert et al., 2014] Albert, E., Arenas, P., Gómez-Zamalloa, M., and Rojas,

J. M. (2014). Test case generation by symbolic execution: Basic concepts, a

clp-based instance, and actor-based concurrency. Advanced Lectures of the

196 BIBLIOGRAPHY

14th International School on Formal Methods for Executable Software Models

- Volume 8483, pages 263–309, New York, NY, USA.

[Albert et al., 2011] Albert, E., Gómez-Zamalloa, M., and Rojas, J. M. (2011).

Resource-driven clp-based test case generation. In International Symposium

on Logic-Based Program Synthesis and Transformation, pages 25–41. Springer.

[Albunian, 2017] Albunian, N. M. (2017). Diversity in search-based unit test

suite generation. In Proceedings of the 9th International Symposium Search

Based Software Engineering, SSBSE ’17, pages 183–189. Springer.

[Andrews et al., 2005] Andrews, J. H., Briand, L. C., and Labiche, Y. (2005). Is

mutation an appropriate tool for testing experiments? In Proceedings of the

27th international conference on Software engineering, pages 402–411. ACM.

[Aniche et al., 2016] Aniche, M., Gerosa, M. A., and Treude, C. (2016). De-

velopers’ perceptions on object-oriented design and architectural roles. In

Proceedings of the 30th Brazilian Symposium on Software Engineering, SBES

’16, pages 63–72, New York, NY, USA. ACM.

[Arcuri, 2010] Arcuri, A. (2010). It does matter how you normalise the branch

distance in search based software testing. In Software Testing, Verification and

Validation (ICST), 2010 Third International Conference on, pages 205–214.

IEEE.

[Arcuri and Briand, 2011] Arcuri, A. and Briand, L. (2011). A practical guide for

using statistical tests to assess randomized algorithms in software engineering.

In 2011 33rd International Conference on Software Engineering (ICSE), pages

1–10. IEEE.

[Arcuri and Fraser, 2013] Arcuri, A. and Fraser, G. (2013). Parameter tuning or

default values? an empirical investigation in search-based software engineering.

Empirical Software Engineering, 18(3):594–623.

[Baeza-Yates et al., 1999] Baeza-Yates, R., Ribeiro-Neto, B., et al. (1999). Mod-

ern information retrieval, volume 463. ACM press New York.

BIBLIOGRAPHY 197

[Baresel et al., 2004] Baresel, A., Binkley, D., Harman, M., and Korel, B. (2004).

Evolutionary testing in the presence of loop-assigned flags: A testability trans-

formation approach. In Proceedings of the 2004 ACM SIGSOFT International

Symposium on Software Testing and Analysis, ISSTA ’04, pages 108–118, New

York, NY, USA. ACM.

[Barr et al., 2015] Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., and Yoo,

S. (2015). The oracle problem in software testing: A survey. IEEE Transactions

on Software Engineering, 41(5):507–525.

[Basili et al., 1996] Basili, V. R., Briand, L. C., and Melo, W. L. (1996). A valida-

tion of object-oriented design metrics as quality indicators. IEEE Transactions

on software engineering, 22(10):751–761.

[Bavota et al., 2013] Bavota, G., Canfora, G., Penta, M. D., Oliveto, R., and

Panichella, S. (2013). The evolution of project inter-dependencies in a software

ecosystem: The case of apache. In Proceedings of the 2013 IEEE International

Conference on Software Maintenance, ICSM ’13, pages 280–289, Washington,

DC, USA. IEEE Computer Society.

[Bavota et al., 2012] Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., and

Binkley, D. (2012). An empirical analysis of the distribution of unit test smells

and their impact on software maintenance. In Software Maintenance (ICSM),

2012 28th IEEE International Conference on, pages 56–65. IEEE.

[Bavota et al., 2015] Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., and

Binkley, D. (2015). Are test smells really harmful? an empirical study.

Empirical Software Engineering, 20(4):1052–1094.

[Beck, 2003] Beck, K. (2003). Test-driven development: by example. Addison-

Wesley Professional.

[Beizer, 1990] Beizer, B. (1990). Software Testing Techniques (2Nd Ed.). Van

Nostrand Reinhold Co., New York, NY, USA.

198 BIBLIOGRAPHY

[Bell et al., 2018] Bell, J., Legunsen, O., Hilton, M., Eloussi, L., Yung, T., and

Marinov, D. (2018). Deflaker: Automatically detecting flaky tests. In 2018

IEEE/ACM 40th International Conference on Software Engineering (ICSE),

pages 433–444.

[Beller et al., 2017a] Beller, M., Gousios, G., Panichella, A., Proksch, S., Amann,

S., and Zaidman, A. (2017a). Developer testing in the IDE: Patterns, beliefs,

and behavior. IEEE Transactions on Software Engineering, PP(99):1–1.

[Beller et al., 2017b] Beller, M., Gousios, G., and Zaidman, A. (2017b). Oops, my

tests broke the build: An explorative analysis of travis ci with github. In Pro-

ceedings of the 14th International Conference on Mining Software Repositories,

pages 356–367. IEEE press.

[Benlarbi et al., 2000] Benlarbi, S., Emam, K. E., Goel, N., and Rai, S. N. (2000).

Thresholds for object-oriented measures. 11th International Symposium on

Software Reliability Engineering (ISSRE 2000), 8-11 October 2000, San Jose,

CA, USA, pages 24–38. IEEE.

[Bertolino, 2007] Bertolino, A. (2007). Software testing research: Achievements,

challenges, dreams. In Briand, L. C. and Wolf, A. L., editors, International

Conference on Software Engineering, ISCE 2007, Workshop on the Future of

Software Engineering, FOSE 2007, May 23-25, 2007, Minneapolis, MN, USA,

pages 85–103. IEEE Computer Society.

[Blum and Langley, 1997] Blum, A. L. and Langley, P. (1997). Selection of

relevant features and examples in machine learning. Artificial intelligence,

97(1-2):245–271.

[Borges and Valente, 2018] Borges, H. and Valente, M. T. (2018). What’s in a

github star? understanding repository starring practices in a social coding

platform. Journal of Systems and Software, 146:112–129.

[Bowes et al., 2017] Bowes, D., Hall, T., Petric, J., Shippey, T., and Turhan,

B. (2017). How good are my tests? In 2017 IEEE/ACM 8th Workshop on

Emerging Trends in Software Metrics (WETSoM), pages 9–14. IEEE.

BIBLIOGRAPHY 199

[Brant, 1990] Brant, R. (1990). Assessing proportionality in the proportional

odds model for ordinal logistic regression. Biometrics, pages 1171–1178.

[Briand et al., 2001] Briand, L. C., Bunse, C., and Daly, J. W. (2001). A con-

trolled experiment for evaluating quality guidelines on the maintainability of

object-oriented designs. IEEE Transactions on Software Engineering, 27(6):513–

530.

[Brown et al., 2017] Brown, D. B., Vaughn, M., Liblit, B., and Reps, T. (2017).

The care and feeding of wild-caught mutants. In Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering, pages 511–522. ACM.

[Budd, 1980] Budd, T. A. (1980). Mutation Analysis of Program Test Data. PhD

thesis, New Haven, CT, USA. AAI8025191.

[Buse and Weimer, 2010] Buse, R. P. and Weimer, W. R. (2010). Learning a

metric for code readability. IEEE Transactions on Software Engineering,

36(4):546–558.

[Byoungju and Mathur, 1993] Byoungju, C. and Mathur, A. P. (1993). High-

performance mutation testing. Journal of Systems and Software, 20(2):135 –

152.

[Cadar et al., 2008a] Cadar, C., Dunbar, D., and Engler, D. (2008a). Klee:

Unassisted and automatic generation of high-coverage tests for complex systems

programs. In Proceedings of the 8th USENIX Conference on Operating Systems

Design and Implementation, OSDI’08, pages 209–224, Berkeley, CA, USA.

USENIX Association.

[Cadar et al., 2008b] Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., and

Engler, D. R. (2008b). Exe: automatically generating inputs of death. ACM

Transactions on Information and System Security (TISSEC), 12(2):10.

[Cadar and Sen, 2013] Cadar, C. and Sen, K. (2013). Symbolic execution for

software testing: three decades later. Communications of the ACM, 56(2):82–

90.

200 BIBLIOGRAPHY

[Cai and Lyu, 2005] Cai, X. and Lyu, M. R. (2005). The effect of code coverage

on fault detection under different testing profiles. ACM SIGSOFT Software

Engineering Notes, 30(4):1–7.

[Campos et al., 2014] Campos, J., Arcuri, A., Fraser, G., and Abreu, R. (2014).

Continuous test generation: Enhancing continuous integration with automated

test generation. In Proceedings of the 29th ACM/IEEE International Confer-

ence on Automated Software Engineering, ASE ’14, pages 55–66, New York,

NY, USA. ACM.

[Campos et al., 2017] Campos, J., Ge, Y., Fraser, G., Eler, M., and Arcuri, A.

(2017). An empirical evaluation of evolutionary algorithms for test suite

generation. In Proceedings of the 9th International Symposium on Search

Based Software Engineering SSBSE 2017, pages 33–48.

