
On the Characterization of Library Cells

by

Jos Budi Sulistyo

Thesis Submitted to the Faculty

of the Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

Dr. Dong S. Ha, Chairman

Dr. James R. Armstrong

Dr. F. Gail Gray

August 2000

Blacksburg, Virginia

Keywords: VLSI, Standard Cell, Characterization, Timing Model, Power Estimation, Synopsys,

Cadence

Copyright 2000, Jos Sulistyo

ii

On the Characterization of Library Cells

Jos Budi Sulistyo

Dr. Dong S. Ha, Chairman

Bradley Department of Electrical and Computer Engineering

(Abstract)

In this work, a simplified method for performing characterization of a standard cell is

presented. The method presented here is based on Synopsys models of cell delay and power

dissipation, in particular the linear delay model. This model is chosen as it allows rapid

characterization with a modest number of simulations, while still achieving acceptable accuracy.

Additionally, a guideline for developing standard cell libraries for use with Synopsys synthesis

and simulation tools and Cadence Placement-and-Routing tools is presented. A cell layout

library, built in accordance with the presented guidelines, was laid out, and a test chip, namely a

dual 4-bit counter, was built using the library to demonstrate the suitability of the method.

iii

Acknowledgements

Special thanks are due to my commitee chairman Dr. Dong S. Ha, through whose

patience, understanding, and invaluable advice, this work has been accomplished. I would also

like to express my gratitude to Dr. James R. Armstrong and Dr. F. Gail Gray for serving as my

committee members.

I would also express my special thanks to the members and former members of the

VTVT (Virginia Tech VLSI for Telecommunications) Group at the Bradley Department of

Electrical and Computer Engineering, Virginia Polytechnic Institute and State University,

namely – in no particular order – Dr. Han Bin Kim, Suk Won Kim, Carrie Aust, Meenatchi

Jagasivamani, Jia Fei, Nate August, Steve Richmond, and Andrew Gouldey, for all their help and

suggestions along the course of this work.

Last but not least, my parents deserve a special kind of thanks. While they were not

directly involved in this work, they nonetheless supported me with their encouragement,

understanding and patience, particularly when I faced some particularly difficult problems.

Without their support, it would not have been possible for me to accomplish this work. I could

only wish I know how to thank them.

iv

Contents

I. Introduction .. 1

II. Background ... 3
2. 1. About Standard Cell Libraries ... 3
2. 2. Typical Standard Cell Based Design Flow ... 4
2. 3. Standard Cell Development Process Flow .. 6
2. 4. Review of Previous Works .. 8

III. Development of Layout and Abstract Library .. 10
3. 1. Requirements on the Library ... 10
3. 2. Layout Technique .. 11

3. 2. 1. What Silicon Ensemble Does .. 11
3. 2. 2. Requirements on the Layout Style .. 13
3. 2. 3. Example of Cell ... 18

IV. Timing and Capacitance Characterization .. 20
4. 1. Timing Model and Aim of Characterization ... 20

4. 1. 1. Basic CMOS Timing Model and Definition of Terms .. 21
4. 1. 2. Linear Delay Model .. 25
4. 1. 3. Definition of Setup Time ... 28

4. 2. Proposed Timing and Capacitance Characterization Method 30
4. 2. 1. Input Capacitance Measurement ... 30
4. 2. 1. 1. Basic Approach ... 30
4. 2. 1. 2. Input Capacitance Measurement for Combinational Cells 31
4. 2. 1. 3. Input Capacitance Measurement for Sequential Cells 33
4. 2. 2. Non-tristate Delay Characterization .. 36

4. 2. 2. 1. Intrinsic Delay Measurement .. 36
4. 2. 2. 2. Transition Delay and Output Resistance Measurement 38
4. 2. 2. 3. Slope Sensitivity Measurement ... 41
4. 2. 2. 4. SPICE Example of Capacitance and Delay Characterization
Simulation ... 43

4. 2. 2. 4. 1. Example for 2-input NAND Gate ... 44
4. 2. 2. 4. 2. Example for Simple D Flip-flop .. 49

4. 2. 5. Setup Time Characterization Using Bisection .. 52
4. 2. 5. 1. Discussion ... 52
4. 2. 5. 2. SPICE Example ... 54

4. 2. 6. Tristate Cell Timing and Input/Output Capacitance Characterization 58
4. 2. 6. 1. Intrinsic Delays and Enable Delay Determination .. 60
4. 2. 6. 2. Determination of ipop Output Resistance ... 61
4. 2. 6. 3. Input Capacitance Determination .. 62
4. 2. 6. 4. Output Capacitance Determination ... 62
4. 2. 6. 5. Measurement of Output Resistances for Enable Delays 64

v

4. 2. 6. 5. Mesurement of Disable Delays ... 64
4. 2. 6. 6. SPICE Example ... 64

5. Power Characterization ... 71
5. 1. Basics of Power Dissipation .. 71

5. 1. 1. Static Power ... 72
5. 1. 2. Dynamic Power ... 73

5. 2. Synopsys Model of Power Dissipation ... 78
5. 3. Proposed Power Characterization Method .. 82

5. 3. 1. Static Power Measurement .. 82
5. 3. 1. 1. Basic Method ... 82
5. 3. 1. 2. SPICE Example ... 83

5. 3. 2. Dynamic Power Measurement for Simple Combinational Cells 84
5. 3. 2. 1. Basic Method ... 84
5. 3. 2. 2. SPICE Example ... 85

5. 3. 3. Dynamic Power Measurement for Sequential Cells and
Combinational Cells with Internal Loads .. 89

5. 3. 3. 1. Basic Method ... 89
5. 3. 3. 2. SPICE Example ... 93

5. 3. 4. Dynamic Power Measurement for Tristate Cells .. 100
5. 3. 4. 1. Basic Method ... 100
5. 3. 4. 2. SPICE Example – Complete File .. 108

VI. Example Design – Twin 4-bit Counter ... 113

VII. Summary .. 117

Bibliography .. 118

APPENDIX I Instructions for LEF File Generation Process .. 119

Vita .. 136

vi

List of Figures

Figure 2.1. Flow Diagram of Standard Cell Based Design .. 5
Figure 2.2. Flow Diagram of Standard Cell Library Development Process 7
Figure 3.1. The General Layout of a Complete SE-routed Chip 12
Figure 3.2. Two Adjacent Rows of Core Cells .. 13
Figure 3.3. General Shape of a Standard Core Cell ... 14
Figure 3.4. Definition of Routing Pitch ... 15
Figure 3.5. Definition of Offset ... 16
Figure 3.6. Example of Placing Stacked Vias for Two Different Pitch Ratios 17
Figure 3.7. A High-Active D Latch with Asyncronous Set and Reset 18
Figure 4.1. Definition of Intrinsic Delay ... 22
Figure 4.2. Definition of Transition Delay .. 23
Figure 4.3. Definition of Slope Delay .. 24
Figure 4.4. Output Resistance Measurement Setup ... 25
Figure 4.5. Different Alternative Arrangements of Timing Paths Inside a D FF 26
Figure 4.6. Input Rise Setup Time Definition for A Rising-Edge Triggered FF 29
Figure 4.7. Input Rise Setup Time Definition for High-Active Latch 30
Figure 4.8. Measurement of Input Capacitance ... 31
Figure 4.9. Waveforms for the Measurement of Input Capacitance for OR2 32
Figure 4.10. Waveforms for the Measurement of Input Capacitance for D FF 34
Figure 4.11. Measuremet of Intrinsic Delays for Inverters .. 36
Figure 4.12. Waveforms Used for Inverter Intrinsic Delay Determination 38
Figure 4.13. Meaurement of Transition Delay for Inverters .. 39
Figure 4.14. Waveforms Used for Circuit in Figure 4.13. ... 40
Figure 4.15. Measurement of Slope Delay for Inverters ... 42
Figure 4.16. Slope Delays of Inverters .. 42
Figure 4.17. Noninverting Tristate Buffer ... 59
Figure 4.18. Waveforms Used For 4.17 ... 59
Figure 4.19. Circuit for Tristate Buffer Delay Determination ... 60
Figure 4.20. Circuit Used for Tristate Buffer Output Resistance Determination 61
Figure 4.21. Circuit Used for Cop Measurement .. 63
Figure 4.22. Enable Voltage Waveform for Cop Measurement ... 63
Figure 4.23. Circuit for Slope Delay Determination of Tristate Buffers 65
Figure 5.1. A 2-input Complementary Static CMOS Gate .. 72
Figure 5.2. Waveform Used in Dynamic Power Measurement of a

2-input NAND Gate .. 74
Figure 5.3. hnd3 (NAND3) Power Measurement Circuit .. 85
Figure 5.4. Waveforms Used for hnd3 Power Characterization .. 86
Figure 5.5. A 4-input AND-OR gate ... 90
Figure 5.6. Input Stimuli and Circuit Response for 5.5 ... 91
Figure 5.7. A Positive Edge Triggerd Master-Slave Flip-flop .. 92
Figure 5.8. Circuit for Power Measurement of hdpq (Simple D FLip-flop) 93
Figure 5.9. Waveforms Used for Power Measurements of hdpq 95
Figure 5.10. Circuit for Power Characterization of Tristate Buffers 102
Figure 5.11. Waveforms for Tristate Buffers Power Characterization 103

vii

Figure 6.1. Layout of the Circuit Produced by Silicon Ensemble 115
Figure 6.2. Part of (6.1.) Showing Two Adjacent, Abutted Rows 116
Figure A-1.1. Simplification of Pad Layout for LEF File Generation 125
Figure A-1.2. Layout of D Latch ... 131

1

Chapter I

Introduction

As the complexity of circuit designs grows, it is becoming increasingly impractical to

design logic circuits by hand. Therefore, the use of automatic synthesis tools has become

mandatory.

In general, synthesis tool-based designs are performed using the following steps:

1. Description of circuit behavior in some high-level language, such as VHDL and Verilog

2. Compilation of behavioral description into a logical netlist using logic synthesis tools

3. Translation of the logical netlist into a geometric netlist, followed by placement and routing,

with Placement-and-Routing (PNR) tools

The second step presumes that the design environment already contains some

descriptions of some structural logic primitives (e.g. primitives for NAND gates, latches, flip-

flops, etc), as those primitives will comprise the netlist produced by the synthesis tool. Similarly,

the last step presumes that the translation of a netlist to geometric shapes is already defined for

the design environment, i.e. the logic primitives referred to by the netlist is already present in

some physical library. Hence, for the design environment, a library which contains both physical

(i.e. layout) primitives and logic primitives which correspond to those structural primitives must

already be present.

Therefore, with this design method, it is mandatory that a standard cell library be present.

Further, the standard cell library should, at the minimum, consist of:

1. layout

2. other geometric descriptions as needed by the PNR tools, if the full layout is deemed too

complicated for this purpose

3. list of logic primitives which correspond to those cells, including pinout

4. logic description libraries, both for synthesis and simulation purposes, which features

simplified timing and power dissipation modeling capabilities

2

The last point deserves some clarification. While more accurate information (timing and

power dissipation) could be obtained through the use of a commercially available circuit

simulation program such as SPICE, the runtime tends to be prohibitively lengthy for large

circuits. Further, at this design stage, it is often unnecessary to obtain, for instance, a power

dissipation estimate which is accurate to within 5%. Hence, the use of simplified models, with

their reduced accuracy but improved simulation speed, is the norm.

In this work, a set of methods for constructing such a library is presented. Chapter II will

present a brief overview of the remaining parts; it will briefly describe the requirements imposed

on standard cell libraries, as well as design process using such libraries and the development

process to create the libraries. The chapter will also review several previous works on the

characterization process. Chapter III will discuss some details regarding the development of the

layout library. Chapters IV and V will discuss the characterization process to determine the

cells’ timing and power dissipation parameters in more details, while Chapter VI will present an

example circuit – a 4-bit counter – constructed with the core cells developed in accordance to the

steps discussed in previous chapters. Chapter VII summarizes the thesis.

3

Chapter II

Background

The use of synthesis and PNR tools requires the provision of a cell library. Therefore, the

first step of the design is to develop such a library, or to acquire one. In this chapter, we provide

background for development of a cell library.

2. 1. About Standard Cell Libraries

In theory any logic system could be built with AND and OR gates and inverters.

However, to use synthesis and PNR (Placement and Routing) tools, there are some properties

and features that a layout library must posses. The two most common of them are as follows.

The first requirement is the functional completeness. This depends on the synthesis tool

in use, and is different from the functional completeness as ordinarily defined. Most synthesis

tools require the presence of tristate elements. Also, they cannot ordinarily create sequential

elements from combinational elements, or create a flip-flop from latches, and vice-versa. For

example, Synopsys’s Design Analyzer synthesis tool requires the library to contain, at the

minimum, six different types of cells, namely:

− one type of tristate cell;

− either NOR and NAND gates, or AND and OR gates;

− inverter;

− D flip-flop with asynchronous set and reset;

− D latch with asynchronous set and reset

The second requirement pertains to the shapes and sizes of cells. The shapes and sizes of

standard cells must be made very regular. This also applies to the geometries inside the cells,

particularly those on metal layers. To facilitate routing, most PNR tools impose some

requirement on the locations and the shapes of metal geometries inside the cell. Those

4

requirements are intended to ensure that PNR tools would be able to lay down routing tracks

without being obstructed by metal geometries which form parts of the cell. In particular, since

many routing tools are grid-based, i.e. they can lay down tracks only following some routing

grids as defined by cell library designer, the metal tracks inside the cells need to be placed on

those grids to facilitate the task of connecting those tracks to the outside world.

2. 2. Typical Standard Cell Based Design Flow

Typically, design of circuits based on standard cell libraries, starting from functional

descriptions to completion of physical layout (prior to fabrication) follows the flow diagram

shown in Figure 2.1.

From the flow diagram, several observations and comments could be made. Two of those

observations and comments are as follows:

1. The library must contain descriptions of the cells to facilitate synthesis – specifically,

translation into a netlist of logic primitives.

2. Since simulation of synthesized circuit may have to be performed repeatedly (e.g. if the

speed or power dissipation does not satisfy goals), the models in logic primitives have to be

simplified to allow fast simulation.

The second point implies that the library must contain information about timing and

power dissipation parameters of the cells. For Synopsys tools, these are provided by the library

designer in the form of library (.lib) file. This file is then compiled into both synthesis library

(for synthesis step) and simulation library (for simulating synthesized circuit, or also to be

invoked directly in design if structural design is attempted).

5

Placement
and

Routing

Translation into
Netlist of Physical

Cells

Simulation of
Synthesized

Netlist

Compilation into
netlist of logic

primitives

Simulation of
Behavioral

Model

Functional Description
in High-level Design
Languages (such as
Verilog or VHDL)

Correct/
as-desired
Behavior?

Behavior
Correct and
Satisfying

Requirements?

Yes

No

Yes

No

Placement and
Routing Stage
Performed by

PNR Tool

Logic Synthesis
Stage

Performed by
Simulation and
Synthesis Tool

Design Stage
Performed by

Simulation Tool

.

Figure 2.1. Flow Diagram of Standard Cell Based Design

Additionally, since the tasks of the PNR tools are simply properly placing the cells and

laying down interconnects, it is unnecessary for the PNR step to use complete layout. A

6

simplified representation, which include only routing layers and other layers which poses

significant electrical contact with the routing layers (e.g. includes only metals, contacts, and vias)

would be adequate, as long as it corresponds to an actual layout. Also, such a simplified model

should be faster to process. For Cadence Silicon Ensemble PNR tool, this is provided in form of

LEF (Library Exchange Format) file, which contains a partial description of all cells in the

library, some design rules pertinent to placement and routing process (such as metal and via

spacing), and the routing rules defined by the designer of the library (such as the desired pitch

between two adjacent metal tracks).

2. 3. Standard Cell Library Development Process Flow

Typically, the development of a standard cell library, starting from layout to porting to

simulation, synthesis, and PNR libraries, is as shown in Figure 2.2.

Basically, the development process consists of three basic steps: netlist- (or schematic)

level design, layout, and porting to synthesis/simulation libraries and to PNR library. Returning

to the standard cell-based design process shown in Figure 2.1, the synthesis is to be used in the

logic synthesis stage; the simulation library is to be used during synthesis and sometimes also

design stage; and the PNR library is to be used in PNR stage.

7

Decision on track pitch,
track width, size of vias,

types of cells to be
included, etc.

Layout

Before Layout

Circuit-level simulation
on circuits extracted

fromlayout

Netlist/schematic-level
Design

Circuit-level simulation.

Porting to synthesis and
simulation library

Porting to
Place-and-Route

library

Functionality/
Performance

meets
specifications?

Yes

Yes

No

No

Porting of layouts
to synthesis,

simulation, and
PNR libraries

Functionality/
Performance

meets
specifications?

Layout steps
including
necessary
iterations

Figure 2.2. Flow Diagram of Standard Cell Library Development Process

8

2. 4. Review of Previous Work

As most of the rest of this work will be concerned with devising a relatively simple yet

relatively accurate characterization method, this section is primarily dedicated to reviewing

previous works on cell characterization. In particular, since the linear timing model used by

Synopsys tools is largely based on Penfield-Rubinstein-slope model, most of the works on timing

characterization discussed here will be the ones which focuses on the particular model.

In [8], Patel proposed a method to characterize cell delay and capacitance parameters,

and described a system implementing the method. Deserving a special attention is his proposed

technique to determine actual switching voltages of each cell, as well as proposed delay

definition as switching-to-switching voltage instead of, for instance, the more commonly used

50%-to-50% delay. While the proposed definition may result in a more accurate delay estimation

for one kind of cell, it would likely lead into inconsistent definitions for cases where a cell drives

another cell of different type (and hence, different switching voltage). While the use of 50%-to-

50% delay is largely arbitrary, one virtue of this definition is that it is likely to result in a more

consistent definition.

Further, in [3], Cirit proposed a similar method, which slightly differs in that it assumes

the cell being characterized as a black box (i.e. making no assumption about its internal

structure). While several details of the proposed methods are no longer applicable as the current

versions of SPICE offer various new capabilities, the black-box approach proposed is largely

adopted in our present work due to its simplicity.

The cell delay and power dissipation models used in this work is the one described in

Chapters I and II of [9]. Specifically, for timing characterization, the linear timing model is used

due to its simplicity and due to the relatively small numbers of simulations needed to

characterize cells with acceptable accuracy. Also, in [5], Eshraghian and Weste describes several

delay model, one of which, namely the Penfield-Rubenstein-slope model, appears to be

essentially identical with the linear delay model used here.

9

Jou et al. in [6] and [7] proposed techniques to simplify characterization tables for

complicated cells. The proposed techniques are particularly useful for cases where the internal

structures of the cells are known.

Most of the previous works assumed some internal structure for the cells. In our work,

cells are basically viewed as black box entities. Combined with relatively simpler types of cells

encountered in a typical standard cell library, a more exhaustive power characterization method

is possible, which would also allow a higher accuracy.

10

Chapter III

Development of Layout and Abstract Library

For a cell layout library to be properly usable in standard cell-based design, several

requirements have to be satisfied. In general, those requirements depend on the particular

synthesis tool and PNR tool used. Therefore, in this chapter, we will focus on the development

process of cell library for use with Synopsys Design Analyzer synthesis tool and Silicon

Ensemble / Envisia Silicon Ensemble family of PNR tools.

3.1. Requirements on the library

As previously suggested in Figure 2.2, the development process of a standard cell library

for use with Silicon Ensemble (SE) routing tool follow the following steps:

1. Layout of cells

2. Creation of Synopsys synthesis and simulation libraries

3. Generation of LEF (Library Exchange Format) description of the cells

The LEF file is an ASCII file containing a partial geometric description of the cells in the

library. This file is used by the SE routing tool during the placement and routing process. The

description in the LEF file is simplified by including only metal layers and other layers which

may obstruct routing, such as metal tracks inside the cells. It is unnecessary to precisely model

the shape of the n-well in a detailed fashion, as the metal tracks laid down by SE should not be

electrically influenced by the well to a significant degree.

This chapter has two objectives. The first objective is to outline a layout method which

will result in logic cells which could be successfully converted to LEF description and could be

successfully used by SE, and the second is to give several details of the LEF file generation steps

which need to be followed to guarantee that the resulting LEF files could be successfully used

with SE.

11

3.2. Layout Technique

3.2.1. What Silicon Ensemble does

Silicon Ensemble is a placement-and-routing (PNR) tool which accepts the Verilog

netlist of the design to be physically synthesized as input, and with information regarding the

shape and obstructions posed by each cell in the library it will construct the completed circuit.

It is assumed here that the reader is familiar with layout process.

Standard cells for use with Silicon Ensemble are drawn like any other cells, except that to

facilitate routing process, the locations of routing layer shapes inside the cell has to be regular.

First, several terms need to be defined. Most of the layers in a rectangular cell could be

grouped into three mutually exclusive groups: routing layers, cut layers, and masterslice layers.

A routing layer is a layer in which the routing software performs routing by laying down wires

or other shapes in that layer. Usually the routing is limited to metal layers – or even to just some

of the available metal layers. A library must have at least one routing layer, and ideally should be

many. A masterslice layer is the layer in which no routing is performed and which lies

somewhere under the lowest routing layer. The routing tool will not lay any tracks in a

masterslice layer. Typically these layers include n- / p-well, active regions, and poly, although in

some cases it may be expedient to use poly in routing instead. It is allowable to use masterslice

layers, such as poly, in intracell routing. However, it is not allowable to perform intercell routing

in a masterslice layer. A cut layer is a layer which is used to connect two different routing layers

or to connect a routing layer to a masterslice layer; via and poly-to-metal contact layers are

examples of cut layers.

The SE place-and-route tool performs the following tasks. Upon receiving the Verilog

netlist of the design, it lays down rows of cells, as shown in Figures 3.1 and 3.2.

12

rows of
core cells

corner
cell

corner
cell

corner
cell

corner
cell

rows of I/O,
Power, and
Ground Pad

cells

Power
ring

Power
strip

metal1

metal2

Figure 3.1. The general layout of a complete SE-routed chip

As Figure 3.1 shows, a completed chip would contain three different classes of cells: core

(logic) cells, corner cells, and pad cells (I/O, Power, Ground). In this chapter, we are concerned

only with the design of core cells.

Further, after the cells are laid down, SE connects the cells according to the netlist

specified in the Verilog file. The connection is made over the top of the cell using upper-level

metals (e.g. usually metal3-metal5 in a five-metal technology), but all metal layers should be

declared as available for routing by the library designers, and the routing tool instead of the

library designers should decide which metal layers to use.

13

cell1 cell2 cell3 cell4 cell5 cell6 cell7

cell8 cell9 cell10 cell11 cell14cell13cell12

Power
rails

Shared
Ground

rails

Cell
(placement)

rail 2

Cell
(placement)

rail 1

cell1 cell2 cell3 cell4 cell5 cell6 cell7

cell8 cell9 cell10 cell11 cell14cell13cell12

Power
railsGround

rails

Cell
(placement)

rail 2

Cell
(placement)

rail 1

Routing
channel

(a) without flipping every other row

(b) with every other row flipped

Figure 3. 2. Two adjacent rows of core cells. With every other row flipped, rows can be abutted,
which reduces both chip area and power wires resistance.

3.2.2. Requirements on the Layout Style

Silicon Ensemble has both grid-based and gridless router. Unlike the grid-based router,

the gridless router is capable of routing pins placed in an almost arbitrary fashion, as long as

there is space to place via. However, since the grid-based router is faster and is more guaranteed

to succeed, the standard cells in use should exhibit the following properties:

14

The sizes, shapes and locations of all geometries in layers pertinent to routing are

regularized. If, for example, a metal1 signal track inside the cell is 1µm wide, all other metal1

tracks inside the cell must also be 1µm wide.

− The general shape of the cell is as follows:

metal boundaries
(used as

cell boundary)

VDD rail
(metal pin)

Ground rail
(metal pin)

signal
pins

row of
p-transistors

row of
n-transistors

Figure 3.3. General shape of a standard core cell. Note that the term pins” refers to any shapes in
the particular layer being used for routing.

− All metal tracks of the same layer (metal1, metal2, etc) for the same purpose (signal or

power) must have the same width. If, for example, a metal1 track for signal connection is

0.5µm wide, then all other signal connections in metal1 in the library must also be 0.5µm

wide. If a metal1 power pin is 2µm wide, all cells in the library must use 2µm wide metal1

power connections.

− All power / ground pins should have the same width and should run in same directions – all

horizontal or all vertical.

− Power / ground pins should be in the form of rail at the top/bottom ends of cell.

− Attempts must be made to lay signal tracks of the same layer in the same direction.

− For any two adjacent signal track in the same metal layer running in the same direction,

center-to-center pitch (defined below) must be either the same, or an integer multiply of a

minimal pitch value (called routing pitch).

15

Pitch

Spacing

Closest
separation

Pitch Pitch

Spacing

Spacing Closest
separation

(a). line-to-line pitch (b). line-to-via pitch (c). via-to-via pitch

Figure 3.4. Definition of Routing Pitch

− The routing pitch should at least line-to-via pitch, as defined in (b), where the closest

separation (line to metal extension of via) still satisfies design rule for metal-to-metal

separation. Ideally, it should be at least via-to-via pitch (see picture (c)). This will allow the

routing tool to drop via where necessary. Avoid using only line-to-line pitch as in (a), as the

routing tool may fail since it is unable to drop a via when it is needed.

− The width of metal layers in user’s unit should be divisible by two, to facilitate the routing

tool to mirror the cell when it is needed.

− All available of metal layers should follow the rules, even if there is no intention to actually

use it for routing – for example, in a ten-metal-layer process where it may not be critical that

the first layer be usable. It should be possible to declare all metal layers as available for

routing during the LEF file generation later on, and it will allow the routing tool decides

which metal layers will actually be used, which will likely result in better routing than if the

cell designer explicitly prohibits the use of the first metal layer.

− In a multi-metal process, if for any reason the routing pitch is not identical for all metal

layers, then the ratio of pitch between any two metal layers should be kept simple, such as

2:1 or 3:2 (ideally should be 1:1 if possible). Complex ratios, such as 11:9, should be

avoided.

16

− Regardless of the number of metal layers provided by the technology, the number of metal

layers used for internal connections within the cells should be limited. If possible, limit the

metal track use to metal1 only, so that all higher metal layer tracks are freely available for

use by the routing tool.

− The distance, both in x- and y-direction, from the cell’s metal corner to any of the centers of

via or metal shapes must be integer multiplies of routing pitch of the metal layer with the

smallest pitch (typically metal1). This will help the metal layers, and the pins defined in the

metal layers, to have consistent offset values (defined as follows).

1

1

-1

-1 2 3 4

2

-2

-2-3-4

= metal1 pin = metal2 pincoordinate in µµµµm

in absence of obstruction,
possible to place
metal2 pin here

metal1 routing grid x = 1µµµµm
metal1 routing grid y = 1µµµµm

metal2 routing grid x = 2µµµµm
metal2 routing grid y = 2µµµµm

closest m2 pin grid
to origin with x,y > 0

metal1 offset x = 0µµµµm
metal1 offset y = 0µµµµm

metal2 offset x = 0µµµµm
metal2 offset y = 1µµµµm

Figure 3.5. Definition of offset. It is assumed here that all pins are on-grid – they are all located
in the grids specified in the technology LEF

Offset is the distance (x-offset and y-offset for x- and y-distance, respectively) from

origin to, or the xy-coordinate of, the center of the possible pin location (as defined by the grids)

which is closest to origin and has positive coordinate in both x- and y-directions (see ilustration).

A special note is regarding the ratio among routing pitch of different metal layers. It is

tempting to think that since cell sizes are generally minimized if smallest metal widths and

pitches are used, this will be true of the overall circuit size. However, this is not necessarily the

17

case. As a case in point, the following picture compares the difficulty of laying a via in a 3:2

pitch ratio (here metal2 and metal3 have pitch values of 1.5× pitch for metal1) as compared with

the case where we have 1:1 pitch.

metal1

metal2 in
nonpreferred

direction

metal31:1 pitch ratio 3:2 pitch ratio

unpromotable locations
(cannot be connected

with a via to the intended
upper metal location)

smaller than
minimum
via or via2

pitch

Figure 3.6. Example of placing two stacked vias for two different pitch ratios. The more
complex the pitch ratio, the larger percentage of all available tracks cannot be connected with

via.

