
Pi calculus versus Petri nets: Let us eat “humble
pie” rather than further inflate the “Pi hype”

W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology, P.O.
Box 513, NL-5600 MB, Eindhoven, The Netherlands. w.m.p.v.d.aalst@tm.tue.nl

Abstract. In the context of Web Service Composition Languages (WS-
CLs) there is on ongoing debate on the best foundation for Process-
Aware Information Systems (PAISs): Petri nets or Pi calculus. Example
of PAISs are Workflow Management (WFM), Business Process Manage-
ment (BPM), Business-to-Business (B2B), Customer Relationship Man-
agement (CRM), Enterprise Resource Planning (ERP) systems. Clearly,
the web-service paradigm will change the architecture of these systems
dramatically. Therefore, triggered by industry standards such as SOAP,
WSDL, UDDI, etc., standards are being proposed for orchestrating web
services. Examples of suchWSCLs are BPEL4WS, BPML,WSFL, WSCI,
and XLANG. In the debate on Petri nets versus Pi calculus many players
in the “WSCL marketplace” are using demagogic arguments not based
on concrete facts. This short note is an attempt to get to a more mature
discussion on the pro’s and con’s of Petri nets and Pi calculus for WSCLs.
A simple example is given to illustrate fundamental differences between
Petri nets and Pi calculus. The paper also states seven challenges, in par-
ticular for those advocating the use of Pi calculus. Hopefully, this note
will contribute to exposing the people that try to “hype” things like Pi
calculus only for marketing purposes. Note that the big discrepancy be-
tween the “Pi-hype” and reality will not only limit the applicability of
WSCLs but also discredit a beautiful scientific framework like Pi calcu-
lus.
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1 Introduction

The recently released BPEL4WS (Business Process Execution Language for Web
Services, [14]) specification builds on IBM’s WSFL (Web Services Flow Lan-
guage, [24]) and Microsoft’s XLANG (Web Services for Business Process Design,
[30]). XLANG is a block-structured language with basic control flow structures
such as sequence, switch (for conditional routing), while (for looping), all (for
parallel routing), and pick (for race conditions based on timing or external trig-
gers). In contrast to XLANG, WSFL is not limited to block structures and allows
for directed graphs. The graphs can be nested but need to be acyclic. Iteration
is only supported through exit conditions, i.e., an activity/subprocess is iterated



until its exit condition is met. The control flow part of WSFL is almost identical
to the workflow language used by IBM’s MQ Series Workflow.

BPML (Business Process Modeling language, [11]) is a standard developed
and promoted by BPMI.org (Business Process Management Initiative). BPMI.org
is supported by several organizations, including Intalio, SAP, Sun, and Versata.
The Web Service Choreography Interface (WSCI, [10]) submitted in June 2002 to
the W3C by BEA Systems, BPMI.org, Commerce One, Fujitsu Limited, Intalio,
IONA, Oracle Corporation, SAP AG, SeeBeyond Technology Corporation, and
Sun Microsystems. There is a substantial overlap between BPML and WSCI.

While languages like BPEL4WS and BPML have been developed with web
services in mind, the traditional workflow languages and tools made similar
attempts not necessarily based on standards like SOAP, WSDL, UDDI, etc. An
example is XML Process Definition Language (XPDL), the language proposed by
the Workflow Management Coalition (WfMC) to interchange process definitions
between different workflow products. The goal of XPDL is to provide a Lingua
Franca for the workflow domain allowing for the import and export process
definitions between a variety of tools ranging from workflow management systems
to modeling and simulation tools.