[Catolino et al., 2019] Catolino, G., Palomba, F., Zaidman, A., and Ferrucci, F.

(2019). How the experience of development teams relates to assertion density

of test classes. In ICSME, pages 223–234. IEEE.

[Cawley and Talbot, 2010] Cawley, G. C. and Talbot, N. L. (2010). On over-

fitting in model selection and subsequent selection bias in performance evalua-

tion. Journal of Machine Learning Research, 11(Jul):2079–2107.

[Chang and Lin, 2011] Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library for

support vector machines. ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27.

[Chawla et al., 2002] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,

W. P. (2002). Smote: synthetic minority over-sampling technique. Journal of

artificial intelligence research, 16:321–357.

[Chen and Kim, 2015] Chen, N. and Kim, S. (2015). Star: stack trace based

automatic crash reproduction via symbolic execution. IEEE transactions on

software engineering, 41(2):198–220.

[Chidamber and Kemerer, 1994] Chidamber, S. R. and Kemerer, C. F. (1994).

A metrics suite for object oriented design. IEEE Transactions on software

engineering, 20(6):476–493.

BIBLIOGRAPHY 201

[Coles et al., 2016] Coles, H., Laurent, T., Henard, C., Papadakis, M., and

Ventresque, A. (2016). Pit: a practical mutation testing tool for java. In

Proceedings of the 25th International Symposium on Software Testing and

Analysis.

[Conover, 1999] Conover, W. (1999). Practical nonparametric statistics. Wiley

series in probability and statistics: Applied probability and statistics. Wiley.

[Converse and Presser, 1986] Converse, J. M. and Presser, S. (1986). Survey

questions: Handcrafting the standardized questionnaire. Number 63. Sage.

[Črepinšek et al., 2013] Črepinšek, M., Liu, S.-H., and Mernik, M. (2013). Explo-

ration and exploitation in evolutionary algorithms: A survey. ACM Computing

Surveys (CSUR), 45(3):35.

[Creswell, 1999] Creswell, J. W. (1999). Mixed-method research: Introduction

and application. In Handbook of educational policy, pages 455–472. Elsevier.

[Daka et al., 2015] Daka, E., Campos, J., Fraser, G., Dorn, J., and Weimer,

W. (2015). Modeling readability to improve unit tests. In Proceedings of

the 10th Joint Meeting of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE). ACM. To appear.

[Davies et al., 2004] Davies, J., Schulte, W., and Barnett, M. (2004). Formal

Methods and Software Engineering, volume 6th International Conference on

Formal Engineering Methods. Springer-Verlag Berlin Heidelberg.

[de Oliveira et al., 2017] de Oliveira, A. B., Fischmeister, S., Diwan, A.,

Hauswirth, M., and Sweeney, P. (2017). Perphecy: Performance regression

test selection made simple but effective. In Proceedings of the 10th IEEE

International Conference on Software Testing, Verification and Validation

(ICST), Tokyo, Japan.

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A

fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions

on Evolutionary Computation, 6(2):182–197.

202 BIBLIOGRAPHY

[Delahaye and Bousquet, 2015] Delahaye, M. and Bousquet, L. (2015). Selecting

a software engineering tool: lessons learnt from mutation analysis. Software:

Practice and Experience, 45(7):875–891.

[DeMillo et al., 1991] DeMillo, R. A., Krauser, E. W., and Mathur, A. P. (1991).

Compiler-integrated program mutation. In [1991] Proceedings The Fifteenth

Annual International Computer Software Applications Conference, pages 351–

356.

[Devroey et al., 2020] Devroey, X., Panichella, S., and Gambi, A. (2020). Java

unit testing tool competition: Eighth round. In Proceedings of the IEEE/ACM

42nd International Conference on Software Engineering Workshops, ICSEW’20,

page 545–548, New York, NY, USA. Association for Computing Machinery.

[Di Nucci et al., 2017] Di Nucci, D., Palomba, F., Oliveto, R., and De Lucia,

A. (2017). Dynamic selection of classifiers in bug prediction: An adaptive

method. IEEE Transactions on Emerging Topics in Computational Intelligence,

1(3):202–212.

[Du et al., 2019] Du, M., Liu, N., and Hu, X. (2019). Techniques for interpretable

machine learning. Commun. ACM, 63(1):68–77.

[du Bousquet, 2010] du Bousquet, L. (2010). A new approach for software testa-

bility. In Bottaci, L. and Fraser, G., editors, Testing - Practice and Research

Techniques, 5th International Academic and Industrial Conference, TAIC

PART 2010, Windsor, UK, September 3-5, 2010. Proceedings, volume 6303 of

Lecture Notes in Computer Science, pages 207–210. Springer.

[Duvall et al., 2007] Duvall, P., Matyas, S., Duvall, P., and Glover, A. (2007).

Continuous Integration: Improving Software Quality and Reducing Risk. A

Martin Fowler signature book. Addison-Wesley.

[Eck et al., 2019] Eck, M., Palomba, F., Castelluccio, M., and Bacchelli, A.

(2019). Understanding flaky tests: the developer?s perspective. In Proceedings

BIBLIOGRAPHY 203

of the 2019 27th ACM Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering, pages

830–840.

[Efron, 1983] Efron, B. (1983). Estimating the error rate of a prediction rule: im-

provement on cross-validation. Journal of the American statistical association,

78(382):316–331.

[Ellims et al., 2006] Ellims, M., Bridges, J., and Ince, D. C. (2006). The eco-

nomics of unit testing. Empirical Software Engineering, 11(1):5–31.

[Fernandes et al., 2017] Fernandes, L., Ribeiro, M., Carvalho, L., Gheyi, R.,

Mongiovi, M., Santos, A., Cavalcanti, A., Ferrari, F., and Maldonado, J. C.

(2017). Avoiding useless mutants. In ACM SIGPLAN Notices, volume 52,

pages 187–198. ACM.

[Ferrer et al., 2012] Ferrer, J., Chicano, F., and Alba, E. (2012). Evolutionary

algorithms for the multi-objective test data generation problem. Softw. Pract.

Exper., 42(11):1331–1362.

[Flanigan et al., 2008] Flanigan, T. S., McFarlane, E., and Cook, S. (2008).

Conducting survey research among physicians and other medical professionals:

a review of current literature. In Proceedings of the Survey Research Methods

Section, American Statistical Association, volume 1, pages 4136–47.

[Fleyshgakker and Weiss, 1994] Fleyshgakker, V. N. and Weiss, S. N. (1994).

Efficient mutation analysis: A new approach. In Proceedings of the 1994 ACM

SIGSOFT International Symposium on Software Testing and Analysis, ISSTA

’94, page 185–195, New York, NY, USA. Association for Computing Machinery.

[Fowler and Beck, 1999] Fowler, M. and Beck, K. (1999). Refactoring: improving

the design of existing code. Addison-Wesley Professional.

[Fowler and Foemmel, 2006] Fowler, M. and Foemmel, M. (2006). Continuous

integration. Thought-Works) http://www. thoughtworks. com/Continuous

Integration. pdf, 122:14.

204 BIBLIOGRAPHY

[Frankl et al., 1997] Frankl, P. G., Weiss, S. N., and Hu, C. (1997). All-uses vs

mutation testing: an experimental comparison of effectiveness. Journal of

Systems and Software, 38(3):235–253.

[Fraser and Arcuri, 2011] Fraser, G. and Arcuri, A. (2011). Evosuite: Automatic

test suite generation for object-oriented software. In Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European Conference on Foundations

of Software Engineering, ESEC/FSE ’11, pages 416–419, New York, NY, USA.

ACM.

[Fraser and Arcuri, 2013] Fraser, G. and Arcuri, A. (2013). Whole test suite

generation. IEEE Trans. Softw. Eng., 39(2):276–291.

[Fraser and Arcuri, 2014] Fraser, G. and Arcuri, A. (2014). A large-scale evalua-

tion of automated unit test generation using evosuite. ACM Transactions on

Software Engineering and Methodology (TOSEM), 24(2):8.

[Fraser and Arcuri, 2015] Fraser, G. and Arcuri, A. (2015). Achieving scalable

mutation-based generation of whole test suites. Empirical Software Engineering,

20(3):783–812.

[Fraser et al., 2015] Fraser, G., Staats, M., McMinn, P., Arcuri, A., and Padberg,

F. (2015). Does automated unit test generation really help software testers?

a controlled empirical study. ACM Trans. Softw. Eng. Methodol., 24(4):23:1–

23:49.

[Fraser and Zeller, 2011] Fraser, G. and Zeller, A. (2011). Mutation-driven gen-

eration of unit tests and oracles. IEEE Transactions on Software Engineering,

38(2):278–292.

[Friedman et al., 2001] Friedman, J., Hastie, T., and Tibshirani, R. (2001). The

elements of statistical learning, volume 1. Springer series in statistics New

York, NY, USA.

[Gambhir and Gupta, 2017] Gambhir, M. and Gupta, V. (2017). Recent auto-

matic text summarization techniques: a survey. Artificial Intelligence Review,

47(1):1–66.

