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ABSTRACT 
 

The highly-social plateau pika (Lagomorpha: Ochotona curzoniae) 

excavates vast burrow complexes in alpine meadows on the Tibetan Plateau.  

Colonies of over 300 individuals/ha have been reported.  As an ecosystem 

engineer, their burrowing may positively impact ecosystem health by increasing 

plant species diversity, enhancing soil mixing, and boosting water infiltration.  

However, pikas are commonly regarded as pests, and are heavily poisoned 

throughout their range.  The underlying assumption of eradication programs is 

that eliminating pikas will improve rangeland quality and decrease soil erosion. 

This dissertation explores the link between plateau pikas and the alpine 

meadow ecosystem in Qinghai Province, PRC.  This research uses both 

comparative field studies and theoretical modeling to clarify the role of pika 

disturbance.  Specifically, these studies quantify the impact of pikas on nutrient 

cycling (via nutrient concentrations of vegetation and soil), hydrology (via water 

infiltration), local landscape properties (via spatial pattern description), and 

vascular plant communities (via species richness and composition).  The 

competitive relationship between livestock and pikas is examined with a 

mathematical model. 

Results of this research indicate that pika colonies have both local and 

community level effects on water infiltration and plant species richness.  A major 

contribution of pika disturbance is increased spatial heterogeneity, which likely 

underlies differences in the plant community.  These findings suggest that the 

positive impact of plateau pikas on rangeland resources has been undervalued.  

In concurrence with other studies, this work concludes that plateau pikas provide 

valuable ecosystem services on the Tibetan Plateau. 
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CHAPTER 1 
Plateau pikas: an overlooked keystone engineer on the Tibetan plateau 

INTRODUCTION 

Conflict between natural resource users is common in most rangeland 

systems.  In many areas, humans and their domestic livestock must share a 

limited forage resource with native herbivores.  Typically, native species that 

compete with livestock are regarded as pests.  For example, in the United States 

the prairie dog has been exterminated over 95% of its former range (Forrest 

2005) because of allegations linking it to rangeland degradation (Lybecker et al. 

2002).  On the other hand, mounting evidence points to the status of the prairie 

dog as a keystone species (Kotliar et al. 1999), which plays an important role in 

maintaining the short-grass prairie ecosystem (Kotliar 2000, Miller et al. 2007). 

The research outlined below examines an analogous issue in China’s far 

west: the control (poisoning) of plateau pikas (Ochotona curzoniae), a species 

endemic to Tibetan plateau rangelands.  While increasingly large sums1 have 

been spent on pika eradication (Ma 2006), more and more evidence points to the 

critical importance of these animals to their native habitat.  The plateau pika may 

in fact function as both as a keystone species (Smith and Foggin 1999) and 

habitat (allogenic) engineer (Lai and Smith 2003).  My work builds on previous 

research detailing this animal’s significance to terrestrial and avian predators 

(Smith and Foggin 1999, Lai and Smith 2003).  However, I focus on the influence 

of plateau pikas on the plant community and surrounding environment.  Goals of 

this work are to clarify the keystone role of pikas in respect to the plant 

community and to evaluate the consequences of pika poisoning on this alpine 

ecosystem.  Specifically, I quantify the impact of pikas on nutrient cycling (via 

                                                
1 US $925 million 
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nutrient concentrations of vegetation and soil), hydrology (via water infiltration 

rates), local landscape properties (via spatial pattern description), and vascular 

plant communities (via species richness and composition).  Finally, I explore the 

competitive relationship between livestock and pikas using mathematical models.  

Each of these topics is discussed in detail in the subsequent chapters. 

The purpose of this chapter is to provide a contextual framework by 

presenting background on the study system and a review of relevant research.  

The first section begins with a brief physical description of the plateau pika, 

followed by an account of its phylogeny, historical range, and relationship within 

the small mammal community.  I also present the plateau pika’s habitat—the 

Tibetan plateau—including its geologic history and biogeographic features.  

Afterwards, I give an account of historical and present-day interactions between 

pikas and humans.  In the second major section, I discuss the biological 

importance of plateau pikas.  I review the keystone species concept and present 

research on North American prairie dogs as a framework for investigating the 

plateau pika’s ecological impact.  Lastly, I place my research in context with other 

ecological studies on burrowing mammals. 

STUDY SYSTEM 

The plateau pika 

The plateau pika, Ochotona curzoniae (Hodgson, 1858), also called the 

black-lipped pika, is a small (130 – 195 g) mammal that naturally occurs in large 

colonies on the alpine grasslands2 of the Tibetan plateau (Smith and Xie 2008) 

                                                
2 I use alpine grasslands to refer broadly to mountain meadow, prairie and steppe.  
The biomes of the Tibetan plateau are discussed in detail in the next section. 
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(Figure 1.1).  All pikas belong to Order Lagomorpha3, a group that includes 

rabbits and hares, but not rodents (Hoffmann and Smith 2005).  A distinct 

difference between plateau pikas and North American pikas is that the latter are 

rock-dwelling, while the former excavate extensive underground burrow systems 

in open grassland.  Although fossorial, pikas remain above-ground most of the 

day to feed (Smith and Wang 1991). 

Plateau pikas live in highly social family groups, averaging three adults 

and 11 juveniles (Dobson et al. 1998, 2000).  They can exist in a variety of 

mating systems, including polygynous, polyandrous, promiscuous and 

monogamous (Smith and Wang 1991, Dobson et al. 2000).  Females give birth to 

three to five litters of two to eight young in the summer months (Smith and Xie 

2008), and males provide relatively high levels of parental care (Smith and Wang 

1991, Dobson et al. 1998).  At the end of the summer, colonies have known to 

accumulate 300 individuals/ha (Smith and Wang 1991).  However, over-winter 

mortality is high, with as low as 5% (Wang and Smith 1988) to 23% (Dobson et al. 

1998) survival.  In spring during a brief window before the mating season, 

approximately 40% of individuals (both male and female) disperse (Smith and 

Wang 1991, Dobson et al. 1998).  However, dispersers typically travel only one 

to two family ranges from their birth site (Dobson et al. 1998, 2000). 

All living pikas belong to the genus Ochotona and are found in the 

northern hemisphere (Smith et al. 1990).  Only two species inhabit North America 

(Table 1.1).  Within China, the diversity of pikas is relatively high – 24 out of the 

30 extant species are indigenous, and 12 are endemic (Smith and Xie 2008).  