As apparent from the example, the disadvantage of a 3:2 or 4:3 pitch ratio as opposed to

1:1 is as follows. Suppose the obstructions posed by the tracks inside the cell necessitates the

formation of parallel metal1-metal2 tracks, and metal1-metal2 connections need to be made. For

a 1:1 track ratio, it would be easy to use all available metal1 and metal2 tracks and simply drop

the via to connect them. For a 3:2 ratio, however, two metal1 tracks, or one metal2 tracks, will

have to be spent just to make one connection. In this case, minimizing the pitch alone will not

increase the density of the routed circuit. Even worse if the pitch ratio is, for example, 4:3. In

general, 1:1 is ideal, 2:1 is reasonable, and 3:2 is the worst still considered acceptable.

The rules previously discussed are necessitated by the way SE performs routing. The tool

performs routing by laying down horizontal, vertical, and Manhattan-style tracks. For each metal

layer, the direction could be horizontal or vertical, but one direction is always taken as the

preferred direction, and the other one is automatically non-preferred. For example, if for metal1,

horizontal direction is considered preferred, the tool automatically tries to create horizontal

tracks first before resorting to creation of vertical tracks, although vertical tracks will eventually

be used if deemed necessary.

18

3. 2. 3. Example of Cell

An example of standard cell so constructed is the following D latch:

Figure 3.7. A high-active D latch with asynchronous set and reset.

Some parameters of the cell:

19

Cell Width = 28.8µm

Cell Height = 30.4µm (= 19× metal1 pitch)

Coordinate of metal1 lower left corner = (-1.6µm, -3.2µm) = (-1, -2) × metal1 pitch

metal1 width = 0.8µm metal3 pitch = 1.6µm (minimum = 0.6µm width, 1.2µm pitch)

metal2 width = 0.8µm metal3 pitch = 1.6µm

metal3 width = 0.8µm metal3 pitch = 1.6µm

metal4 width =1.2µm metal4 pitch = 3.2µm

preferred directions: metal1,3 = horizontal, metal2,4 = vertical

Note that although the pitch for metal1 could have been reduced (minimal spacing and

minimal width are 0.6µm each), the chosen values are considered better in that they allow the

same pitch is used for metal2. Had minimal width and spacing been used for metal1, a pitch of

1.2µm would have occurred, and a metal1 vs. metal2 pitch ratio of 4:3 would arise.

Note also that the boundaries of the cell – which determine how closely cells could be

placed next to each other – are purposely based on metal tracks. In particular, the width of the

cell is defined – during LEF file generation – as the same as the length of power tracks. The idea

is that the power pins could simply be abutted to the power pins of adjacent cells, and the n- and

p-wells those pins are connected to could also be abutted in like manner. Therefore, even though

defining cell width as the same as power track length would cause parts of the wells to lie outside

cell boundaries, it should not cause the routed cells to contain any design rules violations.

Additionally, the width of the cell is deliberately planned to be an integer multiply of

metal1 width. This would guarantee the continuity of routing grids between any two adjacent

cells.

20

Chapter IV

Timing and Capacitance Characterization

In this chapter, characterization of timing arcs and capacitance parameters of logic cells

will be discussed. The term timing arcs refer to durations incurred between an input and its

associated outputs, which is known as delay, as well as timing requirements pertaining to one or

more inputs, or also known as constraint, such as setup time, which is a constraint pertaining to

the duration between a clock signal and another input signal of a sequential cell. For purpose of

characterization, both delays and constraints could be treated in the same manner. While

capacitance is a distinct entity from delays, it is discussed here as well due to its influence on

circuit delays. A delay model, which simplifies calculations of delays exhibited by a cell under a

certain condition, will be discussed. The linear delay model will be used here due to its

simplicity and common use, including in Synopsys synthesis tools. Further, a method to

characterize capacitance and timing parameters will also be presented.

4. 1. Timing Model and Aim of Characterization

Although timing arcs actually include both constraints and delays, here we will focus

more on characterizing delays for two reasons. First, delay is exhibited by all cells, while

constraints are generally considered as belonging to sequential circuits only. It is uncommon that

constraints related to combinational cells, such as minimal pulse width, need to be characterized.

Second, while some timing constraints, such as setup times, are significant, delays tend to be the

factors which plays a larger part in determining the highest speed attainable by a circuit. This is

due to the fact that the sped of a circuit is generally determined by its critical path, which

generally includes a rather large number of combinational circuit stages.

21

4. 1. 1. Basic CMOS Timing Model and Definition of Terms

In general, most of the simplified timing models used by high-level use the following

mathematical model:

Delay of a cell = Intrinsic delay + transition delay + slope delay (4.1)

The meaning of the above terms will be explained as follows:

The intrinsic delay of a cell is defined as the propagation delay of the cell without load,

when it is driven by another identical loadless cell. Both the driving cell and the driven cell

(whose intrinsic delay is measured) should be loadless. The requirement necessitates that the

driving cell derive the driven cell indirectly, as illustrated in Figure 4.1.

Note that Vin2 is a voltage source controlled by the output voltage Vout1. The intrinsic

rise delay and intrinsic fall delays may be different; delays from each input pin to each output pin

may be different from others. Hence, there are six different intrinsic delays, three intrinsic rise

delays for the three inputs and three intrinsic fall delays, for the circuit in Figure 4.1.

Transition delay is defined as the additional delay (in addition to intrinsic delays) of a

cell driving a capacitive load, but which is driven by another identical loadless cell. The

instantiation of the cells for the transition delay measurement is shown in Figure 4.2. This

transition delay occurs because, as the result of a cell having to drive a capacitive load, its output

slope becomes less steep (i.e. rise and fall times increase) compared with the loadless case.

Slope delay is an extra delay (in addition to intrinsic and possibly transition delays) of a

loadless cell which is driven by an identical cell with transition delay. The driving cell drives a

capacitive load (and so it exhibits transition delay), and hence the output slope of the driving cell

22

is less steep than the one without a load capacitance. The less steep slope causes additional delay

for the driven cell being evaluated.

Vin1

Vin2

Vout2

intrinsic rise delay

intrinsic fall delay

+
-

a
b
c

a
b
c

Vout1
+
-

+
-
Vin2 = Vout1

Vout2Vin1 Cell1 Cell2

Figure 4.1. Definition of intrinsic delay. Top: Circuit definition, with Cell1, Cell2 being the
same type. Vin1 is considered as having the same rise/fall time as an unloaded Cell1/2. Bottom:

Waveform.

In reality, a cell will likely exhibit both transition and slope delay. The separation of

slope and transition delay is an artificial construct, as it necessitates the use of ideal dependent

voltage source, which is just a mathematical tool. However, in the method proposed later in this

work, this approach will be followed as it provides a relatively easy means of characterizing

various timing parameters of a cell.

23

Vin1

Vin2, Vin2L

Vout2

intrinsic rise delay

intrinsic fall delay

Vout2L

rise transition delay fall transition delay

a
b
c+

-
Vin2L = Vout1

Vout2L
Cell2L

CL

+
-

a
b
c Vout1+

-

Vin1 Cell1

a
b
c+

-
Vin2 = Vout1

Vout2
Cell2 +

-

Circuit Arrangement

Waveform

Figure 4.2. Definition of transition delay. Top: Circuit arrangement. Bottom: Waveforms. Note
that Vout2L is delayed relative to Vout2, mostly due to the less steep slope due to the presence

of capacitive load.

24

Vin1

Vin2, Vin2L

Vout2

intrinsic rise delay

intrinsic fall delay

Vout2L
rise transition delay of Cell2L

fall transition delay off Cell2L

Vout2

intrinsic rise delay + rise slope delay intrinsic fall delay + fall slope delay

a
b
c+

-
Vin2L = Vout1

Vout2L
Cell2L

CL

+
-

a
b
c +

-

Vin1 Cell1
Vout1

a
b
c+

-
Vin2 = Vout1

Vout2
Cell2

+
-

a
b
c+

-
Vin3 = Vout2L

Vout3
Cell3

+
-

Circuit Arrangement

Waveform

Figure 4.3. Definition of slope delay. Top: Circuit arrangement. Bottom: Waveforms. Note that
the delay from Vout2L to Vout3 is longer than the delay from Vout1 (=Vin2) to Vout2. Since
the slope of Vout2L is less steep than the slope of Vout1, Cell3 is slower to respond to Vout2L

than Cell2 to Vout1.

25

4.1.2. Linear Delay Model

The mathematically simplest form of delay model which is built around Equation (4.1) is the

one known as Linear Delay Model. In this model, transition delay is modeled to be linearly

proportional to load capacitance, while slope delay is modeled as linearly proportional to the

transition delay of the driving waveform:

transition delay = output resistance × load capacitance (4.2)

slope delay = slope sensitivity × transition delay of input waveform (4.3)

For example, for an inverter, in which a rising input triggers a falling output and vice versa,

rising transition delay = rising output resistance × load capacitance (4.4)

falling transition delay = falling output resistance × load capacitance (4.5)

rising slope delay = fall slope sensitivity × fall transition delay of input waveform (4.6)

falling slope delay = rise slope sensitivity × rise transition delay of input wavefor (4.7)

It must be understood here that the terms output resistance simply refers to some

stipulated linearity factor. It does not really refer to resistance as normally defined. Normally,

the resistance is defined as the derivative change in current with respect to change in voltage as a

voltage stimulus is applied to a node, here to the output of a cell.

Logic Cell

Constant
Vin Test

Voltage
v(t)

Test
Current i(t)input

output

Logic Cell

Logic
Pulse
Vin Test

Capacitance

Delay w.r.t input
measured here

input
output

or

depending on
inversion parity

(a) physically correct
resistance measurement

(b) resistance measurement
as defined under the model

Figure 4.4. Output resistance measurement setup: difference between the physical definition and
the definition of the model.

26

As shown in Figure 4.4.(a), the physical definition of output resistance is:

Rout = d(Itest) / d(Vtest)|Vin=constant (4.8)

Further, the test voltage must be slowly varying enough so that the output reactance does not

figure into the equation. In contrast, for our model,

Rout = ∆(delay)/∆(capacitance) (4.9)

and we have different value of resistance for rising and falling output. In the linear model used

by Synopsys tools, in fact, there is a separate pair of rising and falling resistance values for each

combination of input and output pins. Even for the same output pin, the resistance may differ

depending on which input pin triggers the output transition. Also, while the physical definition of

resistance stipulates that there should be a unique value for resistance for each pin, the value of

resistance (as well as intrinsic delay and slope sensitivities) may be defined in non-unique ways.

For instance, let us consider the case of a D flip-flop with asynchronous high-active

set/asynchronous high-active reset as follows:

d

q

qb
s

clk

rb

d

q

qb
s

clk

rb

(a) Alternative timing arcs 1 (b) Altenative tim ing arcs 2

Figure 4.5 – Two different alternative arrangements of timing paths inside a D flip-flop with
asynchronous set-reset. Arrangement (a) is more general but if the output qb is generated by

inverting q internally, arrangement (b) is likely to result in a more accurate model.

27

Ignoring the possibility that the flip-flop will be set and reset at the same time (i.e. rb = 0 and

s = 1 at the same time), we have the following paths:

For arrangement (a):

− clk rising to q rising

− clk rising to q falling

− clk rising to qb rising

− clk rising to qb falling

− rb falling to q falling

− rb falling to qb rising

− s rising to q rising

− s rising to qb falling

For arrangement (b):

− clk rising to q rising

− clk rising to q falling

− rb falling to q falling

− s rising to q rising

− q rising to qb falling

− q falling to qb rising

Therefore, for arrangement (a), we will have eight different intrinsic delays, eight different

resistances, and eight different slope sensitivities, while for alternative (b), there will be six

different intrinsic delays, six different resistances, and six different slope sensitivities. Note also

that both models have their respective strengths and shortcomings. Alternative (a) is more

general; it applies for the flip-flop regardless of the internal implementation; alternative (b) is

useful for modeling only is qb is actually generated by inverting q. However, if this is indeed the

case, alternative (b) will likely result in a more accurate, predictive model, as it will in this case

more closely mimic the actual internal circuitry.

28

4. 1. 2. Definition of Setup Time

To model sequential cells with reasonable accuracy, one needs to determine not only

delays, but also timing constraints exhibited by the cells, such as:

− setup and hold times

− recovery and / or removal times, namely the amount of time which has to elapse before and

after the active clock edge until an asynchronous signal is deactivated (e.g. the recovery time

of a reset signal is the amount of time by which an asynchronous reset signal must be

deasserted before clock).

− minimal and maximal clock pulse widths.

It may be noted that not all the above signals are equally important to characterize. Hold

times are important only if they are particularly lengthy. Most cells for low-power applications

are constructed using static CMOS technology, and their hold times tend to be short or even

negative, meaning that the flip-flops or latches may still lock the correct value even if a new

input transition into an unintended value already occurs before the clock comes. As such, their

hold times do not really need to be characterized. Asynchronous constraints, such as recovery

and removal times, do not really need to be characterized very accurately for most situations,

since generally when such signals are used in a circuit, their use come with generous amount of

time given to the circuit to come out from, for example, reset state. Further, static CMOS circuits

can hold their output indefinitely in the absence of clock, and hence have no maximal clock

width requirements. Also, the minimal clock widths tend to be the same order with gate delays,

and hence unimportant since the maximum frequency attainable by the circuit tends to be

determined by critical paths, which generally far exceed minimal clock period attainable in

length.

With these considerations in mind, this work will limit timing characterization of

sequential constraints to setup time characterization. Consequently only setup time will be

defined more precisely.

29

Setup time is defined as the amount of time before the latching clock edge in which an

input signal has to already reaches its expected value, so that the output signal will reach the

expected logical value within a specific delay. This delay must not change considerably if the

input transition is made to occur any earlier. The following figure illustrates this definition

minimum setup time

clk

input

output

input

input

output

output

case 1: barely satisfying setup requirements

case 2: satisfying setup requirements

case 3: not satisfying setup requirements}

}
}

output fails to settle to correct (here = high) value

}case 4: not satisfying setup requirements

output settles to correct value, but clk-to-q delay much longer than td

clk-to-q delay = td

delay does not differ
substantially from td

input

output

tsu

tsu 2

tsu3

tsu4

Figure 4.6. Input Rise Setup Time Definition for A Rising-Edge Triggered Flip-flop

In Figure 4.6, the definition of setup time for rising input (based on 50%-to-50% delay) is

illustrated. As defined by case 4, for an input signal to be called satisfying setup requirements, it

is not sufficient that the output value should converge to the correct value. Instead, the clock-to-

output delay (or the input-to-output delay for a latch) must not change substantially if the input is

made to come any earlier (compare case 1 and case 2). Note also that for use with Synopsys,

setup time is to be defined with respect to the latching edge of the clock. For a latch, the latching

edge is the edge which ends the active level, as illustrated in the following figure.

30

minimum setup time

clk

input

output

input

input

output

output

case 1: barely satisfying setup requirements

case 2: satisfying setup requirements

case 3: not satisfying setup requirements}

}
}

output fails to settle to correct (here = high) value

}case 4: not satisfying
setup requirements

output settles to correct
value, but d-to-q delay sig-
nificantly longer than td

d-to-q delay = td

delay does not differ
substantially from td

input

output

tsu2

tsu

tsu3

tsu4

Figure 4.7. Input Rise Setup Time Definition for A High-Active Latch

As illustrated in Figure 4.7, the reference edge for a high-active latch is the falling edge,

since it is the falling edge which locks the value of the output.

4. 2. Proposed Timing and Capacitance Characterization Method

4. 2. 1. Input Capacitance Measurement

4. 2. 1. 1. Basic Approach

Input capacitance values are used by both power estimation tools (to measure dynamic

power dissipation) and for delay (speed) estimation tools. The capacitance is related by the

voltage across a capacitor and the charge accumulated as below.

C = Q/V = I ∆t/V

31

In our case, where we are to find the input capacitance of input pins logic cells, this could

be performed by applying a stimulus (a 0V-to-VDD rising pulse or a VDD-to-0V falling pulse)

to the input pin and then measuring the amount of charge to have been flown into (or out from)

the pin. If the period of the charge accumulation is sufficiently long, the capacitance can be

obtained as the amount of charge divided by the magnitude of the stimulus VDD. ".measure" and

"integral" commands of HSPICE are usually used for the measurement.

The amount of charge flown into a pin depends on the status of the other inputs as well as

the output. This implies that the input capacitance depends on the status of the other inputs and

the output. An accurate model may be to provide three cases, best, average, and worst, through

simulation of all possible cases, but it is quite laborious. In the following, we measure input

capacitances by consider one or a fest specific cases, which are intended to capture the largest

(worst) capacitance.

4. 2. 1. 2. Input Capacitance Measurement for Combinational Cells

The stimulus of an input under consideration is chosen to cause a rising transition on the

output. The waveforms in Figure 4.9 illustrate the measurement of input pin capacitance for a 2-

input OR gate. The input capacitance of pin ip1 is measured at the rising transition at 1 ns, and

that for pin ip2 is at the rising transition at 5 ns.

Logic

Figure 4.8. Measurement of Input Capacitance

32

Figure 4.9. Waveforms for the measurement of the input capacitance for OR2

File hor2_cap.sp illustrates the measurement procedure.

.inc hor2.sp
* The SPICE model of the "hor2" OR gate

.param vspl='3.3v'
vdd dd gnd vspl
xhivtested dd ip1 ip2 op hor2

vin1 ip1 gnd pwl (0ns 0 1ns 0 1.01ns vspl 3ns vspl 3.01ns 0)
* The stimulus source for "ip1" input pin ...
* Probably a rise/fall time of 0.01ns is way too fast for most purpose, but
* for Cin determination it does not do any harm. Actually values in 0.1-0.3
* ns range for fall time and 0.2-0.4 ns for rise time are more realistic.

vin2 ip2 gnd pwl (0ns 0 5ns 0 5.01ns vspl)
* and the one for "ip2" input pin.

.measure qin1 integral i(vin1) from 1ns to 2.5ns
* That is, (charge accumulated in ip1) = (current from vin1) dt.
* See also chapter 4 of HSPICE manual (p. 4-19) if more info on the syntax of
* .measure and integral statements / functions are desired.
* Note also that although the input transition takes only 10 ps (ends at
* 1.01ns), the integration has to continue until practically all output
* transitions caused by the particular input transition have been completed.

.measure cin1 param='abs(qin1/vspl)'
* C = Q/V. And the magnitude of the stimulus was vspl.

* And now, we do the same thing on the "ip2" input pin.
.measure qin2 integral i(vin2) from 5ns to 6.5ns
.measure cin2 param='abs(qin2/vspl)'

.tran 0.005ns 6.5ns

.op

Vip1

Vip2

Vout

1 ns 3 ns 5 ns

33

.save

.option post nomod accurate

.option converge=1 gmindc=1e-12
* The above statement is often neccessary - although not always. It helps
* avoiding the dreaded "no convergence in dc analysis" SPICE error message.
.end

* (END OF SPICE FILE)

As a result of simulating the model (hspice cdethor2.sp > cdethor2.lis) the .mt# output

file generated by the .measure statements (cdethor2.mt0) contains the following info (which

could also be found in a different format in cdethor2.lis)

$DATA1 SOURCE='HSPICE' VERSION='98.2 '
.TITLE 'hor cin determination'
qin1 cin1 qin2 cin2 temper alter#
-1.365e-13 4.136e-14 -1.389e-13 4.209e-14 25.0000 1.0000

As it turns out, we obtain Cip1 = 41.36fF and Cip2 = 42.09fF.

4. 2. 1. 3. Input Capacitance Measurement for Sequential Cells

Due to potential large differences in charge (and hence capacitance) during the rising and

falling output transitions, it is prudent to consider both cases for sequential cells and average

them. In general, it is a good idea to consider all possible cases for sequential cells and take the

average value.

The waveform in Figure 4.10 illustrates the measurement of input D and clk for a D flip-

flop. The input capacitance of D is measured at the output rising transition at 4.5 ns and at the

output. The capacitance for the clock input is measured for rising clock for four cases:

i) Q changes from 0 to 1 (at 6ns)

ii) Q remains high (at 10 ns)

iii) Q changes from 1 to 0 (at 14 ns)

iv) Q changes remains at low (at 18 ns)

And the average of those four values are taken as our estimate.

34

Figure 4.10. Waveforms for the measurement of the input capacitance for D flip-flop

For estimation of input capacitance for the D input, four cases are considered:

i) Rising D input with clock low (at 4.5 ns)

ii) Falling D input with clock low (at 12.5 ns)

iii) Rising D input with clock high (at 19 ns)

iv) Falling D input with clock low (at 23 ns)

The results of (i) and (ii) are averaged to obtain Cin(D) estimate for clock = low case,

while the results of (iii) and (iv) are also averaged to obtain Cin(D) for clock = high, and the

estimate is the larger of those two. This procedure is to be followed for all input signals other

than clock.

In general, for combinational cells, it is prudent to consider all cases. File hdpq_cap.sp

illustrates the measurement procedure. Both the rise time tr and fall time tf = 0.4ns for all signals.

hdpq Cin determination

.inc hdpq.sp ** The netlist for “hdpq” is in another file named “hdpq.sp”

.param vspl='3.3v'
vdd dd gnd vspl
xhdpqtested dd d0 ck q hdpq

** clock and (if present) other stimuli **

vck ck gnd pulse (0v vspl 2ns 0.4ns 0.4ns 1.6ns 4ns)
vd0 d0 gnd pwl (0ns 0 4.5ns 0 4.9ns vspl 12.5ns vspl 12.9ns 0 19ns 0 19.4ns
+ vspl 23ns vspl 23.4ns 0)

4.5 6 10 12.5 14 18 19 22 23 26 t (ns)

clk

D

Q

35

** Measuring Cin for D input pin ...
.measure qd0rise integral i(vd0) from 4.5ns to 6ns
.measure qd0fall integral i(vd0) from 12.5ns to 14ns
** Measure Q accumulated for both rising and falling d0 for clk = low ..
.measure qd0rise_ckh integral i(vd0) from 19ns to 20ns
.measure qd0fall_ckh integral i(vd0) from 23ns to 24ns
** and for clk = high ...
.measure cd0rise param='abs(qd0rise/vspl)'
.measure cd0fall param='abs(qd0fall/vspl)'
.measure cd0rise_ckh param='abs(qd0rise_ckh/vspl)'
.measure cd0fall_ckh param='abs(qd0fall_ckh/vspl)'
** and make capacitance estimates accordingly ...
.measure cd0_ckl param='0.5*(cd0rise+cd0fall)'
.measure cd0_ckh param='0.5*(cd0rise_ckh+cd0fall_ckh)'
.measure cd0 param=’max(cd0_ckl, cd0_ckh)’
** and take the maximum of clk-low and clk-high average as our final
** estimate.

.measure qck_qrise integral i(vck) from 6ns to 8ns

.measure qck_qfall integral i(vck) from 14ns to 16ns

.measure qck_qhigh integral i(vck) from 10ns to 12ns

.measure qck_qlow integral i(vck) from 18ns to 20ns

.measure cck_qrise param='abs(qck_qrise/vspl)'
** Cin(ck) for active edge which causes rising output ..
.measure cck_qfall param='abs(qck_qfall/vspl)'
** and which causes falling output transition ...
.measure cck_qhigh param='abs(qck_qhigh/vspl)'
** and no output transition, high output ..
.measure cck_qlow param='abs(qck_qlow/vspl)'
** and low output, then take average.
.measure cck param='0.25*(cck_qrise+cck_qfall+cck_qhigh+cck_qlow)'

.param tsimlength='28ns'

.tran 0.05ns tsimlength

.op

.save

.option post nomod accurate

.option converge=1 gmindc=1e-12

.end

The .measure output (hdpq_cap.mt0) was as follows:

$DATA1 SOURCE='HSPICE' VERSION='1999.2'
.TITLE 'hdpq cin determination'
qd0rise qd0fall qd0rise_ckh qd0fall_ckh cd0rise cd0fall cd0rise_ckh
cd0fall_ckh cd0_ckl cd0_ckh cd0 qck_qrise qck_qfall qck_qhigh qck_qlow
cck_qrise cck_qfall cck_qhigh cck_qlow cck temper alter#
-1.361e-13 1.326e-13 -1.284e-13 1.261e-13 4.124e-14 4.017e-14 3.892e-14
3.822e-14 4.071e-14 3.857e-14 4.071e-14 -3.790e-13 -2.795e-13 -3.298e-13

36

-3.493e-13 1.148e-13 8.471e-14 9.993e-14 1.058e-13 1.013e-13 25.0000
1.0000

So, the estimated values of Cin(d0) and Cin(ck) are 40.71fF and 101.30fF, respectively.

4. 2. 2. Non-tristate Delay Characterization

4. 2. 2. 1. Intrinsic Delay Measurement

As previously mentioned, the intrinsic delay of a cell is defined as the propagation delay

of the cell without load, when it is driven by another identical loadless cell. The basic circuit is

as shown in Figure 4.1.

For example, to measure the intrinsic delay of an inverter using SPICE, the circuit in

Figure 4.11 may be used.

+
-

ip1 op1
ip2 op2

eip2 = Vop1

xinv1 xinv2

Figure 4.11. Measurement of intrinsic delays for inverters

In this example, a chain of only two inverters of "hiv" is used. The spice model for the

instantiation of the inverters is as follows.

xinv1 dd ip1 op1 hiv
eip2 ip2 gnd op1 gnd 1
xinv2 dd ip2 op2 hiv

(The prefix "e" is for voltage-controlled (dependent) voltage sources, and its syntax is:

<exx> <output-nodes> <controlling-nodes> <scale factor>.)

37

Mathematically, the purpose of the first inverter xiv1 is to provide a well-defined value of

transition delay of zero, so that the delay of the second stage could be claimed as intrinsic delay

(i.e. does not include any slope delay – see eqs. 4.6-4.7). Alternatively, it could also be stated

that the purpose of the first inverter is to shape the waveform (here op1) so that it has the typical

shape of a waveform with a transition delay of zero. For instance, the waveform should have no

sharp corners. It follows that the longer the chain, the better, but simulation speed may suffer. If

only two elements are used (i.e. the waveform shaper consists of only one gate), it is

recommended that the original stimulus ip1 must have rise and fall times not too far different

from rise and fall times of an unloaded cell – this is in fact always recommendable regardless of

chain length. For example, in most of our works, 0%-to-100% rise and fall times of 0.2ns and

0.1ns are almost always used, as the unloaded inverters usually have 10%-to-90% rise and fall

times of around 0.18ns and 0.11ns, respectively. These values could be obtained by first

simulating a ring oscillator of inverters whose stages are connected via dependent sources as in

Figure 4.11. It is not recommendable, however, to use ring oscillators for intrinsic delay

measurements of all cells for one reason, namely that mathematically it is not easy to extend the

analysis of a ring oscillator to a form which will easily yield estimates of output resistances or

slope sensitivities.

In all characterizations to have been undertaken in this work, the chain used for intrinsic

delay determination has consisted of three cells in series, i.e. the waveform shaper consists of

two cells in series. The main reason is convenience. Since many of the cells characterized were

inverting, connecting two of them will create a noninverting wave shaper, which is easier to

analyze using pencil and paper. Further, for the sake of consistency, the same configuration is

used always, even for noninverting cells. Examples of simulation files so constructed will appear

later in this chapter.

Returning to Figure 4.11, the voltage-controlled voltage source eip1 generates a voltage

between nodes ip2 and ground, whose value is 1× (the same as) the voltage between the nodes

op1 and grond. In other words, although the input ip2 of xinv2 is not electrically connected to the

output op1 of xinv1, v(ip2) is the same as v(op1).