BIBLIOGRAPHY 205

[Garousi and Küçük, 2018] Garousi, V. and Küçük, B. (2018). Smells in software

test code: A survey of knowledge in industry and academia. Journal of Systems

and Software, 138:52 – 81.

[Gayathri and Sudha, 2014] Gayathri, M. and Sudha, A. (2014). Software defect

prediction system using multilayer perceptron neural network with data mining.

International Journal of Recent Technology and Engineering, 3(2):54–59.

[Georges et al., 2007] Georges, A., Buytaert, D., and Eeckhout, L. (2007). Sta-

tistically rigorous java performance evaluation. In Proceedings of the 22Nd

Annual ACM SIGPLAN Conference on Object-oriented Programming Systems

and Applications, OOPSLA ’07, pages 57–76, New York, NY, USA. ACM.

[Godefroid et al., 2005] Godefroid, P., Klarlund, N., and Sen, K. (2005). Dart:

directed automated random testing. Proceedings of the ACM SIGPLAN 2005

Conference on Programming Language Design and Implementation, Chicago,

IL, USA, June 12-15, 2005, 40(6):213–223.

[Goeminne and Mens, 2013] Goeminne, M. and Mens, T. (2013). Analyzing

ecosystems for open source software developer communities. In Software

Ecosystems. Edward Elgar Publishing.

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic Algorithms in Search, Opti-

mization and Machine Learning. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1st edition.

[Goldberg and Holland, 1988] Goldberg, D. E. and Holland, J. H. (1988). Genetic

algorithms and machine learning. Machine learning, 3(2):95–99.

[Gopinath et al., 2017] Gopinath, R., Ahmed, I., Alipour, M. A., Jensen, C., and

Groce, A. (2017). Mutation reduction strategies considered harmful. IEEE

Transactions on Reliability, 66(3):854–874.

[Gopinath et al., 2014] Gopinath, R., Jensen, C., and Groce, A. (2014). Code

coverage for suite evaluation by developers. In Proceedings of the 36th Inter-

national Conference on Software Engineering, pages 72–82. ACM.

206 BIBLIOGRAPHY

[Gousios et al., 2015] Gousios, G., Zaidman, A., Storey, M., and v. Deursen, A.

(2015). Work practices and challenges in pull-based development: The integra-

tor’s perspective. In 2015 IEEE/ACM 37th IEEE International Conference

on Software Engineering, volume 1, pages 358–368.

[Grabmeier and Lambe, 2007] Grabmeier, J. L. and Lambe, L. A. (2007). Deci-

sion trees for binary classification variables grow equally with the gini impurity

measure and pearson’s chi-square test. International Journal of Business

Intelligence and Data Mining, 2(2):213–226.

[Grano, 2019] Grano, G. (2019). A new dimension of test quality: Assessing

and generating higher quality unit test cases. In Proceedings of the 28th

ACM SIGSOFT International Symposium on Software Testing and Analysis,

ISSTA 2019, page 419–423, New York, NY, USA. Association for Computing

Machinery.

[Grano et al., 2018] Grano, G., Ciurumelea, A., Panichella, S., Palomba, F., and

Gall, H. C. (2018). Exploring the integration of user feedback in automated

testing of android applications. In 2018 IEEE 25th International Conference

on Software Analysis, Evolution and Reengineering (SANER), pages 72–83.

[Grano et al., 2017] Grano, G., Di Sorbo, A., Mercaldo, F., Visaggio, C. A.,

Canfora, G., and Panichella, S. (2017). Android apps and user feedback: A

dataset for software evolution and quality improvement. In Proceedings of

the 2nd ACM SIGSOFT International Workshop on App Market Analytics,

WAMA 2017, page 8–11, New York, NY, USA. Association for Computing

Machinery.

[Grano et al., 2020] Grano, G., Iaco, C. D., Palomba, F., and Gall, H. C. (2020).

Pizza versus pinsa: On the perception and measurability of unit test code

quality. In 2020 IEEE International Conference on Software Maintenance and

Evolution, ICSME 2020, Adelaide, Australia, September 27 - October 3, 2020.

IEEE.

BIBLIOGRAPHY 207

[Grano et al., 2019] Grano, G., Laaber, C., Panichella, A., and Panichella, S.

(2019). Testing with fewer resources: An adaptive approach to performance-

aware test case generation. IEEE Transactions on Software Engineering, pages

1–1.

[Grano et al., 2019a] Grano, G., Palomba, F., Di Nucci, D., De Lucia, A., and

Gall, H. C. (2019a). Scented since the beginning: On the diffuseness of test

smells in automatically generated test code. Journal of Systems and Software,

156:312–327.

[Grano et al., 2021] Grano, G., Palomba, F., and Gall, H. C. (2021). Lightweight

assessment of test-case effectiveness using source-code-quality indicators. IEEE

Transactions on Software Engineering, 47(4):758–774.

[Grano et al., 2018a] Grano, G., Scalabrino, S., Oliveto, R., and Gall, H. (2018a).

An empirical investigation on the readability of manual and generated test

cases. In Proceedings of the 26th International Conference on Program Com-

prehension, ICPC.

[Grano et al., 2018b] Grano, G., Titov, T., Panichella, S., and Gall, H. (2018b).

How high will it be? using machine learning models to predict branch cover-

age in automated testing. In MaLTeSQuE (Workshop on Machine Learning

Techniques for Software Quality Evaluation) 2018, Campobasso, Italy.

[Grano et al., 2019b] Grano, G., Titov, T. V., Panichella, S., and Gall, H. C.

(2019b). Branch coverage prediction in automated testing. Journal of Software:

Evolution and Process, 31(9):e2158. e2158 smr.2158.

[Gray et al., 2009] Gray, D., Bowes, D., Davey, N., Sun, Y., and Christianson, B.

(2009). Using the support vector machine as a classification method for software

defect prediction with static code metrics. In Palmer-Brown, D., Draganova, C.,

Pimenidis, E., and Mouratidis, H., editors, Engineering Applications of Neural

Networks, pages 223–234, Berlin, Heidelberg. Springer Berlin Heidelberg.

208 BIBLIOGRAPHY

[Grechanik and Devanla, 2016] Grechanik, M. and Devanla, G. (2016). Mutation

integration testing. In Software Quality, Reliability and Security (QRS), 2016

IEEE International Conference on, pages 353–364. IEEE.

[Greiler et al., 2013] Greiler, M., Van Deursen, A., and Storey, M.-A. (2013).

Automated detection of test fixture strategies and smells. In Software Testing,

Verification and Validation (ICST), pages 322–331.

[Grissom and Kim, 2005] Grissom, R. J. and Kim, J. J. (2005). Effect Sizes for

Research: A Broad Practical Approach. Lawrence Erlbaum Associates, New

Jersey, United States.

[Gu et al., 1994] Gu, D., Zhong, Y., and Ali, S. (1994). On testing of classes in

object-oriented programs. Proceedings of the 1994 conference of the Centre for

Advanced Studies on Collaborative research, page 22.

[Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An introduc-

tion to variable and feature selection. Journal of machine learning research,

3(Mar):1157–1182.

[Hailpern and Santhanam, 2002] Hailpern, B. and Santhanam, P. (2002). Soft-

ware debugging, testing, and verification. IBM Syst. J., 41(1):4–12.

[Hall, 1999] Hall, M. A. (1999). Correlation-based feature selection for machine

learning. PhD thesis.

[Halstead et al., 1977] Halstead, M. H. et al. (1977). Elements of Software Science

(Operating and programming systems series). Elsevier Science Inc., New York,

NY.

[Hampel et al., 2011] Hampel, F., Ronchetti, E., Rousseeuw, P., and Stahel, W.

(2011). Robust Statistics: The Approach Based on Influence Functions. Wiley

Series in Probability and Statistics. Wiley, New York.

[Harispe et al., 2015] Harispe, S., Ranwez, S., Janaqi, S., and Montmain, J.

(2015). Semantic similarity from natural language and ontology analysis.

Synthesis Lectures on Human Language Technologies, 8(1):1–254.

BIBLIOGRAPHY 209

[Harman et al., 2008] Harman, M., Baresel, A., Binkley, D., Hierons, R., Hu, L.,

Korel, B., McMinn, P., and Roper, M. (2008). Testability transformation -

program transformation to improve testability. In Hierons, R. M., Bowen,

J. P., and Harman, M., editors, Formal Methods and Testing, volume 4949 of

Lecture Notes in Computer Science, pages 320–344. Springer.

[Harman and Jones, 2001] Harman, M. and Jones, B. F. (2001). Search-based

software engineering. Information and Software Technology, 43(14):833 – 839.

[Harman et al., 2010] Harman, M., Kim, S. G., Lakhotia, K., McMinn, P., and

Yoo, S. (2010). Optimizing for the number of tests generated in search based test

data generation with an application to the oracle cost problem. In 2010 Third

International Conference on Software Testing, Verification, and Validation

Workshops, pages 182–191.

