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ABSTRACT Many parts or components in a facility are sometime vulnerable to failure causing downtime and 

production loss. So, in order to decrease the downtime, parts of the same type that follow the same lifespan distribution 

need to be replaced at least once to minimize the cost of unscheduled labor and the damages to the products. A decision 

on replacing all such vulnerable parts decreases the total cost including penalty cost, purchasing cost and holding cost. 

Different preempt times of a machine result in different purchasing quantity, procurement cost and carrying costs. So, 

a rational decision of allowable stopping time of a machine and order cycle for vulnerable parts jointly minimizes the 

total cost of supply chain. This study proposes a novel model to minimize the total cost for the vulnerable parts which 

have joint influence on machine performance. An integrated nonlinear cost model developed here is optimally solved 

and tested with several different distributions. Strong results are propounded to support the proposed model in terms 

of manufacturing time and system cost. 

INDEX TERMS Tool life, condition monitoring, preventive maintenance, allowable stopping time, 

procurement, operations planning and probabilistic models. 

I. INTRODUCTION 

Nowadays, with the improvement of people's expectation of 

products and services, the market competition is more and 

more fierce. To enhance profits and reduce costs of 

enterprises, it is very necessary for companies to improve 

supply chain operational efficiency by various of methods. 

Although many effective supply chain strategies and models 

have been successfully applied in practice, there is still a 

need to develop new models or improve classical models to 

respond to the changing supply chain environment, 

considering some relevant trade-offs such as costs and 

benefits (Lina and Wang, 2011; Volling, et al. 2013; Yao and 

Askin, 2019) [1-3].  

For a machine or equipment, there are many same type 

parts which need to be replaced over a period. These same 

type parts that need to be replaced regularly are called 

vulnerable parts. Failure of vulnerable parts could sometimes 

result in huge operating cost which could have be avoided by 

reasonable method. Therefore, it is necessary to explore this 

scenario and build appropriate model to make more accurate 

decision on how to choose the more suitable replacement 

time for the vulnerable parts of a machine to avoid loss. In 

general, vulnerable parts in a machine are purchased 

according to predetermined schedules. Based on different 

stopping times, we explore the impact of order cycle and 

order size of vulnerable parts on enterprise profitability and 

operating costs. In this study, we established a novel cost 

estimation model (CEM) where the jointly distributed 

lifespan of vulnerable parts which have same lifespan 

distribution function are introduced. According to the 

proposed CEM model, the optimal replacement time and 

optimal order cycle of the vulnerable can be determined and 

then total enterprise cost is minimized. There is still a lot of 

research on procurement and replacement strategy for 

vulnerable parts. But the existing scenarios are most often not 

in existence—failure of a part in operational mode has an 

impact on the parts. 

A. DISTRIBUTION OF LIFESPAN 

Numerous researches have been done concentrating on the 

lifespan distribution of diverse parts, or products. The study 

of Moonseong et al. (1998) showed that power and the 

required sample size are dependent on the shape parameter 

and indicated power and sample size calculations under the 

Weibull (a typical continuous exponential distribution 

function with random variables) distribution [4]. To make 

the product reach its ideal lifespan, Chalkley et al. (2003) 

found that it is possible to calculate the point in the life of the 

product when replacement is most beneficial from 

information about new and existing machines [5]. Lamond 

and Sodhi (2006) investigated the processing time on a 

flexible machine with random tool lives [6]. Khan et al. 

(2018) argued that reduced product lifespan has a significant 
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impact toward, both the environment and the economy and 

explored upgradability potential as a product lifespan 

extension strategy [7]. Combined with green and smart 

manufacturing, in order to solve production scheduling 

problems on CNC-machines having a set of cutting tools in 

a Flexible Manufacturing System (FMS), Setiawan et al. 

(2019) considered lifespan of cutting tool to maximize the 

cutting tools utilization [8]. De, Aghezzaf and Desmet 

(2019) studied two modelling approaches to the multi-

echelon inventory optimization problem in a distribution 

network with stochastic demands and lead times [9]. 

Recently, Uzunoglu and Yalcin (2020) examined a 

continuous review inventory model for perishable items with 

two demand classes and demands for both classes occur 

according to Poisson process [10].  

These contributions gave different examples on lifespan 

distribution in many manufacturing industries and provide 

some foundation for this paper. However, most papers 

discussed only one or several distributions separately and 

aimed at only one machine. This research studies the impact 

of lifespan joint distribution on part procurement policy. 

B. LIFESPAN ESTIMATION 

In the area of lifespan estimation, Masahiro et al. (2010) 

reviewed and categorized different types of lifespan 

distribution and methodologies for estimating the lifespan 

distribution of commodities and also examined the 

differences in actual lifespan between variant types of 

distribution, definition and methodology by comparing 

reported data [11]. To estimate the lifespan of agricultural 

tractor which can be quite useful for the market predictions, 

Munoz and Llanos (2012) established a diffusion aggregate 

adoption model by using a nonlinear estimation procedure 

[12]. Later Firoozi and Ariafar (2017) developed a model for 

network design of perishable items and proposed a 

Lagrangian relaxation-based heuristic algorithm to solve the 

model [13]. Then study of Li et al. (2019) reviewed data-

driven battery health estimation methods and discussed these 

in view of their feasibility and cost-effectiveness in dealing 

with battery health in real-world applications [14]. From two 

different perspectives, Gu and Chen (2019) improved the 

similarity-based residual life prediction methods, which is an 

emerging technique and occupies a significant place in 

remaining useful life (RUL) prediction [15]. To better 

predict the lifespan of LEDs mounted on thermoplastic 

substrates, the so-called molded interconnect devices, 

Soltani et al. (2019) presented a novel approach for 

reliability investigation and lifespan estimation, based on 

simulation [16]. Later Huang et al. (2020) used the Weibull 

distribution model to calculate the lifetime of products based 

on survey data collected from selected formal recycling 

plants in various regions in China [17]. Later Wu et al. 

(2021) modeled a cellular network with repairable facilities 

characterized by a two-parameter Weibull distribution to 

minimize the expected life cycle cost of the cellular network 

[18]. 

Considering the maximum stopping time of a machine 

is jointly determined by multiple vulnerable parts, this paper 

proposes a novel lifespan estimation method and a cost 

assessment model (CEM) to get an optimal strategy through 

algorithm, after that it got the best lifespan for the part. 

C. TOTAL COST ASSESSMENT WITH THE 
CONSIDERATION OF LIFESPAN 

In term of cost assessment study considering lifespan of parts 

or products, Weustink et al. (2000) developed a generic 

framework to control the product costs, to estimate the costs 

adequately and to store the cost data in a more generic way 

which would set a good example for the estimating of the 

total product cost [19]. Since quick and accurate information 

is extremely valuable to designers and manufacturing 

engineers. Then by considering multiple machine 

replacements under discounted costs, Safaei and Zuashkiani 

(2012) made progress on manufacturing system design [20]. 

According to an inventory control problem of aircraft spare 

parts during the end-of-life (EOL) phase of fleet operations, 

Hur, Keskin and Schmidt (2018) presented an algorithm that 

computes the optimal final order size of components under a 

budget constraint [21]. Ketzenberg, Gaukler and Salin 

(2018) addressed the problem of how to set expiration dates 

for perishable products to balance hazard costs and perishing 

costs in the context of a retailer that sells a random lifespan 

product under periodic review [22]. In order to select a final 

design representing the best trade-off between safety and 

economy, in a life-cycle perspective, Venanzi et al. (2019) 

proposed an automated procedure for the estimation of life-

cycle repair costs of different bridge design solutions [23]. 