                                                
3 In spite of this, plateau pikas are frequently referred to as rodents, even in the 
scientific literature (e. g. Wang and Fu 2004). 
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However, the phylogeny of pikas is far from clear.  Order Lagomorpha has been 

alternatively placed with such diverse groups as rodents (Liu and Miyamoto 1999, 

Douzery and Huchon 2004), primates (Graur et al. 1996), tree shrews (Schmitz 

et al. 2000) and elephant shrews (McKenna 1975), among others.  Most 

frequently lagomorphs are paired with rodents in the Superorder Glires (Douzery 

and Huchon 2004, Hoffmann and Smith 2005).   

Within Lagomorpha, the families Ochotonidae and Leporidae diverged as 

early as the Oligocene (Smith et al. 1990).  Pikas evolved in high latitudes and / 

or altitudes and likely invaded the plateau region multiple times (Yu et al. 2000, 

Niu et al. 2004).  It is widely accepted that pikas appeared first in Asia and later 

dispersed to North America, probably in the late Pliocene (Mead 1987, Chapman 

and Flux 2008).  The Pliocene is also the time in which the various pika 

subgroups diverged (Yu et al. 2000, Niu et al. 2004).  The diversification of pikas 

was originally thought to coincide with the Tibetan plateau uplift (Yu et al. 1992).  

However, due to recent reevaluation of the rising of the plateau (Rowley and 

Currie 2006, Wang et al. 2008a; see next section), this conclusion should be 

reevaluated. 

The evolutionary relationship between individual species is also a subject 

of debate (Hoffmann and Smith 2005).  Ecologically, pikas fall into one of two 

types: a long-lived and asocial type with low density and fecundity that lives in 

talus or rocky slopes, and a short-lived and highly social type that inhabits open 

grassland and has fluctuating density and fecundity (Smith et al. 1990).  However, 

this ecological division may not reflect evolutionary history. 

Molecular analyses have divided genus Ochotona into two to five groups, 

or subgenera (Smith et al. 1990, Yu et al. 1992, Yu et al. 2000, Niu et al. 2004), 
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which are not yet recognized in the current taxonomy (Hoffmann and Smith 

2005).  Yu et al. (1992) described three groups of pikas: the shrub-dwelling group; 

the rock/talus-dwelling group; and the steppe-dwelling group, which includes O. 

curzoniae.  Yu et al. (2000) placed O. curzoniae within subgenus Ochotona, a 

shrub-steppe group, which was separate from subgenus Pika, the northern group; 

and subgenus Conothoa, the mountain group.  Niu et al. (2004) supports five 

groups: the northern group; the surrounding Qinghai-Tibet plateau group, the 

central Qinghai-Tibet plateau group (with O. curzoniae), the Yellow river group, 

and the Central Asia group.  Thus, O. curzoniae has been placed variously in a 

steppe-dwelling group, a shrub-steppe group, and a central Qinghai-Tibet 

plateau group.  Due to their similar ecologies, O. curzoniae and O. dauurica4 are 

usually grouped together.  They were once thought to belong to the same 

species, but are now regarded as separate (Yu et al. 2000). 

Aside from pikas, only two other lagomorphs are currently found on the 

Tibetan plateau – the woolly hare, Lepus oiostolus (Hodgson, 1840) and the less 

common Yunnan hare, Lepus comus (Allen, 1927), in the far east (Smith and Xie 

2008).  Neither of these animals forms large colonies.  In addition, several 

species of burrowing rodents have ranges that overlap the plateau pika.  The 

Chinese zokor, Eospalax fontanierii (Milne-Edwards, 1867), is a strictly fossorial 

endemic rodent (Smith and Xie 2008).  Both Himalayan marmots, Marmota 

himalayana (Hodgson, 1841), and lacustrine voles, Microtus limnophilus5 

(Büchner, 1889) are widespread, but not colonial (Smith and Xie 2008).  Other 

                                                
4 O. dauurica is occasionally misspelled O. daurica. 

5 This species is often misidentified as the root vole, Microtus oeconomicus 
(Pallas, 1776), found only in northern Xinjiang and Inner Mongolia (2008). 
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small mammals of note include Przewalski’s steppe vole, Eolagurus przewalskii 

(Büchner, 1889), Blyth’s mountain vole, Phaiomys leucurus (Blyth, 1863) and six 

species of hamster (Smith and Xie 2008). 

While the Tibetan plateau clearly supports a diversity of small mammals, 

the plateau pika is by far the most abundant.  Their colonies can reach densities 

of 300 individuals/ha (Smith and Xie 2008).  Indeed, early European explorers 

described these regions as “Ochotona-steppe” due to the predominance of pika 

burrows on the landscape (Schäfer 1938).  Thus, despite their small size, plateau 

pikas can collectively exert a large influence over their community and habitat.  

This relationship will be discussed further with pika ecology. 

The Tibetan plateau 

The range of the plateau pika is nearly synonymous with the extent of the 

Tibetan plateau6 (Figure 1.2).  The Tibetan plateau covers much of western 

China as well as parts of Nepal, India and Bhutan.  Within China the plateau 

extends primarily over Qinghai and Tibet, but also includes areas in southern 

Xinjiang, western Sichuan and northern Yunnan7. 

The Tibetan plateau covers 2.5 million km2, or approximately one quarter 

of China’s land area (Ekvall 1968, Miller 1995, Miller and Craig 1997).  With an 

average height close to 4500 m and multiple peaks above 6000 m (Yang 1992), 

most of the plateau is considered alpine (Aldenderfer and Zhang 2004).  

However, according to According to Miehe’s (2008) hypothesis, much of the 

Kobresia pygmaea meadow typical of this region was once open forest.  If 

                                                
6 Also called the Qinghai-Xizang (Tibet) plateau. 
 
7 The full names of these administrative units in the People’s Republic of China 
are Qinghai Province, Tibet Autonomous Region, Xinjiang Uyghur 
Autonomous Region, Sichuan Province and Yunnan Province, respectively. 
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correct, and the current grasslands are the result of anthropogenic livestock 

grazing, they would not fit a strict interpretation of “alpine” defined as regions 

above the natural treeline (Körner 2003).  I follow Aldenderfer and Zhang’s (2004) 

definition of alpine as regions over 4000 m in altitude. 