[Hassan, 2009] Hassan, A. E. (2009). Predicting faults using the complexity

of code changes. In Software Engineering, 2009. ICSE 2009. IEEE 31st

International Conference on, pages 78–88. IEEE.

[Henderson-Sellers, 1995] Henderson-Sellers, B. (1995). Object-oriented metrics:

measures of complexity. Prentice-Hall, Inc.

[Henry et al., 1981] Henry, S., Kafura, D., and Harris, K. (1981). On the rela-

tionships among three software metrics. ACM SIGMETRICS Performance

Evaluation Review, 10(1):81–88.

[Herzig and Nagappan, 2015] Herzig, K. and Nagappan, N. (2015). Empirically

detecting false test alarms using association rules. In Proceedings of the 37th

International Conference on Software Engineering - Volume 2, ICSE ’15, page

39–48. IEEE Press.

[Hilton et al., 2017] Hilton, M., Nelson, N., Tunnell, T., Marinov, D., and Dig, D.

(2017). Trade-offs in continuous integration: Assurance, security, and flexibility.

In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2017, pages 197–207, New York, NY, USA. ACM.

210 BIBLIOGRAPHY

[Hoare, 2003] Hoare, C. A. R. (2003). Assertions: A personal perspective. IEEE

Annals of the History of Computing, 25(2):14–25.

[Holm, 1979] Holm, S. (1979). A simple sequentially rejective multiple test

procedure. Scandinavian journal of statistics, pages 65–70.

[Hovemeyer and Pugh, 2004] Hovemeyer, D. and Pugh, W. (2004). Finding bugs

is easy. Acm sigplan notices, 39(12):92–106.

[Hsu et al., 2003] Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2003). A practi-

cal guide to support vector classification. Technical report, Department of

Computer Science, National Taiwan University.

[Huang et al., 2014] Huang, P., Ma, X., Shen, D., and Zhou, Y. (2014). Perfor-

mance regression testing target prioritization via performance risk analysis.

In Proceedings of the 36th International Conference on Software Engineering,

ICSE 2014, page 60–71, New York, NY, USA. Association for Computing

Machinery.

[Inozemtseva and Holmes, 2014] Inozemtseva, L. and Holmes, R. (2014). Cov-

erage is not strongly correlated with test suite effectiveness. In Proceedings

of the 36th International Conference on Software Engineering, pages 435–445.

ACM.

[Jia and Harman, 2011] Jia, Y. and Harman, M. (2011). An analysis and sur-

vey of the development of mutation testing. IEEE transactions on software

engineering, 37(5):649–678.

[Jin et al., 2012] Jin, G., Song, L., Shi, X., Scherpelz, J., and Lu, S. (2012).

Understanding and detecting real-world performance bugs. In Proceedings of

the 33rd ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’12, pages 77–88, New York, NY, USA. ACM.

[Jin and Zeng, 2011] Jin, H. and Zeng, F. (2011). Research on the definition and

model of software testing quality. In The Proceedings of 2011 9th International

Conference on Reliability, Maintainability and Safety, pages 639–644. IEEE.

BIBLIOGRAPHY 211

[John et al., 1994] John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant

features and the subset selection problem. In Machine Learning Proceedings

1994, pages 121–129. Elsevier.

[Jørgensen, 2004] Jørgensen, M. (2004). Regression models of software develop-

ment effort estimation accuracy and bias. Empirical Softw. Engg., 9(4):297–314.

[Just, 2014] Just, R. (2014). The major mutation framework: Efficient and

scalable mutation analysis for Java. In Proceedings of the 2014 international

symposium on software testing and analysis, pages 433–436. ACM.

[Just et al., 2014a] Just, R., Ernst, M. D., and Fraser, G. (2014a). Efficient

mutation analysis by propagating and partitioning infected execution states.

In Proceedings of the 2014 International Symposium on Software Testing and

Analysis, pages 315–326. ACM.

[Just et al., 2014b] Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes,

R., and Fraser, G. (2014b). Are mutants a valid substitute for real faults in

software testing? In Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, pages 654–665. ACM.

[Kabinna et al., 2018] Kabinna, S., Bezemer, C.-P., Shang, W., Syer, M. D., and

Hassan, A. E. (2018). Examining the stability of logging statements. Empirical

Software Engineering, 23(1):290–333.

[Kam et al., 2007] Kam, C. D., Wilking, J. R., and Zechmeister, E. J. (2007).

Beyond the “narrow data base”: Another convenience sample for experimental

research. Political Behavior, 29(4):415–440.

[Khan and Mustafa, 2009] Khan, R. A. and Mustafa, K. (2009). Metric based

testability model for object oriented design (MTMOOD). ACM SIGSOFT

Software Engineering Notes, New York, NY, USA, 34(2):1–6.

[Khanna, 2014] Khanna, P. (2014). Testability of object-oriented systems: An

ahp-based approach for prioritization of metrics. Contemporary Computing

and Informatics (IC3I), 2014 International Conference on, pages 273–281.

212 BIBLIOGRAPHY

[Khoshgoftaar et al., 2007] Khoshgoftaar, T. M., Golawala, M., and Van Hulse,

J. (2007). An empirical study of learning from imbalanced data using ran-

dom forest. Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE

international conference on, 2:310–317.

[Kifetew et al., 2013] Kifetew, F. M., Panichella, A., De Lucia, A., Oliveto,

R., and Tonella, P. (2013). Orthogonal exploration of the search space in

evolutionary test case generation. In Proceedings of the 2013 International

Symposium on Software Testing and Analysis, pages 257–267. ACM.

[Kim, 2003] Kim, Y. W. (2003). Efficient use of code coverage in large-scale

software development. In Proceedings of the 2003 conference of the Centre for

Advanced Studies on Collaborative research, pages 145–155. IBM Press.

[King et al., 2018] King, T. M., Santiago, D., Phillips, J., and Clarke, P. J.

(2018). Towards a bayesian network model for predicting flaky automated

tests. In 2018 IEEE International Conference on Software Quality, Reliability

and Security Companion (QRS-C), pages 100–107.

[Klaus, 1980] Klaus, K. (1980). Content analysis: An introduction to its method-

ology. Sage Publications.

[Kocaguneli et al., 2010] Kocaguneli, E., Gay, G., Menzies, T., Yang, Y., and

Keung, J. W. (2010). When to use data from other projects for effort estimation.

In Proceedings of the IEEE/ACM international conference on Automated

software engineering, pages 321–324. ACM.

[Kochhar et al., 2015] Kochhar, P. S., Thung, F., and Lo, D. (2015). Code

coverage and test suite effectiveness: Empirical study with real bugs in large

systems. In Software Analysis, Evolution and Reengineering (SANER), 2015

IEEE 22nd International Conference on, pages 560–564. IEEE.

[Köppen and Yoshida, 2007] Köppen, M. and Yoshida, K. (2007). Substitute

distance assignments in NSGA-II for handling many-objective optimization

problems. In Proceedings of the 4th International Conference on Evolutionary

BIBLIOGRAPHY 213

Multi-criterion Optimization, EMO’07, pages 727–741, Berlin, Heidelberg.

Springer-Verlag.

[Kout et al., 2011] Kout, A., Toure, F., and Badri, M. (2011). An empirical

analysis of a testability model for object-oriented programs. ACM SIGSOFT

Software Engineering Notes, 36(4):1–5.

[Krstajic et al., 2014] Krstajic, D., Buturovic, L. J., Leahy, D. E., and Thomas,

S. (2014). Cross-validation pitfalls when selecting and assessing regression and

classification models. Journal of cheminformatics, 6(1):10.

[Kruchten et al., 2012] Kruchten, P., Nord, R. L., and Ozkaya, I. (2012). Techni-

cal debt: From metaphor to theory and practice. Ieee software, 29(6):18–21.

[Kudrjavets et al., 2006] Kudrjavets, G., Nagappan, N., and Ball, T. (2006).

Assessing the relationship between software assertions and faults: An empirical

investigation. In ISSRE, pages 204–212. IEEE Computer Society.

[Kurtz et al., 2015] Kurtz, B., Ammann, P., and Offutt, J. (2015). Static analysis

of mutant subsumption. In Software Testing, Verification and Validation

Workshops (ICSTW), 2015 IEEE Eighth International Conference on, pages

1–10.

[Lakhotia et al., 2013] Lakhotia, K., Harman, M., and Gross, H. (2013). Austin:

An open source tool for search based software testing of c programs. Information

and Software Technology, 55(1):112–125.

[Lakhotia et al., 2007] Lakhotia, K., Harman, M., and McMinn, P. (2007). A

multi-objective approach to search-based test data generation. In Proceedings

of the 9th Annual Conference on Genetic and Evolutionary Computation,

GECCO ’07, pages 1098–1105, New York, NY, USA. ACM.

[Lam et al., 2019] Lam, W., Oei, R., Shi, A., Marinov, D., and Xie, T. (2019).

idflakies: A framework for detecting and partially classifying flaky tests. In

2019 12th IEEE Conference on Software Testing, Validation and Verification

(ICST), pages 312–322.