An inventory model has been developed by Kundu et al. 

(2019) under two levels of trade credit policy with customers' 

default risk consideration for a deteriorating item having a 

maximum lifespan [24]. By modeling the manufacturer-

retailer relationship as a Stackelberg game where the retailer 

is the leader and decides the replenishment cycle that 

minimizes its mismatch cost between supply and uncertain 

demand. For a transition towards a circular built 

environment, Jansen et al. (2020) developed an economic 

assessment model in the form of a Circular Economy Life 

Cycle Cost (CE-LCC), which is based on existing Life Cycle 

Cost techniques and adapted to the requirements of CE 

products [25]. To optimize real-time maintenance decisions 

dynamically in a serial-parallel structure of a manufacturing 

system, Xia et al. (2021) proposed a capacity balancing-

oriented leasing profit optimization (CB-LPO) policy by 

considering the constraints of the capacity balancing [26]. 

Different from the above studies, the stopping time of a 

part is taken into consideration and integrated into the total 

cost model which focuses on the vulnerable parts of a 

machine. 

D. SUPPLY CHAIN UNDER JOINTLY DISTRIBUTED 
PRODUCTION 

Blackhurst et al. (2005) developed a decision support 

modeling methodology for supply chain, product and 

process design decisions, which integrate the production 

process into a supply chain system, but they rarely 

considered the impact of product lifespan on supply chain 

cost [27]. In order to maintenance spare parts planning and 
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control, a framework on how to plan and control a spare parts 

supply chain had been provided (Cavalieri et al., 2008) [28]. 

Later a cold standby repairable system consisting of two 

dissimilar components and one repairman is studied by 

Wang and Zhang (2016) [29]. In this research, they proposed 

a replacement policy for a two-dissimilar-component cold 

standby system with different repair actions. Then Khan et 

al. (2019) proposed two integrated models to incorporate 

quintessential and omnipresent supply chain practices as 

repairing or replacing non-conforming items supplied by the 

vendor [30]. Taking production and cycle time as decision 

variables, Iqbal and Sarkar (2019) design a forward and 

reverse supply chain system that produces two different 

types of products, which are subject to deterioration [31]. 

Bacchetti et al. (2020) formulated a mixed integer linear 

programming model to ensure an optimal replenishment of 

the regional warehouses and an optimal choice of the 

distribution strategies in a supply chain composed of set of 

production plants and a set of regional warehouses [32]. 

Later Shen, Hu and Ma (2020) studied systems with a critical 

subsystem and a protective auxiliary subsystem subject to 

degradation and economic dependence. Based on such 

systems, they presented two preventive replacement models 

and discussed their application conditions [33]. 

Previous research on supply chain management focused 

more on optimizing the management process. But an impact 

of product lifespan assessment on total cost was mentioned 

in few studies. This study regards the lifespan of vulnerable 

parts as a part of the CEM, which makes the cost evaluation 

more reasonable. 

E. STATUS OF THE PREVIOUS RELATED RESEARCH, 
VULNERABLE PARTS AND THE PRESENT STUDY 

In many scenarios of the manufacturing system, a machine 

or equipment usually may have many vulnerable parts that 

play important roles in the regular running process. The 

machine with these parts has also uptime/downtime 

distribution that is also dependent on the part failure and 

other affecting parameters that control the machine 

performance. In order to decrease the machine down-time, 

all parts of the same type that follow the same lifespan 

distribution, are changed almost simultaneously at a time, 

resulting in minimization of the cost of unscheduled labor 

and damages to the product in case of random failure. For 

example, assume a test bench for testing flow leak that has a 

few seals made of silicone; if one of these silicone seals fails, 

the test bench leaks, and it will not pass the test. So, a 

reasonable decision on the preemption of all the vulnerable 

parts (silicone seal, in this case) and their replacement 

decreases the total cost of failure penalty, purchasing, and 

holding of parts. At the same time, the different preempt 

stopping times of a machine result in the requirements of 

variant quantity of purchasing parts resulting in different 

procurement and carrying costs. Consequently, a scientific 

decision of allowable downtime of a machine and ordering 

 cycle for replenishing vulnerable parts jointly minimizes the 

total cost of penalty, purchasing and holding costs. Thus, this 

study proposes a novel model to minimize the total cost 

(holding, penalty, purchasing and fixed replenishing cost) for 

the vulnerable parts which have joint influence on machine 

performance. So, it is a tradeoff situation on letting the parts 

to fail or when to stop the machine to change the parts instead 

of parts to fail—which is the main issue of the current 

research directed to an economic decision-making process. 

Based on determining appropriate inspection intervals 

and a maintenance threshold, Ahmadi (2019) proposed a new 

approach to minimize the long-run average maintenance cost 

per unit time [34]. Later Seif et al. (2020) developed a 

mixed-integer linear programming model for optimally 

allocating maintenance items to campaigns so that total 

shutdown cost is minimized. The model incorporates 

constraints on maintenance deadlines, campaign times, 

maintenance item suppression and labor hours per campaign 

[35]. In order to solve parts procurement and inventory 

management problems during the product life cycle after 

obsolescence, Shi and Liu (2020) formulated an optimal 

stopping model and established the optimality of a threshold 

policy for the design refresh choice [36]. According to 

analyzing status data collected from the sensors, Chien and 

Chen (2020) developed a data-driven framework to prolong 

the maintenance cycles for enhancing capacity utilization 

and productivity, and thus reduce the cost [37].  

In this study, we explore the influence of the joint life 

distribution of multiple vulnerable parts on the maintenance 

interval distribution of machine. Then, through the relatively 

dependent maintenance interval distribution, an appropriate 

maintenance interval is found, and the corresponding 

procurement strategy is determined. In other words, 

according to the research of the predetermined distribution 

of multiple vulnerable parts, this manuscript established a 

procurement cost evaluation model to minimize the total 

cost. 

II.  OPTIMAL COST ESTIMATION MODELING 

Since many vulnerable parts for a machine are usually 

expensive and essential to the regular running of the machine, 

rationally allowing preemption for their usage and logically 

justifiable procurement have significant importance in 

manufacturing industry. In this study, a cost evaluation model 

which considers a variety of operating costs of enterprises is 

established and it is optimized for determining the optimal 

stopping usage time and procurement policy of parts. 

A. ASSUMPTIONS AND NOTATIONS 

In the process of building the CEM model, there are some very 

complex derivations involved. Given the rigor of the research, 

some necessary assumptions are considered and listed as 

below. 

Assumptions: 

1. The machine is deemed to work on a model of mass 

production which means a continuous requirement of the 

vulnerable parts with insignificant variation in demand 

quantity during working time. 

2. Runtime of each vulnerable part of the machine is 

independent of another part, that is, the lifespan of one 

vulnerable part has no impact on the same type of other parts.  
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3. If one of the specific vulnerable parts is damaged, the 

machine will shut down because of the irreplaceable role of 

these parts. 

4. Only one type of vulnerable part in a single machine is 

considered, and there exists more than one of the same 

vulnerable parts in a machine, or equipment. 

5. A failure of one vulnerable part may cause potential damage 

to a work piece, thus resulting in a penalty cost. 