The plateau is bordered by high mountain ranges on all sides – the Qilian 

in the northeast, Himalaya in the south, Karakoram in the west, and Kunlun in the 

north.  Additionally, several mountain ranges fall inside the plateau, such as the 

Nyaingen tanglha, Tanggula, and Anyemaqin.  Over 2000 saline lakes are 

scattered across the plateau; one of these, Qinghai lake, is the largest in China 

(Aldenderfer and Zhang 2004).  Other features of the plateau include the Yarlung 

Tsangpo valley (3700-3900 m) in the south, the sparsely vegetated Chang Tang 

desert (4300-5000 m) to the west, and two basins in the northeast (the semi-

desert Qaidam basin at 2600-3000 m, and the wetter Qinghai lake basin at 3200 

m) (Aldenderfer and Zhang 2004).  

Most of these mountain ranges, as well as the plateau, were created 

during the collision of the Indian subcontinent with Asia in the vicinity of Mount 

Everest approximately 50 million years ago (mya) (Zhu et al. 2005).  However, 

the timing and nature of the uplift are controversial, and several models of this 

continental collision have been proposed.  Though some authors propose that 

this crustal thickening occurred as early as 100 – 50 mya (Kapp et al. 2005), 

even before continental collision, other authors propose a later date.  Until 

recently, the rising of the plateau was placed around 8 – 10 mya (Garzione et al. 

2000, Rowley et al. 2001).  However, more current evidence points to the plateau 

reaching its current height 40 – 35 mya (Rowley and Currie 2006, Wang et al. 

2008a).  Once the initial height was reached, the plateau remained relatively 
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constant (Royden et al. 1997, Spicer et al. 2003, Rowley and Currie 2006).  

However, a few authors argue that growth was stepwise and occurred in stages 

(Tapponnier et al. 2001, Wang et al. 2008a). 

Aside from the timing of the collision, the nature of the uplift is also 

controversial.  Two theories explain the rise of the plateau (Tapponnier et al. 

2001, Rowley and Currie 2006).  The first maintains that the Indian subcontinent 

slipped below the Eurasian plate via simple crustal subduction (Rowley and 

Currie 2006).  According to this view, an extensive portion of the Indian plate lies 

beneath the Tibetan plateau, buoying up the surface (Molnar 1989).  An 

alternative model contends that the uplift was largely a result of lithosphere 

thickening in the crust and upper mantle (Molnar et al. 1993, Tapponnier et al. 

2001, Molnar et al. 2006).  Eventually, the denser lower lithosphere sunk beneath 

the mantle, whereas the lighter mantle beneath pushed the surface of the plateau 

upwards (Molnar 1989).  Although there is some acknowledgement that these 

processes may have worked in concert, the extent to which one event dominated 

the other remains unclear (Royden et al. 2008). 

The Tibetan plateau is a major factor shaping regional climate and 

hydrology.  The plateau uplift is speculated to have led to worldwide climate 

change, including creation of Asian monsoons (An et al. 2001).  Due to its 

importance as a major watershed, the plateau has been called “China’s water 

tower” (United States Embassy 2003).  China’s three largest rivers, the Yellow, 

the Yangtze and the Mekong8, originate on the plateau and surrounding 

mountains, along with many other Asian rivers, including the Indus and 

Brahmaputra (Immerzeel et al. 2010).  These rivers are vital for the agriculture 

                                                
8 Known as the Huang He, Chang Jiang and Lancang Jiang, respectively. 
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and livelihood of millions of people living downstream (Xu et al. 2009).  It has 

been estimated that 28% of China’s water and 34% of water for the Indian 

subcontinent originates on the plateau (Aldenderfer and Zhang 2004).  Thus, 

factors affecting the Tibetan plateau may influence the lives of nearly 40% of the 

world’s population (Foggin 2008). 

Given its distinctive environment, it is not surprising that the Tibetan 

plateau harbors many endemic species (MacKinnon et al. 1996, Schaller 1998).  

Although seventy percent of the plateau is grassland (Ekvall 1968, Miller 1995, 

Miller and Craig 1997), forests are supported by higher rainfall and humidity in 

the south and east (Aldenderfer and Zhang 2004).  As a result, multiple biomes 

divide the plateau.  Ni (2000) describes 10 such regions: temperate conifer forest; 

temperate deciduous forest; temperate broadleaf evergreen forest; tropical 

seasonal rainforest; temperate meadow-shrubland; temperate steppe; temperate 

desert; alpine meadow-shrubland; alpine steppe; and alpine desert.  More 

recently, the World Wide Fund for Nature (WWF) designated fifteen “ecoregions” 

on the Tibetan plateau in its global assessment (Olson et al. 2001, Plateau 

Perspectives 2008): the Hengduan mountains subalpine confer forest (PA0509); 

northeastern Himalayan subalpine confer forest (PA0514); 3) Nujiang Langcang 

gorge alpine confer and mixed forest (PA0516); Qilian mountains confer forest 

(PA0517); 5) Qionglai – Minshan conifer forest (PA0518); central Tibetan plateau 

alpine steppe (PA1002); eastern Himalayan alpine shrub and meadows 

(PA1003); Karakoram – west Tibetan plateau alpine steppe (PA1006); north 

Tibetan plateau – Kunlun mountains alpine desert (PA1011); Qilian mountains 

subalpine meadow (PA1015); southeast Tibet shrub and meadow (PA1017); 

Tibetan plateau alpine shrubs and meadow (PA1020); western Himalayan alpine 
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shrub and meadow (PA1021); Yarlung Tsangpo arid steppe (PA1022); and 

Qaidam basin semi-desert (PA1324).  Following this classification, the “Global 

200” are ecoregions which are priority areas for conservation (Olson and 

Dinerstein 1998, 2002).  The Tibetan plateau steppe (Global Ecoregion 110; an 

amalgamation of PA1022, PA1020, PA1017, PA1002, and PA1006) is 

considered a global ecoregion with vulnerable conservation status (Olson and 

Dinerstein 2002, WWF [World Wide Fund for Nature] 2009).  My research was 

primarily restricted to habitat defined as Tibetan plateau alpine shrub and 

meadows (PA1020) and the southeast Tibet shrub and meadows (PA1017) 

(Olson et al. 2001).  Both areas are of considerable conservation concern 

(Carpenter 2001b, 2001a). 

Interactions between pikas and humans 

The Tibetan plateau was not inhabited by humans until the late 

Pleistocene, approximately 45,000 – 10,000 years ago (Aldenderfer 2006).  No 

archeological sites dating before the mid-Pleistocene have been found above 

40ºN, suggesting that early humans were not capable of colonizing these cold 

and remote regions (Dennell 2004).  It was not until the advent of complex 

clothing and control of fire that humans were able to survive in at these altitudes 

(Aldenderfer 2006). 