214 BIBLIOGRAPHY

[Lawrence et al., 2005] Lawrence, J., Clarke, S., Burnett, M., and Rothermel,

G. (2005). How well do professional developers test with code coverage

visualizations? an empirical study. In 2005 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC’05), pages 53–60. IEEE.

[Lehman, 1980] Lehman, M. M. (1980). Programs, life cycles, and laws of software

evolution. Proceedings of the IEEE, 68(9):1060–1076.

[Li et al., 2017] Li, H., Shang, W., Zou, Y., and Hassan, A. E. (2017). Towards

just-in-time suggestions for log changes. Empirical Software Engineering,

22(4):1831–1865.

[Li et al., 2009] Li, N., Praphamontripong, U., and Offutt, J. (2009). An experi-

mental comparison of four unit test criteria: Mutation, edge-pair, all-uses and

prime path coverage. In Proceedings of the IEEE International Conference on

Software Testing, Verification, and Validation Workshops, pages 220–229.

[Li et al., 2007] Li, Z., Harman, M., and Hierons, R. M. (2007). Search algo-

rithms for regression test case prioritization. IEEE Transactions on software

engineering, 33(4).

[Liu et al., 2006] Liu, M.-H., Gao, Y.-F., Shan, J.-H., Liu, J.-H., Zhang, L., and

Sun, J.-S. (2006). An approach to test data generation for killing multiple

mutants. In Software Maintenance, 2006. ICSM’06. 22nd IEEE International

Conference on, pages 113–122. IEEE.

[Lo and Shi, 1998] Lo, B. W. and Shi, H. (1998). A preliminary testability model

for object-oriented software. In Software Engineering: Education & Practice,

1998. Proceedings. 1998 International Conference, pages 330–337.

[Lubsen et al., 2009] Lubsen, Z., Zaidman, A., and Pinzger, M. (2009). Using

association rules to study the co-evolution of production & test code. In

Mining Software Repositories, 2009. MSR’09. 6th IEEE International Working

Conference on, pages 151–154. IEEE.

BIBLIOGRAPHY 215

[Lui and Chan, 2006] Lui, K. M. and Chan, K. C. (2006). Pair programming pro-

ductivity: Novice–novice vs. expert–expert. International Journal of Human-

computer studies, 64(9):915–925.

[Luo et al., 2014] Luo, Q., Hariri, F., Eloussi, L., and Marinov, D. (2014). An

empirical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages 643–

653. ACM.

[Marchenko et al., 2009] Marchenko, A., Abrahamsson, P., and Ihme, T. (2009).

Long-term effects of test-driven development a case study. In International Con-

ference on Agile Processes and Extreme Programming in Software Engineering,

pages 13–22. Springer.

[Marcus et al., 2008] Marcus, A., Poshyvanyk, D., and Ferenc, R. (2008). Using

the conceptual cohesion of classes for fault prediction in object-oriented systems.

IEEE Transactions on Software Engineering, 34(2):287–300.

[Marsavina et al., 2014] Marsavina, C., Romano, D., and Zaidman, A. (2014).

Studying fine-grained co-evolution patterns of production and test code. In

Source Code Analysis and Manipulation (SCAM), 2014 IEEE 14th Interna-

tional Working Conference on, pages 195–204. IEEE.

[Martin, 2008] Martin, R. C. (2008). Clean Code: A Handbook of Agile Software

Craftsmanship. Prentice Hall PTR, USA, 1 edition.

[Mathur and Wong, 1994] Mathur, A. P. and Wong, W. E. (1994). An empirical

comparison of data flow and mutation-based test adequacy criteria. Software

Testing, Verification and Reliability, 4(1):9–31.

[McAllister, 2008] McAllister, W. (2008). Data Structures And Algorithms Using

Java. Jones and Bartlett Publishers, Inc., USA, 1st edition.

[McCabe, 1976] McCabe, T. J. (1976). A complexity measure. IEEE Transactions

on software Engineering, (4):308–320.

216 BIBLIOGRAPHY

[McMinn, 2004] McMinn, P. (2004). Search-based software test data generation:

A survey. Softw. Test. Verif. Reliab., 14(2):105–156.

[McMinn, 2011] McMinn, P. (2011). Search-based software testing: Past, present

and future. In 2011 IEEE Fourth International Conference on Software Testing,

Verification and Validation Workshops, pages 153–163. IEEE.

[McMinn et al., 2009] McMinn, P., Binkley, D., and Harman, M. (2009). Empir-

ical evaluation of a nesting testability transformation for evolutionary testing.

ACM Trans. Softw. Eng. Methodol., 18(3):11:1–11:27.

[Menzies et al., 2010] Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang,

Y., and Bener, A. (2010). Defect prediction from static code features: cur-

rent results, limitations, new approaches. Automated Software Engineering,

17(4):375–407.

[Meszaros, 2007] Meszaros, G. (2007). xUnit test patterns: Refactoring test code.

Pearson Education.

[Meyer, 1992] Meyer, B. (1992). Applying ’design by contract’. Computer,

25(10):40–51.

[Moha et al., 2010] Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur,

A.-F. (2010). Decor: A method for the specification and detection of code and

design smells. IEEE Transactions on Software Engineering, 36(1):20–36.

[Mostafa et al., 2017] Mostafa, S., Wang, X., and Xie, T. (2017). Perfranker:

Prioritization of performance regression tests for collection-intensive software.

In Proceedings of the 26th ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis, ISSTA 2017, page 23–34, New York, NY, USA.

Association for Computing Machinery.

[Nagappan et al., 2005] Nagappan, N., Williams, L., Osborne, J., Vouk, M., and

Abrahamsson, P. (2005). Providing test quality feedback using static source

code and automatic test suite metrics. In 16th IEEE international symposium

on software reliability engineering (ISSRE’05), pages 10–pp. IEEE.

BIBLIOGRAPHY 217

[Nassif et al., 2013] Nassif, A. B., Ho, D., and Capretz, L. F. (2013). Towards an

early software estimation using log-linear regression and a multilayer perceptron

model. J. Syst. Softw., 86(1):144–160.

[Nerur et al., 2005] Nerur, S., Mahapatra, R., and Mangalaraj, G. (2005). Chal-

lenges of migrating to agile methodologies. Communications of the ACM,

48(5):72–78.

[O’brien, 2007] O’brien, R. M. (2007). A caution regarding rules of thumb for

variance inflation factors. Quality & Quantity, 41(5):673–690.

[Offutt and Pan, 1996] Offutt, A. J. and Pan, J. (1996). Detecting equivalent

mutants and the feasible path problem. In Computer Assurance, 1996. COM-

PASS’96, Systems Integrity. Software Safety. Process Security. Proceedings of

the Eleventh Annual Conference on, pages 224–236. IEEE.

[Offutt and Untch, 2001] Offutt, A. J. and Untch, R. H. (2001). Mutation 2000:

Uniting the orthogonal. In Mutation testing for the new century, pages 34–44.

Springer.

[Offutt, 2011] Offutt, J. (2011). A mutation carol: Past, present and future.

Information and Software Technology, 53(10):1098–1107.

[Oster and Saglietti, 2006] Oster, N. and Saglietti, F. (2006). Automatic test

data generation by multi-objective optimisation. In International Conference

on Computer Safety, Reliability, and Security, pages 426–438. Springer.

[Pacheco and Ernst, 2007] Pacheco, C. and Ernst, M. D. (2007). Randoop:

Feedback-directed random testing for java. In Companion to the 22Nd ACM

SIGPLAN Conference on Object-oriented Programming Systems and Applica-

tions Companion, OOPSLA ’07, pages 815–816, New York, NY, USA. ACM.

[Palomba et al., 2017] Palomba, F., Bavota, G., Di Penta, M., Fasano, F.,

Oliveto, R., and De Lucia, A. (2017). On the diffuseness and the impact

on maintainability of code smells: a large scale empirical investigation. Empir-

ical Software Engineering, pages 1–34.

218 BIBLIOGRAPHY

[Palomba et al., 2014] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., and

De Lucia, A. (2014). Do they really smell bad? a study on developers’

perception of bad code smells. In Software maintenance and evolution (ICSME),

2014 IEEE international conference on, pages 101–110. IEEE.

[Palomba et al., 2015] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshy-

vanyk, D., and De Lucia, A. (2015). Mining version histories for detecting

code smells. IEEE Transactions on Software Engineering, 41(5):462–489.

[Palomba et al., 2016a] Palomba, F., Di Nucci, D., Panichella, A., Oliveto, R.,

and De Lucia, A. (2016a). On the diffusion of test smells in automatically

generated test code: An empirical study. In Proceedings of the 9th International

Workshop on Search-Based Software Testing, pages 5–14. ACM.

[Palomba et al., 2016b] Palomba, F., Panichella, A., De Lucia, A., Oliveto, R.,

and Zaidman, A. (2016b). A textual-based technique for smell detection. In

Program Comprehension (ICPC), 2016 IEEE 24th International Conference

on, pages 1–10. IEEE.