6. Procurement lead time is not listed and discussed as a 

variable. The procurement lead time is constant and included 

in the purchasing cycle. In order to highlight the focus of the 

study, the lead time is not described respectively. 

Notations and definition: 

For better understanding of all definitions of parameters, 

variables and components, descriptive definitions are provided 

here: 

(a) Parameters 

fc : Fixed cost per order ($/order or cycle), 

hc : Unit holding cost ($/part/ year), 

uc : Unit purchase (variable) cost ($/part), 

pc : Unit penalty cost of part failure ($/part), 

wT : Total working time for a machine per year (time-

units/year). 

(b) Intermediate variables  

fC : Fixed cost of order replenishment per year ($/year),  

hC : Annual holding cost ($),  

pcC : Annual purchasing cost of parts ($), 

ptC : Annual penalty cost ($), 

pD : Demand of vulnerable parts required per year,  

Q : Order size of parts (parts/order), 

T : Lifespan of vulnerable parts (in time-unit), 

MT : Working time for a machine (in time-unit),  

TC : Total cost ($/year). 

 (c) Decision variables 

cT :  Interval between two consecutive orders (year/cycle 

or order), 
max

MT : Maximum allowable working time of the machine 

(in time-unit). 

(d) Measure of Performance  

TC : Total cost ($/year). 

B. PROBLEM DEFINITION 

In the manufacturing industry, machines are important basis 

for processing or detecting and play an indispensable role in 

the operation of an enterprise. In general, this machine is not 

a separate part but a combination of many parts where there 

are often several vulnerable key parts performing the same 

function. The illustration of a sample machine is shown in 

Figure 1. For example, there are three vulnerable parts, 

named as Part 2, lie in different levels of the machine, and 

their lifespans may differ depending on the usage and 

operations at different levels and locations in the machine. 

 
FIGURE 1.  Illustration of vulnerable parts in a machine 

 

It is assumed that the lifespan of the vulnerable parts, T, 

follows a general distribution, T~𝑓(𝑡). If a vulnerable part is 

damaged, it must be replaced immediately. Otherwise, it will 

result in a penalty of pc  for the damage caused by the failed 

part to the product. On the one hand, if potentially damaged 

parts in probability are replaced before failure, there will be 

no additional penalty cost. On the other hand, replacing parts 

too early will cause waste of resource, which means 

additional purchase and maintenance cost. Thus, that is a 

kind of tradeoff between usage time and inventory 

procurement due to early preemption of the vulnerable parts. 

For the stated condition, variable cost of every part is 

uc  dollars. The annual maintenance cost of a part is hc  

dollars. In addition, every order incurs a fixed expense, 

symbolized as fc  dollars per order. According to 

optimizing the machine maximum allowable time (
max

MT ) 

and ordering cycle ( cT ), minimization of the total cost (TC

) is the ultimate goal of the study where 
max

MT  and cT  are 

the two decision variables that will eventually control the 

part’s optimal usage time (T) and the order quantity (Q). 

C. MACHINE LIFESPAN EXPECTATION CONSIDERING 
VULNERABLE PARTS 

Although a few vulnerable parts may be different from each 

other because of individual minor differences, they may be 

assumed to be the same type. As indicated earlier, their 

lifespans may differ depending on the usage, performed 

operations, and their locations at different levels in the 

machine; so, it may be fair to assume that the parts follow a 

generic distribution T~𝑓(𝑡). Under this circumstance, the 

maximum working time of the machine depends on the 

shortest lifespan of all the vulnerable parts. The relationship 

between the working time of a machine and its vulnerable 

parts is illustrated in Figure 2. The vulnerable part with the 

shortest life is the bottleneck of the machine, just like well-

known buckets effect.  

The total number of vulnerable parts in a machine is 

expressed by 𝑛 and  ( ) representing the life 

of vulnerable part 𝑖  if they were allowed to be used until 

iT ni ,...2,1=
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failure. So, the maximum working time of the machine,  

can be expressed easily as 

= ,           (1) 

 

 
FIGURE 2.  Relationship between machine working time and vulnerable 
part’s lifespan 

 

Since under this assumption of cask theory, each part’s 

lifespan follows the same identical distribution 𝑇𝑖 ~𝑓(𝑡)   
One machine or equipment includes n vulnerable parts. As 

shown in Equation (1), the distribution of the machine 

working time follows a distribution that is jointly dependent 

on all these n vulnerable parts. Maximum working time of 

the machine under each setup, MT , is also a random variable. 

Thus, the probability density function (PDF) of the 

maximum working time MT  for a machine is defined 

as  g(𝑡), that is, MT  ~ g(𝑡) which needs to be evaluated. 

The corresponding cumulative distribution function (CDF) is 

defined as
max( )MG T where 

max
MT  is the maximum 

allowable working time of the machine while n parts were 

loaded. Since the lifespan of each part of the machine is 

independent variable, by using set theory, g(t) , the 

probability density function of the machine uptime can be 

deduced.  

Since MT = min{ , 1,2,..., }iT i n= , the 

cumulative probability, )( max

MTG , can be written as 

)( max

MTG =
max{min( , 1,2,..., ) }i MP T i n T=  , where 

max

MT  indicates the maximum allowable working time 

(uptime) for a machine . This means that the parts which do 

not fail by time 
max

MT are preemptively 

withdrawn/unloaded from the machine to safeguard the 

damage by the parts or due to its failure. Based on the above 

analysis, the derivation of )( max

MTG  as shown in Figure 3 

(also see Appendix A.5) is described as 

)( max

MTG =
max1 [1 ( )]n

MF T− −                  (2) 

Where, 
max( )MF T   

max{ }M MP TT    
max{min( ) }MP T T =

max{min( , 1,2,..., ) }i MP T i n T=     

Taking derivative of equation (2) with respect to time t, 

the probability density function of maximum working time 

for a machine (i.e., uptime), 𝑔(𝑡), is given by 

𝑔(𝑡) = 𝑛 [1 − 𝐹(
max

MT )]

𝑛−1

 𝑓(𝑡).         (3) 

 
FIGURE 3.  Expected effective working time for a machine 

Under the distribution described in equation (3), if the 

stopping time for changing parts in a machine is assumed to 

be 𝑇 = 𝑇𝑀
𝑚𝑎𝑥 , there is also some probability of machine 

failure before the stopping point, 𝑇𝑀
𝑚𝑎𝑥, due to the parts 

whose lifespan is  𝑇 < 𝑇𝑀
𝑚𝑎𝑥 , and also a probability of 

regular running at the stopping time 𝑇 = 𝑇𝑀
𝑚𝑎𝑥， where the 

cumulative distribution function is  𝐹(𝑇𝑀
𝑚𝑎𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑇𝑀

𝑚𝑎𝑥

−∞
. As illustrated in Figure 3, the mathematical 

expectation of maintenance interval expectation for one 

normal machine includes a couple of areas, A (non-

preemptive failure) and B (preemptive failure). 