38

Assuming the second inverter (xinv2) does not drive any load, intrinsic_rise and

intrinsic_fall delays could be found by measuring tplh and tphl for xinv2 as shown in Figure

4.12. Note that all delays are for inverter 2, not for inverter 1.

Figure 4.12. Waveforms used for inverter intrinsic delay determination

.measure statements for the SPICE model look like the following one (with vspl = the power

supply voltage). Note that the propagation delay measures 50%-to-50% delays.

.measure intrinsic_rise trig v(ip2) val='0.5*vspl' fall=1 targ v(op2)
+ val='0.5*vspl' rise=1
* Measuring time elapsed between v(ip2) reaching (0.5*vspl) on its first rise
* and v(op2) reaching (0.5*vspl) on its first fall.
.measure intrinsic_fall trig v(ip2) val='0.5*vspl' rise=1 targ v(op2)
+ val='0.5*vspl' fall=1

4. 2. 2. 2. Transition Delay and Output Resistance Measurement

To recall our definition, transition delay is defined as the additional delay (in addition to

intrinsic delays) of a cell driving a capacitive load, but which is driven by another identical

loadless cell. Therefore, to find transition delay, a setup as in Figure 4.2 is used to compare the

delay of a loaded cell with the delay of an unloaded cell driven by the same waveform; the

difference is transition delay. Further, output resistance is simply this extra delay divided by load

capacitance (cf. Eqs. 4.2, 4.4, 4.5). Or, mathematically:

intrinsic_rise delay

intrinsic_fall delay

Vip1

Vip2 = Vop1

Vop2

39

rise transition delay = loaded rise delay – unloaded rise delay (4.10)

fall transition delay = loaded fall delay – unloaded fall delay (4.11)

rise output resistance = rise transition delay / load capacitance (4.12)

fall output resistance = fall transition delay / load capacitance (4.13)

An example of circuit for transition delay / output resistance measurement is the one for

inverters shown in Figure 4.13. A circuit in which an inverter driving two inverters in parallel,

one with a load capacitor and one without a load capacitor. The length of the chain is less critical

here than is the case for intrinsic delay determination. At any case, to ensure consistency, the

same chain should be used. In the actual simulations to have been undertaken so far, a chain

length of 3 cells have been used, as previously mentioned in 4. 2. 2. 1.

The propagation and transition delays of the inverter with the load are shown in Figure

4.14 (next page). The transition delay for the inverter xinv2L in is obtained as (the propagation

delay of xinv2L – the propagation delay of xinv2).

+
-

Vip2 Vop2L

xinv2L

Vip1 Vop1

xinv1

Vip2 Vop2

xinv2

CL

Figure 4.13. Measurement of transition delay for inverters

The procedure for measuring output resistance is as follows. After the intrinsic delays of

a cell are measured first, propagation delays are measured for a known load capacitance. Then

transition delays are obtained from the two delays. The output resistance is calculated as the

transition delay divided by the load capacitance.

40

Figure 4.14. Waveforms used for circuit in Figure 4.13.

A SPICE model to compute load resistance for inverters is shown below. A load

capacitance is set to 40 fF in the following simulation, as it is roughly the same order of the input

capacitance of an inverter for 0.5 µm technology.

xinv2L dd ip2L op2L hiv
eip2L ip2L gnd op1 gnd 1
.param loaderc='40fF'
cload op2L gnd loaderc

.measure tr_rise trig v(ip2L) val='0.5*vspl' fall=1 targ v(op2L)
+ val='0.5*vspl' rise=1
.measure tr_fall trig v(ip2b) val='0.5*vspl' rise=1 targ v(op2b)
+ val='0.5*vspl' fall=1
.measure dt_rise param='tr_rise - intrinsic_rise'
.measure dt_fall param='tr_fall - intrinsic_fall'
.measure rise_resistance param='dt_rise/loaderc'
.measure fall_resistance param='dt_fall/loaderc'

In general, a value of 1 – 2.5 × the input capacitance of the inverter would be a good

choice, as it would be in the same order with the load usually driven by a typical cell. Note,

however, that the smaller the minimum feature size of the technology, the higher should the

ratio of Cload / (Cin of inverter) be, as wire capacitances tend to be quite dominant in deep

submicron technologies, and hence the relative load seen by the output pin (relative to Cin of an

inverter) increases, even if the number of cell being driven does not increase.

intrinsic_rise delay
intrinsic_fall delay

Vop2

Vip1

Vip2 = Vop1

rise_transition delay

fall_transition delay

Vop2L

41

For the work performed so far, the following values had been used. (Note that for

combinational cells, the same values should also be used for slope delay characterization,

which will be discussed in the next section)

Cell type Load Capacitance (fF)

0.5um, combinational, standard drive 40
0.5um, combinational, high drive 150
0.5um, sequential 150
0.35um, combinational, drive strength 1 40
0.35um, combinational, drive strength 2 75
0.35um, combinational, drive strength 4 150
0.35um, combinational, drive strength 8 250
0.35um, combinational, drive strength 12 400
0.35um, combinational, drive strength 16 600
0.35um, combinational, drive strength 20 1000
0.35um, sequential, drive strength 2 100
0.35um, sequential, drive strength 4 150

4. 2. 2. 3. Slope Sensitivity Measurement

As previously defined, slope delay is an extra delay of a loadless cell which is driven by

an identical cell with transition delay. The driving cell drives a capacitive load (and so it exhibits

transition delay), and hence the output slope of the driving cell is less steep than the one without

a load capacitance. Hence, returning to Figure 4.3, slope sensitivity could be found using the

following steps:

− measurement of intrinsic delay

− measurement of delay of cell exhibiting slope delay; slope delay is found as the difference

− slope sensitivity is obtained as (slope delay) / (transition delay of driving waveform)

As an example, Figures 4.15 – 4.16 illustrate the measurement of slope delay and slope

sensitivity of the inverter. Here the inverter whose slope delay is measured is xinv3S. Inverter

xinv2L (with a load capacitor) drives xinv3s through a dependent voltage source. The difference

of the propagation delay between xinv2 and xinv3S is the slope delay of inverter xinv3S. The

42

capacitances used here are the same value of capacitance as used for output resistance

determination.

+
-

Vip2 Vop2L

xinv2L

Vip1 Vop1

xinv1

Vip2 Vop2

xinv2

CL
+
-

Vip3 Vop3S

xinv3S

Vip2=Vop1 Vip3=Vop2L

Figure 4.15. Measurement of slope delay for inverters

Figure 4.16. Slope delays of inverters

intr insic_rise de lay

in tr insic_fall delay

Vop2

Vip1

Vip2 = V op1

r ise_transi tion delay

fa ll_trans ition de lay

Vop2L

intrinsic_fa ll delay +
slope_delay_fa ll

in trins ic_r ise de lay +
slope_delay_rise

Vop3S

43

A slope parameter, slope_rise, for the inverters is obtained as follows. The propagation

delay tplh of xinv3S and tplh of xinv2 (which is the intrinsic_rise delay) are measured. The

difference of the two delays is the slope_delay_rise of xinv3S. The fall transition delay of xinv2L

is obtained from tphl of xinv2L and tphl of xinv2. The slop_rise parameter is slope_delay_rise of

xinv3S divided by fall transition delay of xinv2L. Similarly, slope_fall parameter can be

obtained. Or, mathematically, for the inverter:

slope delay rise = rise delay of xinv3S – intrinsic rise delay (4.14)

slope delay fall = fall delay of xinv3S – intrinsic fall delay (4.15)

rise slope sensitivity = slope delay rise / fall transition delay of xinv2L (4.16)

fall slope sensitivity = slope delay fall / rise transition delay of xinv2L (4.17)

Note that the term rise (or fall) slope sensitivity refers to the rising (or falling) output of

the inverter being observed (xinv3S) rather than its input. The following lines were added in the

previous SPICE model to compute slope_delay_rise parameter:

eslopes sip gnd op2L gnd 1
xhivslopes dd sip op3S hiv

.measure ss_rise trig v(op2L) val='0.5*vspl' fall=1 targ v(op3S)
+ val='0.5*vspl' rise=1
.measure ss_fall trig v(op2L) val='0.5*vspl' rise=1 targ v(op3S)
+ val='0.5*vspl' fall=1
.measure st_rise param='sl_rise - intrinsic_rise'
.measure sd_fall param='sl_fall - intrinsic_fall'
.measure slope_rise param='st_rise/dt_fall'
* Note that we have an inversion here
.measure slope_fall param='st_fall/dt_rise'

4. 2. 2. 4. SPICE Examples of Capacitance and Delay Characterization

Here two examples of SPICE files to actually have been simulated are presented: one is

for a 2-input NAND gate, and the other for a simple D flip-flop. For a complete delay

characterization, it is necessary to write a SPICE model to measure the following parameters for

a cell:

− input capacitances of all input pins

44

− intrinsic delays

− output resistance (rise_resistance and fall_resistance)

− slope sensitivities (slope_rise and slope_fall)

4. 2. 2. 4. 1. Example for a 2-input NAND gate

This is a SPICE model (file name: hnd2_tim.sp) used to characterize a 0.5µm, 2-input

NAND gate. The last section is to test the accuracy of the characterization model. The

parameters extracted from simulation are used to predict the speed of two 11-element mini-ring-

oscillators would run. The result is compared with SPICE models of the two ring oscillator. The

result is reasonably accurate as discussed later.

* hnd2_tim.sp

.inc hnd2.sp

.TEMP 25.0000

** Power Supply
.param vspl='3.3v'
vdd dd gnd vspl

** Input Capacitance Determination **
xhnd2cindet dd ipcdet1 ipcdet2 opcdet2 hnd2
vipcdet1 ipcdet1 gnd pwl (0ns 0 1ns 0 1.2ns vspl)
vipcdet2 ipcdet2 gnd pwl (0ns vspl 3ns vspl 3.1ns 0 5ns 0 5.2ns vspl)
.measure qincdet1 integral i(vipcdet1) from=1ns to=2.5ns
.measure cip1est param='abs(qincdet1/vspl)'
.measure qincdet2 integral i(vipcdet2) from=5ns to=6.5ns
.measure cip2est param='abs(qincdet2/vspl)'

** Intrinsic Rise / Fall Determination **
xbufnhd1a dd ip1a dd ip1n loadfreehnd2
xbufhnd2a dd dd ip2a ip2n loadfreehnd2
xbufnhd1b dd ip1n dd ip1 loadfreehnd2
xbufhnd2b dd dd ip2n ip2 loadfreehnd2
xhnd2tested dd ip1 ip2 op loadfreehnd2
vip1 ip1a gnd pwl(0ns vspl 2ns vspl 2.1ns 0 4ns 0 4.2ns vspl)
vip2 ip2a gnd pwl(0ns vspl 6ns vspl 6.1ns 0 8ns 0 8.2ns vspl)
.measure intrise_ip1op trig v(ip1) val='0.5*vspl' fall=1 targ v(op)
+ val='0.5*vspl' rise=1
.measure intfall_ip1op trig v(ip1) val='0.5*vspl' rise=1 targ v(op)
+ val='0.5*vspl' fall=1
.measure intrise_ip2op trig v(ip2) val='0.5*vspl' fall=1 targ v(op)
+ val='0.5*vspl' rise=2
.measure intfall_ip2op trig v(ip2) val='0.5*vspl' rise=1 targ v(op)

45

+ val='0.5*vspl' fall=2

** Output Resistance Determination **
xhnd2rout dd ip1 ip2 oprout loadfreehnd2
.param loaderc_rout='40fF'
cloaderc_rout oprout gnd loaderc_rout
.measure rotrise_ip1op trig v(ip1) val='0.5*vspl' fall=1 targ v(oprout)
+ val='0.5*vspl' rise=1
.measure rotfall_ip1op trig v(ip1) val='0.5*vspl' rise=1 targ v(oprout)
+ val='0.5*vspl' fall=1
.measure rotrise_ip2op trig v(ip2) val='0.5*vspl' fall=1 targ v(oprout)
+ val='0.5*vspl' rise=2
.measure rotfall_ip2op trig v(ip2) val='0.5*vspl' rise=1 targ v(oprout)
+ val='0.5*vspl' fall=2
.measure dtrise_ip1op param='rotrise_ip1op-intrise_ip1op'
.measure dtfall_ip1op param='rotfall_ip1op-intfall_ip1op'
.measure dtrise_ip2op param='rotrise_ip2op-intrise_ip2op'
.measure dtfall_ip2op param='rotfall_ip2op-intfall_ip2op'
.measure rise_r_ip1op param='dtrise_ip1op/loaderc_rout'
.measure fall_r_ip1op param='dtfall_ip1op/loaderc_rout'
.measure rise_r_ip2op param='dtrise_ip2op/loaderc_rout'
.measure fall_r_ip2op param='dtfall_ip2op/loaderc_rout'

** Slope Sensitivity Measurement **
xbufnhd1c dd ip1n dd ip1sl loadfreehnd2
xbufhnd2c dd dd ip2n ip2sl loadfreehnd2
.param loaderc_slsens='40fF'
csens1 ip1sl gnd loaderc_slsens
csens2 ip2sl gnd loaderc_slsens
xhnd2slsens dd ip1sl ip2sl opsl loadfreehnd2
.measure tinr_ip1 trig v(ip1n) val='0.5*vspl' fall=1 targ v(ip1)
val='0.5*vspl'
+ rise=1
.measure tinf_ip1 trig v(ip1n) val='0.5*vspl' rise=1 targ v(ip1)
val='0.5*vspl'
+ fall=1
.measure tinr_ip2 trig v(ip2n) val='0.5*vspl' fall=1 targ v(ip2)
val='0.5*vspl'
+ rise=1
.measure tinf_ip2 trig v(ip2n) val='0.5*vspl' rise=1 targ v(ip2)
val='0.5*vspl'
+ fall=1
.measure tdtr_ip1 trig v(ip1n) val='0.5*vspl' fall=1 targ v(ip1sl)
+ val='0.5*vspl' rise=1
.measure tdtf_ip1 trig v(ip1n) val='0.5*vspl' rise=1 targ v(ip1sl)
+ val='0.5*vspl' fall=1
.measure tdtr_ip2 trig v(ip2n) val='0.5*vspl' fall=1 targ v(ip2sl)
+ val='0.5*vspl' rise=1
.measure tdtf_ip2 trig v(ip2n) val='0.5*vspl' rise=1 targ v(ip2sl)
+ val='0.5*vspl' fall=1
.measure dtr_ip1 param='tdtr_ip1-tinr_ip1'
.measure dtf_ip1 param='tdtf_ip1-tinf_ip1'
.measure dtr_ip2 param='tdtr_ip2-tinr_ip2'
.measure dtf_ip2 param='tdtf_ip2-tinf_ip2'
.measure sltrise_ip1op trig v(ip1sl) val='0.5*vspl' fall=1 targ v(opsl)
+ val='0.5*vspl' rise=1
.measure sltfall_ip1op trig v(ip1sl) val='0.5*vspl' rise=1 targ v(opsl)

46

+ val='0.5*vspl' fall=1
.measure sltrise_ip2op trig v(ip2sl) val='0.5*vspl' fall=1 targ v(opsl)
+ val='0.5*vspl' rise=2
.measure sltfall_ip2op trig v(ip2sl) val='0.5*vspl' rise=1 targ v(opsl)
+ val='0.5*vspl' fall=2
.measure dslrise_ip1op param='sltrise_ip1op-intrise_ip1op'
.measure dslfall_ip1op param='sltfall_ip1op-intfall_ip1op'
.measure dslrise_ip2op param='sltrise_ip2op-intrise_ip2op'
.measure dslfall_ip2op param='sltfall_ip2op-intfall_ip2op'
.measure slope_rise_ip1op param='dslrise_ip1op/dtf_ip1'
.measure slope_fall_ip1op param='dslfall_ip1op/dtr_ip1'
.measure slope_rise_ip2op param='dslrise_ip2op/dtf_ip2'
.measure slope_fall_ip2op param='dslfall_ip2op/dtr_ip2'

** PREDICTION TESTING - RING OSCILLATOR **

* RING OSCILLATOR 1 - WITH ip2 TIED TO VDD, 3 LOADS PER ELEMENT *
.subckt hnd2ip2c dd ip op
xhnd2 dd ip dd op hnd2
xload1 dd op dd opx1 hnd2
xload2 dd op dd opx2 hnd2
.ends hnd2ip2c
.ic v(r1ip01)=0v
xel1_01 dd r1ip01 r1ip02 hnd2ip2c
xel1_02 dd r1ip02 r1ip03 hnd2ip2c
xel1_03 dd r1ip03 r1ip04 hnd2ip2c
xel1_04 dd r1ip04 r1ip05 hnd2ip2c
xel1_05 dd r1ip05 r1ip06 hnd2ip2c
xel1_06 dd r1ip06 r1ip07 hnd2ip2c
xel1_07 dd r1ip07 r1ip08 hnd2ip2c
xel1_08 dd r1ip08 r1ip09 hnd2ip2c
xel1_09 dd r1ip09 r1ip10 hnd2ip2c
xel1_10 dd r1ip10 r1ip11 hnd2ip2c
xel1_11 dd r1ip11 r1ip01 hnd2ip2c
.measure period1_act trig v(r1ip02) val='0.5*vspl' fall=1 targ v(r1ip02)
+ val='0.5*vspl' fall=2
.measure tplh1_act trig v(r1ip02) val='0.5*vspl' fall=1 targ v(r1ip03)
+ val='0.5*vspl' rise=1
.measure tphl1_act trig v(r1ip02) val='0.5*vspl' rise=1 targ v(r1ip03)
+ val='0.5*vspl' fall=1
.measure cip1 param='cip1est'
.measure dtr1_pred param='3*cip1*rise_r_ip1op'
.measure dtf1_pred param='3*cip1*fall_r_ip1op'
.measure dtsr1_pred param='slope_rise_ip1op*dtf1_pred'
.measure dtsf1_pred param='slope_fall_ip1op*dtr1_pred'
.measure tplh1_pred param='intrise_ip1op+dtr1_pred+dtsr1_pred'
.measure tphl1_pred param='intfall_ip1op+dtf1_pred+dtsf1_pred'
.measure period1_pred param='11*(tplh1_pred+tphl1_pred)'
.measure tplh1_err param='100*abs((tplh1_pred-tplh1_act)/tplh1_act)'
.measure tphl1_err param='100*abs((tphl1_pred-tphl1_act)/tphl1_act)'
.measure period1_err param='100*abs((period1_pred-period1_act)/period1_act)'

* RING OSCILLATOR 2 - WITH ip1 TIED TO VDD, 3 LOADS PER ELEMENT *
.subckt hnd2ip1c dd ip op
xhnd2 dd dd ip op hnd2
xload1 dd dd op opx1 hnd2
xload2 dd dd op opx2 hnd2

47

.ends hnd2ip1c

.ic v(r2ip01)=0v
xel2_01 dd r2ip01 r2ip02 hnd2ip1c
xel2_02 dd r2ip02 r2ip03 hnd2ip1c
xel2_03 dd r2ip03 r2ip04 hnd2ip1c
xel2_04 dd r2ip04 r2ip05 hnd2ip1c
xel2_05 dd r2ip05 r2ip06 hnd2ip1c
xel2_06 dd r2ip06 r2ip07 hnd2ip1c
xel2_07 dd r2ip07 r2ip08 hnd2ip1c
xel2_08 dd r2ip08 r2ip09 hnd2ip1c
xel2_09 dd r2ip09 r2ip10 hnd2ip1c
xel2_10 dd r2ip10 r2ip11 hnd2ip1c
xel2_11 dd r2ip11 r2ip01 hnd2ip1c
.measure period2_act trig v(r2ip02) val='0.5*vspl' fall=1 targ v(r2ip02)
+ val='0.5*vspl' fall=2
.measure tplh2_act trig v(r2ip02) val='0.5*vspl' fall=1 targ v(r2ip03)
+ val='0.5*vspl' rise=1
.measure tphl2_act trig v(r2ip02) val='0.5*vspl' rise=1 targ v(r2ip03)
+ val='0.5*vspl' fall=1
.measure cip2 param='cip2est'
.measure dtr2_pred param='3*cip2*rise_r_ip2op'
.measure dtf2_pred param='3*cip2*fall_r_ip2op'
.measure dtsr2_pred param='slope_rise_ip2op*dtf2_pred'
.measure dtsf2_pred param='slope_fall_ip2op*dtr2_pred'
.measure tplh2_pred param='intrise_ip2op+dtr2_pred+dtsr2_pred'
.measure tphl2_pred param='intfall_ip2op+dtf2_pred+dtsf2_pred'
.measure period2_pred param='11*(tplh2_pred+tphl2_pred)'
.measure tplh2_err param='100*abs((tplh2_pred-tplh2_act)/tplh2_act)'
.measure tphl2_err param='100*abs((tphl2_pred-tphl2_act)/tphl2_act)'
.measure period2_err param='100*abs((period2_pred-period2_act)/period2_act)'

** simulation directives **
.OP
.save
.OPTION INGOLD=2 ARTIST=2 PSF=2
+ PROBE=0
.option post nomod accurate
.option converge=1 gmindc=1e-12
.tran 0.005ns 10ns

.END

The following command simulates the above model.

hspice hnd2_tim > hnd2_tim.lis

Output file hnd2_tim.lis contains the following lines, among others:

* hnd2_tim.sp
****** transient analysis tnom= 25.000 temp= 25.000

cip1est = 4.2549E-14 ** The estimate for Cin(ip1) is 42.549fF ...
cip2est = 4.2055E-14 ** while for Cin(ip2), it is 42.055fF ...
.

48

.

.
intrise_ip1op = 7.8168E-11 targ= 2.2689E-09 trig= 2.1908E-09
intfall_ip1op = 7.0191E-11 targ= 4.3230E-09 trig= 4.2528E-09
intrise_ip2op = 1.0683E-10 targ= 6.3317E-09 trig= 6.2249E-09
intfall_ip2op = 7.6800E-11 targ= 8.3599E-09 trig= 8.2831E-09

** So, the intrinsic delays are:
** ip1 to op: intrinsic_rise = 78.2ps, intrinsic_fall = 70.2ps
** ip2 to op: intrinsic_rise = 106.8ps, intrinsic_fall = 76.8ps

.

.

.
rise_r_ip1op = 1.1321E+03
fall_r_ip1op = 1.0431E+03
rise_r_ip2op = 1.0675E+03
fall_r_ip2op = 1.0081E+03

** while the output resistances are:
** ip1 to op: rise_resistance = 1,132 Ohm, fall_resistance = 1,043 Ohm
** ip2 to op: rise_resistance = 1,068 Ohm, fall_resistance = 1,008 Ohm

.

.

.
slope_rise_ip1op= 3.1935E-01
slope_fall_ip1op= 1.3338E-01
slope_rise_ip2op= 3.9107E-01
slope_fall_ip2op= 1.7129E-02

** And the slope sensitivity parameters are:
** ip1 to op: slope_rise = 0.3194, slope_fall = 0.1334
** ip2 to op: slope_rise = 0.3911, slope_fall = 0.1713

.

.

.
** Just for a twist, for the ring oscillator consisting of NAND gates with
** ip2 tied to VDD, the actual period, tplh, and tphl are:

period1_act = 5.4665E-09 targ= 5.8328E-09 trig= 3.6632E-10
tplh1_act = 2.7545E-10 targ= 6.4177E-10 trig= 3.6632E-10
tphl1_act = 2.2128E-10 targ= 3.3479E-09 trig= 3.1266E-09
.
.
.

** while the model's predictions are:
tplh1_pred = 2.6501E-10
tphl1_pred = 2.2218E-10
period1_pred = 5.3591E-09
tplh1_err = 3.7890E+00 ** for tplh - misses by 3.79%
tphl1_err = 4.1220E-01 ** for tphl - misses by 0.41%
period1_err = 1.9640E+00 ** for period - misses by 1.96%

** while for the mini-ring-oscillator with ip2 VDD'ed are:
** actual results:

period2_act = 5.4825E-09 targ= 5.8588E-09 trig= 3.7626E-10
tplh2_act = 3.0951E-10 targ= 6.8576E-10 trig= 3.7626E-10
tphl2_act = 1.8844E-10 targ= 3.3717E-09 trig= 3.1832E-09
.
.
.

** while the model's predictions are
tplh2_pred = 2.9125E-10

49

tphl2_pred = 2.0630E-10
period2_pred = 5.4730E-09
tplh2_err = 5.8992E+00 ** for tplh - misses by 5.9%
tphl2_err = 9.4509E+00 ** for tphl - misses by 9.45%
period2_err = 1.7398E-01 ** for period - misses by 0.17%

In general, it is very difficult to achieve an accuracy of better than 20% with the timing

model. So the result is considered as reasonably accurate.

4. 2. 2. 4. 2. Example for Simple D Flip-flop

Sequential cell timing and capacitance characterization differs from the characterization

of combinational cells in the following ways:

1. For a combinational cell, we have insisted that the cell should be driven (indirectly via a

voltage-dependent voltage source) by another cell of exactly the same kind. However, since

sequential cells are often driven by non-sequential cells (such as a clock driver), this

requirement does not necessarily apply. For instance, for the purpose of characterizing cells

from CMC (Canadian Microelectronics Consortium) library, “hiv” inverter driving a 50fF

load for 0.5µm cells and “winv_1” inverter (winv_1.sp in 0.35µm directory) driving a 40fF

load for 0.35µm cells.

2. For a sequential cell, some input transition may not cause any output transitions. For a simple

D flip-flop, for example, we do not need to measure D → Q (or QN) propagation delay

(since a logic transition on D should wait for the clock to propagate). Note, though, that for a

D latch, for example, we will have to measure both D → Q and clk → Q delay parameters.

3. See also notes on the timing for the D signal for capacitance characterization (4. 2. 1. 3).

As an illustration, the following SPICE model (file name: hdpq_tim.sp) was used to

characterize a 0.5µm, D flip-flop. Note that in this case, Cin(D0) is measured only for (clock =

low) case; this is acceptable here as we already know (from a previous experiment) that for this

particular cell, Cin(D0) is higher for the (clock = low) case than for (clock = high) case.

hdpq timing characterization

50

.inc hdpq.sp

.inc hiv.sp ** we will need inverters later on.