[Palomba et al., 2016c] Palomba, F., Panichella, A., Zaidman, A., Oliveto, R.,

and De Lucia, A. (2016c). Automatic test case generation: What if test code

quality matters? In Proceedings of the 25th International Symposium on

Software Testing and Analysis, ISSTA 2016, pages 130–141, New York, NY,

USA. ACM.

[Palomba and Zaidman, 2017] Palomba, F. and Zaidman, A. (2017). Does refac-

toring of test smells induce fixing flaky tests? In Software Maintenance and

Evolution (ICSME), 2017 IEEE International Conference on, pages 1–12.

IEEE.

[Palomba et al., 2018] Palomba, F., Zaidman, A., and De Lucia, A. (2018). Auto-

matic test smell detection using information retrieval techniques. In 2018 IEEE

International Conference on Software Maintenance and Evolution (ICSME),

pages 311–322.

BIBLIOGRAPHY 219

[Panichella, 2019] Panichella, A. (2019). Beyond unit-testing in search-based

test case generation: Challenges and opportunities. In 2019 IEEE/ACM 12th

International Workshop on Search-Based Software Testing (SBST), pages 7–8.

[Panichella et al., 2018a] Panichella, A., Kifetew, F., and Tonella, P. (2018a).

A large scale empirical comparison of state-of-the-art search-based test case

generators. Information and Software Technology.

[Panichella et al., 2015] Panichella, A., Kifetew, F. M., and Tonella, P. (2015).

Reformulating branch coverage as a many-objective optimization problem. In

ICST, pages 1–10. IEEE Computer Society.

[Panichella et al., 2018b] Panichella, A., Kifetew, F. M., and Tonella, P. (2018b).

Automated test case generation as a many-objective optimisation problem with

dynamic selection of the targets. IEEE Transactions on Software Engineering,

44(2):122–158.

[Panichella et al., 2018c] Panichella, A., Kifetew, F. M., and Tonella, P. (2018c).

Incremental control dependency frontier exploration for many-criteria test case

generation. In International Symposium on Search Based Software Engineering,

pages 309–324. Springer.

[Panichella and Molina, 2017] Panichella, A. and Molina, U. R. (2017). Java unit

testing tool competition-fifth round. In Search-Based Software Testing (SBST),

2017 IEEE/ACM 10th International Workshop on, pages 32–38. IEEE.

[Panichella et al., 2016] Panichella, S., Panichella, A., Beller, M., Zaidman, A.,

and Gall, H. C. (2016). The impact of test case summaries on bug fixing

performance: an empirical investigation. In Proceedings of the 38th Interna-

tional Conference on Software Engineering, ICSE 2016, Austin, TX, USA,

May 14-22, 2016, pages 547–558.

[Pantiuchina et al., 2018] Pantiuchina, J., Lanza, M., and Bavota, G. (2018).

Improving code: The (mis) perception of quality metrics. In 2018 IEEE

International Conference on Software Maintenance and Evolution (ICSME),

pages 80–91. IEEE.

220 BIBLIOGRAPHY

[Paulhus, 1991] Paulhus, D. L. (1991). Measurement and control of response

bias.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,

V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and

Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12:2825–2830.

[Pelloni et al., 2018] Pelloni, L., Grano, G., Ciurumelea, A., Panichella, S.,

Palomba, F., and Gall, H. C. (2018). Becloma: Augmenting stack traces

with user review information. In 2018 IEEE 25th International Conference on

Software Analysis, Evolution and Reengineering (SANER), pages 522–526.

[Phogat et al., 2011] Phogat, M., Kumar, D., and Murthal (Rohtak, India; 2011).

Testability of software system. IJCEM International Journal of Computational

Engineering & Management, 14:57–62.

[Pinto et al., 2020] Pinto, G., Miranda, B., Dissanayake, S., d’Amorim, M.,

Treude, C., and Bertolino, A. (2020). What is the vocabulary of flaky tests? In

Proceedings of the 17th International Conference on Mining Software Reposito-

ries, MSR ’20, page 492–502, New York, NY, USA. Association for Computing

Machinery.

[Pinto and Vergilio, 2010] Pinto, G. H. and Vergilio, S. R. (2010). A multi-

objective genetic algorithm to test data generation. In Tools with Artificial

Intelligence (ICTAI), 2010 22nd IEEE International Conference on, volume 1,

pages 129–134. IEEE.

[Pinto et al., 2012] Pinto, L. S., Sinha, S., and Orso, A. (2012). Understanding

myths and realities of test-suite evolution. In Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software Engineering.

[Qiu et al., 2016] Qiu, D., Li, B., and Leung, H. (2016). Understanding the api

usage in java. Information and software technology, 73:81–100.

BIBLIOGRAPHY 221

[Qusef et al., 2011] Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., and Binkley,

D. (2011). Scotch: Test-to-code traceability using slicing and conceptual

coupling. In Software Maintenance (ICSM), 2011 27th IEEE International

Conference on, pages 63–72. IEEE.

[Qusef et al., 2013] Qusef, A., Bavota, G., Oliveto, R., Lucia, A. D., and Binkley,

D. (2013). Evaluating test-to-code traceability recovery methods through con-

trolled experiments. Journal of Software: Evolution and Process, 25(11):1167–

1191.

[Rafi et al., 2012] Rafi, D. M., Moses, K. R. K., Petersen, K., and Mäntylä, M. V.

(2012). Benefits and limitations of automated software testing: Systematic

literature review and practitioner survey. In Proceedings of the 7th International

Workshop on Automation of Software Test, AST ’12, page 36–42. IEEE Press.

[Rafique and Mišić, 2012] Rafique, Y. and Mišić, V. B. (2012). The effects of

test-driven development on external quality and productivity: A meta-analysis.

IEEE Transactions on Software Engineering, 39(6):835–856.

[Ramler et al., 2012] Ramler, R., Winkler, D., and Schmidt, M. (2012). Random

test case generation and manual unit testing: Substitute or complement in

retrofitting tests for legacy code? In 2012 38th Euromicro Conference on

Software Engineering and Advanced Applications, pages 286–293.

[Raz, 1992] Raz, T. (1992). The art of computer systems performance analysis:

Techniques for experimental design, measurement, simulation, and modeling

(raj jain). SIAM Review, 34(3):518–519.

[Riley et al., 2011] Riley, R. D., Higgins, J. P., and Deeks, J. J. (2011). Interpre-

tation of random effects meta-analyses. Bmj, 342:d549.

[Rojas et al., 2015] Rojas, J. M., Campos, J., Vivanti, M., Fraser, G., and Arcuri,

A. (2015). Combining multiple coverage criteria in search-based unit test

generation. In Barros, M. and Labiche, Y., editors, Search-Based Software

Engineering, pages 93–108, Cham. Springer International Publishing.

222 BIBLIOGRAPHY

[Rojas and Fraser, 2017] Rojas, J. M. and Fraser, G. (2017). Is search-based unit

test generation research stuck in a local optimum? In SBST@ICSE, pages

51–52. IEEE.

[Rojas et al., 2017] Rojas, J. M., Vivanti, M., Arcuri, A., and Fraser, G. (2017).

A detailed investigation of the effectiveness of whole test suite generation.

Empirical Software Engineering, 22(2):852–893.

[Romano and Scanniello, 2017] Romano, S. and Scanniello, G. (2017). Smug:

a selective mutant generator tool. In Proceedings of the 39th International

Conference on Software Engineering Companion, pages 19–22. IEEE Press.

[Rothermel et al., 2001] Rothermel, G., Untch, R. H., Chu, C., and Harrold,

M. J. (2001). Prioritizing test cases for regression testing. IEEE Transactions

on software engineering, 27(10):929–948.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.

(1986). Learning internal representations by error propagation. Parallel

Distributed Processing: Explorations in the Microstructure of Cognition, 1:318–

362.

[Sakti et al., 2015] Sakti, A., Pesant, G., and Guéhéneuc, Y. (2015). Instance

generator and problem representation to improve object oriented code coverage.

IEEE Transactions on Software Engineering, 41(3):294–313.

[Sammut and Webb, 2017] Sammut, C. and Webb, G. I., editors (2017). Ency-

clopedia of Machine Learning and Data Mining. Springer Reference. Springer,

New York, 2 edition.

[Sanderson and Croft, 2012] Sanderson, M. and Croft, W. B. (2012). The history

of information retrieval research. Proceedings of the IEEE, 100(Centennial-

Issue):1444–1451.

[Sarro et al., 2016] Sarro, F., Petrozziello, A., and Harman, M. (2016). Multi-

objective software effort estimation. In Proceedings of the 38th International

BIBLIOGRAPHY 223

Conference on Software Engineering, ICSE ’16, pages 619–630, New York, NY,

USA. ACM.

[Scalabrino et al., 2017] Scalabrino, S., Bavota, G., Vendome, C., Linares-

Vásquez, M., Poshyvanyk, D., and Oliveto, R. (2017). Automatically assessing

code understandability: How far are we? In 2017 32nd IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), pages 417–427.

IEEE.