(a) Non-preemptive failure  

For the area A enveloped by shaded line in Figure 3, 

which means the region 𝑇 < 𝑇𝑀
𝑚𝑎𝑥, the expected effective 

working time in the range 𝑇 < 𝑇𝑀
𝑚𝑎𝑥, can be expressed as 

𝐸(𝑇)|𝑡=𝑇𝑀
𝑚𝑎𝑥 = ∫ 𝑡𝑔(𝑡)𝑑𝑡

𝑇𝑀
𝑚𝑎𝑥

0
                               (4) 

 

Replacing ( )g t in equation (4) with equation (3), the 

effective expected working time in area A is given by 

𝐸(𝑇)|𝑡=𝑇𝑀
𝑚𝑎𝑥 = ∫ 𝑡 {𝑛[1 − 𝐹( max

MT )]
𝑛−1

 𝑓(𝑡)} 𝑑𝑡
𝑇𝑀

𝑚𝑎𝑥

0
    

（5) 

 (b) Preemptive failure  

For the region B in figure 3 [white area under 𝑔(𝑡)], 

which means the region 𝑇 > 𝑇𝑀
𝑚𝑎𝑥 ,  the mathematical 

expectation of maintenance interval of the machine exceeds 

the maximum allowable usage time and its actual working 

MT

MT },...2,1,{min niTi =
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time extends to the time 
MT . Thus, the value of expectation 

time for the preempted region (i.e., B) can be calculated and 

expressed as formula (6). 

𝐸(𝑇𝑀
𝑚𝑎𝑥)= 

max

max ( )

M

M

T

T g t dt



  =   
max max1 ( )M MT G T −                                                    

(6) 

where 𝑔(𝑡) follows a distribution described in equation (3). 

Upon combining equation (6) with equation (2), with 

the portion marked with B area, of which expectation time 

can be calculated and expressed as formula (7). 

)( max

MTE  = 
n

MM TFT )](1[ maxmax − .           (7) 

Because the probability distribution of machine 

working time consists of a couple of parts, area A and B in 

figure 3, the two parts of the probability distribution of 

working time have different mathematical expectations. So, 

the total mathematical expectation of machine working time 

( 
max

MM TT  ) should be expressed as 

𝐸(𝑇𝑀)𝐴+𝐵 = )()( max
max MTT

TETE
M

+
=

                   （8） 

In order to have an insight of the properties with the 

jointly distributed maximum working time of a machine, 

Equation (8) also reveals several attributes that are expressed 

in the following theorems: 

 

Theorem 1: 𝐸(𝑇𝑀)𝐴+𝐵 ≤ 𝐸(𝑇𝑀). 
Proof: From the definition of expectation for distribution 

𝐸(𝑇𝑀) = ( ) ( )
M

M

T

T

tg t dt tg t dt



−

+  . Equations (5), 

(6) and (7) yields 𝐸(𝑇𝑀)𝐴+𝐵 =

)()( max
max MTT

TETE
M

+
=

=

max

max

max( ) ( )
M

M

T

M

T

tg t dt T g t dt



−

+  .  

Let  = 𝐸(𝑇𝑀)−𝐸(𝑇𝑀)𝐴+𝐵. 

Thus,  =
max max

max max

max( ) ( ) ( ) ( )
M M

M M

T T

M

T T

tg t dt tg t dt tg t dt T g t dt

 

− −

+ − −     

     =∫ 𝑡𝑓(𝑡)𝑑𝑡
∞

𝑇𝑀
𝑚𝑎𝑥 − ∫ 𝑇𝑀

𝑚𝑎𝑥𝑓(𝑡)𝑑𝑡
∞

𝑇𝑀
𝑚𝑎𝑥 . 

Since 𝑇𝑀
𝑚𝑎𝑥 ≤ 𝑡 ≤ ∞ , so  ∫ 𝑡𝑓(𝑡)𝑑𝑡

∞

𝑇𝑀
𝑚𝑎𝑥 −

∫ 𝑇𝑀
𝑚𝑎𝑥𝑓(𝑡)𝑑𝑡

∞

𝑇𝑀
𝑚𝑎𝑥 ≥0,  

because 𝑇𝑀
𝑚𝑎𝑥 < 𝑡 . Thus,  = 𝐸(𝑇𝑀) −

𝐸(𝑇𝑀)|𝑇=𝑇𝑀
𝑚𝑎𝑥 − 𝐸(𝑇𝑀

𝑚𝑎𝑥)≥ 0, and which leads 

to the conclusion, 𝐸(𝑇𝑀) ≥

)()( max
max MTT

TETE
M

+
=

. 

  

Corollary 1.1: As →max

MT ,𝐸(𝑇𝑀)𝐴+𝐵→𝐸(𝑇𝑀). 

Proof:  )()(lim max
max

max MTTT
TETE

M
M

+
=→

=

max

max max

max

maxlim ( ) lim ( )
M

M M

M

T

M
T T

T

tg t dt T g t dt



→ →
−

 
 +
  

  .  

Since 

max

max
lim ( )

M

M

T

T
tg t dt

→
−

→ ( )tg t dt



−

 = )( MTE  

and 
max

max

maxlim ( )
M

M

M
T

T

T g t dt



→

 
 
  

 = 0, so 

)()( MTT
TETE

m

+
=

→𝐸(𝑇𝑀). From equation (8), 

Thus, 𝐸(𝑇𝑀)𝐴+𝐵→𝐸(𝑇𝑀), for →max

MT .  

Corollary 1 shows that if there is no preemption for any 

of the vulnerable parts, the population in group B will be less 

and the expected maximum working time of the machine will 

tend to be the same with the expectation of the machine 

without preemption. It also indicates that the maximum 

expectation of the preemption with the machine is always 

less than the expectation of the population without 

preemption. 

 

Theorem 2: 𝐸(𝑇)|𝑇~𝑔(𝑡)≤𝐸(𝑇)|𝑇~𝑓(𝑡). 

Proof: Assume there are k  groups of vulnerable parts, and 

there are 𝑛 parts needed for the changing each time 

with a machine (or a group). 𝐸𝑖(𝑇) is defined to be 

the expectation of group i , where 

ki ,...,2,1= . Since  𝑇𝑀
𝑖 = min (𝑇𝑀𝑖

𝑗
) , 

where 𝑇𝑀
𝑖

 represents the value of the 𝑖 th changing 

of parts, 𝑇𝑀𝑖
𝑗

 represents the lifespan of the 𝑗th part 

in the 𝑖 th group, where nj ,...,2,1= . So, 

nTT
n

j

j

Mi

i

M 
=


1

. For all the groups, 

ki ,...,2,1= , )(
1 11

nkTkkT
i

n

j

j

Mi

k

i

i

M  
= ==

  

where kT
k

i

i

M
=1

 is approximately equals to 

𝐸(𝑇)|𝑇~𝑔(𝑡) , and )(
1 1

nkTk
i

n

j

j

Mi 
= =

 

approximately tends to be  𝐸(𝑇)|𝑇~𝑓(𝑡) . As a 

result, 𝐸(𝑇)|𝑇~𝑔(𝑡)≤𝐸(𝑇)|𝑇~𝑓(𝑡).   
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Corollary 2.1: 𝐸(𝑇𝑀)𝐴+𝐵≤𝐸(𝑇)|𝑇~𝑓(𝑡). 

Proof: Theorem 1 indicates that 𝐸(𝑇𝑀)𝐴+𝐵 ≤
𝐸(𝑇)|𝑇~𝑔(𝑡), and Theorem 2 gives the relation of 

𝐸(𝑇)|𝑇~𝑔(𝑡)≤𝐸(𝑇)|𝑇~𝑓(𝑡). Combining these two 

theorems, the corollary is given by 

𝐸(𝑇𝑀)𝐴+𝐵≤𝐸(𝑇)|𝑇~𝑓(𝑡). 