.param vspl='3.3v'
vdd dd gnd vspl
** Input Capacitance Measurement
xhdpqcdet dd d0cdet ckcdet qcdet hdpq
vckcdet ckcdet gnd pulse (0v vspl 0ns 0.2ns 0.1ns 1.8ns 4ns)
vd0cdet d0cdet gnd pulse (vspl 0v 2.8ns 0.1ns 0.2ns 7.9ns 16ns)
.measure qd0r integral i(vd0cdet) from=10.8ns to=12ns
.measure qd0f integral i(vd0cdet) from=2.8ns to=4ns
.measure cd0r param='abs(qd0r/vspl)'
.measure cd0f param='abs(qd0f/vspl)'
.measure cd0est param='0.5*(cd0r+cd0f)'
.measure qck_qh integral i(vckcdet) from=0ns to=2ns
.measure qck_ql integral i(vckcdet) from=8ns to=10ns
.measure qck_qrise integral i(vckcdet) from=12ns to=14ns
.measure qck_qfall integral i(vckcdet) from=4ns to=6ns
.measure cck_qh param='abs(qck_qh/vspl)'
.measure cck_ql param='abs(qck_ql/vspl)'
.measure cck_qrise param='abs(qck_qrise/vspl)'
.measure cck_qfall param='abs(qck_qfall/vspl)'
.measure cckest param='0.25*(cck_qh+cck_ql+cck_qrise+cck_qfall)'

** Subcircuit definitions
.subckt noninvbuf dd ip op ** this is why we need hiv.sp
xinv dd ip intmd loadfreehiv
xbck dd intmd op loadfreehiv
.ends noninvbuf
.subckt nonloadhdpq dd d0 ck q
ed0 d0in gnd d0 gnd 1
eck ckin gnd ck gnd 1
xff dd d0in ckin q hdpq
.ends nonloadhdpq

** Stimulus source for next analysis stages
vck ck gnd pulse (0v vspl 0ns 0.2ns 0.1ns 7.8ns 16ns)
vd0 d0 gnd pulse (vspl 0v 12ns 0.1ns 0.2ns 15.9ns 32ns)

** Intrinsic delay determination
xbufick dd ck cki noninvbuf
xbufid0 dd d0 d0i noninvbuf
xhdpqid dd d0i cki qi nonloadhdpq
.measure int_rise trig v(cki) val='0.5*vspl' rise=3 targ v(qi) val='0.5*vspl'
+ rise=1
.measure int_fall trig v(cki) val='0.5*vspl' rise=2 targ v(qi) val='0.5*vspl'
+ fall=1

** Output resistance measurement
xhndpqro dd d0i cki qro nonloadhdpq
.param loadcro='150fF'
cloadro qro gnd loadcro
.measure load_rise trig v(cki) val='0.5*vspl' rise=3 targ v(qro)
val='0.5*vspl'
+ rise=1
.measure load_fall trig v(cki) val='0.5*vspl' rise=2 targ v(qro)
val='0.5*vspl'

51

+ fall=1
.measure dtr param='load_rise-int_rise'
.measure dtf param='load_fall-int_fall'
.measure rise_resistance param='dtr/loadcro'
.measure fall_resistance param='dtf/loadcro'

** Slope sensitivity measurement
.param slopec='50fF'
xbufcksl dd ck cksl noninvbuf
cckslope cksl gnd slopec
xbufd0sl dd d0 d0sl noninvbuf
cd0slope d0sl gnd slopec
xhdpqdsl dd d0sl cksl qsl nonloadhdpq
** First, measure clock transition delay ...
.measure int_ckdr trig v(xbufick.intmd) val='0.5*vspl' fall=1 targ v(cki)
+ val='0.5*vspl' rise=1
.measure int_ckdf trig v(xbufick.intmd) val='0.5*vspl' rise=1 targ v(cki)
+ val='0.5*vspl' fall=1
.measure dt_ckdr trig v(xbufcksl.intmd) val='0.5*vspl' fall=1 targ v(cksl)
+ val='0.5*vspl' rise=1
.measure dt_ckdf trig v(xbufcksl.intmd) val='0.5*vspl' rise=1 targ v(cksl)
+ val='0.5*vspl' fall=1
.measure ckdtr param='dt_ckdr-int_ckdr'
.measure ckdtf param='dt_ckdf-int_ckdf'
** then, work at the q output .. measure appropriate sort of delays.
.measure wsd_rise trig v(cksl) val='0.5*vspl' rise=3 targ v(qsl)
val='0.5*vspl'
+ rise=1
.measure wsd_fall trig v(cksl) val='0.5*vspl' rise=2 targ v(qsl)
val='0.5*vspl'
+ fall=1
.measure sdelay_rise param='wsd_rise-int_rise'
.measure sdelay_fall param='wsd_fall-int_fall'
.measure slope_rise param='sdelay_rise/ckdtr'
.measure slope_fall param='sdelay_fall/ckdtr'

** Simulation directives
.op
.option post nomod accurate
.option converge=1 gmindc=1e-12
.tran 0.025ns 40ns
.end

The following command simulates the above model.

hspice hdpq_tim > hdpq_tim.lis

Output file (hdpq_tim.lis) contains the following lines, among others:

hdpq timing characterization
****** transient analysis tnom= 25.000 temp= 25.000

.

52

.

.
cd0est = 3.9773E-14 ** Cin(D0) is estimated at 39.77fF;

** note that we estimate it differently from in the previous example
** hence the differing result
.
.

cckest = 1.0059E-13 ** Cin(CLK) is estimated at 100.59fF
int_rise = 2.5200E-10 targ= 3.2454E-08 trig= 3.2202E-08
int_fall = 4.2435E-10 targ= 1.6626E-08 trig= 1.6202E-08

** The intrinsic CLK -> Q fall delays are estimated at 252 and 424.35
** ps, respectively

load_rise = 4.1422E-10 targ= 3.2616E-08 trig= 3.2202E-08
load_fall = 5.5105E-10 targ= 1.6753E-08 trig= 1.6202E-08

** The above values are estimates for delays with load
.
.

rise_resistance = 1.0815E+03
fall_resistance = 8.4467E+02

** The rise- and fall-resistances are estimated at 1081 and 845 Ohms
int_ckdr = 5.7231E-11 targ= 2.0220E-10 trig= 1.4496E-10
int_ckdf = 4.2256E-11 targ= 8.1544E-09 trig= 8.1121E-09
dt_ckdr = 1.0976E-10 targ= 2.5473E-10 trig= 1.4496E-10
dt_ckdf = 7.4978E-11 targ= 8.1871E-09 trig= 8.1121E-09
ckdtr = 5.2532E-11
ckdtf = 3.2722E-11

** The above values are the transition delays of the clock drivers

wsd_rise = 2.6965E-10 targ= 3.2524E-08 trig= 3.2255E-08
wsd_fall = 4.3692E-10 targ= 1.6692E-08 trig= 1.6255E-08
sdelay_rise = 1.7645E-11
sdelay_fall = 1.2569E-11
slope_rise = 3.3589E-01
slope_fall = 2.3926E-01

** and slope sensitivities are 0.33589 (rise) and 0.23926 (fall).

4. 2. 5. Setup Time Characterization Using Bisection

4. 2. 5. 1. Discussion

As previously mentioned in 4. 1. 2, setup time is the amount of time before the latching

clock edge in which an input signal has to already reaches its expected value, so that the output

signal will reach the expected logical value within a specific delay. This delay must not change

53

considerably if the input transition is made to occur any earlier. To be more precise, in this work

a clock-to-output delay tolerance of 1% is used, although this might have been too stringent. In

other words, no matter how much earlier in the clock cycle the input is made to come, the clock-

to-output delay must not vary by more than 1%.

This definition already defines the task of finding the setup time as well:

− Determine the reference delay. This is obtained by performing the input transition early

enough as to insure that setup constraints are satisfied. In this work, this is performed by

changing the input 2ns before clock edge.

− Perform another simulation in another flip-flop of the same type, in which the input is made

closer and closer to the clock edge, and yet still guarantee that the clock-to-output delay does

not exceed 1.01 × reference delay. Note also that depending on the type of the flip-flop or

latch, setup time may be negative (i.e., it may be permissible for the intended input transition

to come after the latching clock edge).

One obvious feature of this method is that the use of repetition is inevitable. Hence, the

problem reduces to limiting the number of iterations required to attain the 1% tolerance limit.

Further, here we make an assumption that the relation between clock-to-output delay and setup

clearance is monotonous, i.e. it is always the case that the later the input arrives in the present

clock cycle, the longer the clock-to-output delay will be, rather than exhibiting some local or

global minima/maxima. This will allow the use of bisection facility of SPICE, namely a form of

binary search, to be used.

Still, for a large cell library, the total number of iterations may be large. For this reason,

although for linear model, setup time could, for instance, be modeled as dependent on input

transition delay, the long simulation time needed largely renders this idea impractical. It is much

more practical to simply use a reasonably pessimistic value, which may be obtained using a

rather pessimistic assumption on clock rise/fall time.

The characterization work to have been performed used the following parameters in

characterization.

54

− Evaluation range: -2ns to 2ns (it is assumed that setup time is in [-2ns, +2ns] range).

− Initial guess: -2ns.

− Number of iterations: ≤ 20. This should result in a precision of better than 1fs.

− Clock pulse 0%-to-100% rise/fall time: 0.5ns for 0.5µm technology, 0.4ns for 0.35µm

technology, or in the same ballpark with clock-to-output delay.

Several words may need to be said on the choice of search range and initial guess.

Returning to Figure 4.6, if the values of tsu2 is made sufficiently large and tsu3 is made sufficiently

small (or even negative), we could be sure that tsu3 < tsu < tsu2. If we arbitrarily choose, say, tsu2 =

1ns and tsu3 = 0ns, we could almost be assured that the aforementioned triple inequality will be

satisfied, since most submicron flip-flops have subnanosecond setup times (hence, tsu < tsu2), and

all master-slave structures have positive setup times (hence, tsu > tsu3). However, in general, we

may need to be even more conservative in setting the borders of our range, since on one end

some particularly complicated sequential elements, such as flip-flops with embedded

combinational logic, may have setup times exceeding 1ns, while on the other end some novel

flip-flops actually have positive setup times (i.e. even input transitions coming after clock

transitions may still be responded upon correctly). In view of these facts, it is more prudent to

use the following values:

tsu3 = -2ns

tsu2 = 2ns

Note that the setup times showed in Figures 4.6 and 4.7 are positive, hence not showing the

negative setup times which we may encounter. Indeed, again, for our static devices, their setup

times are always nonegative, but in general prudence may be warranted.

4. 2. 5. 2. SPICE Example

As an example, the following SPICE file performs setup time determination for simple

0.35µm D flip-flop wdp_2 – with comments added.

wdp_2 setup time characterization
.inc wcellsnet ** the subckt netlists for 0.35um tech are stored here

55

.param lh='3.3v'

.param ll='0.0v'
vdd dd gnd lh
.param tsetupr=opt_tsetupr(-2ns, -2ns, 2ns) ** initial guess is –2ns
.param tsetupf=opt_tsetupf(-2ns, -2ns, 2ns)

.op

.option post nomod accurate dcstep=1e-3 gmindc=1e-12 optlst=1 relv=1e-4
relvar=1e-2
** set the relative accuracy requirement to 0.1% (i.e. relv=1e-4)

** reference delay generator **
vdref dref gnd pwl (0ns ll 25ns ll 25.4ns lh 65ns lh 65.4ns ll)
xref dd dref ck qref qbref wdp_2
.measure vinit avg v(qref) from=4.5ns to=5.5ns
.measure prob_fall_adj param='(vinit-(lh/2))/(1v)'
.measure adj_sign param='sgn(prob_fall_adj)'
.measure fall_adjust param='max(adj_sign, 0)'
** the above parts determine whether the initial state of ff
** is high or low. If high, we must add 1 to number of fall
** transitions.
.measure tdr_ref trig v(ck) val='0.5*lh' rise=2 targ v(qref) val='0.5*lh'
+ rise=1
.measure tdf_ref trig v(ck) val='0.5*lh' rise=4 targ v(qref) val='0.5*lh'
+ fall='1+fall_adjust'
.tran 0.025ns 80ns

** setup measurement
vclk ck gnd pulse (ll lh 10ns 0.4ns 0.4ns 9.6ns 20ns)
vd d gnd pwl (0ns ll '30ns-tsetupr' ll '30.4ns-tsetupr' lh '70ns-tsetupf'
+ lh '70.4ns-tsetupf' ll)
xtested dd d ck qt qtb wdp_2

** Determination of setup time for rising input
.model=setuprmodel opt method=bisection itropt=20
** 20 iterations should be adequate – precision to several fs
.tran 0.025ns 90ns sweep optimize=opt_tsetupr result=sdr model=setuprmodel
.measure sdr trig v(ck) val='0.5*lh' rise=2 targ v(qt) val='0.5*lh'
+ rise=1 goal='1.01*tdr_ref'
** the goal is that sdr = ck-to-q delay within 1% of reference case
.measure src_setuprise_d param='tsetupr'
** if the aim is satisfied, just accept tsetupr as our estimate

** Then, do the same for fall transition.
.model=setupfmodel opt method=bisection itropt=20
.tran 0.025ns 110ns sweep optimize=opt_tsetupf result=sdf model=setupfmodel
.measure sdf trig v(ck) val='0.5*lh' rise=4 targ v(qt) val='0.5*lh'
+ fall='1+fall_adjust' goal='1.01*tdf_ref'
.measure src_setupfall_d param='tsetupf'

.end

The output file contains the following lines, among others (comments added):

56

****** transient analysis tnom= 25.000 temp= 25.000
.
.
.

tdr_ref= 2.3599E-10 targ= 3.0436E-08 trig= 3.0200E-08 ** reference
delays for output

tdf_ref= 3.4499E-10 targ= 7.0545E-08 trig= 7.0200E-08 ** rising and
falling
.
.
.
entering lmopt

parm names init guess, lower, upper bounds
tsetupr -2.0000E-09 -2.0000E-09 2.0000E-09 0.
** bisection analysis for rising input setup time detremination
** initial guess is –2ns, as specified

bisec-opt. iter = 1 xlo = -2.00000E-09 xhi = 2.00000E-09
x = -2.00000E-09 xnew = 2.00000E-09 ** new

guess is 2ns
err = -83.900

bisec-opt. iter = 2 xlo = -2.00000E-09 xhi = 2.00000E-09
x = 2.00000E-09 xnew = 0. ** next

guess is 0ns
err = 9.89874E-03

.

.

.
bisec-opt. iter = 11 xlo = 3.82813E-10 xhi = 3.90625E-10

x = 3.82813E-10 xnew = 3.86719E-10
err = -4.59668E-05

optimization completed, the condition
relin = 1.0000E-03 is satisfied

optimization completed, the condition
relout = 1.0000E-03 is satisfied

**** optimized parameters opt_tsetupr

.param tsetupr = 382.8125p ** required relative error attained
after only 11 iterations
.
.
.
****** transient analysis tnom= 25.000 temp= 25.000
.
.
.

tdr_ref= 2.3598E-10 targ= 3.0436E-08 trig= 3.0200E-08
tdf_ref= 3.4499E-10 targ= 7.0545E-08 trig= 7.0200E-08
sdr= 2.3835E-10 targ= 3.0438E-08 trig= 3.0200E-08

** compare tdr_ref and sdr: differ within 1%
src_setuprise_d= 3.8281E-10

.

.

57

.
entering lmopt

parm names init guess, lower, upper bounds
tsetupf -2.0000E-09 -2.0000E-09 2.0000E-09 0.
** now for falling input setup time

bisec-opt. iter = 1 xlo = -2.00000E-09 xhi = 2.00000E-09
x = -2.00000E-09 xnew = 2.00000E-09

err = -57.389

bisec-opt. iter = 2 xlo = -2.00000E-09 xhi = 2.00000E-09
x = 2.00000E-09 xnew = 0.

err = 9.85833E-03
.
.
.
bisec-opt. iter = 18 xlo = 4.37561E-10 xhi = 4.37622E-10

x = 4.37561E-10 xnew = 4.37592E-10
err = -3.26674E-06

** this time needs 18 iterations

optimization completed, the condition
relin = 1.0000E-03 is satisfied

optimization completed, the condition
relout = 1.0000E-03 is satisfied

**** optimized parameters opt_tsetupf

.param tsetupf = 437.5610p

.

.

.
Opening plot unit= 15
file=./wdp_2_setup.tr2

wdp_2 setup time characterization - part 1
****** transient analysis tnom= 25.000 temp= 25.000

.
.
.

tdf_ref= 3.4491E-10 targ= 7.0545E-08 trig= 7.0200E-08
sdf= 3.4836E-10 targ= 7.0548E-08 trig= 7.0200E-08

** sdf=348.36ps, compare with the 344.91ps reference delay
src_setupfall_d= 4.3756E-10

.

.

In some occasions, the desired value of relative error may still not be attained after 20

iterations. However, even if that is the case, the resulting estimate should still be accurate to

several femtoseconds, and the warning messages could simply be disregarded.

58

4. 2. 6. Tristate Cell Timing and Input/Output Capacitance Characterization

Characterization of tristate cells is basically the same as characterization of a standard

combinational cell, except for three new considerations:

1. Enable- and disable-times must also be considered.

2. Because of possibilities of charge injection, a tristate buffer cannot be meaningfully

characterized by simulating it in isolation; rather, at least two cells must be tested in parallel,

driving the same node.

3. Since typically several tristate buffers are ganged, i.e. several of them drive the same node

(hence when they are not driving the node, they present a load to other cells driving the

node), their output capacitance must also be determined.

Following the first point, several simulation tools add several definitions for the delay

types encountered, as follows:

Transition type Name

Enable/disable signal to Z-to-0 at output enable_rise delay
Enable/disable signal to Z-to-1 at output enable_fall delay
Enable/disable signal to 0-to-Z at output disable_rise delay
Enable/disable signal to 1-to-Z at output disable_fall delay

Note that several synthesis tools may not define disable times, under the assumption that

disable times are always longer than enable times, hence they will not be observed nor have any

effects during normal circuit operation.

The second point may merit more clarification. Let us consider the following tristate

buffer:

59

VDD

ip
/ip

en

/en

op

Tristate
output stage

QP1

QP2

QN1

QN2

en

ip op

Figure 4. 17. Noninverting tristate buffer. Left: circuit connection. Right: Internal circuit of the
buffer cell.

The waveform used is as follows:

VDD

VSS

VDD

VSS

VDD

VSS

Vip

Ven

Vop

t (ns) 1 2 3 42.5

Figure 4.18. Waveforms used. The disabling transition at 2.5ns causes Vop to exceed the rail.

As shown above, while the ip input transition at 1ns does not cause anything unusual (it

simply causes a normal transition at output), the disabling transition (en deasserted) at 2.5ns

causes the output op to exceed the VDD rail. What happens is, when en is deasserted, op is left

floating (electrically cut off from other nodes). However, just before that occurs, charge

accumulating in the channels of QP2 and QN1 will be partly dumped into op. Although the charge

60

from p- and n-devices are opposite, they do not cancel each other in this case, since the sizes of

the p- and n-devices differ significantly, hence their channel capacitances, and therefore also the

accumulated charge, also differ in magnitude. When op gets cut off, the charge will be left there

with nowhere to go, hence altering Vop – in this case, causing it to rise beyond the rail. In other

words, the voltage op will not be strictly a logic value, and cannot be used to define a logic

propagation delay. To be used in logic delay calculations, signals must continue to maintain valid

logic levels when not in transition, i.e. stay within the rails. This is guaranteed by connecting the

outputs of several tristate cells to the same node as in actual use. Intrinsic delays are then

determined through interpolation, by comparing the delays of two different circuits as follows:

/en

ip

/ip

op

en

GP3

GPn

GP1

GP2

GN

true-input
block

en

/en

ip

/ip

op

Figure 4. 19. Circuit for delay determination. Left: 1-vs-1 circuit. Right: n-vs-1 circuit.

4. 2. 6. 1. Intrinsic Delays and Enable Delay Determination

The above two circuits will exhibit different delays. Let us focus to the delay parameters

of the true-input blocks. The enable delays of the n-vs-1 circuit will be shorter than those of the

1-vs-1 circuit, since for the n-vs-1 circuit the charge dumped from (or into) the output

capacitances of GN when GN is disabled will be absorbed (or provided) by n buffer cells (GP1

61

through GPn), while for the 1-vs-1 circuit the charge will be absorbed (or provided) by just one

buffer. Therefore, the additional delay (in addition to intrinsic delays) exhibited by the n-vs-1

circuit will only be (1/n) times as large as exhibited by the 1-vs-1 circuit. Therefore, assuming

that the input waveforms are proper for intrinsic delay determination, it could be shown that

the following two relations are satisfied:

delayintrinsic = delayleft – ∆delay . (4.17)

∆delay = (delayleft-delayright). n / (n-1) . (4.18)

Since delayright and delayleft could be measured, while n is known, intrinsic enable delays

could be found. Additionally, ip→→→→op delays could also be found using the same formulae, again

by observing the delay of the true-input block. Note that if high accuracy is desired, the above

procedure could be repeated with several different values of n, and the resulting intrinsic delays

are compared and, if necessary, averaged.

To determine output resistance and slope sensitivities of enable delays (for ip→→→→op delays

will be determined in a more conventional fashion), the same scheme is used.

4. 2. 6. 2. Determination of ip→→→→op Output Resistances

For output resistance determination, using the identical waveforms as used for intrinsic

delays determination, we use the 1-vs-1 circuit, with a Cload connected to the output.

en

/en

ip

/ip

op

Cload

Figure 4. 20. Circuit used for output resistance determination

62

The enable delays will extend by a transition delay (= delay with load capacitor – delay

without load capacitor). Hence, we simply have:

Rout = (delaywith_Cload – delaywithout_Cload) / Cload (4.19)

4. 2. 6. 3. Input Capacitance Determination

The determination of input capacitances of tristate buffers uses the 1-vs-1 circuit of Figure 3.

left. The measurement process and the waveforms used should satisfy the following conditions:

1. Measurement should be performed only for inputs which cause output changes. Since all

inputs are complementary in our case, this is assured if Cip is measured only when the buffer

is enabled..

2. For each input pin, measurement should be performed both for input transitions which cause

rising output transition and for input transitions which cause falling output transition, and the

result should be averaged. For enable pins, we have four possibilities: disable→rise,

disable→fall, enable→rise, and enable→fall.

4. 2. 6. 4. Output Capacitance Determination

The determination of output capacitance is performed in a similar manner with input

capacitance determination, namely by applying a voltage waveform to the output pin and

measuring the amount of charge injected. Both rising- and falling-waveform should be used. The

tristate cell examined must be in disabled state to avoid direct path to VDD / ground, which will

cause indefinite capacitance. Also, measurement should be performed for both ip=1 and ip=0

case. One circuit configuration which may be used is as follows:

63

x1

stimulus
source

Vcdet

x2

VDD

.

.

Figure 4. 21. Circuit for Cop measurement (high-active enablers)

The following type of waveform may be used for Vcdet:

VDD

VSS

t (ns)840

Figure 4. 22. Vcdet waveform for Cop determination

In this scheme, x1 is instantiated to measure charge accumulated (or dumped) when the

input=H, while x2 is for the input=L case. Further, we may measure the magnitude of the charge

injected into x1 and x2 (or sourced from them) for both rising-and falling stimuli (at 4ns and 8ns,

respectively), and we already obtain the sum of the charge accumulations for all four

combinations of input values and stimulus transitions; to obtain the estimate for Cop, this is

simply averaged (i.e. divided by four) and then divided by the magnitude of the stimulus. The

SPICE code may look as follows (taking measurement period as 4ns):

.measure qrise integral i(vcdet) from=4ns to=8ns

.measure qfall integral i(vcdet) from=8ns to=12ns

.measure qav param=’0.25*(abs(qrise)+abs(qfall))’

.measure cop param=’qav/vdd’

64

4. 2. 6. 5. Measurement of Output Resistances for Enable Delays

For enable/disable delays, output resistances could also be performed by using the circuit

at Figure 4 as is the case for ip→op delays. However, here a different method is presented. Here

instead of performing new measurements, the results from intrinsic delay measurement process

are used. Specifically, referring to eqs. (1) – (2), ∆delay could be interpreted as the transition delay

at output op, exhibited by the enable delay of a buffer, due to the presence of Cout of the other

buffer. Hence:

Rout,enable = ∆delay,enable / Cout (4.20)

4. 2. 6. 6. Measurement of Disable Delays

This part is not performed, as the disabling process is not directly observable. It is

assumed that the disabling process is sufficiently fast to avoid fighting.

4. 2. 6. 7. SPICE Example

As an example, the following SPICE file performs the timing characterization of the

noninverting tristate buffer hbfzp. Figure 4.23 shows the circuit for slope delay determination.

This circuit will later also be used for power charactreization. Note that only the 1-vs-1 pair is

shown here. Actually, 2-vs-1 circuits were also used to allow the use of formulae (4.17)-(4.20).

65

Cload

xinp

xcmp

Vopm

Vds_sl

Veni_sl

Vipi_sl

Vipi_sl

Vcp_sl

Veni_sl

Vds_sl

Vip2 = Vcp

Vintmd2

Vip2b =
Vintmd2

Vcp_sl

Vcp

Vip

Vip_sl

Cslope

Vip1 = Vip

Vintmd1

Vip1b =
Vintmd1

Vip3 = Venbl

Vintmd3

Vip3b =
Vintmd3

xbfref

xinbfd0i

xinbfcki

Venbl

Vdsbl

Vip4 = Vdsbl

Vintmd4

Vip4b =
Vintmd4

Cslope

Cslope

Cslope

xbfref Vds_sl

Veni_sl

stimulus sources tristate buffers
under test

input edge shaper / input transition delay generator

Note: logically, Venbl = /Vdsbl

Figure 4.23. Circuit for Slope Delay Determination of Tristate Buffers, shown here with 1-vs-1
Circuit

The SPICE file is as follows:

.inc hiv.l

.inc hbfzp.l

** Power Supply
.param spl='3.3v'
.param ss='0v'
.param loaderc='75fF'
.param sloperc='75fF'
.param powerc='100fF'
vdd dd gnd spl

** subcircuits

66

.subckt nlhiv dd ip op
eip ipi gnd ip gnd 1
xiv dd ipi op hiv
.ends nlhiv
.subckt nlbuf dd ip op
x1 dd ip ipi nlhiv
x2 dd ipi op nlhiv
.ends nlbuf
.subckt nlhbfzp dd ip en op
eip ipi gnd ip gnd 1
een eni gnd en gnd 1
xbz dd ipi eni op hbfzp
.ends nlhbfzp
** stimuli
vip ip gnd pwl (0ns ss 12ns ss 12.2ns spl 24ns spl 24.1ns ss 32ns ss 32.2ns
spl
+ 44ns spl 44.1ns ss 68ns ss 68.2ns spl 84ns spl 84.1ns ss 88ns ss 88.2ns spl
+ 96ns spl 96.1ns ss 100ns ss 100.2ns spl)
** ci for delay determination
vci ci gnd pwl (0ns spl 12ns spl 12.1ns ss 24ns ss 24.2ns spl 32ns spl 32.1ns
ss
+ 44ns ss 44.1ns spl 48ns spl 48.2ns ss 68ns ss 68.1ns spl 92ns spl 92.2ns
ss)
** ci for power characterization
vcp cp gnd pwl (0ns spl 12ns spl 12.1ns ss 24ns ss 24.2ns spl 32ns spl 32.1ns
ss
+ 44ns ss 44.2ns spl 48ns spl 48.1ns ss 68ns ss 68.2ns spl 92ns spl 92.1ns
ss)
.param enbl='spl'
.param dsbl='ss'
** enabler/disabler
venbl en gnd pwl (0ns dsbl 4ns dsbl 4.2ns enbl 8ns enbl 8.1ns dsbl 16ns dsbl
+ 16.2ns enbl 20ns enbl 20.1ns dsbl 28ns dsbl 28.2ns enbl 36ns enbl 36.1ns
dsbl
+ 40ns dsbl 40.2ns enbl 52ns enbl 52.1ns dsbl 56ns dsbl 56.2ns enbl 60ns enbl
+ 60.1ns dsbl 64ns dsbl 64.2ns enbl 72ns enbl 72.1ns dsbl 76ns dsbl 76.2ns
enbl
+ 80ns enbl 80.1ns dsbl)
vdsbl ds gnd pwl (0ns enbl 4ns enbl 4.1ns dsbl 8ns dsbl 8.2ns enbl 16ns enbl
+ 16.1ns dsbl 20ns dsbl 20.2ns enbl 28ns enbl 28.1ns dsbl 36ns dsbl 36.2ns
enbl
+ 40ns enbl 40.1ns dsbl 52ns dsbl 52.2ns enbl 56ns enbl 56.1ns dsbl 60ns dsbl
+ 60.2ns enbl 64ns enbl 64.1ns dsbl 72ns dsbl 72.2ns enbl 76ns enbl 76.1ns
dsbl
+ 80ns dsbl 80.2ns enbl)
** edge-degraded version of input stimuli
** for intrinsic delays
xip dd ip ipi nlbuf
xen dd en eni nlbuf
xipn dd ci cii nlbuf
xenn dd ds dsi nlbuf
** for slope delays
xips dd ip ipi_sl nlbuf
cips ipi_sl gnd sloperc
xens dd en eni_sl nlbuf
cens eni_sl gnd sloperc
xcis dd ci ci_sl nlbuf

67

ccis ci_sl gnd sloperc
xcps dd cp cp_sl nlbuf
ccps cp_sl gnd sloperc
xdss dd dsi ds_sl nlbuf
cdss ds_sl gnd sloperc