The competition between these languages triggered a discussion on “the best”
foundation for Web Service Composition Languages (WSCLs). Although few ar-
ticulate the need for a formal basis clearly, the general opinion is that some formal
model should be used to base these complex languages on. Clearly, formal models
like Petri nets and Pi calculus offer advantages when it comes to providing solid
semantics and analysis methods. Unfortunately, only in few cases such a founda-
tion is really used to actually provide solid semantics and analysis methods. At
this point in time, it seems that formal models are used to advertise languages
rather than to improve their quality and applicability. Few examples such as the
Woflan project [32] and the YAWL project [6] demonstrate in real-life situations
the added value of formal methods. This brings us to the first two challenges.

Challenge 1: Let the people that advocate BPEL4WS, BPML, WSFL, XLANG,
XPDL, and WSCI show the precise relation between the language and some for-
mal foundation. People that cannot do this but still claim strong relationships
between their language and e.g. Pi-calculus only cause confusion.

Challenge 2: Let the people that advocate a particular formal model (e.g. Pi-
calculus) in the context of languages like BPEL4WS, BPML, WSFL, XLANG,
XPDL, and WSCI demonstrate the use of analysis methods and tools based on
this formal model (in some real life setting).

As indicated in the abstract, this paper is about the debate on Petri nets versus
Pi calculus in the context of WSCLs. Therefore, some reflection on the history
of concurrency and PAISs is in order.



2 History of PAISs and concurrency

Let us first focus on the history of PAISs. An interesting starting point from a
scientific perspective is the early work on office information systems. In the sev-
enties, Skip Ellis [15], Anatol Holt [19], and Michael Zisman [35] already worked
on so-called office information systems, which were driven by explicit process
models. It is interesting to see that the three pioneers in this area indepen-
dently used Petri-net variants to model office procedures. During the seventies
and eighties there was great optimism about the applicability of office infor-
mation systems. Unfortunately, few applications succeeded. As a result of these
experiences, both the application of this technology and related research almost
stopped for a decade. Hardly any advances were made in the eighties. In the
nineties, there was a renewed interest in these systems. The number of work-
flow management systems developed in the past decade and the many papers
on workflow technology illustrate the revival of process-aware office information
systems. Today workflow management systems are readily available. However,
their application is still limited to specific industries such as banking and in-
surance. As indicated by Skip Ellis in [16] it is important to learn from these
ups and downs. The failures in the eighties can be explained by both technical
and conceptual problems. In the eighties, networks were slow or not present at
all, there were no suitable graphical interfaces, and proper development software
was missing. However, there were also more conceptual problems: there was no
unified way of modeling processes and the systems were too rigid to be used by
people in the workplace. Most of the technical problems have been resolved by
now. However, the more conceptual problems remain. Good standards for busi-
ness process modeling are still missing and even today’s workflow management
systems enforce unnecessary constraints on the process logic (e.g., processes are
made more sequential that they need to be).

In [27] an interesting historic overview of office automation and workflow
prototypes is given. History clearly shows that (i) workflow management is not
something that started in the nineties but already in the seventies with the work
of Ellis (OfficeTalk) and Zisman (Scoop); and (ii) the number of commercial
systems has considerably grown in recent years. When considering WSCLs it is
important to take this into account and use experience and knowledge from the
workflow domain, i.e., do not re-invent the wheel!

Research in concurrency theory started with the PhD thesis of Carl Adam
Petri [28]. Petri was the first person to develop models of interacting sequential
processes. Before, his PhD thesis researchers only considered sequential processes
represented in terms of transition systems or automata. About a decade later
Robin Milner started working on concurrency theory. Later he would win the
Turing award for the following three achievements: (1) LCF, the mechaniza-
tion of Scott’s Logic of Computable Functions, probably the first theoretically
based yet practical tool for machine assisted proof construction; (2) ML, the
first language to include polymorphic type inference together with a type-safe
exception-handling mechanism; (3) CCS, a general theory of concurrency. The
third achievement, i.e., the development of CCS, has been the main ingredient for



Pi calculus. In 1980 Robin Milner published the book “A Calculus of Communi-
cating Systems” [25] describing the CCS language. CCS is one member of a large
family of so-called process algebra’s. Other established process algebra’s include
CSP [18] and ACP [12]. Pi calculus [26] is the most recent addition to the impres-
sive collection of process algebra variants. It extends CCS with notions of mo-
bility. While new process algebra’s emerged Petri nets were extended with data
(color), time, and hierarchy [20, 21]. See http://www.daimi.au.dk/PetriNets/ for
more information on the various Petri net models.