Due to the high elevation and harsh conditions, most of the plateau is not 

suitable for farming, but only for livestock production.  The yak, Bos grunniens, 

was first domesticated 8000 – 10,000 years ago (Guo et al. 2006).  Although wild 

yak still inhabit remote corners of the Tibetan plateau (Schaller 1998), evidence 

suggests all domestic yak are descendants of a single small wild population (Guo 

et al. 2006).  Livestock production has traditionally taken the form of Tibetan 
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pastoralism, in which animals are rotated between summer and winter pastures 

(Ekvall 1968, Miller 1995, Miller and Craig 1997).  This pastoral system has 

existed for approximately 4500 (Li et al. 2003) to 8800 years (Miehe et al. 2009). 

Dense populations of plateau pikas have long been considered a 

nuisance to herders.  Even though nomads have grazed yak, sheep and horses 

in coexistence with pikas for thousands of years, many blame pikas for current 

rangeland degradation (Formozov 1928, Ekvall 1968).  Additionally, some 

research has suggested pikas compete with the local livestock for food and 

overgraze the natural grasslands (Fan et al. 1999).  Their burrows are said to 

cause soil erosion, rangeland degradation, and biodiversity loss (Xia 1986, 

Zhang et al. 1998, Fan et al. 1999).  Pikas have also been accused of creating 

black sands, large darkened areas devoid of vegetation (Schaller 1998).  

However, other research argues that black sands may be a consequence of trail 

erosion or global warming (Miehe 1988, 1996, Ma et al. 1997, Schaller 1998). 

In spite of a lack of evidence that pikas cause rangeland degradation, 

they have been extensively poisoned throughout their range (Liu et al. 1980, 

Shen and Chen 1984, Zhong et al. 1985, Fan et al. 1986, Smith et al. 1990, Ma 

1995, Zhang et al. 1998, Fan et al. 1999).  Even the European Union-funded 

Qinghai Livestock Development Project listed poisoning of pikas as one of its 

goals (van Wageningen and Sa 2001).  Potent chemicals, such as zinc 

phosphate, Compound 1080 (fluoroacetate), Fussol, botulin C toxin and various 

anticoagulants have been used to eradicate the pika, while simultaneously 

causing widespread environmental pollution (Fan et al. 1999).  Over 200,000 km2, 

an area roughly the size of Nebraska, were poisoned from 1960 to 1990 (Fan et 

al. 1999).  Use of Compound 1080 and Fussol was abolished in 1978, when they 
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were found to lead to secondary poisoning of predators (Smith et al. 1990).  

Currently botulin C toxin is used to eradicate pikas (Jing et al. 2006). 

New information suggests that large pika populations may be a result of 

overgrazing, rather than a cause (Cincotta et al. 1992, Smith and Foggin 1999).  

Pikas tend to favor heavily grazed areas with low cover because there is a wider 

field of view for spotting predators (Shi 1983, Bian et al. 1994, Zhang et al. 1998).  

Other literature contends that only when livestock reach high densities are they 

likely to compete with pikas for food (Xia 1986, Jiang and Xia 1987). This lack of 

competition occurs because pikas graze selectively, and many of their food 

sources are avoided by domestic yak and Tibetan sheep (Jiang and Xia 1985, 

1987, Schaller 1998). Pikas are also known to eat plants poisonous to livestock 

(Schaller 1998).  Additionally, competition for food between yak and Tibetan 

sheep is thought to be more intense than the competition between these 

domesticated animals and pikas (Jiang and Xia 1987).  Research on the related 

Daurian pika also supports this view.  Daurian pikas were found to contribute to 

rangeland degradation only in areas that had already been overgrazed (Zhong et 

al. 1985).  Furthermore, Komonen et al. (2003) concluded that the impact of 

Daurian pikas on overgrazing is light. 

Recent government policy has been to settle Tibetan nomads and to 

fence rangelands (Goldstein et al. 1990, Williams 1996, Wu and Richard 1999, 

Foggin 2000, Miller 2000, Banks 2003, Yeh 2003, Yeh 2005, Foggin 2008).  

Though these polices have been enacted, in part, to reduce rangeland 

degradation, the nature and extent of this degradation is far from clear (Harris 

2010).  Fan et al. (1999) estimated that recent grazing practices have resulted in 

serious degeneration of 50% of the natural grassland habitat.  In contrast, 
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Harris’s review (2010) of degradation on the Tibetan plateau concluded that 

government policy (privatization, sedentarization and fencing), in addition to 

climate change and the conversion to cropland, were the only major drivers.  He 

found little evidence that damage by plateau pikas or burrowing rodents lead to 

rangeland degradation (Harris 2010). 

BIOLOGICAL IMPORTANCE 

A great variety of vertebrates are commonly associated with pika colonies 

(Table 1.2).  These animals fall into two broad groups: those that rely on pika 

burrows for shelter, and those that depend on the pika as a food source.  Other 

animals may benefit indirectly from the presence of pikas through commensal or 

mutualistic interactions that decrease predation risk or increase feeding efficiency 

(Dickman 1992); however, this scenario has not been explicitly investigated. 

Pika burrows provide much-needed shelter on the open treeless 

grasslands.  Burrows offer not only refuge from predators, but also protection 

from precipitation and temperature extremes.  Hume’s groundpecker, 

Pseudopodoces humilis, and six species of snowfinch (Montifringilla spp. and 

Pyrgilauda spp.) all nest primarily in plateau pika burrows (Feng et al. 1986, Ma 

1995, Schaller 1998, MacKinnon and Phillipps 2000, Lai and Smith 2003).  Both 

the small snowfinch (Pyrgilauda davidiana) and Isabelline wheatear (Oenanthe 

isabellina) nest in the burrows of Daurian pikas (O. dauurica), an ecologically 

similar species (Smith et al. 1990). Additionally, two species of lizards 

(Phrynocephalus vlangalii and Eremias multiocellata) live and breed in pika 

burrows (Li 1989). 