Corollary 2.1 indicates that the expectation of the 

maximum working time for a machine is usually less than 

the expected lifespan of the vulnerable parts. As the number 

of vulnerable parts installed in one machine increases, the 

expected maximum working time will decrease. 

D. MINIMUM TOTAL COST 

In this study, for a machine or equipment, working time in a 

year can be predicted and determined in advance. Because 

there have been many related prediction studies, this study 

takes a fixed value of working time in a year. When 
max

MT  is 

given by equation (8), 𝐸(𝑇𝑀)𝐴+𝐵, the expected allowable 

working time period can be computed easily. In order to 

finish the plan of yearly working time, the vulnerable parts 

are ordered in a quantity of Q  parts/cycle every fixed-

period, cT . The total cost includes a fixed replenishment 

order cost fC , a holding cost 
hC , a purchasing cost pcC  

and the penalty cost ptC . Thus, within a procurement cycle 

TC can be calculated and expressed as 

ptpchf CCCCTC +++=             （9） 

Let the total working time of a single machine in a year 

be  𝑇𝑤 . Then, as defined in equation (8), the expected 

continuous working time without parts changing time 

is  𝐸(𝑇)𝐴+𝐵 . Let the number of vulnerable parts to be 

changed every time be 𝑛 because there are totally 𝑛 same 

type of parts in a machine. So, the total demand of vulnerable 

parts pD  is   

pD =

BAM

w

TE

nT

+）（
                             (10) 

The ordering cycle time, cT  (year/cycle) is a decision 

variable, and fc  is the purchasing cost each cycle, so the 

fixed purchasing cost in a year, fC , can be calculated by 

fC = 

c

f

T

c
.                                            (11) 

The annual holding cost, 𝐶ℎ  is composed of unit 

holding cost hc  multiplied by average inventory that is 

expressed as I = 2/Q  = 2/cpTD . So, replacing pD  with 

equation (10), the annual total holding cost 𝐶ℎ is given by 

𝐶ℎ = 

BAM

chw

TE

TcnT

+)(2
.                                (12) 

Using equation (10) and the unit purchase price uc , the 

annual parts purchasing cost, pcC  can be computed 

pcC  = 

BAM

uw

TE

cnT

+)(
.                               (13) 

Yearly penalty cost is reflection of the failure of a 

machine within one year. The cumulative probability of the 

machine failure )( max

MTG is for the stopping time, max

MT , 

and using )( max

MTG  =1- n

MTF )](1[ max−  from equation 

(2), the annual total penalty cost, ptC = )( max

Mpp TGDc , 

combining with equation (10), yields 

ptC = 

BAM

n
Mpw

TE

TFcnT

+

−−

)(

})](1[1{ max

                  (14)

 (14) 

Therefore, the total cost, TC , on combining equations 

(9), (11), (12), (13) and (14), can be written as 

),( max

cM TTTC  = 

c

f

T

c
+ 

BAM

n
Mpwuwchw

TE

TFcnTcnTTcnT

+

−−++

)(

})](1[1{2/ max

 

(15) 

According to the above formula, the total cost can be 

expressed as the sum of two functions. One is a function of 

the cT , (purchasing cycle), and the second is a function 

which involves holding, purchasing, penalty costs and the 

maximum maintenance intervals expectation of the machine, 

BAMTE +)( . The above two functions could make it more 

notable about the solution structure and functional behavior 

of the cost function.  

III. OPTIMIZATION OF THE COST ESTIMATION 
FUNCTION 

According to equation (15), obtaining the solution to this 

problem is difficult because of the involvement of the multi-

facet probabilistic functions in evaluating the functional 

value, so finding a closed-form solution to this problem is 

apparently impossible. Thus, a search procedure is employed 

to identify the stationary point(s) within reasonable solution 

boundaries. To find the stationary point(s) of the function, a 

differentiation method is now employed to ease the 

computational scheme in this study. 

A. PROBLEM DEFINITION 
In order to locate the stationary points for the objective 

function expressed in equation (15), partial differentiation on 
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both cT  and 𝑇𝑀
max  are required to identify the solution. 

Thus, by differentiating the expression in (15) with respect 

to cT , ccM TTTTC  /),( max
= 0 and its subsequent 

simplification yields 

𝑇𝑐=

√
2𝑐𝑓{∫ 𝑡{𝑛[1−𝐹( max

MT )]
𝑛−1

 𝑓(𝑡)}𝑑𝑡
𝑇𝑀

𝑚𝑎𝑥

0 +𝑇𝑀
𝑚𝑎𝑥[1−𝐹(𝑇𝑀

𝑚𝑎𝑥)]
𝑛

}

𝑛 hc 𝑇𝑤

     

                                                                                     (16) 

Similarly, 
maxmax /),( McM TTTTC  = 0 yields a 

function (See Appendix B for detailed deduction process) 

given as follows: 

𝑛𝑐𝑝𝑓(𝑇𝑀
𝑚𝑎𝑥) { ∫ 𝑡 {n[1 − 𝐹( max

MT )]
𝑛−1

 𝑓(𝑡)} 𝑑𝑡

𝑇𝑀
𝑚𝑎𝑥

0

+ 𝑇𝑀
𝑚𝑎𝑥[1 − 𝐹(𝑇𝑀

𝑚𝑎𝑥)]𝑛} 

—  {
𝑐ℎ𝑇𝑐

2
+ 𝑐𝑢 + 𝑐𝑝{1 − [1 − 𝐹(𝑇𝑀

𝑚𝑎𝑥)]𝑛}} [1 −

𝐹(𝑇𝑀
𝑚𝑎𝑥)] = 0 

(17) 

In order to transform the function in (17) to a single 

variable function, equations (16) and (17) are combined 

together to obtain an expression with only one decision 

variable, 
max

MT , given by 

{𝑛𝑐𝑝𝑓(𝑇𝑀
𝑚𝑎𝑥) −

𝑐𝑓

𝑛𝑇𝑤
[1 − 𝐹(𝑇𝑀

𝑚𝑎𝑥)]} × 

{∫ 𝑡 {n [1 − 𝐹( max

MT )]
𝑛−1

 𝑓(𝑡)} 𝑑𝑡
𝑇𝑀

𝑚𝑎𝑥

0
+  𝑇𝑀

𝑚𝑎𝑥[1 −

𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛}— 

{𝑐𝑢 + 𝑐𝑝{1 − [1 − 𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛}} [1 − 𝐹(𝑇𝑀

𝑚𝑎𝑥)] = 0 

(18) 

Equation (18) cannot be written in a closed-form expression 

to obtain the decision variable, 
max

MT ; but by replacing the 

order cycle, cT , in function (15) with equation (16), a 

simplified total cost function can be derived so that cT , one 

of the decision variables, is eliminated to decrease the 

computational burden, and thus, equation (15) is transformed 

into 

𝑇𝐶(𝑇𝑀
𝑚𝑎𝑥) = 

𝑐𝑓 √
𝑛 hc 𝑇𝑤

2𝑐𝑓{∫ 𝑡{n[1−𝐹(𝑇𝑀
𝑚𝑎𝑥)]

𝑛−1
 𝑓(𝑡)}𝑑𝑡

𝑇𝑀
𝑚𝑎𝑥

0 +𝑇𝑀
𝑚𝑎𝑥[1−𝐹(𝑇𝑀

𝑚𝑎𝑥)]
𝑛

}

+

 √
1

2
𝑐𝑓𝑛𝑇𝑤𝑐ℎ{∫ 𝑡{n[1−𝐹(𝑇𝑀

𝑚𝑎𝑥)]
𝑛−1

 𝑓(𝑡)}𝑑𝑡
𝑇𝑀

𝑚𝑎𝑥

0
+𝑇𝑀

𝑚𝑎𝑥[1−𝐹(𝑇𝑀
𝑚𝑎𝑥)]

𝑛
}

𝐸(𝑇𝑀)𝐴+𝐵

+ 

𝑛𝑇𝑤𝑐𝑢+𝑛𝑇𝑤𝑐𝑝{1−[1−𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛}

𝐸(𝑇𝑀)𝐴+𝐵
. 