** Cin and Cout determination **
** Cin determination **
eipcd ipcd gnd ip gnd 1
eenblcd encd gnd en gnd 1
ecipcd cipcd dd ipcd gnd -1
ecenblcd cencd dd encd gnd -1
xincd dd ipcd encd opcdet hbfzp
xcmcd dd cipcd cencd opcdet hbfzp
.measure qipr integral i(eipcd) from=32ns to=36ns
.measure qipf integral i(eipcd) from=44ns to=48ns
.measure qenr integral i(eenblcd) from=40ns to=44ns
.measure qenf integral i(eenblcd) from=4ns to=8ns
.measure qdsr integral i(eenblcd) from=8ns to=12ns
.measure qdsf integral i(eenblcd) from=36ns to=40ns
.measure qip param='(abs(qipr)+abs(qipf))/2'
.measure qen param='(abs(qenr)+abs(qenf)+abs(qdsr)+abs(qdsf))/4'
.measure cip param='qip/spl'
.measure cen param='qen/spl'
** Cout determination **
vopcd opcd gnd pwl (0ns ss 4ns ss 4.1ns spl 8ns spl 8.2ns ss)
xopcdet1 dd dd gnd opcd hbfzp
xopcdet2 dd gnd gnd opcd hbfzp
.measure qopr integral i(vopcd) from=4ns to=8ns
.measure qopf integral i((vopcd) from=8ns to=12ns
.measure qop param='(abs(qopr)+abs(qopf))/4'
.measure cout param='qop/spl'

** intrinsic delay determination - first step **

** 1-vs-1 circuit
xin dd ipi eni op nlhbfzp
xcm dd ci dsi op nlhbfzp
.measure tenr11 trig v(eni) val='0.5*spl' rise=2 targ v(op) val='0.5*spl'
rise=2
.measure tenf11 trig v(eni) val='0.5*spl' rise=1 targ v(op) val='0.5*spl'
fall=1

** 2-vs-1 circuit
xi2a dd ipi eni op2 nlhbfzp
xi2b dd ipi eni op2 nlhbfzp
xc2 dd ci dsi op2 nlhbfzp
.measure tenr21 trig v(eni) val='0.5*spl' rise=2 targ v(op2) val='0.5*spl'
+ rise=2
.measure tenf21 trig v(eni) val='0.5*spl' rise=1 targ v(op2) val='0.5*spl'
+ fall=1
.measure dtenr param='(tenr11-tenr21)*2'
.measure dtenf param='(tenf11-tenf21)*2'

** estimates for enable / disable intrinsic delays **
.measure tenr_int param='tenr11-dtenr'
.measure tenf_int param='tenf11-dtenf'

68

** ip -> op delay characterization
** intrinsic delays **
xi_int dd ipi dd opi_int nlhbfzp
.measure tripop_int trig v(ipi) val='0.5*spl' rise=1 targ v(opi_int)
+ val='0.5*spl' rise=1
.measure tfipop_int trig v(ipi) val='0.5*spl' fall=1 targ v(opi_int)
+ val='0.5*spl' fall=1
** output resistances **
xi_res dd ipi dd opi_res nlhbfzp
ci_res opi_res gnd loaderc
.measure tripop_res trig v(ipi) val='0.5*spl' rise=1 targ v(opi_res)
+ val='0.5*spl' rise=1
.measure tfipop_res trig v(ipi) val='0.5*spl' fall=1 targ v(opi_res)
+ val='0.5*spl' fall=1
.measure resrise_ipop param='(tripop_res-tripop_int)/loaderc'
.measure resfall_ipop param='(tfipop_res-tfipop_int)/loaderc'
** slope sensitivity **
xi_slp dd ipi_sl dd opi_slp nlhbfzp
.measure tr_bi trig v(xip.ipi) val='0.5*spl' fall=1 targ v(ipi) val='0.5*spl'
+ rise=1
.measure tf_bi trig v(xip.ipi) val='0.5*spl' rise=1 targ v(ipi) val='0.5*spl'
+ fall=1
.measure tr_bs trig v(xips.ipi) val='0.5*spl' fall=1 targ v(ipi_sl)
+ val='0.5*spl' rise=1
.measure tf_bs trig v(xips.ipi) val='0.5*spl' rise=1 targ v(ipi_sl)
+ val='0.5*spl' fall=1
.measure dtr param='tr_bs-tr_bi'
.measure dtf param='tf_bs-tf_bi'
.measure tripop_slp trig v(ipi_sl) val='0.5*spl' rise=1 targ v(opi_slp)
+ val='0.5*spl' rise=1
.measure tfipop_slp trig v(ipi_sl) val='0.5*spl' fall=1 targ v(opi_slp)
+ val='0.5*spl' fall=1
.measure dsr param='tripop_slp-tripop_int'
.measure dsf param='tfipop_slp-tfipop_int'
.measure sloperise_ipop param='dsr/dtr'
.measure slopefall_ipop param='dsf/dtf'

** enable output resistances **
.measure resrise_en param='dtenr/cout'
.measure resfall_en param='dtenf/cout'

** last part - finding slope sensitivities for enable/disable **
** using modified copy of intrinsic delay determination - first step **

xins dd ipi_sl eni_sl op_sl nlhbfzp
xcms dd ci_sl ds_sl op_sl nlhbfzp

.measure tenr11_sl trig v(eni_sl) val='0.5*spl' rise=2 targ v(op_sl)
+ val='0.5*spl' rise=2
.measure tenf11_sl trig v(eni_sl) val='0.5*spl' rise=1 targ v(op_sl)
+ val='0.5*spl' fall=1
.measure tdsr11_sl trig v(eni_sl) val='0.5*spl' fall=1 targ v(op_sl)
+ val='0.5*spl' rise=1
.measure tdsf11_sl trig v(eni_sl) val='0.5*spl' fall=2 targ v(op_sl)
+ val='0.5*spl' fall=3
.measure sloperise_enr param='(tenr11_sl-tenr11)/dtr'

69

.measure slopefall_enf param='(tenf11_sl-tenf11)/dtr'

.option post nomod accurate

.option dcstep=1e-3 gmindc=1e-12

.tran 0.025ns 104ns

.end

The output contains the following lines:

****** transient analysis tnom= 25.000 temp= 25.000

qipr= -1.3818E-13 from= 3.2000E-08 to= 3.6000E-08
qipf= 1.3846E-13 from= 4.4000E-08 to= 4.8000E-08
qenr= -1.6149E-13 from= 4.0000E-08 to= 4.4000E-08
qenf= -2.0345E-13 from= 4.0000E-09 to= 8.0000E-09
qdsr= 2.0370E-13 from= 8.0000E-09 to= 1.2000E-08
qdsf= 1.6279E-13 from= 3.6000E-08 to= 4.0000E-08
qip= 1.3832E-13
qen= 1.8286E-13
cip= 4.1916E-14 ** Estimated input capacitance
cen= 5.5411E-14
qopr= -1.9534E-13 from= 4.0000E-09 to= 8.0000E-09
qopf= 1.9582E-13 from= 8.0000E-09 to= 1.2000E-08
qop= 9.7790E-14
cout= 2.9633E-14 ** Estimated output capacitance
tenr11= 2.2641E-10 targ= 1.6429E-08 trig= 1.6202E-08
tenf11= 9.6037E-11 targ= 4.2983E-09 trig= 4.2023E-09
tenr21= 1.9367E-10 targ= 1.6396E-08 trig= 1.6202E-08
tenf21= 6.9571E-11 targ= 4.2718E-09 trig= 4.2023E-09
dtenr= 6.5491E-11
dtenf= 5.2931E-11
tenr_int= 1.6092E-10 ** Intrinsic enable_rise time
tenf_int= 4.3106E-11 ** Intrinsic enable_fall time
tripop_int= 2.7025E-10 targ= 1.2473E-08 trig= 1.2202E-08
tfipop_int= 1.9648E-10 targ= 2.4351E-08 trig= 2.4154E-08
tripop_res= 4.1742E-10 targ= 1.2620E-08 trig= 1.2202E-08
tfipop_res= 2.7453E-10 targ= 2.4429E-08 trig= 2.4154E-08
resrise_ipop= 1.9623E+03 ** rise_resistance of op from input ip
resfall_ipop= 1.0406E+03 ** fall_resistance of op from input ip
tr_bi= 5.7224E-11 targ= 1.2202E-08 trig= 1.2145E-08
tf_bi= 4.2196E-11 targ= 2.4154E-08 trig= 2.4112E-08
tr_bs= 1.3479E-10 targ= 1.2280E-08 trig= 1.2145E-08
tf_bs= 8.9407E-11 targ= 2.4202E-08 trig= 2.4112E-08
dtr= 7.7565E-11
dtf= 4.7211E-11
tripop_slp= 2.8641E-10 targ= 1.2566E-08 trig= 1.2280E-08
tfipop_slp= 2.1550E-10 targ= 2.4417E-08 trig= 2.4202E-08
dsr= 1.6161E-11
dsf= 1.9020E-11
sloperise_ipop= 2.0835E-01 ** slope_rise for input -> output
slopefall_ipop= 4.0287E-01 ** slope_fall for input -> output

70

resrise_en= 2.2101E+03 ** rise_resistance for enable_rise
resfall_en= 1.7862E+03 ** fall_resistance for enable_fall
tenr11_sl= 2.4808E-10 targ= 1.6528E-08 trig= 1.6280E-08
tenf11_sl= 1.4369E-10 targ= 4.4236E-09 trig= 4.2799E-09
tdsr11_sl= 3.6022E-10 targ= 8.5617E-09 trig= 8.2015E-09
tdsf11_sl= 2.7778E-10 targ= 2.0479E-08 trig= 2.0202E-08
sloperise_enr= 2.7927E-01 ** slope_rise for enable -> rise
slopefall_enf= 6.1440E-01 ** slope_fall for enable -> fall

***** job concluded

71

Chapter V

Power Characterization

In this chapter, we will discuss the power characterization of a library cell. Here we will limit

our discussion to static CMOS logic circuit.

5. 1. Basics of Power Dissipation

The power dissipation of a cell is divided into two parts – static and dynamic power.

1. Static power: This is the power which is dissipated when no switching activity is occurring.

For static complementary CMOS cells, this is mostly due to leakage power and subthreshold

conduction current.

2. Dynamic power: This is dissipated when switching activities are occurring. For static CMOS

circuits, dynamic power usually comprises a large majority of the overall power dissipation.

This mode of power can be further divided into two categories:

a) Switching Power: This is the energy / power dissipated by a cell due to the charging and

discharging of external capacitive loads being driven by the cell. This is already defined

by the size of input capacitances of the cells as determined in capacitance/timing

characterization as described in the previous chapter. The same capacitance value is used

here.

b) Internal Power: This is the part of dynamic energy which is dissipated by the cell in

addition of switching power. Physically, internal energy is dissipated, in pulses, due to

short-circuit conditions that occur during switching and due to charging/discharging of the

internal capacitances of the cell itself.

To better explain the above concepts, let us use a specific example. Let us use the

following 2-input complementary static CMOS NAND gate as an example. To simplify

discussion, let us assume that the voltage at the input pins eventually settle at the rail voltages

(0V or VDD).

72

ip1

ip2ip1

ip2

op

VDD

QN1

QP2

QP1

QN2

Vip1

Vip2

Vop

xhnd2_1

Cload

.

Figure 5.1: a 2-input complementary static CMOS NAND gate. Left: transistor level schematic.
Right: Schematic of a the cell in use and its surrounding. Cload represent the capacitive load

posed by another cell being driven by the NAND gate.

5. 1. 1. Static Power

First, let us analyze the power dissipation of the NAND gate if the voltages at the input

pins ip1 and ip2 do not make any logic transitions for a long time. In that case, although some of

the transistors may be turned on, there should not be any DC path from VDD to ground, and thus

no power dissipation would occur. However, actually some leakage current will flow and cause

power dissipation. This is the source of static power dissipation, which could therefore be

equated with leakage power for our complementary CMOS case. Note that this static power

dissipation may vary depending on the voltages in the input pins.

Note that we will have four different cases of static power dissipation, namely the cases

when logical values at {ip1, ip2} = (0, 0), (0, 1), (1, 0), and (1,1), respectively. Let us call them

Ps00, Ps01, Ps10, and Ps11 respectively. Then, assuming that all those four input combinations are

equally likely, we have:

average static power, (op = high) = (Ps00 + Ps01 + Ps10) / 3 (5.1)

average static power, (op = low) = Ps11 (5.2)

average static power =

[(3×average static power, (op = high))+average static power, (op = low)] / 4 (5.3)

73

5. 1. 2. Dynamic Power

When the input voltages change, then the output voltage Vop – to a first order

approximation – may or may not change (actually, a more detailed analysis may show that any

input change will automatically cause output change, although the change may not qualify as a

logic transition). Let us analyze those two cases separately. Let us assume that only one input

transition could occur at any given time (i.e. no two inputs will experience logic transition at the

same time), and that no new transition will occur at input before output transitions caused by the

previous input has completed.

First case. Logic transitions at input cause output logic transition. In this case, at some

moment there would be short-circuit condition across the cell. Additionally, capacitances present

at the cell’s output (as well as other capacitances) may charge or discharge. This will cause

power to be dissipated.

Second case. Logic transitions at input cause no output logic transition. As long as the

input transitions do not cause any short-circuit or capacitance charging / discharging condition,

such input transitions will not cause any power dissipation to take place. Actually, even such

input transitions may cause some glitch at the output and therefore cause some power

dissipation, although unless the cell has an internal load, this should be relatively insignificant

compared with the first case.

Let us use, as a concrete example, a load capacitance of 50fF, and waveforms as in

Figure 5. 2.

74

Figure 5. 2. Waveforms used in dynamic power measurement of a 2-input NAND gate.

For any given interval, we have:

Total Power = Static Power + Dynamic Power (5.4)

Dynamic Power = Switching Power + Internal Power (5.5)

Note that the model defined by the above two equations do not fully correspond to

physical reality, as will be discussed later.

Static power. Note that we expect Pxhnd2_1 = (static power) whenever switching is not

taking place.

Power supplied by stimulus source. PVip1 and PVip2, respectively, represent the amount

of power received by the stimulus sources. Hence, the power supplied by those stimulus source

Vip1

Vip2

Vop

Pxhnd2_1

PCload

PVip1

PVip2

t (ns0 2 4 6 8 10 12 14 16 18

75

are –PVip1 and –PVip2, respectively. Note that in our case, those quantities could be positive or

negative and over infinite time interval should ideally be zero (ignoring gate resistances, or more

accurately conductances, of the transistors), since those stimulus sources are not connected to

any energy dissipation element. In any case, for SPICE simulation purposes, those quantities are

immaterial, as will be discussed later.

Total Power and Switching Power. Here Pxhnd2_1 is the total resistive power dissipation,

or let us simply call it power dissipation, occurring within the borders of the xhnd2_1 NAND

gate, while PCload is the power supplied to the load capacitor Cload. The hills and peaks in Pxhnd2_1

represent the dynamic energy (since they occur only in association with some logic transition in

some signal), while the low plains represent the static energy.

Again, since the ideal capacitor is an energy storage element and not an energy

dissipation element, PCload could be positive or negative, and over infinite period should

average to zero; however, in relation to equation 5, this quantity is to be taken as positive

always, i.e. we always use the absolute value of PCload. The rationale is as follows: the capacitor

itself cannot dissipate any energy, since it is simply an energy storage element. Further, our

depiction of the capacitor as being connected only to op and ground is also not correct of real

gates (instead of our stipulated capacitor), since the PMOS transistors in the gate also have

capacitances, which should instead be connected to VDD; however, we simply model those

capacitances as a lumped capacitor connected to ground. Further, and most importantly, although

the capacitor itself cannot dissipate any energy, the charge Q = CVDD injected into, or leaving,

the capacitor must still contains a positive quantity of energy E= ½QVDD = ½CVDD
2, and this

energy must come from somewhere (here it is from the power supply), and must be dissipated

somewhere. In our idealized model, the only place this dissipation could occur is in the

transistors (and interconnects) which comprise the gate, as they have resistance. Thus, the

switching energy, and hence switching power, is not energy (or power) dissipated by the

capacitor itself; rather, the switching power is a positive amount of power which, due to the

presence of the capacitor, is dissipated by the resistive elements inside the logic cells connected

to the capacitor. Let us further note that, for the purpose of this measurement for gate-level

modeling application, switching energy is said to be dissipated only if a full-swing rail-to rail

76

transition occurs at the output; if such an output transition does not occur, all the energy

dissipated should be lumped to internal energy. Or, in other words, switching energy is said to

be dissipated only if logically useful transitions and / or hazards occur, and not when only

glitches occur, where a hazard is defined as a full-swing but logically useless output transition,

while a glitch is defined as a logically useless transition which does not swing fully rail-to-rail.

Further, when circuit simulation programs (such as SPICE) are used for measuring power

associated with an element such as a MOS transistor, which is capable of resistively dissipating

energy (rather than purely stores and releases energy), only resistive energy dissipation will be

reported. Therefore, energy supplied to the cell by the stimulus sources Vip1 and Vip2 will not be

included. If, instead of coming from independent voltage sources, those stimuli had instead come

from other logic cells (which are themselves capable of resistive power dissipation), than the

absolute values of PVip1 and PVip2 would have been the “switching energy” part of the power

dissipation of those logic cells, rather than being part of our NAND gate xhnd2_1’s power

dissipation. For this reason, as stated before, as far as determining the power dissipation of

xhnd2_1 is concerned with, PVip1 and PVip2 should simply be ignored.

Therefore, for any given period, we have:

Pxhnd2_1 = total energy dissipation of xhnd2_1
= average leakage power + average | PCload | + average internal power (5. 6)

Or, if we simply concentrate on the vicinity of an output transition and the associated

input transition (where the static energy could be neglected), and measuring energy instead of

power:

Exhnd2_1 = internal energy + | PCload | (5.7)

In other words, actually in our model, internal energy (power) represents not only short-

circuit power, but also all dynamic energy not already accounted for by the switching energy.

77

Let us evaluate specific cases of dynamic energy dissipations, again as shown in Figure

5. 2.

1. at t = 12 ns, a falling transition occurs at ip1. This does not cause a full logic transition at the

output (although actually some small glitch may occur). As we see in the curve (which is not

according to scale), this input transition causes a small increase in Pxhnd2_1. Hence, if we take

a time interval just from the start of input transition to just the end of the input and output

transitions (say, from 2 ns to 3 ns) and integrate Pxhnd2_1 w.r.t. time to obtain energies, the

quantity Ehnd2,ip1f obtained will be the internal energy of ip1 caused by falling ip1. Let us use

“hnd2” instead of “xhnd2_1” in the subscript for energy here, since the same quantity should

be obtained for any identical hnd2 under identical situation. Note that the output transitions

(glitches) are not visible in the curve for Vop in our graph, and we need to evaluate the SPICE

waveform to find them.

2. Similarly, we obtained the internal energy of ip1 caused by rising ip1 Ehnd2,ip1r, as well as

internal energy of ip2 caused by falling and rising ip2, Ehnd2,ip2f and Ehnd2,ip2r, through the

same procedures on the input transitions at 14 ns, 4 ns, and 6 ns, respectively.

3. Note that those four quantities found in 1 and 2 above are negligible in this case, and could

well have been approximated as 0 with no significant loss of modeling accuracy. This is true

for all basic combinational cells (i.e. ones which cannot be further subdivided into even

smaller cells). However, this is not generally true for sequential cells and complex

combinational cells, as will be apparent later.

4. at t = 2 ns, an input transition occurs at ip1, which causes rising transition at op. Therefore, if

we take a time interval just from the start of input transition to just the end of the input and

output transitions (say, from 2 ns to 3 ns) and integrate the power dissipations with respect to

time to obtain energies, the quantity

Ehnd2,r,ip1 = Ehnd2 - | ECload | - Ehnd2,ip1f (5.8)

is the rising transition energy of op caused by (falling) ip1.

78

5. Similarly, we may find the other internal energies as follows:

falling transition energy of op caused by (rising) ip1 caused by rising transition of ip1 at 8 ns

Ehnd2,f,ip1 = Ehnd2 - | ECload | - Ehnd2,ip1r (5.9)

rising transition energy of op caused by (rising) ip1 caused by falling transition of ip2 at 10

ns

Ehnd2,r,ip2 = Ehnd2 - | ECload | - Ehnd2,ip2f (5.10)

falling transition energy of op caused by (rising) ip1 caused by rising transition of ip2 at 16

ns

Ehnd2,f,ip2 = Ehnd2 - | ECload | - Ehnd2,ip2r (5.11)

6. Note that, as stated in 3, the quantities Ehnd2,ip1r, Ehnd2,ip1f, Ehnd2,ip2r, and Ehnd2,ip2f used in (4)

and (5) could simply be approximated as 0 here.

5. 2. Synopsys Model of Power Dissipation

Various power estimation tools, including the one provided in Synopsys’s Design

Analyzer, calculate power using models based on some modification of the following

algorithm:

1. Instead of directly calculating power itself, the tool computes the amount of energy

dissipated within the simulation duration, and then divides the computed amount of energy

with the simulation time.

2. For static power calculation, a cell is characterized by its static power dissipation, either

average or for a specific state (e.g. for output = 0 and for output = 1). Then, its static power

dissipation is calculated by dividing static energy dissipation with simulation time. For

example, if a NAND gate, over a simulation course of 110 ns, is on (output = 1) for 70 ns and

on (output = 0) for the other 40 ns, we have:

average static power = (70 × Pstatic,output=High + 30 × Pstatic,output=Low) / 110

79

3. For dynamic energy, cells are characterized by two things, namely: first, input/output

capacitance, which is also used for timing calculations; and second, by the amount energy

dissipated on logic transition on each pins on rise/fall transition when other pins are at a

certain logic value, or on rise/fall transition independent of logic states on other pins, or

simply on transition.

4. If an input pin of a cell experiences transition, it is assumed to dissipate a specified amount of

internal energy (not power). If this amount of energy is not specified, use some default. If

even this default is not specified, assume to be zero. If this pin experiences many transitions

during the simulation period, sum the contributions of all those transitions (which may or

may not be all identical – as it may depend on the states of some other pins as well).

5. If an output pin of a cell experiences transition, it is assumed to dissipate a specified amount

of internal energy (not power). If this amount of energy is not specified, use some default. If

even this default is not specified, assume to be zero. If this pin experiences many transitions

during the simulation period, sum the contributions of all those transitions (which may or

may not be all identical – as it may depend on the states of some other pins as well).

Additionally, any capacitance connected to the output pin may switch, and the contribution

of switching energy (= ½VDD
2×ΣC) should also be added in like manner.

6. If there are many individual cells (gates, flip-flops, etc) in the circuit, repeat the above steps

for all cells and sum the result together for the entire simulation period.

7. To obtain power dissipation (average), just divide the dissipated energy with simulation time.

Actually, the algorithms used by power estimation tools in Design Analyzer (or any

other power estimation tools) are necessarily more complicated than the aforementioned

algorithm, as those tools need to present the breakdown of power, for example, how many

percent occur in this part of the design, how many percent due to leakage power, etc. However,

the significant thins is that in characterizing a cell’s power dissipation for use in such tools, we

need to measure the following quantities:

1. Leakage power for each state, as well as (if a simpler model is desired) average for high / low

output, or even average for all possible states, assuming some probabilities for each state

(unless known to be otherwise, assume that all possible states are equally likely).

80

2. Amount of internal energy dissipated for rising or falling logic transition at every pin of the

cell. Note that this depends on some other factors as well, such as the transition delay of the

input waveform and the load capacitance driven by the output pins of the cells. For output

pins, if the logic value at an output pin can change due to transitions at several different input

pins, separate measurements have to be made for the output transitions at each of the input

pins, and an average will need to be obtained as well if a simpler Synopsys model is desired.

It is not necessary to find switching energy of the load capacitance (except to find

internal energy), as this will be calculated on power estimation time based on the load

capacitance (it is assumed that the cells are already characterized for their input capacitance, as

well as for their other timing parameters).

Further, note that the internal energy per transition (henceforth referred to simply as

“internal energy”) associated with a pin for a given cell is not a constant, but depends on,

among others:

− load conductance being driven by the cell

− shape of input waveform causing the internal energy dissipation

In Synopsys models for MOS, load conductance is represented by load capacitance, while

the shape of input waveform is quantified by input transition delay, namely the portion of the

propagation delay of the driving cell which occurs since the driving cell has to drive capacitive

load (see the chapter on timing and capacitance characterization). Since the relation between

internal power and load capacitance / input transition delay is not necessarily well characterized

by equations, the model is simply in the form of a lookup table, which may be one-dimensional

or two dimensional.

− in the one-dimensional model, the power is indexed against various values of input

waveform transition delay (for input pins) which may differ between rising and falling

transition delay, and against various values of load capacitances for output pins.

− in the two-dimensional model, the power is indexed against both input transition delay and

load capacitance (using 2-D matrices).

81

Regarding point (1) namely that actually it is energy and not power which is found first,

here let us use an example. Returning to Figure 5.2, and let us suppose that the waveforms had

arisen from a simulation; we then have the followings:

− Simulation runtime = 18ns

− Transitions on pin ip1: 4 transitions (2 rise, 2 fall)

− Transitions on pin ip2: 4 transitions (2 rise, 2 fall)

− Transitions on pin op: 4 4 transitions (2 rise, 2 fall)

− Capacitive load on pin op sees 4 transitions (whether rising or falling is immaterial)

In the following example, dynamic power will be computed. Let us suppose we have two

modeling alternatives for internal energy estimation:

Alternative 1:

− pin ip1 is characterized by rise energy and fall energy; let us called them er1 and ef1,

respectively

− pin ip2 is characterized by rise energy when ip1=0, rise energy when ip1=1, fall energy when

ip1=0, and fall energy when ip1=1; let us denote them as er2_0, er2_1, ef2_0, and ef2_1,

respectively.

− pin op is characterized by rise and fall energy; let us denote them as eopr and eopf,

respectively

Therefore:

Internal power = total internal energy / observation duration

= (ip1 internal energy + ip2 internal energy + op internal energy) / 18ns

= [(2×er1 + 2×ef1) + (1×er2_0 + 1×er2_1 + 1×ef2_0 + 1×ef2_1) + (2×eopr

+ 2×eopf)] / 18ns

Switching power = 4 × ½CloadVdd
2 / observation duration

Alternative 2:

− pin op only is characterized by average energy per transition; let us call this eop

82

Therefore:

Internal power = total internal energy / 18ns

= (ip1 internal energy + ip2 internal energy + op internal energy) / 18ns

= [0 + 0 + 4×eop] / 18ns

Switching power = 4 × ½CloadVdd
2 / 18ns

Note that alternative 2 is much simpler, yet in our case is practically just as accurate as

alternative 1, since for simple combinational cell input transition does not cause much power

dissipation unless it causes output transition (and therefore all internal energy parameters could

simply be lumped to output pins), and also because for our (apparently sufficiently long)

observation period, the number of rising transitions on output pin op are equal. However, these

may not be true for more complicated cells, which may exhibit internal switching which may not

propagate to output and hence their input energies are not negligible, or for shorter observation

periods, in which the number of rising and falling transitions may be unequal.

Note also that regardless of the modeling alternative chosen, the amount of switching

power dissipated should always be the same.

5. 3. Proposed Power Characterization Method

5. 3. 1. Static Power Measurement and Modeling

5. 3. 1. 1. Basic Method

The proposed modeling alternative for static power characterization of relatively simple

cells is by assigning one value for each possible output value for each cell. For example, for a

full adder cell, which has two output pins (output and carry-out) and therefore four possible

output values, we should have four possible leakage power values. This may not exhaustively

enumerate all possible values (as there are eight possible input combinations), but should be

adequate nonetheless. Note, however, that for simple combinational circuits, all possible input

83

combinations should be tried, although the output value used is only one for each possible

output. For sequential cell, this does not apply, and instead only the most likely input sequence

(i.e. “normal sequence” instead of reset for a flip-flop).