To this list, I can add two species not previously associated with plateau 

pika colonies.  I observed two species of Anuran inhabit pika burrows at a field 
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location (34o24'05"N 100o23'44"E) near Dawu Township in Golog Prefecture, 

Qinghai Province.  The locality was relatively flat, high alpine (3900m) 

pastureland dominated by Kobresia sedges.  This area was wetter than nearby 

regions due to an actively-flowing stream which lead to small, possibly 

ephemeral, pond.  Plateau pikas were common, and had dug burrows up to the 

water’s edge (Figure 1.3a).  Burrows were occasionally flooded after heavy rains 

(Figure 1.3b), presumably when the stream over-flowed its banks.  In August 

2005, August 2006 and June 2007, I observed multiple cases when individual 

frogs (belonging to two distinct anuran species) hopped into a pika burrow when 

approached.  These burrows were moist, but not flooded, and still in active use 

by the pika, as evidenced by fresh feces near the entranceway.  In 2007, one 

frog species was observed swimming into a submerged pika burrow.  These 

species were later captured and identified as Bufo raddei (Figure 1.3c) and 

Nanorana pleskei (Figure 1.3d). 

Due to their abundance, plateau pikas are an important food source for 

most native carnivores (Table 1.3).  The steppe polecat, Mustela eversmanii, 

may be a specialist predator of the plateau pika (Smith and Foggin 1999).  Other 

predators include the mountain weasel (Mustela altaica), Tibetan fox (Vulpes 

ferrilata), red fox (V. vulpes), Pallas' cat (Felis manul), wolf (Canis lupis), and 

brown bear (Ursus arctos) (Smith et al. 1990, Schaller 1998, Smith and Foggin 

1999, Xu et al. 2006, Liu et al. 2010a).  Snow leopards (Uncia uncia) 

occasionally prey on pikas as well (Schaller 1998).  Aside from mammalian 

carnivores, the Tibetan plateau is also home to a highly diverse assemblage of 

raptors.  The golden eagle (Aquila chrysaetos), upland buzzard (Buteo 

hemilasius), saker falcon (Falco cherrug), northern goshawk (Accipiter gentilis), 
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black kite (Milvus migrans), and little owl (Athene noctua) all rely on pikas for a 

significant portion of their diet (Peshkov 1967, Schaller 1998, Lai and Smith 2003, 

Li et al. 2004b, Cui et al. 2008). 

The importance of plateau pikas both as a food source and a habitat 

modifier is has led to its label as a keystone species (Smith and Foggin 1999).  

Smith and Foggin (1999) justify the keystone status of plateau pikas with four 

different lines of evidence: their burrows house many small vertebrates; they 

generate microhabitats that lead to increased plant species richness; most 

predators on the plateau rely on them for prey; and they improve ecosystem-level 

dynamics.  However, use of the keystone designation has fallen into some 

disfavor (Mills et al. 1993, Hurlbert 1997).  In addition, new definitions, such as 

Power et al.’s (1996), seem to exclude species that are abundant, thus 

questioning the inclusion of animals such as prairie dogs (Kotliar 2000).  I 

address this debate, as well as the specific designation of plateau pikas, in detail 

below. 

The species formerly known as keystone 

The keystone species concept was first introduced by Paine (1966, 1969).  

His original definition referred to an animal high in the food chain, such as a 

predator, that was critical to “the integrity of the community and its unaltered 

persistence through time” (Paine 1969).  However, the idea that certain species 

disproportionately influence community structure developed multiple times.  For 

instance, MacArthur (1972) was fundamental in drawing attention to strong and 

weak interactors in a community.  The same year, Dayton (1972) referred to 

important species in a community as key or foundation species.  Later Wells et al. 

(1986) applied the term transformer species to organisms that “change the 
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character, condition, form or nature of a natural ecosystem over a substantial 

area.”  Though several individuals converged on the same concept, Paine’s 

definition has remained at the forefront; as of October 28, 2010, his 1966 paper 

had been cited over 2000 times (Thomson Reuters 2010). 

In spite of the popularity of Paine’s idea, the keystone concept developed 

far beyond his original description (Appendix A, Table A-1).  Holt (1977) was first 

to broaden Paine’s definition to include prey species, citing the snowshoe hare 

as an example.  According to his view, a keystone prey’s high reproductive rate 

supports a predator, which in turn, keeps other prey in check (Holt 1977).  Noy-

Meir (1981) later redefined the term to avoid an unintended consequence of 

Holt’s definition, which led to an increase in diversity when the keystone prey was 

removed. 

The keystone concept expanded from there.  Gilbert (1980) added the 

term “keystone mutualist” for those organisms “which provide critical support to 

large complexes of mobile links.”  Mobile links are foraging species “of mutual 

concern to the reproduction of many different unrelated plants which, in turn, 

support otherwise independent food webs” (Gilbert 1980).  Brown and Heske 

(1990) included kangaroo rats as a keystone guild because “they have major 

effects on biological diversity and biogeochemical processes.”  Terborgh (1986) 

cited palm nuts, figs, and nectar as keystone plant resources because of their 

“prominent roles in sustaining frugivores through periods of general food 

scarcity.”  Folke et al. (1996) declared that the group of species controlling the 

most vital ecosystem processes should be termed “keystone process species.”  

Soon, summaries of these different classification schemes began to appear.  

Lamont (1992) offered a highly detailed organizational plan which included first-, 
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second- and third-order keystone species.  Bond (1993) grouped keystones into 

eight types, consisting of predators, herbivores, pathogens or parasites, 

competitors, mutualists, earth-movers, system processors, and abiotic agents. 

The keystone concept also came to include animals critical as ecosystem 

engineers (Redford 1984, Naiman et al. 1986).  Ecosystem engineers are 

organisms that “modify, maintain and create habitats” (Jones et al. 1994).  Jones 

et al. (1994) highlighted the similarities between keystones and engineers, and 

suggested that many, but not all, keystone species control their environment 

through ecosystem engineering.  Reichman and Seabloom (2002) used the term 

“keystone ecoengineer” to emphasize that changes wrought by ecosystem 

engineers “should be distinctive from processes that are strictly abiotic … and 

large relative to the purely physical processes operating in the system”.  However, 

others argued against conflating the concepts of ecosystem engineer and 

keystone species (Wilby 2002). 

Even as these neologisms developed, another movement emerged to 

challenge the inclusiveness of the keystone concept.  Paine’s (1969) original 

definition was broad in the sense that it included both an abundant trophic 

generalist as well as a rare food specialist.  For Estes and Palmisano (1974), it 

was enough for a species to be “important … in determining structures and 

dynamic relations within nearshore communities” to be considered keystone.  

Indeed, Wells et al.’s (1986) concept was not limited to positive alterations, but 

also included the negative effects of invasive organisms.  Bond (1993) went so 

far as to include humans as “the most important keystone species in most 

ecosystems.”  This trend culminated with Holling’s (1992) extended keystone 

hypothesis, in which all terrestrial ecosystems were controlled by key organisms 
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and processes.  Jones et al. (1994) added that keystones were common to all 

habitats, not merely terrestrial ones. 