(19) 

So, an objective-oriented search (OOS) algorithm is 

proposed to find an approximate solution. With further 

calculation, decision variable cT , the order size Q  (which 

depends on cT ), and minimum total cost TC , can be 

computed accordingly. 

B. OBJECTIVE-ORIENTED SEARCH (OOS) ALGORITHM 
FOR CEM MODEL 

The minimum value of )( max

MTTC  is determined in this 

search process by iteratively computing the result of right 

hand side of equation (19) in terms of max

MT . For a detailed 

description of the search method, an OOS algorithm is 

developed to complete this task. In this algorithm, when the 

iteration begins, the search step size of the algorithm is set to 

 . In the algorithm iteration process, once the value of 

)( max

MTTC - )( max*

MTTC  is positive, a smaller step (halved) 

of 2/  is given and the algorithm will search in 

opposite direction. By repeatedly calculating the value of 

)( max

MTTC  with the changed value of 
mT  which depends 

on the step size of , the minimal value of )( max

MTTC  is 

approached. Let )( max

MT = )( max

MTTC - )( max*

MTTC , if 

)( max
MT  ≤ s , the predetermined threshold, the algorithms 

can stop iteration and the final max

MT  is the optimal value that 

we want to find. The algorithm is given below, and the 

summary steps used for the OOS algorithm is illustrated 

through the flow chart shown in Figure 4. 

OOS Algorithm: 

Step 1: Initialize fc , pc , 
hc , uc , wT ,  (step size 

lifespan of T) and distribution type of lifespan T . 

Input initial value of T and parametric values for 

distribution of T , 𝑓(𝑡). Initialize stop condition 

of iteration value 0s  for )( max*

MT . Set 

 )( max

MT , 0cT , 0T .  

Step 2: Input initial value values +=TT . 

Step 3: Calculate 𝐹(𝑥)   and compute expected lifespan 

BATE +)(  with stopping time is TTM max  

using Equation (5), (7) and (8).  
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Step 4: Compute += maxmax

MM TT  by equation (16). 

Step 5: Compute )( max

MTTC  by using equation (19). 

If )( max

MT < 0, set )( max*

MTTC = )( max

MTTC , 

TTM =max* , cc TT =
*

, set +=TT , go to step 3, 

else if )( max

MT > 0 and )( max

MT > s , set 

−=TT , 2/ , return Step 3, 

else let )()( maxmax*

MM TT = , TTM =max* , 

cc TT =
*

. 

Step 6: Stop and current values of 
max*

MT and 
*

cT  are the 

best solution and ),( max***

Mc TTTC = )( max*

MTTC  is 

the minimum total cost. 

 
FIGURE 4.  Simplified flow chart of OOS algorithm 

IV. CASE STUDY 

In the industry, the failure of vulnerable parts is very 

common, such as adapting and stressed parts assembled in a 

machine, gaskets in equipment, tires of vehicles, etc. this 

study takes the valve gasket as an example to describe the 

case.  

A. CALCULATE LIFESPAN AND CYCLE TIME 
In this context, according to employing OOS search 

algorithm, the rationality of the CEM model is verified with 

an actual case of vulnerable gaskets, which are part of a 

sophisticated inspection equipment. The main purpose of 

this equipment is electromagnetic valve detection. This 

equipment includes three compound gaskets that are 

necessary for the detection process. Since the equipment 

needs to be used frequently, vulnerable parts installed on the 

equipment are frequently worn out and replaced. In the 

following example, the lifespan of gaskets obeys normal 

distribution, 𝑇 ~ 𝑁(𝜇𝑃 , 𝜎), where 𝜇𝑃  and 𝜎 represent the 

expected value and standard deviation of the lifespan of  

vulnerable parts, respectively. 

For the lifespan distribution of these vulnerable parts in this 

case, its mean and variance have been determined by 

experiment, p = 150 (hours) and  = 5. The inspection 

equipment needs to work for 4380 hours in a year in this 

mass production system representing the stable demand 

during the working time, at least for one year. In the 

procurement scenario of this study, the fixed ordering of one 

order and unit variable cost of a part are given by actual case, 

fc = $20/order and uc = $15/unit. While this machine is 

working, unexpected failure for each of the 3 parts has 

potential damages to the testing work piece and results in a 

potential penalty cost of pc =$1/unit, and consequently all 

the 3 parts need to be changed to avoid further damage. For 

every part in the stock, there is an annual holding cost of 

𝑐ℎ=$4/unit/year. Detailed parameters are shown in Table 1. 
TABLE 1. CASE PARAMETERS SURVEY TABLE 

Parameters value 

The number of vulnerable parts in an 
equipment (n) 

3 

Lifespan distribution N (150, 5) 

Fixed cost per order (𝑐𝑓) $20/order 

Variable cost per unit (𝑐𝑢) $15/unit 

Penalty cost per unit (𝑐𝑝) $1/unit 

Holding cost per unit (𝑐ℎ) $4/unit/year 

By running the OOS program with an initial step size 

   00 hours and stopping criteria s     $0 00, the final 
optimization result is shown in Table 2, 

max

MT   010 102  

hours, an order cycle cT   0 127 years009 days (about 1 

months), an order size of Q     00 089   00 units and the 

minimized total cost *TC  $0, 1  21  

Table 2 shows that both the CEM model and the OOS 

algorithm proposed in this study are very effective, since it 

converges to the stationary points very quickly within few 

iterations. The convergence of the algorithm is proved to be 

robust in a real case of purchasing vulnerable parts. 