Most relatively simple cells in fact either one output pin only, or a pair of complementary

output pins (such as D flip-flop with both q and qb output), and therefore only two possible

output value.

The method for leakage power measurement is by simply forcing the cell to the desired

output value, and then after sufficiently long (10 ns after the stimulus is performed should be

enough), after all output transients die down, the measurement is performed. Note that for

sequential cells, for static power measurements purposes, the intended state must be reached in

“normal” way, e.g. for a flip-flop, must be attained through application of input and clock

instead of asynchronous reset and set.

5. 3. 1. 2. SPICE Example

As an example, the following fragment of SPICE code characterized the leakage power

of a 2-input NAND gate. This is performed by instantiating four NAND gates, each fed

permanently with one input combination, and then use .measure statement to measure power

dissipation of each NAND gate (each case). Note that here the four power dissipations are named

pstat00h, pstat01h, pstat10h, and pstat11l, respectively. Note also that the final

value is the last two (one each for high and low output) instead of the four aforementioned

values. The NAND gate used here is hnd2 from the 0.5µm library.

.param spl='3.3v' ** Use 3.3V Power Supply
vspstat spstat gnd spl

xstat00h spstat gnd gnd op00h hnd2 ** For input = 00
xstat01h spstat gnd spstat op01h hnd2 ** For input = 01
xstat10h spstat spstat gnd op10h hnd2 ** For input = 10
xstat11l spstat spstat spstat op11l hnd2 ** For input = 11

.measure pstat00h avg p(xstat00h) from=10ns to=11ns ** These time intervals

.measure pstat01h avg p(xstat01h) from=10ns to=11ns ** are arbitrary for

84

.measure pstat10h avg p(xstat10h) from=10ns to=11ns ** combinational cells

.measure pstat11l avg p(xstat11l) from=10ns to=11ns ** here we use 1 ns

.measure pstat_av param='(pstat00h+pstat01h+pstat10h+pstat11l)/4'

.measure pstat_avl param='(pstat00h+pstat01h+pstat10h)/3'

.measure pstat_avh param='pstat11l'

.tran 0.01ns 18ns

When the above lines were simulated, the results (in Watts) were as follows:

pstat00h= 3.2004E-13 from= 1.0000E-08 to= 1.1000E-08
pstat01h= 2.6363E-12 from= 1.0000E-08 to= 1.1000E-08
pstat10h= 6.4790E-12 from= 1.0000E-08 to= 1.1000E-08
pstat11l= 3.2261E-13 from= 1.0000E-08 to= 1.1000E-08
pstat_av= 2.4395E-12
pstat_avl= 3.1451E-12 ** this is the final result for high output
pstat_avh= 3.2261E-13 ** and this is for low output

5. 3. 2. Dynamic Power Measurement for Simple Combinational Cells

5. 3. 2. 1. Basic Method

For simple combinational cells, it is proposed that internal energy dissipation of cells be

characterized by average rising output energy and average falling output energy, assuming that

only one input changes, modeled as a function of load capacitance only, and that all inputs which

could change the output are equally likely to change. For example, for a 3-input NAND gate, if

two inputs are held at high (the non-controlling value), the other one input could change the

output. This is to be performed for each of those three inputs: the input is changed when the

other two are held at non-controlling value. At the end, we will have three values of energy

associated with rising output (one associated with the change in each input pin, respectively).

Then, they are simply averaged. The same steps are also to be performed with energy associated

with falling output. Note that here we ignore the possibility of several inputs changing at once.

This should cause only a limited loss of accuracy, if at all.

Also, the stimulus waveform should be representative. A waveform degrading circuit

should be used. This circuit should consist of an cell of the same type, singly or in chain, driving

a load in addition to the cell being tested. This should generate a more representative input slope.

85

5. 3. 2. 2. SPICE Example

The following example applies the abovementioned method to the 3-input NAND. To

measure the internal energies, we could simply instantiate the circuit in Figure 5. 3 and apply the

stimulus in Figure 5. 4, as in the following example. In this example, the internal energies of ip1

and ip2 are simply approximated as 0 as in point (3) and hence not measured, while the

integration interval of power (to obtain energy) is somewhat arbitrarily made to last 2 ns long,

starting from the start of input transition to 2 ns later. The NAND gate used is hnd2 from the

0.5µm library. Note that this is just an example – in actual measurement a different circuit and a

different measurement interval will be used.

VDD
ip1

ip2

ip3

op

ip1

ip2

ip3

opVDD

ip1

ip2

ip3

op
VDD

VDD

ip1

ip2

ip3

opVDD

VDD
ip1

ip2

ip3

op

ip1

ip2

ip3

op
VDD

VDD ip1

ip2

ip3

op

Vip1

Vip2

Vip3

Vip1a

Vip2a

Vip3a

Vip1b

Vip2b

Vip3b

Vopeval

ip1

ip2

ip3

op
Vip1b
Vip2b

Vip3b

Cload

The cell under evaluation

Extra load
connection not shown

Stimulus
sources

Waveform shaper / edge degrader

Figure 5. 3. hnd3 Power Characterization Circuit

86

Vip1

Vip2

Vip3

output

5 10 15 20 25 t (ns)

Figure 5. 4. Waveforms Used for hnd3 Power Characterization

Note again that internal energy of output pin is modeled as variable of load capacitance

only. Therefore, the slope of input waveform does not have to be well defined and, more

importantly, does not have to be the same for all cells, which in turn means that the load

capacitance driven by the cell driving the cell being evaluated (edge degraders) need not be well

defined. For that reason, they all drive the next stage directly here instead of via dependent

sources.

Note that the internal energy of the output pin is measured for eight different values of

load capacitance (in 0fF – 500fF range). It does not seem likely that this type of NAND gate will

have to drive much more than 10-20 loads, so this range seems adequate.

At any case, SPICE finds energy by integrating power dissipation with respect to time.

Here the measurement performed are:

Output Event Due to Power integration period (see.measure statements)

rise ip1 0 – 5 ns
fall ip1 5 – 10 ns
rise ip2 10 – 15 ns
fall ip2 15 – 20 ns
rise ip3 20 – 25 ns
fall ip3 25 – 30 ns

87

hnd3 Power Characterization

.inc hivsp

.param vspl='3.3v'
vdd dd gnd vspl

xhnd3buf1a dd ip1 dd dd ip1a hnd3
xhnd3buf1b dd ip1a dd dd ip1b hnd3

xhnd3buf2a dd dd ip2 dd ip2a hnd3
xhnd3buf2b dd dd ip2a dd ip2b hnd3

xhnd3buf3a dd dd dd ip3 ip3a hnd3
xhnd3buf3b dd dd dd ip3a ip3b hnd3

xload1 dd ip1b ip2b ip3b opld hnd3
xeval dd ip1b ip2b ip3b opeval hnd3

.param loadc='0fF'

cload opeval gnd loadc

xleakh dd gnd gnd gnd opleakh hnd3
xleakl dd dd dd dd opleakl hnd3

vip1 ip1 gnd pwl (0ns vspl 0.1ns 0 5ns 0 5.2ns vspl
+ 30ns vspl)
vip2 ip2 gnd pwl (0ns vspl 10ns vspl 10.1ns 0 15ns 0 15.2ns vspl
+ 30ns vspl)
vip3 ip3 gnd pwl (0ns vspl 20ns vspl 20.1ns 0 25ns 0 25.2ns vspl 30ns vspl)

.measure pleakh avg p(xleakh) from=0ns to=1ns

.measure pleakl avg p(xleakl) from=0ns to=1ns

.measure eleakh integral p(xleakh) from=0ns to=3ns

.measure eleakl integral p(xleakl) from=0ns to=3ns

.measure eswrise param='0.5*loadc*vspl*vspl'

.measure eswfall param='eswrise'

** Measurement of ip1 -> op energies

.measure edynrise1 integral p(xeval) from=5ns to=10ns

.measure edynfall1 integral p(xeval) from=0ns to=5ns

.measure eintrise1 param='edynrise1-eswrise'

.measure eintfall1 param='edynfall1-eswfall'

** Measurement of ip2 -> op energies

.measure edynrise2 integral p(xeval) from=15ns to=20ns

.measure edynfall2 integral p(xeval) from=10ns to=15ns

.measure eintrise2 param='edynrise2-eswrise'

.measure eintfall2 param='edynfall2-eswfall'

88

** Measurement of ip3 -> op energies

.measure edynrise3 integral p(xeval) from=25ns to=30ns

.measure edynfall3 integral p(xeval) from=20ns to=25ns

.measure eintrise3 param='edynrise3-eswrise'

.measure eintfall3 param='edynfall3-eswfall'

.measure eintriser param='(eintrise1+eintrise2+eintrise3)/3.0'

.measure eintfaller param='(eintfall1+eintfall2+eintfall3)/3.0'

** Finding the relative portions of each type of energy
.measure eleakav param='0.5*(eleakh+eleakl)'
.measure eswav param='0.5*(eswrise+eswfall)'
.measure einav
param='(eintrise1+eintfall1+eintrise2+eintfall2+eintrise3+eintfall3)/6'
.measure edynav param='eswav+einav'
.measure etotav param='edynav+eleakav'
.measure peleak param='100*eleakav/etotav'
.measure pedyn param='100*edynav/etotav'
.measure pesw param='100*eswav/etotav'
.measure pein param='100*einav/etotav'

.op

.option post nomod accurate

.option converge=1 gmindc=1e-12

.tran 0.025ns 32ns

.alter 1: for 25fF load:

.param loadc='25fF'

.alter 2: for 50fF load:

.param loadc='50fF'

.alter 3: for 75fF load:

.param loadc='75fF'

.alter 4: for 100fF load:

.param loadc='100fF'

.alter 5: for 150fF load:

.param loadc='150fF'

.alter 6: for 250fF load:

.param loadc='250fF'

.alter 7: for 500fF load:

.param loadc='500fF'

.end

When the above lines were simulated, the output file contained the following lines,

among others. Note that the results for internal power were energies (not power) in Joules.

.
** Leakage Power in W **

pleakh= 2.9351E-14 from= 0.0000E+00 to= 1.0000E-09
pleakl= 6.4523E-13 from= 0.0000E+00 to= 1.0000E-09

89

.

.
** Internal Energy (Rise and Fall Energies, respectively) of output pin **
.

eintriser= 4.8693E-13 ** for Cload = 0fF
eintfaller= 5.9903E-13

.

.
eintriser= 4.9262E-13 ** for Cload = 25fF
eintfaller= 5.9781E-13

.

.
eintriser= 5.9759E-13 ** for Cload = 50fF
eintfaller= 5.9678E-13

.

.
eintriser= 5.0171E-13 ** for Cload = 75fF
eintfaller= 5.9587E-13

.

.
eintriser= 5.0486E-13 ** for Cload = 100fF
eintfaller= 5.9593E-13

.

.
eintriser= 5.0913E-13 ** for Cload = 150fF
eintfaller= 5.9596E-13

.

.
eintriser= 5.1439E-13 ** for Cload = 250fF
eintfaller= 5.9613E-13

.

.
eintriser= 5.2007E-13 ** for Cload = 500fF
eintfaller= 5.9413E-13.

.

.

5. 3. 3. Dynamic Power Measurement for Sequential Cells and Combinational Cells
with Internal Loads

5. 3. 3. 1. Basic Method

As previously stated in previous discussions on simple combinational cells, we could

assume that unless a logic transition at input causes a logic transition at the cell’s output, the

amount of internal power / energy dissipated will be relatively negligible and could then simply

be assumed to be 0. However, this is not true of combinational cells with internal loads or of

90

sequential circuits, both of which may incur significant power dissipation due to input transitions

even if no logic transitions occur at primary outputs as a result.

As a simple example, let us use a hypothetical 4-input AND-OR (actually, NAND-

NAND) gate consisting of three NAND gate as in the following Figure 5. 5 :

Figure 5. 5. A 4-input AND-OR gate

Suppose we apply the stimuli shown in Figure 5.6, and as a result obtain the following

output and power waveform as shown:

Vip1

Vip2

Vip3

Vip4

Vin1

Vin2

Vop

xhnd2_1

xhnd2_2

xhnd2_3

91

Figure 5. 6. Input stimuli (Vip1 through Vip4) and circuit response. Note that while the first input
transition (at ip2) does not cause any significant power dissipation by the AND-OR gate, the

second transition (at ip1) does.

As seen in Figure 5.6, there are two transitions at input, neither of which causes logic

transitions at output. However, those two transitions cause significantly different amount of

energy dissipation. The rising transition at ip2 (the earlier one of the two transitions) not only

does not cause logic transitions at the primary output op, it in fact does not even cause logic

transitions at intermediary nodes in1 and in2. Therefore, while some glitch may occur at

intermediary nodes and primary output, the resulting dynamic energy dissipation should be

negligible. However, the latter one of the two input transition, namely the rising transition at

ip1, causes a logic transition at an internal load (falling transition at in1). The upper left NAND

gate, as a result of the input transition, exhibits an output transition and hence substantial energy

dissipation. Therefore, although the AND-OR gate does not exhibit any logic transition at its

output, a substantial energy dissipation occurs. This energy dissipation cannot be considered

zero. Hence, for all pins (inputs and outputs), internal energy must be measured and cannot

simply be considered zero.

Vip1

Vip2

Vip3

Vip4

Power

Vin1

Vin2

time

Vop

92

Figure 5. 7. A positive-edge triggered master-slave D flip-flop

Similarly, for sequential cells, some input transitions may exist which would cause

similar logic transition at some internal loads, and hence cause significant power dissipation,

without necessarily causing logic transition at output. For example, in the D flip-flop at Figure

5.7, an input change when clk = low will cause logic transition at the output of the first D latch,

and dissipates some internal energy, although that alone (without further change in clk) would

not cause output change.

In general, it is not possible to predict which cases of input change will or will not

dissipate energy, and therefore which cases to consider, without knowing the internal structure of

the cell.

Since any input transition may cause significant energy dissipation, both output- and

input-pin related internal energies must be measured, as follows:

− OUTPUT PINS: modeled as a function of load capacitance. The input slope is generated

using the smallest cell in the library – typically, the inverter – driving a “typical” load.

− INPUT PINS: modeled as a function of input transition delay, with output pins driving a

“typical” load.

Note that transition delay must be defined or measurable unambiguously. Additionally,

the transition delay of the input waveform should be the same for all cells in the library

whenever possible – and this demands that the load driven by the driving gate is always made the

same for all sequential cells (or combinational cells with internal load) tested. For the latter

ip

ck
q ip

ck
qclk

q

93

reason, it is proposed that the connection between the driving gates and the cells being evaluated

vis made indirectly via dependent sources, so that capacitance values could be specified in the

simulation file.

5. 3. 2. 2. SPICE Example

As an example, here an example SPICE file for characterizing the D flip-flop hdpq from

the 0.5µm library is presented. The schematic for the characterization circuit is as shown in

Figure 5.8 (next page)

It appears that hdpq is a master-slave flip-flop similar to the one previously shown in

Figure 5. 7. Hence, if input transition at ip occurs when ck = high, it would not cause a

substantial internal energy dissipation, since at that time the first high-active latch stage is

inactive. However, if the ip input changes wen clk=low, then a significant internal energy

dissipation would occur, since at that time the first latch stage is active.

Figure 5. 8. Circuit for Power Measurement for hdpq

Cromp

Vip1a = Vd0

Vintmd1

Vip1b =
Vintmd1

Vd0in

Vd0

Vck

Vip = Vd0in Vqtstd

Cqtstd

xfftstdi

Vckin

Cromp

Vip2a = Vck

Vintmd2

Vck = Vckin
Vip2a =
Vintmd2

stimulus sources

input edge shaper /
input transition delay
generator (for ip)

cell under test

ip

ck

q

Vip1 = Vd0l

Vintmd_int

Vip1a = Vop11

edge shaper / intrinsic delay generator

xbfref

xinbfd0i

xinbfcki

Vrefbf

input edge shaper / input transition delay generator (for ck)

94

Further, if the input ip changes when clk = high, such that ip and the output q of the flip-

flop are different, this in itself would not cause significant internal energy dissipation. However,

after the falling edge of the clock comes, the first latch stage will suddenly becomes active, and it

will respond to the already changed ip value accordingly; the falling clock edge, therefore, will

cause the output of the first latch to change. Hence, the dissipated energy will be much greater

than dissipated by falling edges of clock which come when input = output. Therefore, they need

to be measured separately.

Consequently, the following waveforms had been used in power measurements (see

Figure 5. 9)

Note that input Vd0 changes at 12, 44, 52, and 68 ns, respectively. As in measurement for

hnd2 power dissipation, a 3 ns integration interval is used. The measurements are:

Measurement From (ns) To (ns)

Internal energy due to d0 falls, clock low 44 47
Internal energy due to d0 rises, clock low 12 15
Internal energy due to clk falls, ip = 1, q = 1 (will not change output) 8 11
Internal energy due to clk falls, ip = 0, q = 0 (will not change output) 40 43
Internal energy due to clk falls, ip = 0, q = 1 (will change output after
rising edge)

56 59

Internal energy due to clk falls, ip = 1, q = 0 (will change output after
rising edge)

72 75

Internal energy due to clk rises, output low and unchanged, normal
operation

32 35

Internal energy due to clk rises, output high and unchanged, normal
operation

0 3

Internal energy due to q rises 16 19
Internal energy due to q falls 48 51

95

Figure 5. 9. Waveforms used in Power Measurements for hdpq

Note that since the internal energy depend on load capacitance, several different values of

input slope and / or output capacitance are used, namely:

For internal energies associated with output pins:

Input slope: created with Cromp = 75fF

Load capacitance: ALTERed among 0fF, 25fF, 50fF, 75fF, 100fF, 150fF, 250fF, 500fF

For internal energies associated with input pins:

Input slope: ALTERed among Cromp = 0fF, 35fF, 75fF, 150fF, 500fF, 1000fF

Load capacitance: 75fF

The SPICE file used was as follows (hdpq_pwr.sp):

hdpq Power Dissipation Parameters Characterization

.lib "hp05um_model" cmos_models

.inc hiv.sp

16 32 48 t (ns)

Vck

Vd0

Vckin

Vd0in

Vout

Pxfftstdi

|PCqtstd|

64 80

96

.inc hdpq.sp

** Subcircuit definitions
.subckt noninvbuf dd ip op
xinv dd ip intmd loadfreehiv
xbck dd intmd op loadfreehiv
.ends noninvbuf

.subckt nonloadhdpq dd d0 ck q
ed0 d0in gnd d0 gnd 1
eck ckin gnd ck gnd 1
xff dd d0in ckin q hdpq
.ends nonloadhdpq

.param vspl='3.3v'
vdd dd gnd vspl

** Leakage power measurement **
xffleak ddd d0l ckl opl hdpq
vd0l d0l gnd 0
vckl ckl gnd pwl (0ns 0 1ns 0 1.2ns vspl)
.measure plkh avg p(xffleak) from=0ns to=1ns ** leakage power, q = H
.measure plkl avg p(xffleak) from=55ns to=56ns ** leakage power, q = L

** Dynamic power measurement **
** Intrinsic input delay measurements - needed for characterizing some input
**
** power which may may depend on input slope **
xbfref dd ck refbf noninvbuf
.measure intrise trig v(ck) val='0.5*vspl' rise=1 targ v(refbf)
val='0.5*vspl'
+ rise=1
.measure intfall trig v(ck) val='0.5*vspl' fall=1 targ v(refbf)
val='0.5*vspl'
+ fall=1

xinbfd0i dd d0 d0in noninvbuf
.param d0c='0fF'
cd0 d0in gnd d0c
.measure d0trise trig v(d0) val='0.5*vspl' rise=1 targ v(d0in) val='0.5*vspl'
+ rise=1
.measure d0tfall trig v(d0) val='0.5*vspl' fall=1 targ v(d0in) val='0.5*vspl'
+ fall=1
.measure d0_dtr param='d0trise-intrise'
.measure d0_dtf param='d0tfall-intfall'

xinbfcki dd ck ckin noninvbuf
.param ckc='0fF'
cck ckin gnd ckc
.measure cktrise trig v(ck) val='0.5*vspl' rise=1 targ v(ckin) val='0.5*vspl'
+ rise=1
.measure cktfall trig v(ck) val='0.5*vspl' fall=1 targ v(ckin) val='0.5*vspl'
+ fall=1
.measure ck_dtr param='cktrise-intrise'
.measure ck_dtf param='cktfall-intfall'

xfftstdi dd d0in ckin qtstdi nonloadhdpq

97

.param qtstdic='0fF'
cqtstd qtstdi gnd qtstdic

vck ck gnd pulse (0v vspl 0ns 0.4ns 0.4ns 7.6ns 16ns)
vd0 d0 gnd pwl (0ns vspl 12ns vspl 12.4ns 0v 44ns 0v 44.4ns vspl 52ns vspl
+ 52.4ns 0v 68ns 0v 68.4ns vspl)

** Measuring internal energy due to d0 transition: **
** For rising d0 ... **
.measure eid0up integral p(xfftstdi.xff) from=12ns to=15ns
** and for falling d0 ... **
.measure eid0dn integral p(xfftstdi.xff) from=44ns to=47ns

** Measuring internal energy due to falling CLK edge: **
** For input = output : **
** For Output = H and Input = H... **
.measure eickfall_11 integral p(xfftstdi.xff) from=8ns to=11ns
** and for Output = L and Input = L... **
.measure eickfall_00 integral p(xfftstdi.xff) from=40ns to=43ns
** And the average of the (input = output) case ...
.measure eickfall_qc param='0.5*(eickfall_11+eickfall_00)'
** For input != output : **
** For Output = H and Input = L... **
.measure eickfall_10 integral p(xfftstdi.xff) from=56ns to=59ns
** and for Output = L and Input = H... **
.measure eickfall_01 integral p(xfftstdi.xff) from=72ns to=75ns
** and the average for (input != output) case ...
.measure eickfall_qt param='0.5*(eickfall_10+eickfall_01)'

** Measuring internal energy due to rising CLK without output change: **
** For Output = H ... **
.measure eickrise_qh integral p(xfftstdi.xff) from=0ns to=3ns
** and for Output = L ... **
.measure eickrise_ql integral p(xfftstdi.xff) from=32ns to=35ns
** and their average ..
.measure eickrise_av param='0.5*(eickrise_qh+eickrise_ql)'

** And (finally!) measuring internal power due to output transitions **
** First, switching energy per toggle **
.measure eswrise param='0.5*qtstdic*vspl*vspl'
.measure eswfall param='eswrise'
** Then measure the internal energy, for rising output ... **
.measure etot_qrise integral p(xfftstdi.xff) from=16ns to=19ns
.measure ei_qrise param='etot_qrise-eswrise-eickrise_ql'
** and for falling output ... **
.measure etot_qfall integral p(xfftstdi.xff) from=48ns to=51ns
.measure ei_qfall param='etot_qfall-eswfall-eickrise_qh'

** Simulation Directives **
.op
.option post nomod accurate
.option gmindc=1e-12
.tran 0.1ns 80ns

** ALTER statements to see the effects of transition time on internal power
** consumption. It was decided that internal power was more affected by
** input transition time (here represented by load capacitances for the

98

** previous stage) than by load capacitance. The output load of the FF
** was taken to be 75 fF - it seemed sensible, that's why.

.alter Load of Previous Stage = 0 fF

.param ckc='0fF'

.param d0c='0fF'

.param qtstdic='75fF'

.alter Load of Previous Stage = 35 fF

.param ckc='35fF'

.param d0c='35fF'

.param qtstdic='75fF'

.alter Load of Previous Stage = 75 fF

.param ckc='75fF'

.param d0c='75fF'

.param qtstdic='75fF'

.alter Load of Previous Stage = 150 fF

.param ckc='150fF'

.param d0c='150fF'

.param qtstdic='75fF'

.alter Load of Previous Stage = 500 fF

.param ckc='500fF'

.param d0c='500fF'

.param qtstdic='75fF'

.alter Load of Previous Stage = 1000 fF

.param ckc='1000fF'

.param d0c='1000fF'

.param qtstdic='75fF'

** ALTER statement for Q energy determination
.alter Load = 0 fF
.param ckc='75fF'
.param d0c='75fF'
.param qtstdic='0fF'
.alter Load = 25 fF
.param ckc='75fF'
.param d0c='75fF'
.param qtstdic='25fF'
.alter Load = 50 fF
.param ckc='75fF'
.param d0c='75fF'
.param qtstdic='50fF'
.alter Load = 75 fF
.param ckc='75fF'
.param d0c='75fF'
.param qtstdic='75fF'
.alter Load = 100 fF
.param ckc='75fF'
.param d0c='75fF'
.param qtstdic='100fF'
.alter Load = 150 fF
.param ckc='75fF'
.param d0c='75fF'
.param qtstdic='150fF'
.alter Load = 250 fF
.param ckc='75fF'
.param d0c='75fF'
.param qtstdic='250fF'

99

.alter Load = 500 fF

.param ckc='75fF'

.param d0c='75fF'

.param qtstdic='500fF'

.end

When the above SPICE file was simulated, the output contains the following lines,

among others:

.

.

.

load of previous stage = 0 ff
****** transient analysis tnom= 25.000 temp= 25.000

[Results for Cromp = 0fF, load of ff = 75fF, for measurement of input-pin-
associated internal energies]

plkh = 9.7683E-49 from= 0.0000E+00 to= 1.0000E-09
plkl = 1.9667E-12 from= 5.5000E-08 to= 5.6000E-08
intrise = 1.0308E-10 targ= 3.0308E-10 trig= 2.0000E-10
intfall = 1.5474E-10 targ= 8.3547E-09 trig= 8.2000E-09
d0trise = 1.0346E-10 targ= 4.4303E-08 trig= 4.4200E-08
d0tfall = 1.4757E-10 targ= 1.2348E-08 trig= 1.2200E-08
d0_dtr = 3.8077E-13
d0_dtf = -7.1639E-12
cktrise = 1.0308E-10 targ= 3.0308E-10 trig= 2.0000E-10
cktfall = 1.5474E-10 targ= 8.3547E-09 trig= 8.2000E-09
ck_dtr = 0.0000E+00 ** Transition delay of buffer = 0, since
ck_dtf = 0.0000E+00 ** Cromp = 0fF
eid0up = 1.7420E-12 from= 1.2000E-08 to= 1.5000E-08
eid0dn = 1.6908E-12 from= 4.4000E-08 to= 4.7000E-08
eickfall_11 = 5.9958E-13 from= 8.0000E-09 to= 1.1000E-08
eickfall_00 = 6.7957E-13 from= 4.0000E-08 to= 4.3000E-08
eickfall_qc = 6.3957E-13
eickfall_10 = 2.1418E-12 from= 5.6000E-08 to= 5.9000E-08
eickfall_01 = 2.3526E-12 from= 7.2000E-08 to= 7.5000E-08
eickfall_qt = 2.2472E-12
eickrise_qh = 7.1355E-13 from= 0.0000E+00 to= 3.0000E-09
eickrise_ql = 6.6549E-13 from= 3.2000E-08 to= 3.5000E-08
eickrise_av = 6.8952E-13
eswrise = 4.0837E-13
eswfall = 4.0837E-13
etot_qrise = 2.4707E-12 from= 1.6000E-08 to= 1.9000E-08
ei_qrise = 1.3969E-12
etot_qfall = 2.3577E-12 from= 4.8000E-08 to= 5.1000E-08
ei_qfall = 1.2358E-12

***** job concluded
****** Star-HSPICE -- 98.2 (980711) 16:14:46 01/07/2000 solaris

100

load of previous stage = 0 ff
****** job statistics summary tnom= 25.000 temp= 25.000

.

.