Perhaps in reaction to this broad application, other authors sought to limit 

the keystone concept.  Dayton’s (1972) definition was the first to exclude 

common organisms, explaining that key species include only those that “have 

roles in the maintenance of the community disproportionate to the abundance or 

biomass of the species.”  Piraino and Fanelli (1999) argued that though there 

may be many key species influencing communities, there were few keystones.  

In Menge et al.’s (1994) reinvestigation of rocky intertidal communities, they 

discovered that Piaster acted as a keystone only under certain contexts.  This led 

the authors to contend that keystone species were “not universal” (Menge et al. 

1994).  Mills et al. (1993) also found little evidence for the type of community 

structure dominated by keystones. 

Mills et al. (1993) were the first to broadly endorse abandonment of the 

keystone species concept.  They claimed the keystone concept was “broadly 

applied, poorly defined, and nonspecific in meaning” (Mills et al. 1993).  Likewise, 

Hurlbert (1997) argued that the term has been so indistinctly applied that it “now 

means little more than ‘important for something.’”  However, both Hurlbert (1997) 

and Mills (1993) acknowledged that all species are not equally important in an 

ecosystem.  Instead, Mills (1993) recommended refocusing on strong and weak 

interactors.  Hurlbert (1997), on the other hand, advocated using functional 

importance, which he defined in Hurlbert (1971) as, “the sum over all species, of 

the changes (sign ignored) in productivity which would occur on removal of the 

particular species from the community.” 
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Despite these salient points, not all authors considered the keystone 

concept as irreparable.  Power et al. (1996) provided the most direct rejoinder to 

Mills et al. (1993), but they were not the first to speak in its defense.  

Demaynadier and Hunter (1994) , Menge et al. (1994) and Paine (1995) gave 

rebuttals to the abandonment of keystone idea.  One common objection was that 

the “strong interactors” and “functionally important species” advocated by Mills 

(1993) and Hurlbert (1997) did not distinguish between ecological dominants and 

species with effects disproportional to their abundance (Piraino and Fanelli 1999, 

Vanclay 1999, Davic 2000).  Other views in favor of the keystone concept can be 

summarized as follows: 1) it is already widely used by scientists (Demaynadier 

and Hunter 1994); 2) other terms used by ecologists are just as vague (e.g. 

biodiversity (Hodges 2008), ecosystem (Demaynadier and Hunter 1994) or niche 

(Godsoe 2009)); 3) it draws attention to the disproportionate influence of species 

in an ecosystem (Demaynadier and Hunter 1994, Paine 1995); 4) it is supported 

by many well-documented examples (Demaynadier and Hunter 1994, Menge et 

al. 1994, Power et al. 1996); 5) it is easily communicated to the public 

(Demaynadier and Hunter 1994, Paine 1995); and 6) it is useful for setting 

management and conservation priorities (Demaynadier and Hunter 1994, Paine 

1995, Simberloff 1998). 

Power et al. (1996) sought to reestablish the keystone concept by 

explicitly defining keystone species as “one whose impact on its community or 

ecosystem is large, and disproportionately large relative to its abundance.”  

Rather than ending the debate, this description instead re-ignited earlier 

controversy over the inclusiveness of the keystone concept (Menge et al. 1994, 

Davic 2000, 2002, Higdon 2002).  Davic (2003) modified Power et al.’s (1996) 
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definition so that the effect of keystone need only be large relative to its biomass 

dominance in a functional group.  Although the debate is not settled, most 

acknowledge that keystone status is context dependent; that is, a species may 

be a keystone in some areas, and not in others (Menge et al. 1994, Power et al. 

1996, Christianou and Ebenman 2005). 

More recently, publications have shifted from defining keystones to 

solving a different problem – the need for a priori keystone identification 

(Appendix B, Table A-2).  Holt (1977) provided the first quantification of a 

keystone species as one with a high reproductive to predation rate.  Many 

alternative metrics have now been proposed to delineate keystones, including 

position in the food web; the performance of ecological services not carried out 

by other organisms, i.e. a lack of redundancy (Walker 1992, 1995, Kotliar 2000); 

the number of secondary extinctions resulting from its loss (Christianou and 

Ebenman 2005, Ebenman and Jonsson 2005); control of energy or matter flow 

(Jordán et al. 1999, Jordán et al. 2006, Libralato et al. 2006); alteration of the 

dominant ecosystem vegetation (Khanina 1998); control of important ecosystem 

processes (Folke et al. 1996); and community importance (Mills et al. 1993, 

Power et al. 1996). 

While many studies mention the effects of keystone species loss, few 

studies can make predictions that can be tested in the field.  Some go as far to 

say that any species found to be biomass-dominant should be considered a 

potential keystone until proven otherwise (Davic 2003).  Network analysis of food 

webs has been suggested as a method to identify keystones (Jordán et al. 1999, 

Solé and Montoya 2001, Christianou and Ebenman 2005, Jordán et al. 2006).  

Furthermore, a variety of indexes to measure the “keystoneness” of a species 



 

21 

have been developed (Jordán et al. 1999, Okey et al. 2004, Libralato et al. 2006, 

Estrada 2007, Jordán et al. 2008).  Interestingly, Christianou and Ebenman’s 

(2005) study found that even weakly interacting species can be keystones if their 

cumulative interactions are strong enough. 

Application of the keystone concept 

One species whose keystone status has been substantially debated is the 

North American prairie dog, Cynomys spp. (Kotliar et al. 1999).  This debate is of 

particular relevance because the plateau pika plays an ecological role similar to 

that of the black-tailed prairie dog, Cynomys ludovicianus.  Like plateau pikas, 

prairie dogs are said to cause rangeland degradation and have been poisoned 

over much of their range.  Yet prairie dogs have also been shown to increase 

local plant primary productivity, augment soil mixing, boost soil oxygenation, and 

enhance water infiltration (Table 1.4; reviewed in Miller et al. 1994, Ceballos et al. 

1999) 

Although there has been substantial research on prairie dogs, there is 

considerable disagreement in the literature as to how much, and to what extent, 

these animals influence community and plant diversity.  The prairie dogs’ 

elimination is thought to be a key factor in the decline of other prairie endemics, 

such as the black-footed ferret, Mustela nigripes (Sharps and Uresk 1990).  