The main difference between Petri nets and process algebra is that Petri nets
are based on (bipartite) graphs while process algebra’s are based on a textual
(i.e., rather linear) description. In both areas there is an impressive accumulation
of knowledge. Many notions developed for Petri nets have been translated to
process algebra and vice versa. However, fundamental differences remain. For
example, the notion of invariants developed for Petri nets [29] does not exist
in process algebra. See [13] for a detailed comparison of Petri nets and process
algebra.

Challenge 3: Let the people that advocate a particular formal model in the
context of WSCLs actually study literature before making any statements.

One of the big misconceptions about Petri nets versus process algebra’s is that
process algebra’s are compositional while Petri nets are not. This is complete
nonsense! Petri nets have been extended with hierarchy. Moreover, Petri nets
can be used in a compositional way. However, Petri nets also allow you to model
in a non-compositional way. For example, by restriction subprocesses to e.g.
WF-nets [1] similar compositionality results can be obtained [2, 9, 17].

3 An example

To start a more mature discussion on Petri nets versus process algebra, I pro-
pose to use concrete examples. To start such a discussion, I would like to use the
model shown in Figure 1. This model shows a simple classical Petri net with 8
transitions. First a is executed followed by b and e in parallel. b is followed by
c, however, f has to wait for the completion of both e and c, etc. Finally, h is
executed and all transitions have been executed exactly once. Although the Petri
net is very simple, e.g., it does not model any choices, only parallelism. Never-
theless, process algebra’s like Pi calculus have problems modeling this simple
example.

To understand the problem consider the Petri net shown in Figure 1 without
the connection between c and f . In that case the sequences b.c.d and e.f.g
are executed in parallel in-between a and h. In terms of Pi calculus this is
denoted as a.(b.c.d|e.f.g).h. In this notation the “.” is used to denote sequence
and the “|” denotes parallelism. Indeed this notation is elegant and allows for
computer manipulation. Unfortunately, such a simple notation is not possible if
the connection between c and f is restored. The linear language does not allow
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Fig. 1. How to model this in terms of Pi calculus?

for this while for a graph based language like Petri nets this is not a problem.
Note that the claim is not that Pi calculus cannot model the process shown in
Figure 1. However, it illustrates that Pi calculus is a language for experts where
simple things suddenly become very complicated.

The example triggers two additional challenges.

Challenge 4: Let the people that advocate Pi calculus show how the Petri net
shown in Figure 1 can be modeled easily.

Challenge 5: Let the people advocating Pi calculus propose modeling chal-
lenges for people advocating Petri nets as the fundamental language. It would
be very interesting the see useful patterns that actually benefit from the notion
of mobility present in Pi calculus.

Based on the outcome for the 5th challenge, it would be nice to try and map
patterns involving mobility onto Petri nets. If needed, it would be interesting
the apply the “nets in nets” paradigm developed by Valk et al. [31, 8] supported
by tools like Renew (http://www.renew.de/).

4 Towards a more mature discussion

Clearly, Figure 1 is only a toy example. Therefore, we propose to use a set of
relevant patterns to compare languages. Since 1999 we have been working on
collecting a comprehensive set of workflow patterns [7]. The results have been
made available through http://www.workflowpatterns.com, i.e., the “Workflow
patterns WWW site”. The patterns range from very simple patterns such as
sequential routing (Pattern 1) to complex patterns involving complex synchro-
nizations such as the discriminator pattern (Pattern 9). In this paper, we restrict
ourselves to the 20 most relevant patterns. These patterns can be classified into
six categories:

1. Basic control-flow patterns. These are the basic constructs present in most
workflow languages to model sequential, parallel and conditional routing.



Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)
• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and
Synchronization Patterns

• Pattern 6 (Multi - choice)
• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns
• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns
• Pattern 16 (Deferred

Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns
• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 2. Overview of the 20 workflow patterns described in [7].

2. Advanced branching and synchronization patterns. These patterns transcend
the basic patterns to allow for more advanced types of splitting and joining
behavior. An example is the Synchronizing merge (Pattern 7) which behaves
like an AND-join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly
identifies entry and exit points is quite natural. In graphical languages allow-
ing for parallelism such a requirement is often considered to be too restrictive.
Therefore, we have identified patterns that allow for a less rigid structure.

4. Patterns involving multiple instances. Within the context of a single case
(i.e., workflow instance) sometimes parts of the process need to be instanti-
ated multiple times, e.g., within the context of an insurance claim, multiple
witness statements need to be processed.

5. State-based patterns. Typical workflow systems focus only on activities and
events and not on states. This limits the expressiveness of the workflow
language because it is not possible to have state dependent patterns such as
the Milestone pattern (Pattern 18).

6. Cancellation patterns. The occurrence of an event (e.g., a customer canceling
an order) may lead to the cancellation of activities. In some scenarios such
events can even cause the withdrawal of the whole case.

Figure 2 shows an overview of the 20 patterns grouped into the six categories.
A detailed discussion of these patterns is outside the scope of this paper. The
interested reader is referred to [7] and http://www.workflowpatterns.com.



We have used these patterns to compare the functionality of numerous WFM
systems but also most of the WSCLs. The result of this evaluation reveals that
(1) the expressive power of contemporary systems/languages leaves much to be
desired and (2) the systems support different patterns. Note that we do not use
the term “expressiveness” in the traditional or formal sense. If one abstracts
from capacity constraints, any workflow language is Turing complete. Therefore,
it makes no sense to compare these languages using formal notions of expres-
siveness. Instead we use a more intuitive notion of expressiveness which takes
the modeling effort into account. This more intuitive notion is often referred
to as suitability. See [22, 23] for a discussion on the distinction between formal
expressiveness and suitability.

We have evaluated the leading standards for WSCLs. See [33, 34] for more
information about the evaluation of BPEL4WS, XLANG, and WSFL using the
patterns. See [4] for more information about the evaluation of BPML and WSCI
using the patterns. For an overview of these evaluations we refer to [3].

The observation that the expressive power of the available languages and
systems leaves much to be desired, triggered the question: How about Pi calculus?

Challenge 6: Let the people that advocate Pi calculus exactly show how existing
patterns can be modeled in terms of Pi calculus.

Challenge 7: Let the people advocating Pi calculus propose new patterns, es-
pecially patterns involving mobility.

5 Conclusion

This short note is an attempt to trigger a more mature discussion on the foun-
dations of WSCLs. Both Petri nets and the Pi calculus are solid and respectable
languages. Clearly, Robin Milner developed a beautiful language which can be
applied in many application domains. However, the “Pi hype” is not based on
any solid arguments. People that are not familiar with formal methods are fight-
ing religious wars driven by commercial arguments instead of the desire to build
a solid foundation for WSCLs. As a kind of “antidote” to the Pi hype, this pa-
per proposed seven challenges. Moreover, to conclude I would like to discuss the
pro’s and con’s of Petri nets as an alternative for Pi calculus.