.

load = 100 ff

[Results for Cromp = 75fF, load = 100fF, for measurement of output-pin-
associated internal energies]

****** transient analysis tnom= 25.000 temp= 25.000

plkh = 9.7683E-49 from= 0.0000E+00 to= 1.0000E-09
plkl = 1.9666E-12 from= 5.5000E-08 to= 5.6000E-08
intrise = 1.0308E-10 targ= 3.0308E-10 trig= 2.0000E-10
intfall = 1.4668E-10 targ= 8.3467E-09 trig= 8.2000E-09
d0trise = 1.8102E-10 targ= 4.4381E-08 trig= 4.4200E-08
d0tfall = 1.9654E-10 targ= 1.2397E-08 trig= 1.2200E-08
d0_dtr = 7.7945E-11
d0_dtf = 4.9856E-11
cktrise = 1.8115E-10 targ= 3.8115E-10 trig= 2.0000E-10
cktfall = 1.9793E-10 targ= 8.3979E-09 trig= 8.2000E-09
ck_dtr = 7.8076E-11
ck_dtf = 5.1250E-11
eid0up = 1.6878E-12 from= 1.2000E-08 to= 1.5000E-08
eid0dn = 1.6694E-12 from= 4.4000E-08 to= 4.7000E-08
eickfall_11 = 5.6983E-13 from= 8.0000E-09 to= 1.1000E-08
eickfall_00 = 6.6026E-13 from= 4.0000E-08 to= 4.3000E-08
eickfall_qc = 6.1505E-13
eickfall_10 = 2.1077E-12 from= 5.6000E-08 to= 5.9000E-08
eickfall_01 = 2.2977E-12 from= 7.2000E-08 to= 7.5000E-08
eickfall_qt = 2.2027E-12
eickrise_qh = 6.8510E-13 from= 0.0000E+00 to= 3.0000E-09
eickrise_ql = 6.2537E-13 from= 3.2000E-08 to= 3.5000E-08
eickrise_av = 6.5523E-13
eswrise = 5.4450E-13
eswfall = 5.4450E-13
etot_qrise = 2.5573E-12 from= 1.6000E-08 to= 1.9000E-08
ei_qrise = 1.3874E-12
etot_qfall = 2.4449E-12 from= 4.8000E-08 to= 5.1000E-08
ei_qfall = 1.2153E-12

.

.

.

5. 3. 4. Dynamic Power Measurements for Tristate Cells

5. 3. 4. 1. Basic Method

101

As previously mentioned in the previous chapter on Timing and Capacitance

Characterization, one aspect of tristate cells which distinguishes them from non-tristate cells is

that tristate cells cannot operate properly in isolation, and therefore their output pins must be

connected to the output pins of at least one other tristate cell. Therefore, it is not always possible

to measure power dissipation of an individual tristate cell.

In general, it is proposed that characterizing tristate cells be performed in the same

manner characterizing sequential cells in that input energies must be measured independently

of output energies, and that for measurement of input energies, the transition delays of input

waveforms should be well defined.

For example, the circuit setup in characterizing a noninverting tristate buffer may be as in

Figure 5.10. The waveform used was as in Figure 5.11.

The waveform is redundant in that there are many transitions not used in power

characterization. This occurs as, since the tristate cell characterization was the last

characterization performed (as the characterization method was created last), timing and power

characterization activities were performed with the same test bench, and hence the waveforms

used also contain transitions used only for timing characterization.

102

Cload

xinp

xcmp

Vopm

Vds_sl

Veni_sl

Vipi_sl

Vipi_sl

Vcp_sl

Veni_sl

Vds_sl

Vip2 = Vcp

Vintmd2

Vip2b =
Vintmd2

Vcp_sl

Vcp

Vip

Vip_sl

Cslope

Vip1 = Vip

Vintmd1

Vip1b =
Vintmd1

Vip3 = Venbl

Vintmd3

Vip3b =
Vintmd3

xbfref

xinbfd0i

xinbfcki

Venbl

Vdsbl

Vip4 = Vdsbl

Vintmd4

Vip4b =
Vintmd4

Cslope

Cslope

Cslope

xbfref Vds_sl

Veni_sl

stimulus sources tristate buffers
under test

input edge shaper / input transition delay generator

Note: logically, Venbl = /Vdsbl

Figure 5. 10. Circuit for Power Characterization of Tristate Buffers

103

Veni

Vds_sl =
/Veni

Vip i

Vci_sl

output

706050403020100 74 t (ns)

ip changes -> op changes
energy measured here ip changes -> op constant

energy measured here

enable energy
measured here

disable energy
measured here

Figure 5. 11. Waveforms for Tristate Buffer Power Characterization

The energy measurement process is as follows:

1. First, input changes → output constant energy (let us call this ip energy) is measured.

i. ip rise energy when op=low: measured from 70 to 74 ns.

ii. ip rise energy when op=high: measured from 58 to 62 ns.

iii. ip rise energy average: taken as average of the above two measurement.

iv. ip fall energy obtained from similar measurement (from 54 ns to 58 ns and from 66 ns to

70 ns, respectively).

2. After ip energy is known, energy associated with output changes caused by ip changes is

calculated via the measurement of ip changes → op changes energies. This is the only op

energy measured (i.e. op energy changes due to enable/disable process is assumed to be zero,

apart from switching of output capacitances).

i. op rise energy: first, measure energy dissipated from 2 to 6 ns (caused both by ip rise

event and op rise event), then subtract ip rise energy average to obtain energy caused by

op rise only.

104

ii. op fall energy: first, measure energy dissipated from 14 to 18 ns (caused both by ip fall

event and op fall event), then subtract ip fall energy average to obtain energy caused by

op fall only.

3. Enable/disable energies could be measured before or after the above two measurement

(through en changes → op constant process):

i. First, enable (en rise) → output constant energy (let us call this enable energy) is

measured.

ii. en rise energy when op=low: measured from 26 to 30 ns.

iii. en rise energy when op=high: measured from 46 to 50 ns.

iv. enable energy average: taken as average of the above two measurement.

v. en fall energy (= disable energy) obtained from similar measurement (from 22 ns to 26 ns

and from 42 ns to 46 ns, respectively).

A SPICE file which performs the above measurements may employ the following

stimulus specification:

** stimuli
vip ip gnd pwl (2ns ss 2.2ns spl 14ns spl 14.1ns ss 38ns ss 38.2ns spl 54ns
spl
+ 54.1ns ss 58ns ss 58.2ns spl 66ns spl 66.1ns ss 70ns ss 70.2ns spl)
** ci for power characterization
vcp cp gnd pwl (2ns spl 2.1ns ss 14ns ss 14.2ns spl 18ns spl 18.1ns ss 38ns
ss
+ 38.2ns spl 62ns spl 62.1ns ss)
.param enbl='spl'
.param dsbl='ss'

** enabler/disabler
venbl en gnd pwl (6ns enbl 6.1ns dsbl 10ns dsbl 10.2ns enbl 22ns enbl 22.1ns
+ dsbl 26ns dsbl 26.2ns enbl 30ns enbl 30.1ns dsbl 34ns dsbl 34.2ns enbl
+ 42ns enbl 42.1ns dsbl 46ns dsbl 46.2ns enbl 50ns enbl 50.1ns dsbl)
vdsbl ds gnd pwl (6ns dsbl 6.2ns enbl 10ns enbl 10.1ns dsbl 22ns dsbl
+ 22.2ns enbl 26ns enbl 26.1ns dsbl 30ns dsbl 30.2ns enbl 34ns enbl 34.1ns
dsbl
+ 42ns dsbl 42.2ns enbl 46ns enbl 46.1ns dsbl 50ns dsbl 50.2ns enbl)

Further, given the following subcircuit definitions for edge-degrading buffers:

** subcircuit definitions
.subckt nlhiv dd ip op
eip ipi gnd ip gnd 1

105

xiv dd ipi op hiv
.ends nlhiv
.subckt nlbuf dd ip op
x1 dd ip ipi nlhiv
x2 dd ipi op nlhiv
.ends nlbuf
.subckt nlhbfzp dd ip en op
eip ipi gnd ip gnd 1
een eni gnd en gnd 1
xbz dd ipi eni op hbfzp
.ends nlhbfzp

the edge-degrading buffers and the power measurement circuit may be instantiated as follows:

** edge-degraded version of input stimuli
** for finding intrinsic delays of the cells driving the tristate buffers **
xip dd ip ipi nlbuf
xen dd en eni nlbuf
xipn dd ci cii nlbuf
xenn dd ds dsi nlbuf
** for slope delays and slope-dependent power dissipation
xips dd ip ipi_sl nlbuf
cips ipi_sl gnd sloperc
xens dd en eni_sl nlbuf
cens eni_sl gnd sloperc
xcis dd ci ci_sl nlbuf
ccis ci_sl gnd sloperc
xcps dd cp cp_sl nlbuf
ccps cp_sl gnd sloperc
xdss dd dsi ds_sl nlbuf
cdss ds_sl gnd sloperc

*** POWER MEASUREMENTS ***
** Essentially a copy of 1-to-1 enable delay measurement setup **
xinp dd ipi_sl eni_sl opm nlhbfzp
xcmp dd cp_sl ds_sl opm nlhbfzp
cpload opm gnd powerc

And since tristate buffers are modeled as having a separate output capacitance (see

previous chapter on Timing and Capacitance Characterization), the load driven by the tristate

buffer includes also the combined output capacitance of the two buffers. They could be measured

as follows:

** Cout determination **
vopcd opcd gnd pwl (0ns ss 4ns ss 4.1ns spl 8ns spl 8.2ns ss)
xopcdet1 dd dd gnd opcd hbfzp
xopcdet2 dd gnd gnd opcd hbfzp
.measure qopr integral i(vopcd) from=4ns to=8ns
.measure qopf integral i(vopcd) from=8ns to=12ns

106

.measure qop param='(abs(qopr)+abs(qopf))/4'

.measure cout param='qop/spl'

.measure tot_cout param='powerc+(2*cout)' ** actual total load

then the measurements are performed by the following statements:

FOR LOAD SWITCHING ENERGIES:

** switching energy at output - if at all occuring
.measure esout param='0.5*spl*spl*cout' *** Eswitch of Cout
.measure elout param='0.5*spl*spl*powerc' *** Eswitch of Cload
.measure esw param='esout+elout'
.measure eswr param='esw'
.measure eswf param='esw'

FOR ip ENERGIES:

** input energy - no output changes (disabled)
.measure eipr_l integral p(xinp.xbz) from=70ns to=74ns
.measure eipf_l integral p(xinp.xbz) from=66ns to=70ns
.measure eipr_h integral p(xinp.xbz) from=58ns to=62ns
.measure eipf_h integral p(xinp.xbz) from=54ns to=58ns
.measure eipr_av param='0.5*(eipr_l+eipr_h)'
.measure eipf_av param='0.5*(eipf_l+eipf_h)'
.measure eipr param='eipr_av' **** FINAL RESULTS - as synopsys expects
.measure eipf param='eipf_av'

FOR op ENERGIES:

** ip -> op energy
** op rise
.measure eiiport integral p(xinp.xbz) from=2ns to=6ns
.measure eiipor param='eiiport-elout-(2*esout)-eipr' ** FINAL RESULT
** op fall
.measure eiipoft integral p(xinp.xbz) from=14ns to=18ns
.measure eiipof param='eiipoft-elout-(2*esout)-eipf' ** FINAL RESUL

FOR enable / disable ENERGIES:

** enable/disable energy - output low
** enable
.measure eenl integral p(xinp.xbz) from=26ns to=30ns
** disable
.measure edsl integral p(xinp.xbz) from=30ns to=34ns
** enable/disable energy - output high
** enable
.measure eenh integral p(xinp.xbz) from=46ns to=50ns
** disable
.measure edsh integral p(xinp.xbz) from=50ns to=54ns
** enable / disable energy - average (FINAL RESULTS)
.measure eenav param='0.5*(eenh+eenl)'

107

.measure edsav param='0.5*(edsh+edsl)'

The output file contains the following lines, among others (comments added here).

eipr_l= 4.8131E-13 from= 7.0000E-08 to= 7.4000E-08
** ip rise energy, output low

eipf_l= 4.8619E-13 from= 6.6000E-08 to= 7.0000E-08
** ip fall energy, output low

eipr_h= 4.8142E-13 from= 5.8000E-08 to= 6.2000E-08
** ip rise energy, output high

eipf_h= 5.4265E-13 from= 5.4000E-08 to= 5.8000E-08
** ip fall energy, output high

eipr_av= 4.8137E-13 ** average rise energy
eipf_av= 5.1442E-13 ** average fall energy

.

.

.
eiipor= 3.8997E-13 ** op rise energy

.

.
eiipof= 3.8024E-13 ** op fall energy

.

.

.
eenl= 3.5112E-13 from= 2.6000E-08 to= 3.0000E-08

** enable energy, output low
edsl= 3.2793E-13 from= 3.0000E-08 to= 3.4000E-08

** disable energy, output low
eenh= 4.0107E-13 from= 4.6000E-08 to= 5.0000E-08

** enable energy, output high
edsh= 4.0362E-13 from= 5.0000E-08 to= 5.4000E-08

** disable energy, output high
eenav= 3.7609E-13 ** average enable energy
edsav= 3.6578E-13 ** average disable energy

To create a SYNOPSYS power model, the measurement process is repeated for several

different values of load capacitor and input transition delays. Due to relatively lower accuracy

caused by the need to operate at least two devices driving the same node, relatively cruder

granularity of load values are used here than for non-tristate gates. The conditions used are:

For 0.5µ5µ5µ5µm cells:

input edge degrader use hiv

For ip, en energies:

Input transition delay generated with 0fF, 35fF, 75fF, 150fF, 500fF, 1000fF load.

Tristate buffer drives 75fF load capacitor.

108

For output energies:

Input transition delay generated with 75fF load.

Tristate buffers drive 0fF, 100fF, 250fF, 500fF, and 1000fF load capacitors.

For 0.35µ5µ5µ5µm cells:

input edge degrader use winv_1

For ip, en energies:

Input transition delay generated with 0fF, 35fF, 75fF, 150fF, 500fF, 1000fF load.

Tristate buffer drives 50fF load capacitor.

For output energies:

Input transition delay generated with 50fF load.

Tristate buffers drive 0fF, 100fF, 250fF, 500fF, and 1000fF load capacitors.

Note that the actual value of load capacitance driven by the buffer is (Cload + 2×Cout), where

Cout is the output capacitance of one buffer.

5. 3. 4. 2. SPICE Example – Complete File

As an example, the following file was used for characterizing the hbfzp 0.5µm tristate

buffer.

hbfzp Power Characterization Measurements

.lib "hp05um_model" cmos_models

.inc hiv.sp

.inc hbfzp.l

** Power Supply
.param spl='3.3v'
.param ss='0v'
.param loaderc='75fF'
.param sloperc='75fF'
.param powerc='100fF'
vdd dd gnd spl

** subcircuit definitions
.subckt nlhiv dd ip op
eip ipi gnd ip gnd 1
xiv dd ipi op hiv

109

.ends nlhiv

.subckt nlbuf dd ip op
x1 dd ip ipi nlhiv
x2 dd ipi op nlhiv
.ends nlbuf
.subckt nlhbfzp dd ip en op
eip ipi gnd ip gnd 1
een eni gnd en gnd 1
xbz dd ipi eni op hbfzp
.ends nlhbfzp

** stimuli
vip ip gnd pwl (2ns ss 2.2ns spl 14ns spl 14.1ns ss 38ns ss 38.2ns spl 54ns
spl
+ 54.1ns ss 58ns ss 58.2ns spl 66ns spl 66.1ns ss 70ns ss 70.2ns spl)
** ci for power characterization
vcp cp gnd pwl (2ns spl 2.1ns ss 14ns ss 14.2ns spl 18ns spl 18.1ns ss 38ns
ss
+ 38.2ns spl 62ns spl 62.1ns ss)
.param enbl='spl'
.param dsbl='ss'

** enabler/disabler
venbl en gnd pwl (6ns enbl 6.1ns dsbl 10ns dsbl 10.2ns enbl 22ns enbl 22.1ns
+ dsbl 26ns dsbl 26.2ns enbl 30ns enbl 30.1ns dsbl 34ns dsbl 34.2ns enbl
+ 42ns enbl 42.1ns dsbl 46ns dsbl 46.2ns enbl 50ns enbl 50.1ns dsbl)
vdsbl ds gnd pwl (6ns dsbl 6.2ns enbl 10ns enbl 10.1ns dsbl 22ns dsbl
+ 22.2ns enbl 26ns enbl 26.1ns dsbl 30ns dsbl 30.2ns enbl 34ns enbl 34.1ns
dsbl
+ 42ns dsbl 42.2ns enbl 46ns enbl 46.1ns dsbl 50ns dsbl 50.2ns enbl)
** edge-degraded version of input stimuli
** for finding intrinsic delays of the cells driving the tristate buffers **
xip dd ip ipi nlbuf
xen dd en eni nlbuf
xipn dd ci cii nlbuf
xenn dd ds dsi nlbuf
** for slope delays and slope-dependent power dissipation
xips dd ip ipi_sl nlbuf
cips ipi_sl gnd sloperc
xens dd en eni_sl nlbuf
cens eni_sl gnd sloperc
xcis dd ci ci_sl nlbuf
ccis ci_sl gnd sloperc
xcps dd cp cp_sl nlbuf
ccps cp_sl gnd sloperc
xdss dd dsi ds_sl nlbuf
cdss ds_sl gnd sloperc

** Cout determination **
vopcd opcd gnd pwl (0ns ss 4ns ss 4.1ns spl 8ns spl 8.2ns ss)
xopcdet1 dd dd gnd opcd hbfzp
xopcdet2 dd gnd gnd opcd hbfzp
.measure qopr integral i(vopcd) from=4ns to=8ns
.measure qopf integral i(vopcd) from=8ns to=12ns
.measure qop param='(abs(qopr)+abs(qopf))/4'
.measure cout param='qop/spl'

110

** measurement of transition delays of drivers **
.measure tr_bi trig v(xip.ipi) val='0.5*spl' fall=1 targ v(ipi) val='0.5*spl'
+ rise=1
.measure tf_bi trig v(xip.ipi) val='0.5*spl' rise=1 targ v(ipi) val='0.5*spl'
+ fall=1
.measure tr_bs trig v(xips.ipi) val='0.5*spl' fall=1 targ v(ipi_sl)
+ val='0.5*spl' rise=1
.measure tf_bs trig v(xips.ipi) val='0.5*spl' rise=1 targ v(ipi_sl)
+ val='0.5*spl' fall=1
.measure dtr param='tr_bs-tr_bi'
.measure dtf param='tf_bs-tf_bi'

*** POWER MEASUREMENTS ***
** Essentially a copy of 1-to-1 enable delay measurement setup **
xinp dd ipi_sl eni_sl opm nlhbfzp
xcmp dd cp_sl ds_sl opm nlhbfzp
cpload opm gnd powerc

.measure tot_cout param='powerc+(2*cout)' ** actual total load

** switching energy at output - if at all occuring
.measure esout param='0.5*spl*spl*cout' *** Eswitch of Cout
.measure elout param='0.5*spl*spl*powerc' *** Eswitch of Cload
.measure esw param='esout+elout'
.measure eswr param='esw'
.measure eswf param='esw'

** enable/disable energy - output low
** enable
.measure eenl integral p(xinp.xbz) from=26ns to=30ns
** disable
.measure edsl integral p(xinp.xbz) from=30ns to=34ns
** enable/disable energy - output high
** enable
.measure eenh integral p(xinp.xbz) from=46ns to=50ns
** disable
.measure edsh integral p(xinp.xbz) from=50ns to=54ns
** enable / disable energy - average (FINAL RESULTS)
.measure eenav param='0.5*(eenh+eenl)'
.measure edsav param='0.5*(edsh+edsl)'

** input energy - no output changes (disabled)
.measure eipr_l integral p(xinp.xbz) from=70ns to=74ns
.measure eipf_l integral p(xinp.xbz) from=66ns to=70ns
.measure eipr_h integral p(xinp.xbz) from=58ns to=62ns
.measure eipf_h integral p(xinp.xbz) from=54ns to=58ns
.measure eipr_av param='0.5*(eipr_l+eipr_h)'
.measure eipf_av param='0.5*(eipf_l+eipf_h)'
.measure eipr param='eipr_av' **** FINAL RESULTS - as synopsys expects
.measure eipf param='eipf_av'

** ip -> op energy
** op rise
.measure eiiport integral p(xinp.xbz) from=2ns to=6ns
.measure eiipor param='eiiport-elout-(2*esout)-eipr' ** FINAL RESULT
** op fall
.measure eiipoft integral p(xinp.xbz) from=14ns to=18ns

111

.measure eiipof param='eiipoft-elout-(2*esout)-eipf' ** FINAL RESULT

.option post nomod accurate

.option dcstep=1e-3 gmindc=1e-12

.tran 0.025ns 74ns

.alter load=0fF ** in addition to Cout of tristate buffers themselves

.param powerc='0ff'

.param sloperc='75fF'

.alter load=100fF

.param powerc='100fF'

.param sloperc='75fF'

.alter load=250fF

.param powerc='250fF'

.param sloperc='75fF'

.alter load=500fF

.param powerc='500fF'

.param sloperc='75fF'

.alter load=1000fF

.param powerc='1000fF'

.param sloperc='75fF'

.alter sloper=0fF

.param powerc='75fF'

.param sloperc='0fF'

.alter sloper=35fF

.param powerc='75fF'

.param sloperc='35fF'

.alter sloper=75fF

.param powerc='75fF'

.param sloperc='75fF'

.alter sloper=150fF

.param powerc='75fF'

.param sloperc='150fF'

.alter sloper=500fF

.param powerc='75fF'

.param sloperc='500fF'

.alter sloper=1000fF

.param powerc='75fF'

.param sloperc='1000fF'

.end

The output file include the following lines :

.

.

.
qopr= -2.0359E-13 from= 4.0000E-09 to= 8.0000E-09
qopf= 1.9649E-13 from= 8.0000E-09 to= 1.2000E-08
qop= 1.0002E-13

112

cout= 3.0309E-14
tr_bi= 5.7215E-11 targ= 2.2023E-09 trig= 2.1451E-09
tf_bi= 4.2298E-11 targ= 1.4154E-08 trig= 1.4112E-08
tr_bs= 1.3488E-10 targ= 2.2799E-09 trig= 2.1451E-09
tf_bs= 8.9620E-11 targ= 1.4202E-08 trig= 1.4112E-08
dtr= 7.7663E-11
dtf= 4.7322E-11
tot_cout= 6.0618E-14
esout= 1.6503E-13
elout= 0.0000E+00
esw= 1.6503E-13
eswr= 1.6503E-13
eswf= 1.6503E-13
eenl= 3.5112E-13 from= 2.6000E-08 to= 3.0000E-08
edsl= 3.2793E-13 from= 3.0000E-08 to= 3.4000E-08
eenh= 4.0107E-13 from= 4.6000E-08 to= 5.0000E-08
edsh= 4.0362E-13 from= 5.0000E-08 to= 5.4000E-08
eenav= 3.7609E-13
edsav= 3.6578E-13
eipr_l= 4.8131E-13 from= 7.0000E-08 to= 7.4000E-08
eipf_l= 4.8619E-13 from= 6.6000E-08 to= 7.0000E-08
eipr_h= 4.8142E-13 from= 5.8000E-08 to= 6.2000E-08
eipf_h= 5.4265E-13 from= 5.4000E-08 to= 5.8000E-08
eipr_av= 4.8137E-13
eipf_av= 5.1442E-13
eipr= 4.8137E-13
eipf= 5.1442E-13
eiiport= 1.2014E-12 from= 2.0000E-09 to= 6.0000E-09
eiipor= 3.8997E-13
eiipoft= 1.2247E-12 from= 1.4000E-08 to= 1.8000E-08
eiipof= 3.8024E-13

.

.

.

113

Chapter VI

Example Design – Twin 4-bit Counter

As an example of the use of the strandard cell library constructed in accordance to our

guidelines, the following VHDL code had been synthesized. This code describes a twin 4-bit

counter.

Library IEEE;
use IEEE.std_logic_1164.all;
use work.all;

entity TOP_COUNT is
port(CLK,CON,RESET: in std_logic;

COUNT1: buffer std_logic_vector(3 downto 0);
COUNT2: buffer std_logic_vector(3 downto 0));

end;

architecture STRUCT of TOP_COUNT is
component SMB_COUNT

port(CLK,CON,RESET: in std_logic;
COUNT: buffer std_logic_vector(3 downto 0));

end component;
begin

U0 :SMB_COUNT Port Map (CLK, CON, RESET, COUNT1);
U1 :SMB_COUNT Port Map (CLK, CON, RESET, COUNT2);

end STRUCT;

library IEEE;
use IEEE.std_logic_1164.all;
package FINC is

function INC(X :STD_logic_VECTOR) return std_logic_VECTOR;

end FINC;
package body FINC is

function INC(X : std_logic_VECTOR) return std_logic_VECTOR is
variable XV: std_logic_VECTOR(X'LENGTH-1 downto 0);

begin
XV := X;
for I in 0 to XV'HIGH loop
if XV(I) = '0' then

XV(I) := '1';
exit;

else XV(I) := '0';
end if;

end loop;
return XV;

end INC;
end FINC;

114

library IEEE;
use IEEE.std_logic_1164.all;
use work.finc.all;
entity SMB_COUNT is

port(CLK,CON,RESET: in std_logic;
COUNT: buffer std_logic_vector(3 downto 0));

end SMB_COUNT;

architecture ALG of SMB_COUNT is
begin
process(CLK,CON,RESET)

begin
if RESET = '1' then
COUNT <= "0000";
elsif CLK'EVENT and CLK='1' then
if CON = '1' then

COUNT <= INC(COUNT);
end if;
end if;

end process;
end ALG;

The resulting circuit is shown in the layouts in the following page. The entire design fits

into a 1mm×1mm dice. The large dice is necessitated by the use of 13 I/O pads (8 for the

“COUNT” outputs, 3 for inputs, and 2 for Power and ground), and those large pads

(300µm×90µm) actually occupy most of the die. The core cells actually occupy only

approximately only 16% of the core area; it should realistically be possible to reduce core area

fourfold or fivefold if the design had, instead of being standalone, formed a part of a larger

design (and hence the pads may not be needed).

115

Figure 6. 1. Layout of the circuit produced.

116

Figure 6. 2. Part of the layout, showing two adjacent rows with shared ground (vss) rail. The
large cells in the right are D flip-flops with set and reset. Also shown are 2-input NAND gates.

117

Chapter VII

Summary

In this work, a set of guidelines for creating layout library for use with Synopsys

synthesis and simulation tools and Cadence Placement-and-Routing tools has been presented.

Further, a test circuit, namely a twin 4-bit counter, has been built using the resulting cell, hence

demonstrating the validity of the guidelines. Further improvements are still possible, however, as

the resulting cells may still be minimized in size, or the clock wire width may be increased to

allow for longer clock tracks, and hence larger designs. This matters not for our small example

design, whose minimal size is dictated by the number of I/O pads; however, such improvements

may well be helpful for designs of more realistic, much larger scale as normally encountered in

practice.

Additionally, a set of procedure for characterizing CMOS logic cells, for both their

timing and power dissipation parameters, are also presented. Since one goal of the work was to

devise a set of procedures which are both relatively simple to perform and relatively accurate, the

linear timing model is adopted, although this will limit the usability of the resulting procedure to

CMOS technology, which should not greatly reduce its value as the CMOS technology is

presently the most commonly used technology. Further improvements are still possible, however.

One possible area of improvement is in automatizing the entire characterization process. Another

area is in using a fully lookup-table timing model instead of the linear model, which would

enable the use of the characterization method on other technologies. The larger number of

simulations needed to properly characterize a cell using the lookup table model, however, may or

may not justify such an attempt.