However, other researchers report lower or equivalent diversity between species 

found on and off prairie dog colonies (e.g. harvester ants (Kretzer and Cully 

2001); nocturnal rodents and lagomorphs (Mellink and Madrigal 1993); small 

rodents (Agnew et al. 1986); amphibians and reptiles (Kretzer and Cully 2001); 

carnivores (Ceballos et al. 1999); and multiple species (Lomolino and Smith 

2003)).  Frequently, authors report differences in species composition, while not 
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finding significant differences in abundance or diversity (Ceballos et al. 1999, 

Kretzer and Cully 2001, Lomolino and Smith 2003, Russell and Detling 2003). 

These conflicting results, in addition to Power et al.’s (1996) 

reclassification of the keystone concept, led Stapp (1998) to challenge the 

keystone role of the prairie dogs.  Opponents of Stapp’s view citied the significant 

effect of prairie dogs on ecosystem structure, function, and composition 

(Ceballos et al. 1999, Miller et al. 2000).  They regard equivocal results as 

differences in methodology, rather than differences in local conditions (Miller et al. 

2000).  Kotliar (2000) concluded that prairie dogs could satisfy Power et al.’s 

definition when the extent of their disturbance is great. 

Somewhat fittingly, the keystone species concept was described in theory 

(Paine 1966) several years before it was named (Paine 1969).  This sequence of 

events highlights the disjunction between the general concept of keystone and its 

precise delineation.  To call an organism keystone begs the question, whose 

keystone.  In particular, the plateau pika, fits the definitions conceptualized by 

Noy-Meir’s (1981) keystone prey and Naiman et al.’s (1986) keystone modifier.  

While at first glance, pikas seem excluded from Power et al.’s (1996) keystone 

criteria due to their high abundance, following Kotliar’s (1999) reasoning, plateau 

pikas may in fact fit this definition when their disturbance is widespread.  

Additionally, by considering importance relative to dominance within a functional 

group (Kotliar 2000, Davic 2003), rather than absolute dominance (Power et al. 

1996), plateau pikas could easily fit the keystone criteria.  Thus, multiple lines of 

evidence (including Smith and Foggin (1999)) support the use of the keystone 

concept with plateau pikas. 
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Environmental impact of fossorial herbivores 

The term ecosystem engineer has generated considerably less 

controversy, though it also identifies ‘key’ organisms.  Ecosystem engineers 

“directly or indirectly modulate the availability of resources to other species, by 

causing physical state changes in biotic or abiotic materials” (Jones et al. 1994).  

Burrowing mammals are classic examples due to their importance in soil 

formation (Grinnell 1923, Reichman and Smith 1990, Whitford and Kay 1999).  

Both plateau pikas and prairie dogs have been considered habitat engineers due 

to their extensive burrow systems. 

Bioturbation, or soil mixing by organisms, has a variety of physical 

impacts.  The process of digging a hole generates both underground voids as 

well as surface mounds of excavated soil.  These microhabitats contribute to the 

spatial heterogeneity of the landscape.  For example, depressions collect seeds 

and plant debris, which may encourage plant growth over these areas.  These 

openings alter the drainage of water in the watershed (Hole 1981).  During tunnel 

construction, subsoil mixes with topsoil, holes are backfilled with soil, and soil 

clumps are broken up.  These actions can change soil bulk density and increase 

soil oxygenation. 

The impact of burrowing mammals on ecosystem processes has been 

well documented (Whicker and Detling 1988).  Local levels of plant available 

nutrients may vary between burrows and inter-burrow spaces.  Coppock et al. 

(1983a) and Aho et al. (1998) both reported higher nitrogen concentrations and 

increased plant available nitrogen near prairie dog towns.  In nitrogen limited 

systems, increased nitrogen availability may increase plant biomass and 

consequently forage availability.  Ayarbe and Kieft (2000) identified increased 
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total organic carbon and microbial respiration on mounds of kangaroo rats, 

indicating high levels of easily metabolized organic carbon.  Increased levels of 

plant available nitrogen and phosphorus have been documented on zokor 

mounds (Wang et al. 1993, Zhang and Liu 2003).  Previous studies have also 

shown burrowing animals can increase soil water infiltration and decrease water 

repellency (Leprun 1976, Ursic and Esher 1988, Garkaklis et al. 1998). 

The actions of pikas are not restricted to bioturbation.  Direct foraging on 

plants may lead to a variety of community impacts.  Although grazing causes an 

immediate reduction of plant biomass, plants may exceed levels of growth 

needed to compensate for defoliation in the process known as overcompensation 

(Owen and Wiegert 1976, Owen 1980, Owen and Wiegert 1981).  Following this 

topic, the “herbivore optimization hypothesis” argues that grazing leads to 

increased community productivity (McNaughton 1979).  Though the of validity of 

this process was initially challenged (Belsky 1986, Bartolome 1993, Painter and 

Belsky 1993, Patten 1993), recent work has focused on the prevelance and 

extent of overcompensation.  Some authors have found higher levels of plant 

productivity in grazed areas (Varnamkhasti et al. 1995, Frank et al. 2002), while 

others have reported a trend of lower above-ground biomass in response to 

grazing (Milchunas and Lauenroth 1993).  Other recent evidence indicates this 

overcompensation may be short term and not persist over multiple seasons (de 

Mazancourt et al. 2005).  In the case of prairie dogs, several studies have shown 

grazing may lead to an increase, rather than reduction, of plant species biomass 

by stimulating plant growth (Clements 1920, McNaughton 1979, Strauss and 

Agrawal 1999, Agrawal 2000).  Specifically, studies have found that prairie dogs 

exhibit positive effects on intraseasonal aboveground plant biomass (Coppock et 
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al. 1983a) and root biomass (Ingham and Detling 1986).  Ingham and Detling 

(1984) have even argued that by constantly grazing foliage, prairie dogs may 

keep grasses in a young vegetative state preferred by ungulate grazers.  Though 

grazing may be less influential on plant productivity than moisture availability and 

shared evolutionary history (Milchunas and Lauenroth 1993), grazing by 

herbivores can play a large role in community-level dynamics. 

In addition to plant biomass, prairie dogs also influence vegetation 

composition and structure (Bonham and Lerwick 1976, Agnew et al. 1986, 

Whicker and Detling 1988, Weltzin et al. 1997a, Weltzin et al. 1997b).  Archer et 

al. (1987) found increased rates of vegetation change on prairie dog colonies, 

which could lead to higher species turnover.  Considerable influence on soil seed 

banks has been reported (Fahnestock et al. 2003). Furthermore, Coppock et al. 