B. SENSITIVENESS OF SYSTEM AND PART 
PARAMETERS 

In this research, the number of vulnerable parts of a machine

， n , has an impact on the effective working time. As 

mentioned earlier, the maximum maintenance interval of an 

equipment, affected by the combined lifespan distributions 

of all parts, is determined by the vulnerable part which has 

the shortest lifespan. In addition, from the perspective of 

business operation, holding excess parts and the machine 

downtime penalty both have a significant impact on order 

size and machine downtime, and eventually 
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TABLE 2. SEARCH RESULT FOR CEM WITH OOS ALGORITHM 

Iteration or Step No. Stopping time, max

MT  Stopping criteria, s  Step size   Total cost, TC  

1 21.0000  180,194.60  10.000000  198,549.97  

2 31.0000  8,653.24  10.000000  18,355.36  

3 41.0000  3,083.64  10.000000  9,702.12  
… ,… … … … 

16 146.0000  2282.48  5.000000  3,817.72  

17 143.5000  170.82  2.500000  1,706.06  
18 142.2500  22.79  1.250000  1,558.03  

19 141.6250  3.31  0.625000  1,538.56  

20 141.4688  0.41  0.156250  1,535.46  
21 141.3906  0.12  0.078125  1,535.17  

22 141.3516  0.04  0.039063  1,535.09  

23 141.3320  0.02  0.019531  1,535.07  
24 141.3125  0.01  0.019531  1,535.05  

TABLE 3. COMPARISON OF IMPACT ON 
mT  FOR DIFFERENT VALUES OF pc  AND hc  

Holding cost 

hc ($/unit) 

Penalty cost 

pc  ($/unit) 

Stopping time  
max*

MT  (Hours) 

Order cycle 

𝑇𝑐
∗ (Days) 

Order size  

𝑄∗  
*TC ($) 

4.00 0.50 141.66 119 10 1,529.19 

4.00 1.00 141.31 119 10 1,535.24 

4.00 2.00 141.00 119 10 1,544.97 

3.00 1.00 141.33 138 12 1,518.68 

5.00 1.00 141.33 107 9 1,549.49 

 

have a consequential impact on the total cost, TC . Thus, 

an analysis of hc
, 

pc
 and the parts number, n  is 

conducted to study their effect on the total cost. 

(1) Sensitiveness of system and part parameters 

To figure out the impact of penalty cost and holding cost on 

total cost, this study tested a set of penalty cost, pc  and 

holding cost, hc  and compared the difference between the 

optimal value of 𝑇𝑚. By adopting the same example in the 

case study, testing parameters, pc  is set to 0.5, 1.0, and 2.0 

dollars per unit, and hc  is set correspondingly to 3.00, 4.00, 

and 5.00 dollars per unit per year. The computational results 

with OOS algorithm are shown in Table 3. 

Table 3 shows that as the penalty cost, pc  increases, 

replacing parts early helps minimize Total cost. The 

reduction in order size is preferred when unit holding cost, 

hc  increases which is intuitively expected. However, 

scientific decision with appropriate values of pc  and hc  

can decrease the total cost to a relatively low level. 

(2) Influences of number of parts, 𝒏 

As mentioned earlier, the quantity of vulnerable parts, 𝑛 has 

an influence on the maximum maintenance interval of the 

machine. Equation (3) illustrates the probability density 

function of failure time for the 𝑛 parts. 

For the parts with the same properties as in the case study 

problem, the probability density function, ( )g t  is plotted in 

Figure 5 for 𝑛 = 1, 2, 3, 4 and 8. It can be clearly seen from 

the figure that when the number of vulnerable parts 

increases, the continuous working time of the machine 

decreases, although the function value changes little. Since 

the machine is affected by 𝑛 parts, the allowable maximum 

working time decreases accordingly. Under the assumption 

of a normal distribution, this is also an illustrative 

verification for Theorem 2. 

             
FIGURE 5.  Comparison of density function with different amount 

of vulnerable parts 

When 𝑛 = 1, ( )g t  is a special case that the optimal 

replacement time for a machine is the same as that for the 

only one vulnerable part, and the working time for the 

machine follows the same distribution with vulnerable part. 

In order to reveal the influence of the quantity of the 

vulnerable parts, different quantity of parts (2, 3, 4, 8) are 

input into the CEM model by computing with OOS 
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algorithm. Table 4 shows the comparison of the impact of 
*TC  with different values of 𝑛 as the quantity of vulnerable 

parts increase, the maximum allowable stopping time, 

max*

MT   decreases  The change with 
max*

MT  also reflects 

the decrease of a jointly overall expected working time with 

the vulnerable parts  

C. COMPUTATIONAL RESULTS WITH DIFFERENT 
DISTRIBUTIONS 

To test the adaptability of the CEM model proposed in this 

study, two other distributions, uniform and Gamma are used 

to simulate the model, and their performances are compared. 

The summary results for three different distributions for the 

CEM model are given in Table 5. The mean values of 𝜇 for 

uniform, normal and Gamma distributions are all assumed to 

be 150 hours and the total amount of the vulnerable parts is 

n = 3. Conclusion that can be drew from Table 5 that 

different lifespan distributions influence the 𝑇𝑀
𝑚𝑎𝑥  (the 

maximum stopping time), 𝑇𝑐 (order cycle) and the 𝑇𝐶 (total 

cost), there is almost no influence to the order size. 

In general, the quantity of vulnerable parts has 

significant influence on the allowable working time in a 

machine. Since the machine works with a maximum time of 

the minimum lifespan of 𝑛 parts, so the parts have a serial 

impacts on the effective working time. On the other hand, the 

quantity of vulnerable parts in a machine is predetermined. 

Under this condition, the total cost is determined mainly by 

unit penalty cost, pc  and holding cost, hc . 

TABLE 4. COMPARISON OF IMPACT ON 
*TC  WITH DIFFERENT QUANTITY 𝑛 

Quantity of parts 

n (units) Stopping time 
max*

MT  (Hours) 

Order cycle 

𝑇𝑐
∗

 (Days) 

Order size 

𝑄∗  
*TC ($) 

2 
143.50 

147 
12 1,034.99 

3 
141.31 

119 
10 1,535.24 

4 
141.00 

103 
9 2,036.26 

8 
141.00 

72 
6 4,115.77 

 

TABLE 5. OPTIMAL SOLUTIONS FOR DIFFERENT DISTRIBUTIONS (WITH N = 3) 

Distributions of 

vulnerable parts 

OOS search algorithm 
Stopping time 

max*

MT  (Hours) 

Order cycle 

𝑇𝑐
∗

 (Days) 

Order size 

𝑄∗
 

*TC ($) 

Uniform (145, 155) 145.00 121 10 1,479.73 

Normal (150, 52) † 141.31 119 10 1,535.24 

Gamma (500, 0.3) ‡ 133.50 115 11 1,629.35 

† ),( 2N ;  ‡ Gamma (  , ) with mean  =G
. 

V.  CONCLUSIONS 

Procurement policy is tightly related to the actual 

requirement of a production system or   supply chain of an 

enterprise. Accordingly, research on the affected 

procurement policy is more significant when the influence 

cannot be neglected. This paper studies the replacement 

strategy of vulnerable parts, which is necessary to the normal 

operation of a machine. By combining the lifespan 

distribution of each single vulnerable part, the lifespan 

distribution of the machine is studied. Under a preemption of 

machine working time, the expectation of the transformed 

distribution of the machine is studied. Then, by considering 

penalty cost, holding cost, fixed purchasing cost, and part 

unit cost, a novel CEM model is proposed for vulnerable 

parts. To solve the model, an OOS algorithm was proposed 

in this study. According to a real case with normally 

distributed vulnerable parts, the CEM model and OOS 

algorithm are proved to be effective. Finally, according to an 

actual case, we conduct sensitivity analysis on each 

parameter involved in the model and try to explore the deeper 

understanding and relationship between optimal maximum 

allowable working time of a machine, cycle time and total 

cost. In this case, the original purchase cost was $1,706 and 

the optimized purchase cost is $1535.05. With the CEM, the 

total cost is reduced by 10%. The results show that the use of 

the CEM model and OOS algorithm could greatly reduce 

procurement total cost of vulnerable parts. 

The joint maintenance planning and replacement part 

management problems for multiple vulnerable parts is an 

important branch of intelligent manufacturing decisions. It is 

essential to the operation of the enterprise. The CEM model 

described above applies to most of vulnerable parts under 

jointly distributed lifespans in manufacturing system, which 

could raise efficiency of supply chain and reduce the 

operation cost of enterprise. 