There are at least three good reasons for using Petri nets as a basis for
WSCL:1

1. Formal semantics despite the graphical nature
On the one hand, Petri nets are a graphical language which allows for the
modeling of the workflow primitives identified by the WfMC. On the other

1 Note that we focus on the workflow-functionality of WSCL. Clearly, there are other
aspects that are also important. However, the dominant perspective of WSCL is
the workflow/process perspective. Only a superficial scan of existing WSCLs like
BPEL4WS and BPML will reveal this.



hand, the semantics of Petri nets (including most of the extensions) have
been defined formally. Many of today’s available WFM systems provide ad-
hoc constructs to model workflow procedures. Moreover, there are WFM sys-
tems that impose restrictions on many of the workflow patterns discussed.
Some WFM systems also provide exotic constructs whose semantics are not
100% clear, cf. the join construct in XPDL and many other languages. Be-
cause of these problems it is better to use a well-established design language
with formal semantics as a solid basis.

2. State-based instead of event-based
In contrast to many other process modeling techniques, the state of case
can be modeled explicitly in a Petri net. Process modeling techniques rang-
ing from informal techniques such as dataflow diagrams to formal techniques
such as process algebra’s are event-based, i.e., transitions are modeled explic-
itly and the states between subsequent transitions are only modeled implic-
itly. Today’s WFM systems are typically event-based, i.e., tasks are modeled
explicitly and states between subsequent tasks are suppressed. The distinc-
tion between an event-based and a state-based description may appear to
be subtle, but patterns like the Deferred choice (WP16) and the Milestone
(WP18) show that this is of the utmost importance for workflow modeling.

3. Abundance of analysis techniques
Petri nets are marked by the availability of many analysis techniques. Clearly,
this is a great asset in favor of a Petri nets. Petri-net-based analysis tech-
niques can be used to determine the correctness of a process designs. The
availability of these techniques illustrates that Petri-net theory can be used
to add powerful analysis capabilities to the next generation of PAISs.

However, as indicated in [5] there are also problems when modeling workflows
in terms of a Petri nets. For the more advanced routing constructs it is necessary
to resort to high-level nets [20, 21]. Moreover, a straightforward application of
high-level Petri nets does not always yield the desired result. There seem to be
three problems relevant for WSCLs:

1. High-level Petri nets support colored tokens, i.e., a token can have a value.
Although it is possible to use this to identify multiple instances of a sub-
process, there is no specific support for patterns involving multiple instances
and the burden of keeping track, splitting, and joining of instances is carried
by the designer.

2. Sometimes two flows need to be joined while it is not clear whether syn-
chronization is needed, i.e., if both flows are active an AND-join is needed
otherwise an XOR-join. Such advanced synchronization patterns are difficult
to model in terms of a high-level Petri net because the firing rule only sup-
ports two types of joins: the AND-join (transition) or the XOR-join (place).

3. The firing of a transition is always local, i.e., enabling is only based on the
tokens in the input places and firing is only affecting the input and output
places. However, some events in the workflow may have an effect which is not
local, e.g., because of an error tokens need to be removed from various places
without knowing where the tokens reside. Everyone who has modeled such



a cancellation pattern (e.g., a global timeout mechanism) in terms of Petri
nets knows that it is cumbersome to model a so-called “vacuum cleaner”
removing tokens from selected parts of the net.

Compared to existing WFM languages high-level Petri nets are quite expressive
when it comes to supporting the workflow patterns. Recall that we use the term
“expressiveness” not in the formal sense. High-level Petri nets are Turing com-
plete, and therefore, can do anything we can define in terms of an algorithm.
However, this does not imply that the modeling effort is acceptable. High-level
nets, in contrast to many workflow languages, have no problems dealing with
state-based patterns. This is a direct consequence of the fact that Petri nets use
places to represent states explicitly. Although high-level Petri nets outperform
most of the existing languages when it comes to modeling the control flow, the
result is not completely satisfactory since the three problems indicated hamper
the application in the WFM/BPM domain. This triggered the development of
YAWL (Yet Another Workflow Language). YAWL is based on Petri nets but
extended with additional features to facilitate the modeling of complex work-
flows [5, 6]. See http://www.citi.qut.edu.au/yawl/ for more information or
to download the YAWL system.
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