[Scalabrino et al., 2018a] Scalabrino, S., Grano, G., Di Nucci, D., Guerra, M.,

De Lucia, A., Gall, H. C., and Oliveto, R. (2018a). Ocelot: A search-based test-

data generation tool for c. In Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering, ASE 2018, page 868–871, New

York, NY, USA. Association for Computing Machinery.

[Scalabrino et al., 2016a] Scalabrino, S., Grano, G., Di Nucci, D., Oliveto, R.,

and De Lucia, A. (2016a). Search-based testing of procedural programs:

Iterative single-target or multi-target approach? In Sarro, F. and Deb, K.,

editors, Search Based Software Engineering - 8th International Symposium,

SSBSE 2016, Raleigh, NC, USA, October 8-10, 2016, Proceedings, volume

9962 of Lecture Notes in Computer Science, pages 64–79.

[Scalabrino et al., 2018b] Scalabrino, S., Linares-Vásquez, M., Oliveto, R., and

Poshyvanyk, D. (2018b). A comprehensive model for code readability. Journal

of Software: Evolution and Process, 30(6):e1958.

[Scalabrino et al., 2016b] Scalabrino, S., Linares-Vásquez, M., Poshyvanyk, D.,

and Oliveto, R. (2016b). Improving code readability models with textual

features. In Program Comprehension (ICPC), 2016 IEEE 24th International

Conference on, pages 1–10. IEEE.

[Schermann et al., 2016] Schermann, G., Cito, J., Leitner, P., and Gall, H. C.

(2016). Towards quality gates in continuous delivery and deployment. In

2016 IEEE 24th International Conference on Program Comprehension (ICPC),

pages 1–4.

224 BIBLIOGRAPHY

[Scott and Knott, 1974] Scott, A. J. and Knott, M. (1974). A cluster analysis

method for grouping means in the analysis of variance. Biometrics, pages

507–512.

[Sen et al., 2005] Sen, K., Marinov, D., and Agha, G. (2005). Cute: a concolic

unit testing engine for C. Proceedings of the 10th European Software Engineer-

ing Conference held jointly with 13th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, 2005, Lisbon, Portugal, September

5-9, 2005, 30(5):263–272.

[Serra et al., 2019] Serra, D., Grano, G., Palomba, F., Ferrucci, F., Gall, H. C.,

and Bacchelli, A. (2019). On the effectiveness of manual and automatic unit

test generation: Ten years later. In 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR), pages 121–125.

[Setiani et al., 2020] Setiani, N., Ferdiana, R., and Hartanto, R. (2020). Test

case understandability model. IEEE Access, 8:169036–169046.

[Shaheen and Du Bousquet, 2009] Shaheen, M. R. and Du Bousquet, L. (2009).

Is depth of inheritance tree a good cost prediction for branch coverage test-

ing? Advances in System Testing and Validation Lifecycle, VALID’ 09. First

International Conference on, September 20-25, 2009 - Porto, Portugal, pages

42–47, New York, NY, USA. IEEE.

[Shamshiri et al., 2015a] Shamshiri, S., Just, R., Rojas, J. M., Fraser, G.,

McMinn, P., and Arcuri, A. (2015a). Do automatically generated unit tests

find real faults? an empirical study of effectiveness and challenges (t). In Pro-

ceedings of the 2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE), ASE ’15, pages 201–211, Washington, DC, USA.

IEEE Computer Society.

[Shamshiri et al., 2015b] Shamshiri, S., Rojas, J. M., Fraser, G., and McMinn,

P. (2015b). Random or genetic algorithm search for object-oriented test suite

generation? In Proceedings of the 2015 Annual Conference on Genetic and

Evolutionary Computation, pages 1367–1374. ACM.

BIBLIOGRAPHY 225

[Shi et al., 2014] Shi, A., Gyori, A., Gligoric, M., Zaytsev, A., and Marinov, D.

(2014). Balancing trade-offs in test-suite reduction. In Proceedings of the

22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 246–256. ACM.

[Shirabad et al., 2000] Shirabad, J. S., Lethbridge, T. C., and Matwin, S. (2000).

Supporting maintenance of legacy software with data mining techniques. In

Proceedings of the 2000 conference of the Centre for Advanced Studies on

Collaborative research, page 11. IBM Press.

[Shirazi, 2002] Shirazi, J. (2002). Java Performance Tuning. O’Reilly & Asso-

ciates, Inc., Sebastopol, CA, USA, 2nd edition.

[Smith and Noble, 2014] Smith, J. and Noble, H. (2014). Bias in research.

Evidence-based nursing, 17(4):100–101.

[Soltani et al., 2018] Soltani, M., Panichella, A., and Van Deursen, A. (2018).

Search-based crash reproduction and its impact on debugging. IEEE Transac-

tions on Software Engineering.

[Song et al., 2011] Song, Q., Jia, Z., Shepperd, M., Ying, S., and Liu, J. (2011).

A general software defect-proneness prediction framework. IEEE Transactions

on Software Engineering, 37(3):356–370.

[Sorbo et al., 2020] Sorbo, A. D., Grano, G., Visaggio, C. A., and Panichella,

S. (2020). Investigating the criticality of user-reported issues through their

relations with app rating. Journal of Software: Evolution and Process.

[Spadini et al., 2019] Spadini, D., Palomba, F., Baum, T., Hanenberg, S.,

Bruntink, M., and Bacchelli, A. (2019). Test-driven code review: an em-

pirical study. In Proceedings of the 41st International Conference on Software

Engineering, pages 1061–1072. IEEE Press.

[Spadini et al., 2018] Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., and

Bacchelli, A. (2018). On the relation of test smells to software code quality. In

226 BIBLIOGRAPHY

2018 IEEE International Conference on Software Maintenance and Evolution

(ICSME), pages 1–12. IEEE.

[Spearman, 1904] Spearman, C. (1904). The proof and measurement of associa-

tion between two things. American Journal of Psychology, 15:88–103.

[Srikanth et al., 2005] Srikanth, H., Williams, L., and Osborne, J. (2005). System

test case prioritization of new and regression test cases. In 2005 International

Symposium on Empirical Software Engineering, 2005., pages 10–pp. IEEE.

[Stone, 1974] Stone, M. (1974). Cross-validatory choice and assessment of statis-

tical predictions. Journal of the royal statistical society. Series B (Methodolog-

ical), pages 111–147.

[Strug and Strug, 2012] Strug, J. and Strug, B. (2012). Machine learning ap-

proach in mutation testing. In IFIP International Conference on Testing

Software and Systems, pages 200–214. Springer.

[Sun et al., 2017] Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017).

Revisiting unreasonable effectiveness of data in deep learning era. In 2017

IEEE International Conference on Computer Vision (ICCV), pages 843–852.

[Svetnik et al., 2003] Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan,

R. P., and Feuston, B. P. (2003). Random forest: a classification and regression

tool for compound classification and qsar modeling. Journal of chemical

information and computer sciences, 43(6):1947–1958.

[Tantithamthavorn et al., 2016] Tantithamthavorn, C., McIntosh, S., Hassan,

A. E., and Matsumoto, K. (2016). Automated parameter optimization of

classification techniques for defect prediction models. In Software Engineering

(ICSE), 2016 IEEE/ACM 38th International Conference on, pages 321–332.

IEEE.

[Tantithamthavorn et al., 2017] Tantithamthavorn, C., McIntosh, S., Hassan,

A. E., and Matsumoto, K. (2017). An empirical comparison of model validation

BIBLIOGRAPHY 227

techniques for defect prediction models. IEEE Transactions on Software

Engineering, 43(1):1–18.

[Taylor, 1983] Taylor, D. G. (1983). Chapter 14 - analyzing qualitative data. In

Rossi, P. H., Wright, J. D., and Anderson, A. B., editors, Handbook of Survey

Research, pages 547 – 612. Academic Press.

[Tian et al., 2015] Tian, Y., Nagappan, M., Lo, D., and Hassan, A. E. (2015).

What are the characteristics of high-rated apps? a case study on free android

applications. In Software Maintenance and Evolution (ICSME), 2015 IEEE

International Conference on, pages 301–310. IEEE.

[Tonella, 2004] Tonella, P. (2004). Evolutionary testing of classes. In Proceedings

of the 2004 ACM SIGSOFT International Symposium on Software Testing and

Analysis, ISSTA ’04, pages 119–128, New York, NY, USA. ACM.

[Törngren and Sellgren, 2018] Törngren, M. and Sellgren, U. (2018). Complexity

Challenges in Development of Cyber-Physical Systems, pages 478–503. Springer

International Publishing, Cham.

[Trivedi et al., 2015] Trivedi, S., Pardos, Z. A., and Heffernan, N. T. (2015). The

utility of clustering in prediction tasks. arXiv preprint arXiv:1509.06163.

[Tufano et al., 2016] Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto,

R., De Lucia, A., and Poshyvanyk, D. (2016). An empirical investigation into

the nature of test smells. In Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering, pages 4–15.

[Van Deursen et al., 2001] Van Deursen, A., Moonen, L., van den Bergh, A., and

Kok, G. (2001). Refactoring test code. In Proceedings of the 2nd interna-

tional conference on extreme programming and flexible processes in software

engineering (XP2001), pages 92–95.