118

Bibliography

1. Cadence Corp., EnvisiaTM LEF/DEF Language Reference, 1999

2. M. Cheng, M. Irwin, K. Li, and W. Ye, “Power Characterization of Functional Units,”

Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and

Computers, IEEE, Vol.1, pp. 775-779, 1999

3. M. A. Cirit, “Characterizing a VLSI Standard Cell Library,” Proceedings of Custom

Integrated Circuit Conference, IEEE, pp. 25.7.1-25.7.4, 1991

4. J.F. Croix and D.F. Wong, “A Fast and Accurate Technique to Optimize Characterization

Tables for Logic Synthesis,” Proceedings of Design Automation Conference, IEEE, pp. 337-

340, 1997

5. K. Eshraghian and N.H.E. Weste, “Principles of CMOS VLSI Design: A System Perspective,”

Addison-Wesley Publishing Company, 1994

6. Jing-Yang Jou, Jing-Yuan Lin and Wen-Zen Shen, “A Structure-Oriented Power Modeling

Technique for Macrocells,” IEEE Transactions on VLSI, Vol. 7 No. 3, pp. 380-391, 1999

7. Jing-Yang Jou, Jing-Yuan Lin and Wen-Zen Shen, “A Power Modeling and Characterization

Method for the CMOS Standard Cell Library,” Digest of Technical Papers, International

Conference on Computer Aided Design, IEEE, pp. 400-404, 1990

8. Dhimant Patel, “CHARMS: Characterization and Modeling System for Accurate Delay

Prediction of ASIC Designs,” Proceedings of Custom Integrated Circuit Conference, IEEE,

pp. 9.5.1-9.5.6, 1990

9. Synopsys Inc, Library Compiler User Guide, Volume II, Chapters I – III, 1999

119

Appendix I

Instructions for LEF File Generation Process

The abstract generator program abstract is used for generating LEF files. However, it is

used only for generating the part of LEF files which partially describes the geometry of the cells,

and not the complete LEF file. The technology description part of the LEF file must be created

manually.

A LEF file describing a library has two parts:

1. The technology description part, describing:

i. The layers available in the technology. Only layers involved in the PNR process need

to be included.

ii. Part of design rules which affects PNR operation, such as minimum metal width and

separation. It does not usually have to include, for example, rules for separation

between n-wells, as wells are not used as wires and usually cells are designed such that

no well separation violation should occur even between adjacent cells.

iii. Library designer-defined routing rules, such as the chosen value of routing pitch, the

preferred directions for metal tracks, or the geometric description of the via used (here

the term “via” is used to also include the metal extensions needed in both layers of

metals connected to the cut layer).

iv. (optional) Electrical properties of the layers in the library, such as maximum current

per cut, unit square resistance for the metal layer used.

2. The cell description part, describing the geometries comprising each cell:

i. The shape and size of cells, as defined by their respective boundaries

ii. The location of pins, and the layer those pins rest on, as well as geometric description

of other shapes in the same nodes

120

iii. Detailed descriptions of obstructions, namely shapes in conducting layers which do

not belong to any particular pins, but prohibit the passage of routing tracks in the same

layer.

The first part (technology description) must be generated either manually or with some

other tool. It is required by abstract as an input for generation of the second part. The generation

of geometric description of even a cell of modest complexity, such as a flip-flop with set/reset, is

tedious and error-prone if performed manually, hence the use of abstract or other similar tools is

mandatory.

Steps involved in generating LEF file:

1. Creation of technology description part of LEF file

2. Converting the LEF file into Envisia technology file using abstract.

3. Importing layout (in GDS format) and logical description of cell (in Verilog) into abstract.

4. Generating the complete LEF file.

In detail, this is performed with the following steps, which could also found in <cadence-

installation-dir>/<SE-installation-dir>/doc/abstract/abstractTOC.tgf, which could be viewed

using Cadence help browser openbook. The first two steps (for creating DPUX file from LEF

file) are unnecessary for those skilled in creating dpux file; however, the syntax of DPUX is

more complicated than that of LEF.

Have the LEF file ready. Refer to openbook document for information on LEF syntax,

EnvisiaTM LEF/DEF Language Reference at <cadence-installation-dir>/<SE-installation-

dir>/doc/ASICpnr/lefdefref/lefdefrefTOC.obk. A sample LEF file will also be included at the

end of this document.

Envisia technology file generation

121

It is assumed that no files with extension .dpux is present. By default, an abstract

technology file is named tech.dpux – this name is not arbitrary.

1. open the abstract generator with the following command in the UNIX prompt:

abstract &

2. The program abstract appears not to have been a fully finished product. Here, it will display

a rather cryptic message window, saying:

“There are errors in technology data. Please fix these before continuing with abstract.”

Press OK. This message here arrives because abstract is not instructed to read a

tech.dpux file, or abstract technology file. Which is just fine, for we intend to create one

instead.

3. Choose File →→→→ Technology

A new window (Technology File Editor) appears. Choose File →→→→ Import LEF file, and

choose the technology LEF file already prepared.

4. Choose Category : Library Path

5. Press Add button – then specify a path in which your abstract library will be stored. If the

directory specified does not exist abstract will create one. NOTE: This library is NOT the

same as the dfII/icfb layout library, and must not be stored in the same directory to avoid the

actual layout from getting overwritten with abstract generator data which is not readable by

the layout drawing tool and totally unusable for physical layout.

6. Choose Categories : Layer

7. Choose Mapping tab

Empty the map by selecting the number associated with the entry and press Delete button

Then press Map button and import the GDS2 mapping file

8. Select the Define tab and define the classes of poly, contact, via, and metal layers if not

already defined in the technology LEF file (apparent as their class will be shown as

“Unknown”). For other layers, which normally will not be used for routing, it is not critical

that their classes should be defined, and indeed better left UNKNOWN rather than defined

incorrectly.

9. Map definition is complete, check the correctness of grid rules, select Categories : Grid,

check whether the values are as intended. abstract seems to tend to get it wrong here. In

particular, offset and routing grid are often incorrect. Routing grid is another term for pitch.

122

10. After it is finished, save the file: File →→→→ Save as tech.dpux. This name is NOT

arbitrary.

11. Close Technology Editor window: File →→→→ Close.

12. Exit by closing the Abstract window (the ornate one – not the plain vanilla one) with File →→→→

Exit. Do not attempt to exit by closing the PCW / log info window first.

Complete LEF file generation

13. Open abstract again, with the following command:

abstract –tech . &

This will instruct abstract to read the tech.dpux file in the working directory – this is

why the name tech.dpux was chosen, here it is not arbitrary.

All operations should be done on Abstract window, and not on PCW window.

14. Choose File →→→→ Library. This should open the abstract library, or create one if it does not

already exist.

15. Import the layout file (in GDSII format) : File →→→→ Import →→→→ Layout. Import the GDSII

layout file. Choose “No Mapping” – this will preserve the case in the names of the instances

inside the cells. Note that this works best if the cells are flattened.

16. Import the logic information (Verilog or TLF) file : File →→→→ Import →→→→ Logical. Note that the

format must be specified correctly.

17. Select the cells for which LEF files need to be generated. To select all of them use Select →→→→

All.

Defining pins:

18. Select Flow →→→→ Pins. Then in the new window specify the layers in which labels for pins are

drawn. For example, if your pins are all metal1 pins and they are given label in metal2,

specify (metal2 metal1) in the topmost text box. The statement means that for all labels in

metal2, use the name specified by the label for the metal1 shape over which the label’s origin

is placed.

123

19. Select Boundary tab – and check whether any boundary location adjustments are needed.

For example, if the boundary needs to be located 0.4µm above the top and lower than the

bottom of the power pins (or the topmost/bottom metal shapes), enter the value 0.4 to the

Top and Bottom input text boxes in the Adjust Boundary By input frame. This will stretch

the cell boundary (relative to metal boundary) accordingly.

20. Press Run button and wait until pin generation step is completed. Most likely, there will be

warnings for parts of the cells being outside the boundary (due to parts of n- or p-well which

lies outside the border). They could be just ignored, as they will be abutted with the wells of

the same polarity inside the adjacent cells during the placement step.

Pin and obstruction extraction:

21. Choose Flow →→→→ Extract →→→→ Run.

Abstract generation:

22. Choose Flow →→→→ Abstract.

23. Choose the Overlap tab.

24. Choose as needed.

25. Choose the Grid tab – and correct any error in offset or routing grid if necessary. Seems like

abstract tends to get it wrong here.

26. Press Run.

Verification inside the abstract generation environment:

It is prudent to check whether the library is actually routable. Choose Flow →→→→ Verify.

This command will invoke Silicon Ensemble and construct a test circuit to test the routability of

the LEF files constructed from those cells. It will warn of potential problems.

Postprocessing:

For all pins that are used for power or ground, the SHAPE must be defined. The only exception

is the supply / ground for core cells provided by power or ground pads.

For core cells:

The SHAPE property should be defined as ABUTMENT. Hence, lines such as:

124

USE POWER ;

or

USE GROUND ;

should become

USE POWER ; SHAPE ABUTMENT ;

or

USE GROUND ; SHAPE ABUTMENT ;

respectively. This is usually already performed automatically by abstract generator. If not, it has

to be performed manually.

For pad or corner cells:

This is almost never performed manually by the abstract generator. Here the correct property

shape for VDD/ground ring pin is FEEDTHRU. Hence, the aforementioned two lines become:

USE POWER ; SHAPE FEEDTHRU ;

USE GROUND ; SHAPE FEEDTHRU ;

respectively.

Miscellaneous tips:

− Labels for pins should be in a nonconducting, physically nonexistent layers (such as text) so

that would not cause any design rule violations if design rule check (DRC) needs to be

performed inside a layout editor session. While such a DRC error is actually meaningless and

can simply be ignored, it may lead to confusion.

− Since pad cells are usually very large, if a “pin” layer is not present in the design kit being

used, it is likely to be impractical to use a full pad cell for LEF file generation. It is probably

better to simply use a dummy cell representing only the outermost edges of pin locations,

using thin wires – the same width as specified for normal tracks. The following picture gives

an example.

125

Figure A-1.1. Simplification of pad layout for LEF file generation.

LEF File Examples

Here two LEF FIle Examples are presented. The first example is a Technology LEF file. The

second one is the part of the macro definition for a D flip-flop produced by abstract (layout to be

provided).

Technology LEF File Example

VERSION 5.3 ;
NAMESCASESENSITIVE ON ;
BUSBITCHARS "[]" ;

UNITS
DATABASE MICRONS 1000 ;

END UNITS

LAYER nwell
TYPE MASTERSLICE ;

END nwell

LAYER pwell
TYPE MASTERSLICE ;

connection to
outside world

power and
ground rings

connection
to core

full layout
of pad cell

reduced layout
for LEF file generation

126

END pwell

LAYER cwell
TYPE MASTERSLICE ;

END cwell

LAYER pbase
TYPE MASTERSLICE ;

END pbase

LAYER active
TYPE MASTERSLICE ;

END active

LAYER tactive
TYPE MASTERSLICE ;

END tactive

LAYER ccd
TYPE MASTERSLICE ;

END ccd

LAYER nselect
TYPE MASTERSLICE ;

END nselect

LAYER pselect
TYPE MASTERSLICE ;

END pselect

LAYER poly
TYPE MASTERSLICE ;

END poly

LAYER polycap
TYPE MASTERSLICE ;

END polycap

LAYER elec
TYPE MASTERSLICE ;

END elec

LAYER glass
TYPE MASTERSLICE ;

END glass

LAYER pad
TYPE MASTERSLICE ;

END pad

LAYER sblock
TYPE MASTERSLICE ;

END sblock

LAYER open
TYPE MASTERSLICE ;

END open

127

LAYER pstop
TYPE MASTERSLICE ;

END pstop

LAYER highres
TYPE MASTERSLICE ;

END highres

LAYER m4prime
TYPE MASTERSLICE ;

END m4prime

the following three layers are (ab)used for labeling
text for core cells
res_id upper metal of pads (4, 2, others), cap_id metal1 of pads

LAYER text
TYPE MASTERSLICE ;

END text

LAYER res_id
TYPE MASTERSLICE ;

END res_id

LAYER cap_id
TYPE MASTERSLICE ;

END cap_id

LAYER cc
TYPE CUT ;
SPACING 0.60 ;

END cc

LAYER metal1
TYPE ROUTING ;
DIRECTION HORIZONTAL ;
PITCH 1.6 ;
WIDTH 0.8 ;
SPACING 0.8 ;
RESISTANCE RPERSQ 0.07 ;
CAPACITANCE CPERSQDIST 3.5e-05 ;

END metal1

LAYER via
TYPE CUT ;
SPACING 0.6 LAYER cc ;

END via

LAYER metal2
TYPE ROUTING ;
DIRECTION VERTICAL ;
PITCH 1.6 ;
WIDTH 0.8 ;
SPACING 0.8 ;
RESISTANCE RPERSQ 0.07 ;

128

CAPACITANCE CPERSQDIST 3.5e-05 ;
END metal2

LAYER via2
TYPE CUT ;
SPACING 0.6 ;

END via2

LAYER metal3
TYPE ROUTING ;
DIRECTION HORIZONTAL ;
PITCH 1.6 ;
WIDTH 0.8 ;
SPACING 0.8 ;
RESISTANCE RPERSQ 0.07 ;
CAPACITANCE CPERSQDIST 3.5e-05 ;

END metal3

LAYER via3
TYPE CUT ;
SPACING 0.8 ;

END via3

LAYER metal4
TYPE ROUTING ;
DIRECTION VERTICAL ;
PITCH 3.2 ;
WIDTH 1.2 ;
SPACING 2.0 ;
RESISTANCE RPERSQ 0.04 ;
CAPACITANCE CPERSQDIST 4e-05 ;

END metal4

SPACING
SAMENET cc cc 0.6 ;
SAMENET metal1 metal1 0.6 STACK ;
SAMENET cc via 0.0 STACK ;
SAMENET metal2 metal2 0.6 STACK ;
SAMENET via via2 0.0 STACK ;
SAMENET metal3 metal3 0.6 STACK ;
SAMENET via2 via3 0.0 STACK ;
SAMENET metal4 metal4 0.6 ;
SAMENET via via 0.6 ;
SAMENET via2 via2 0.6 ;
SAMENET via3 via3 0.8 ;

END SPACING

VIA M2_M1 DEFAULT
LAYER metal1 ;

RECT -0.400 -0.400 0.400 0.400 ;
LAYER via ;

RECT -0.200 -0.200 0.200 0.200 ;
LAYER metal2 ;

RECT -0.400 -0.400 0.400 0.400 ;
END M2_M1

VIA M3_M2 DEFAULT

129

LAYER metal2 ;
RECT -0.400 -0.400 0.400 0.400 ;

LAYER via2 ;
RECT -0.200 -0.200 0.200 0.200 ;

LAYER metal3 ;
RECT -0.400 -0.400 0.400 0.400 ;

END M3_M2

VIA M4_M3 DEFAULT
LAYER metal3 ;

RECT -0.400 -0.400 0.400 0.400 ;
LAYER via3 ;

RECT -0.200 -0.200 0.200 0.200 ;
LAYER metal4 ;

RECT -0.600 -0.600 0.600 0.600 ;
END M4_M3

VIARULE via_array GENERATE
LAYER metal1 ;

DIRECTION HORIZONTAL ;
OVERHANG 0.20 ;

LAYER metal2 ;
DIRECTION VERTICAL ;
OVERHANG 0.20 ;

LAYER via ;
RECT -0.20 -0.20 0.20 0.20 ;
SPACING 1.6 BY 1.6 ;

END via_array

VIARULE via2_array GENERATE
LAYER metal2 ;

DIRECTION VERTICAL ;
OVERHANG 0.4 ;

LAYER metal3 ;
DIRECTION HORIZONTAL ;
OVERHANG 0.4 ;

LAYER via2 ;
RECT -0.20 -0.20 0.20 0.20 ;
SPACING 3.2 BY 3.2 ;

END via2_array

VIARULE via3_array GENERATE
LAYER metal3 ;

DIRECTION HORIZONTAL ;
OVERHANG 0.4 ;

LAYER metal4 ;
DIRECTION VERTICAL ;
OVERHANG 0.4 ;

LAYER via3 ;
RECT -0.20 -0.20 0.20 0.20 ;
SPACING 2.4 BY 2.4 ;

END via3_array

VIARULE TURN1 GENERATE
LAYER metal1 ;

DIRECTION HORIZONTAL ;
LAYER metal1 ;

130

DIRECTION VERTICAL ;
END TURN1

VIARULE TURN2 GENERATE
LAYER metal2 ;

DIRECTION HORIZONTAL ;
LAYER metal2 ;

DIRECTION VERTICAL ;
END TURN2

VIARULE TURN3 GENERATE
LAYER metal3 ;

DIRECTION HORIZONTAL ;
LAYER metal3 ;

DIRECTION VERTICAL ;
END TURN3

VIARULE TURN4 GENERATE
LAYER metal4 ;

DIRECTION HORIZONTAL ;
LAYER metal4 ;

DIRECTION VERTICAL ;
END TURN4

END LIBRARY

Macro Example

The following picture is of the D latch previously shown in Figure 3.7, here repeated as it will be

used as an example of LEF File Generation.

131

Figure A-1.2. Layout of D Latch

The Resulting LEF macro is as follows:

MACRO dlrs
CLASS CORE ;
FOREIGN dlrs -1.600 -4.800 ;
ORIGIN 1.600 4.800 ;
SIZE 28.800 BY 33.600 ;
SYMMETRY X Y ;
SITE CoreSite ;
PIN q

DIRECTION OUTPUT ;
PORT

132

LAYER metal2 ;
RECT 10.800 15.600 24.400 16.400 ;

LAYER via ;
RECT 11.000 15.800 11.400 16.200 ;
RECT 14.200 15.800 14.600 16.200 ;
RECT 23.800 15.800 24.200 16.200 ;

LAYER metal1 ;
RECT 10.800 2.800 11.600 16.400 ;
RECT 14.000 15.600 14.800 21.200 ;
RECT 22.000 -0.400 22.800 2.000 ;
RECT 22.000 20.400 22.800 24.400 ;
RECT 22.000 1.200 24.400 2.000 ;
RECT 23.600 1.200 24.400 21.200 ;
RECT 22.000 20.400 24.400 21.200 ;

END
END q
PIN s

DIRECTION INPUT ;
PORT

LAYER metal1 ;
RECT 4.400 4.400 5.200 19.600 ;
RECT 6.000 1.200 6.800 5.200 ;
RECT 4.400 4.400 6.800 5.200 ;

END
END s
PIN qb

DIRECTION OUTPUT ;
PORT

LAYER metal1 ;
RECT 25.200 -0.400 26.000 24.400 ;

END
END qb
PIN vss

DIRECTION INOUT ;
USE GROUND ;
SHAPE ABUTMENT ;
PORT

LAYER metal1 ;
RECT -0.400 -3.600 0.400 0.400 ;
RECT 2.800 -3.600 3.600 0.400 ;
RECT 6.000 -3.600 6.800 0.400 ;
RECT 7.600 -3.600 8.400 0.400 ;
RECT 10.800 -3.600 11.600 0.400 ;
RECT 20.400 -3.600 21.200 0.400 ;
RECT 23.600 -3.600 24.400 0.400 ;
RECT -1.600 -3.600 27.200 -1.200 ;

END
END vss
PIN ck

DIRECTION INPUT ;
PORT

LAYER metal2 ;
RECT -0.400 9.200 16.400 10.000 ;

LAYER via ;
RECT -0.200 9.400 0.200 9.800 ;
RECT 15.800 9.400 16.200 9.800 ;

LAYER metal1 ;

133

RECT -0.400 1.200 0.400 21.200 ;
RECT 15.600 9.200 16.400 19.600 ;
RECT 17.200 2.800 18.000 10.000 ;
RECT 15.600 9.200 18.000 10.000 ;

END
END ck
PIN rb

DIRECTION INPUT ;
PORT

LAYER metal2 ;
RECT 12.400 12.400 14.800 13.200 ;
RECT 14.000 2.800 19.600 3.600 ;

LAYER via ;
RECT 12.600 12.600 13.000 13.000 ;
RECT 14.200 12.600 14.600 13.000 ;
RECT 14.200 3.000 14.600 3.400 ;
RECT 19.000 3.000 19.400 3.400 ;

LAYER metal1 ;
RECT 12.400 12.400 13.200 21.200 ;
RECT 9.200 20.400 13.200 21.200 ;
RECT 12.400 2.800 14.800 3.600 ;
RECT 14.000 2.800 14.800 13.200 ;
RECT 18.800 2.800 19.600 5.200 ;

END
END rb
PIN ip

DIRECTION INPUT ;
PORT

LAYER metal1 ;
RECT 2.800 1.200 3.600 21.200 ;

END
END ip
PIN vdd

DIRECTION INOUT ;
USE POWER ;
SHAPE ABUTMENT ;
PORT

LAYER metal1 ;
RECT -0.400 22.000 0.400 27.600 ;
RECT 2.800 22.000 3.600 27.600 ;
RECT 7.600 22.000 8.400 27.600 ;
RECT 9.200 22.000 10.000 27.600 ;
RECT 14.000 22.000 14.800 27.600 ;
RECT 20.400 22.000 21.200 27.600 ;
RECT 23.600 22.000 24.400 27.600 ;
RECT -1.600 25.200 27.200 27.600 ;

END
END vdd
OBS

LAYER cc ;
RECT 25.400 -0.200 25.800 0.200 ;
RECT 25.400 22.200 25.800 22.600 ;
RECT 25.400 23.800 25.800 24.200 ;
RECT 23.800 -2.200 24.200 -1.800 ;
RECT 23.800 -0.200 24.200 0.200 ;
RECT 23.800 1.400 24.200 1.800 ;
RECT 23.800 20.600 24.200 21.000 ;

134

RECT 23.800 22.200 24.200 22.600 ;
RECT 23.800 23.800 24.200 24.200 ;
RECT 23.800 25.800 24.200 26.200 ;
RECT 22.200 -0.200 22.600 0.200 ;
RECT 22.200 22.200 22.600 22.600 ;
RECT 22.200 23.800 22.600 24.200 ;
RECT 20.600 -2.200 21.000 -1.800 ;
RECT 20.600 -0.200 21.000 0.200 ;
RECT 20.600 1.400 21.000 1.800 ;
RECT 20.600 20.600 21.000 21.000 ;
RECT 20.600 22.200 21.000 22.600 ;
RECT 20.600 23.800 21.000 24.200 ;
RECT 20.600 25.800 21.000 26.200 ;
RECT 19.000 -0.200 19.400 0.200 ;
RECT 19.000 4.600 19.400 5.000 ;
RECT 19.000 17.400 19.400 17.800 ;
RECT 19.000 22.200 19.400 22.600 ;
RECT 19.000 23.800 19.400 24.200 ;
RECT 17.400 3.000 17.800 3.400 ;
RECT 17.400 22.200 17.800 22.600 ;
RECT 17.400 23.800 17.800 24.200 ;
RECT 15.800 -0.200 16.200 0.200 ;
RECT 15.800 3.000 16.200 3.400 ;
RECT 15.800 19.000 16.200 19.400 ;
RECT 15.800 23.000 16.200 23.400 ;
RECT 14.200 20.600 14.600 21.000 ;
RECT 14.200 23.000 14.600 23.400 ;
RECT 14.200 25.800 14.600 26.200 ;
RECT 12.600 -0.200 13.000 0.200 ;
RECT 12.600 3.000 13.000 3.400 ;
RECT 11.000 -2.200 11.400 -1.800 ;
RECT 11.000 -0.200 11.400 0.200 ;
RECT 11.000 3.000 11.400 3.400 ;
RECT 11.000 23.000 11.400 23.400 ;
RECT 9.400 -0.200 9.800 0.200 ;
RECT 9.400 20.600 9.800 21.000 ;
RECT 9.400 22.200 9.800 22.600 ;
RECT 9.400 23.800 9.800 24.200 ;
RECT 9.400 25.800 9.800 26.200 ;
RECT 7.800 -2.200 8.200 -1.800 ;
RECT 7.800 -0.200 8.200 0.200 ;
RECT 7.800 22.200 8.200 22.600 ;
RECT 7.800 23.800 8.200 24.200 ;
RECT 7.800 25.800 8.200 26.200 ;
RECT 6.200 -2.200 6.600 -1.800 ;
RECT 6.200 -0.200 6.600 0.200 ;
RECT 6.200 1.400 6.600 1.800 ;
RECT 6.200 22.200 6.600 22.600 ;
RECT 6.200 23.800 6.600 24.200 ;
RECT 4.600 -0.200 5.000 0.200 ;
RECT 4.600 19.000 5.000 19.400 ;
RECT 3.000 -2.200 3.400 -1.800 ;
RECT 3.000 -0.200 3.400 0.200 ;
RECT 3.000 1.400 3.400 1.800 ;
RECT 3.000 20.600 3.400 21.000 ;
RECT 3.000 22.200 3.400 22.600 ;
RECT 3.000 23.800 3.400 24.200 ;

135

RECT 3.000 25.800 3.400 26.200 ;
RECT 1.400 -0.200 1.800 0.200 ;
RECT 1.400 22.200 1.800 22.600 ;
RECT 1.400 23.800 1.800 24.200 ;
RECT -0.200 -2.200 0.200 -1.800 ;
RECT -0.200 -0.200 0.200 0.200 ;
RECT -0.200 1.400 0.200 1.800 ;
RECT -0.200 20.600 0.200 21.000 ;
RECT -0.200 22.200 0.200 22.600 ;
RECT -0.200 23.800 0.200 24.200 ;
RECT -0.200 25.800 0.200 26.200 ;

LAYER via ;
RECT 22.200 12.600 22.600 13.000 ;
RECT 19.000 6.200 19.400 6.600 ;
RECT 19.000 19.000 19.400 19.400 ;
RECT 17.400 -0.200 17.800 0.200 ;
RECT 17.400 12.600 17.800 13.000 ;
RECT 15.800 6.200 16.200 6.600 ;
RECT 15.800 22.200 16.200 22.600 ;
RECT 11.000 22.200 11.400 22.600 ;
RECT 6.200 19.000 6.600 19.400 ;
RECT 4.600 3.000 5.000 3.400 ;
RECT 1.400 6.200 1.800 6.600 ;

LAYER metal1 ;
RECT 20.400 18.800 22.800 19.600 ;
RECT 22.000 2.800 22.800 19.600 ;
RECT 20.400 2.800 22.800 3.600 ;
RECT 20.400 18.800 21.200 21.200 ;
RECT 20.400 1.200 21.200 3.600 ;
RECT 15.600 1.200 21.200 2.000 ;
RECT 15.600 -0.400 16.400 2.000 ;
RECT 17.200 -0.400 19.600 0.400 ;
RECT 18.800 6.000 19.600 18.000 ;
RECT 18.800 18.800 19.600 24.400 ;
RECT 17.200 12.400 18.000 24.400 ;
RECT 15.600 2.800 16.400 6.800 ;
RECT 15.600 22.000 16.400 23.600 ;
RECT 9.200 1.200 13.200 2.000 ;
RECT 12.400 -0.400 13.200 2.000 ;
RECT 9.200 -0.400 10.000 2.000 ;
RECT 10.800 22.000 11.600 23.600 ;
RECT 6.000 18.800 6.800 24.400 ;
RECT 4.400 -0.400 5.200 3.600 ;
RECT 1.200 -0.400 2.000 24.400 ;

LAYER metal2 ;
RECT 17.200 12.400 22.800 13.200 ;
RECT 1.200 6.000 19.600 6.800 ;
RECT 6.000 18.800 19.600 19.600 ;
RECT 4.400 -0.400 18.000 0.400 ;
RECT 4.400 -0.400 5.200 3.600 ;
RECT 10.800 22.000 16.400 22.800 ;

END
END dlrs

136

Vita of Jos Budi Sulistyo

Jos Budi Sulistyo was born in Jember, Indonesia. He obtained his B.S. degree in

Electrical Engineering from Texas A&M University in 1993. Following his graduation, he joined

the Indonesian National Atomic Energy Agency, where he is currently a staff member.

In August 1998, Jos joined Dr. Ha’s research group at the Bradley Department of

Electrical and Computer Engineering, Virginia Polytechnic Institute and State University.

Currently, he plans to continue his education to the PhD level. His current research interest is

development of low power standard cell.