In fact, many machines or systems lifespan estimates 

are based on experience. For future research, on the one hand, 

according to the idea of the above model, more accurate 

lifespan assessment can be implemented for some machines 

or systems composed of some parts. Then more convincing 

cost assessment model could be obtained. On the other hand, 
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this model may extent to the case of a product or equipment 

with different types of vulnerable parts and, therefore, with 

different probability laws. In addition, some machines 

consist of vulnerable parts that have parallel or compound 

impacts on the performance of the whole machine. For such 

a situation, it might be necessary to do further study on the 

effects of such system. 

APPENDIX A 

CUMULATIVE PROBABILITY FUNCTION OF A 

MACHINE WITH n  VULNERABLE PARTS 

Since MT = min( , 1,2,... )iT i n= , 
max

MT  is the 

stopping time for the machine, and the cumulative 

probability, )( max

MTG , can be given as  

)( max

MTG =
max{min( , 1,2,... ) }i MP T i n T=            (A.1)

 

(A.1) 

= 1-
max{min( , 1,2,... ) }i MP T i n T=  .                      (A.2)

 (A.2) 

In equation (A.2), for every parts in a machine, 
max{min( , 1,2,... ) }i MP T i n T=   = }{ max

1 MTTP 

}{ max

2 MTTP  … }{ max

Mn TTP  . All the vulnerable parts 

follow the same identical distribution, so the probability of 
max{min( , 1,2,... ) }i MP T i n T=   is the same value for 

ni ,...,2,1= . As a result, 

max{min( , 1,2,... ) }i MP T i n T=   = 

max[ {min( ) }]n

MP T T , and equation (A.2) can be 

rewritten as 

)( max

MTG =1-
max[ {min( ) }]n

MP T T                       (A.3) 

  

On further deduction, equation (A.3) yields 

)( max

MTG =1-
max[1 {min( ) }]n

MP T T−                    (A.4)

 

(A.4) 

By simplification, the final expression is given by 

)( max

MTG =1-
n

MTF )](1[ max− .                                  (A.5)

 (A.5) 

where 
max( )MF T =

max{min( ) }MP T T =
max{ }M MP TT 

,  that is, 𝑇𝑀 ~ f(𝑡𝑀). 

APPENDIX B 

PARTIAL DIFFERENTIATION ON 
max

MT  WITH OBJECTIVE FUNCTION 

The total cost objective function is described in equation (15), by partial differentiation method, 
maxmax /),( McM TTTTC 

= 0, it gives 

𝜕

𝜕𝑇𝑀
𝑚𝑎𝑥 [

1

2
𝑇𝑐𝑛𝑇𝑤𝑐ℎ+𝑛𝑇𝑤𝑐𝑢+𝑛𝑇𝑤𝑐𝑝{1−[1−𝐹(𝑇𝑀

𝑚𝑎𝑥)]𝑛}

{∫ 𝑡{n[1−𝐹( max

MT )]
𝑛−1

 𝑓(𝑡)}𝑑𝑡
𝑇𝑀

𝑚𝑎𝑥

0
+ 𝑇𝑀

𝑚𝑎𝑥[1− 𝐹(𝑇𝑀
𝑚𝑎𝑥)]

𝑛
}
] = 0.  (B.1) 

Since ( )})](1[1{2/ max

max

n

Mpwuwchw

M

TFcnTcnTTcnT
T

−−++



  

= )()](1[ max1max2

M

n

Mpw TfTFcTn −− , 

and 

𝜕

𝜕𝑇𝑀
𝑚𝑎𝑥 { ∫ 𝑡{n[1 − 𝐹(𝑥)]𝑛−1 𝑓(𝑡)}𝑑𝑡

𝑇𝑀
𝑚𝑎𝑥

0

+  𝑇𝑀
𝑚𝑎𝑥[1 −  𝐹(𝑇𝑀

𝑚𝑎𝑥)]𝑛} 

= 
n

MTF )](1[ max− , 

thus, equation (B.1) can be simplified as 

𝑛2𝑇𝑤𝑐𝑝[1 − 𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛−1𝑓(𝑇𝑀

𝑚𝑎𝑥) {∫ 𝑡{n[1 − 𝐹(𝑥)]𝑛−1 𝑓(𝑡)}𝑑𝑡
𝑇𝑀

𝑚𝑎𝑥

0
+  𝑇𝑀

𝑚𝑎𝑥[1 −  𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛}

{∫ 𝑡{n[1 − 𝐹(𝑥)]𝑛−1 𝑓(𝑡)}𝑑𝑡
𝑇𝑀

𝑚𝑎𝑥

0
+ 𝑇𝑀

𝑚𝑎𝑥[1 −  𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛}

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3079281, IEEE Access

                               C.R. Li et. al.: Optimal Machine Stopping Time and Ordering Cycle for Parts to Minimize the Total Cost of a Supply Chain 

13 
VOLUME XX, 2021 

         −
[

1

2
𝑇𝑐𝑛𝑇𝑤𝑐ℎ+𝑛𝑇𝑤𝑐𝑢+𝑛𝑇𝑤𝑐𝑝{1−[1−𝐹(𝑇𝑀

𝑚𝑎𝑥)]𝑛}][1− 𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛

{∫ 𝑡{n[1−𝐹(𝑇𝑀
𝑚𝑎𝑥)]

𝑛−1
 𝑓(𝑡)}𝑑𝑡

𝑇𝑀
𝑚𝑎𝑥

0
+ 𝑇𝑀

𝑚𝑎𝑥[1− 𝐹(𝑇𝑀
𝑚𝑎𝑥)]

𝑛
}

   =   0, 

 (B.2

) 

which yields  

𝑛2𝑇𝑤𝑐𝑝[1 − 𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛−1𝑓(𝑇𝑀

𝑚𝑎𝑥) {∫ 𝑡{n[1 − 𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛−1 𝑓(𝑡)}𝑑𝑡

𝑇𝑀
𝑚𝑎𝑥

0
+  𝑇𝑀

𝑚𝑎𝑥[1 −  𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛}     

− [
1

2
𝑇𝑐𝑛𝑇𝑤𝑐ℎ + 𝑛𝑇𝑤𝑐𝑢 + 𝑛𝑇𝑤𝑐𝑝{1 − [1 − 𝐹(𝑇𝑀

𝑚𝑎𝑥)]𝑛}] [1 −  𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛 = 0.   

 (B.3

) 

Dividing both sides of eq. (B.3) by 
1max )](1[ −− n

Mw TFnT  it yields 

𝑛𝑐𝑝𝑓(𝑇𝑀
𝑚𝑎𝑥) [∫ 𝑡{n[1 − 𝐹(𝑇𝑀

𝑚𝑎𝑥)]𝑛−1 𝑓(𝑡)}𝑑𝑡
𝑇𝑀

𝑚𝑎𝑥

0
+  𝑇𝑀

𝑚𝑎𝑥[1 −  𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛]  −  (

𝑇𝑐𝑐ℎ

2
+ 𝑐𝑢 +

𝑐𝑝[1 − 𝐹(𝑇𝑀
𝑚𝑎𝑥)]𝑛) [1 −  𝐹(𝑇𝑀

𝑚𝑎𝑥)] = 0 (B.4) 
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