[Van Rompaey et al., 2007] Van Rompaey, B., Du Bois, B., Demeyer, S., and

Rieger, M. (2007). On the detection of test smells: A metrics-based approach

228 BIBLIOGRAPHY

for general fixture and eager test. IEEE Transactions on Software Engineering,

33(12):800–817.

[Vargha and Delaney, 2000] Vargha, A. and Delaney, H. D. (2000). A Critique

and Improvement of the CL Common Language Effect Size Statistics of McGraw

and Wong. Journal on Educational and Behavioral Statistics, 25(2):101–132.

[Vassallo et al., 2019] Vassallo, C., Grano, G., Palomba, F., Gall, H. C., and

Bacchelli, A. (2019). A large-scale empirical exploration on refactoring activities

in open source software projects. Science of Computer Programming, 180:1 –

15.

[Vassallo et al., 2018] Vassallo, C., Palomba, F., Bacchelli, A., and Gall, H. C.

(2018). Continuous code quality: Are we (really) doing that? In Proceedings

of the 33rd ACM/IEEE International Conference on Automated Software

Engineering, ASE 2018, page 790–795, New York, NY, USA. Association for

Computing Machinery.

[Vassallo et al., 2020] Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Gall,

H. C., and Zaidman, A. (2020). How developers engage with static analysis

tools in different contexts. Empirical Software Engineering, 25(2):1419–1457.

[Vassallo et al., 2016] Vassallo, C., Zampetti, F., Romano, D., Beller, M.,

Panichella, A., Penta, M. D., and Zaidman, A. (2016). Continuous deliv-

ery practices in a large financial organization. In 2016 IEEE International

Conference on Software Maintenance and Evolution, ICSME 2016, Raleigh,

NC, USA, October 2-7, 2016, pages 519–528.

[von Lücken et al., 2014] von Lücken, C., Barán, B., and Brizuela, C. (2014). A

survey on multi-objective evolutionary algorithms for many-objective problems.

Computational optimization and applications, 58(3):707–756.

[Walker, 2012] Walker, J. L. (2012). Research column. the use of saturation in

qualitative research. Canadian Journal of Cardiovascular Nursing, 22(2).

BIBLIOGRAPHY 229

[Wei et al., 2012] Wei, Y., Meyer, B., and Oriol, M. (2012). Is branch coverage a

good measure of testing effectiveness? In Empirical Software Engineering and

Verification, pages 194–212. Springer.

[Weiss, 1995] Weiss, R. S. (1995). Learning from strangers: The art and method

of qualitative interview studies. Simon and Schuster.

[Williams, 2006] Williams, R. (2006). Generalized ordered logit/partial pro-

portional odds models for ordinal dependent variables. The Stata Journal,

6(1):58–82.

[Winship and Mare, 1984] Winship, C. and Mare, R. D. (1984). Regression

models with ordinal variables. American Sociological Review.

[Wong et al., 2010] Wong, W. E., Debroy, V., and Choi, B. (2010). A family of

code coverage-based heuristics for effective fault localization. J. Syst. Softw.,

83(2):188–208.

[Wong et al., 2007] Wong, W. E., Qi, Y., Zhao, L., and Cai, K. (2007). Effective

fault localization using code coverage. In COMPSAC (1), pages 449–456. IEEE

Computer Society.

[Xu et al., 2017] Xu, X., Zhu, Z., and Jiao, L. (2017). An adaptive fitness

function based on branch hardness for search based testing. In Proceedings of

the Genetic and Evolutionary Computation Conference, GECCO ’17, pages

1335–1342, New York, NY, USA. ACM.

[Xu, 2011] Xu, Z. (2011). Directed test suite augmentation. In Proceedings of

the 33rd International Conference on Software Engineering, ICSE ’11, pages

1110–1113, New York, NY, USA. ACM.

[Xuan and Monperrus, 2014] Xuan, J. and Monperrus, M. (2014). Test case

purification for improving fault localization. In Proceedings of the International

Symposium on Foundations of Software Engineering (FSE), pages 52–63. ACM.

[Yamaura, 1998] Yamaura, T. (1998). How to design practical test cases. IEEE

software, 15(6):30–36.

230 BIBLIOGRAPHY

[Yoo and Harman, 2007] Yoo, S. and Harman, M. (2007). Pareto efficient multi-

objective test case selection. In Proceedings of the 2007 International Sympo-

sium on Software Testing and Analysis, ISSTA ’07, pages 140–150.

[Yoo and Harman, 2012] Yoo, S. and Harman, M. (2012). Regression testing

minimization, selection and prioritization: A survey. Softw. Test. Verif. Reliab.,

22(2):67–120.

[Yu et al., 2016] Yu, Y., Yin, G., Wang, T., Yang, C., and Wang, H. (2016). De-

terminants of pull-based development in the context of continuous integration.

Science China Information Sciences, 59(8):080104.

[Zazworka et al., 2011] Zazworka, N., Shaw, M. A., Shull, F., and Seaman, C.

(2011). Investigating the impact of design debt on software quality. In

Proceedings of the 2nd Workshop on Managing Technical Debt, pages 17–23.

ACM.

[Zhang et al., 2018] Zhang, J., Zhang, L., Harman, M., Hao, D., Jia, Y., and

Zhang, L. (2018). Predictive mutation testing. IEEE Transactions on Software

Engineering.

[Zhang and Mesbah, 2015] Zhang, Y. and Mesbah, A. (2015). Assertions are

strongly correlated with test suite effectiveness. In Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering, pages 214–224.

ACM.

[Zhu et al., 2018] Zhu, Q., Panichella, A., and Zaidman, A. (2018). An inves-

tigation of compression techniques to speed up mutation testing. In IEEE

Conference on Software Testing, Validation and Verification.

Curriculum Vitae

Personal Information

Name Giovanni Grano

Nationality Italy

Date of Birth April 24, 1990

Education

November 2016 – April 2021 Doctoral Program at the University of Zurich,

Department of Informatics,

Chair of Software Engineering,

Zurich, Switzerland

September 2013 – May 2015 Master of Science in Computer Science

at the University of Salerno,

Salerno, Italy

September 2009 – July 2013 Bachelor of Science in Computer Science

at the University of Molise,

Pesche, Italy

	Synopsis
	Hypotheses and Research Questions
	Research Approach and Main Results
	Perception and Measurability of Unit Test Code Quality
	Predict Test Case Effectiveness
	Predicting the Output of Test Case Generation Tools
	Adaptive Optimization of Secondary Objectives in Test Case Generation

	Background and Related Work
	Measurement of Test Quality Features
	Automated Test Case Generation

	Scope of Work, Potential, and Limitations
	Scope
	Limitations

	Scientific Implications
	Opportunities and Future Work
	Thesis Roadmap

	Pizza versus Pinsa:On the Perception and Measurability of Unit Test Code Quality
	Introduction
	Background And Related Work
	Research Goal and Questions
	RQ1. The Practitioner's Perspective
	Research Methodology
	Analysis of the Results

	RQ2. The Research Perspective
	Research Methodology
	Analysis of the Results

	Implication of the Study
	Threats to Validity
	Conclusion and Future Work

	Lightweight Assessmentof Test-Case Effectiveness using Source-Code-Quality Indicators
	Introduction
	Related Work
	Empirical Study Variables
	Dependent Variable
	Independent Variables

	Research Questions and Context
	Context Selection
	Linking Production to Test Classes

	On the Characteristics of Effective Tests
	RQ1 Design: Factors Analysis
	RQ1 Results: Factors Analysis

	On the Estimation of Effective Tests
	RQ2-RQ3 Design: Evaluating the Capabilities of a Test-Case Effectiveness Estimation Model
	RQ2-RQ3 Results: Evaluating the Capabilities of a Test-Case Effectiveness Estimation Model

	Discussion
	Why Source-Code Metrics can Estimate the Test Effectiveness
	On the Practical Usage of the Model

	Threats to Validity
	Conclusions & Future Work

	Branch Coverage Prediction in Automated Testing
	Introduction
	Dataset and Features Description
	Dependent Variable
	Independent Variables

	Research Questions And Context
	Context Selection
	Machine Learning Algorithms

	Empirical Study Design
	RQ1/RQ2 Design: Performance of the Prediction with Source-Code Metrics Features
	RQ3 Design: Feature Analysis

	Results
	RQ1/RQ2 - Performance of the Prediction with Source-Code Metrics Features
	RQ3 - Feature Analysis

	Discussion and Practical Usage
	Threats to Validity
	Related Work
	Conclusions & Future Work

	Testing with Fewer Resources:An Adaptive Approach to Performance-Aware Test Case Generation
	Introduction
	Background & Related Work
	Approach
	Performance Proxies
	Performance-Aware Test Case Generation

	Empirical Study
	Subjects
	Experimental Protocol

	Results & Discussion
	RQ1 - Effectiveness
	RQ2 - Fault Detection
	RQ3 - Performance
	Discussion

	Threats to Validity
	Conclusions

	Conclusions
	Open Research Data