(1983a) found increased live-to-dead ratios and greater digestibility of remaining 

species in regions inhabited by prairie dogs.  Several studies have shown a link 

between increased habitat heterogeneity caused by prairie dogs and an increase 

in plant species diversity (Coppock et al. 1983a, Whicker and Detling 1988, 

Stapp 1998, Ceballos et al. 1999, Kotliar et al. 1999) 

Several lines of evidence suggest that the Tibetan plateau flora may 

respond similarly to that of the North American temperate grasslands.  Increased 

aboveground plant biomass has been reported on zokor mounds compared to 

surrounding meadow (Wang et al. 1993, Zhang and Liu 2003).  Both Pallas’ pika 

and Daurian pikas have also been found to increase plant species diversity in 

areas they inhabit (Smith et al. 1990). 
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CONCLUSION 

The plateau pika is a transformative agent on the Tibetan plateau.  As 

both a keystone species and ecosystem engineer, its presence is predicted to 

have a large impact on the ecosystem.  When pikas are eradicated, burrows 

collapse and local bird populations decline (Lai and Smith 2003).  Carnivores 

such as the steppe polecat could be eliminated if plateau pika densities drop too 

low (Smith and Foggin 1999).  Additionally, factors affecting the pika habitat have 

the potential to influence the lives of millions of people living within the watershed.  

In light of negative historical interactions with humans and a continuing poisoning 

campaign, the ecological impacts of plateau pikas demand careful attention.  My 

research examines the influence of plateau pikas on the plant community and 

ecosystem processes.  Results of this study will have broad implications for the 

management of both livestock and small mammals on the Tibetan plateau. 
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Table 1.1. The distribution of extant pikas.  For Chinese endemics, only province 
or autonomous region names are listed.  Abbreviations are: GS, Gansu; HA, 
Henan; HB, Hubei; NX, Ningxia; QH, Qinghai; SN, Shaanxi; SX, Shanxi; SC, 
Sichuan; XJ, Xinjiang; XZ, Xizang; and YN, Yunnan.  Country abbreviations are 
AFG , Afghanistan; BTN, Bhutan; CAN, Canada; CHN, China; IND, India; IRN, 
Iran; JPN, Japan; KAZ, Kazakhstan; KGZ, Kyrgyzstan; KOR, Republic of Korea; 
MMR, Myanmar; MNG, Mongolia; NPL, Nepal; PAK, Pakistan; RUS, Russian 
Federation; TJK, Tajikistan; TKM, Turkmenistan; USA, United States; and UZB, 
Uzbekistan.  Conservation status, C, is identified as LC, least concern; EN, 
endangered; CR, critically endangered; or DD, data deficient (IUCN [International 
Union for Conservation of Nature] 2008). 
 

 Scientific Name Common Name C Distribution 

Palearctic    
 Endemic to China   
 O. argentata silver pika CR NX 
 O. cansus Gansu pika LC GS, QH, SN, SX, SC, XZ 
 O. erythrotis Chinese red pika LC GS, QH, SC, YN 
 O. gaoligongensis Gaoligong pika DD YN 
 O. gloveri Glover’s pika LC QH, SC, XZ, YN 
 O. himalayana Himalayan pika LC XZ 
 O. huangensis Tsing-ling pika LC GS, HA, HB, QH, SN, SX, SC 
 O. iliensis Ili pika EN XJ 
 O. koslowi Kozlov’s pika EN QH, XJ 
 O. muliensis Muli pika DD SC 
 O. nigritia black pika DD YN 
 O. thomasi Thomas’s pika LC GS, QH, SC 
 Indigenous to China   
 O. alpina Altai pika LC CHN, KAZ, MNG, RUS 
 O. curzoniae plateau pika LC CHN, IND, NPL 
 O. dauurica Daurian pika LC CHN, MNG, RUS 
 O. forresti Forrest’s pika LC BTN, CHN, IND, MMR 
 O. hyperborea Siberian pika LC CHN, JPN, MNG, RUS,KOR 
 O. ladacensis Ladak pika LC CHN, IND, PAK 
 O. macrotis large-eared pika LC AFG, BTN, CHN, IND, KAZ, 

KGZ, NPL, PAK, TJK 
 O. nubrica Nubra pika LC CHN, IND 
 O. pallasi Pallas’s pika LC CHN, KAZ, MNG, RUS 
 O. roylei Royle’s pika LC CHN, IND, NPL, PAK 
 O. rutila Turkestan red pika LC CHN, KAZ, KBZ, TJK, UZB 
 O. thibetana Moupin pika LC BTN, CHN, IND, MMR 
 Absent from China   
 O. hoffmanni Hoffmann’s pika EN MNG, RUS 
 O. pusilla steppe pika LC KAZ, RUS 
 O. rufescens Afghan pika LC AFG, IRN, PAK, TKM 
 O. turuchanensis Turuchan pika LC RUS 
Nearctic    
 O. collaris collared pika LC CAN, USA 
 O. princeps American pika LC CAN, USA 
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Table 1.2. Native vertebrates associated with plateau pika colonies on Tibetan 
plateau grasslands. 
 

Scientific Name Common Name Source 

Amphibia   
Bufo raddei Mongolian toad this research 
Nanorana pleskei plateau frog this research 

Aves   
Accipiter gentilis northern 

goshawk 
Smith and Wang (1991), Smith 
and Foggin (1999) 

Aquila chrysaetos golden eagle Prejevalsky (1876), Smith and 
Foggin (1999) 

Athene noctua little owl Smith and Wang (1991), Smith 
and Foggin (1999) 

Buteo hemilasius upland buzzard Prejevalsky (1876), Schäfer 
(1938), Schaller (1998), Smith 
and Foggin (1999), Lai and 
Smith (2003), Li et al. (2004c), 
Li et al. (2004b) 

Falco cherrug saker falcon Schäfer (1938), Schaller (1998), 
Smith and Foggin (1999) 

Milvus migrans1 black kite Schäfer (1938), Smith and Foggin 
(1999), Lai and Smith (2003) 

Montifringilla 
adamsi 

Tibetan 
snowfinch 

Schaller (1998), Lai and Smith 
(2003) 

Montifringilla nivalis white-winged 
snowfinch 

Lai and Smith (2003) 

Pseudopodoces 
humilis 

Hume’s 
groundpecker 

Prejevalsky (1876), Meyer de 
Schauensee (1984), Schaller 
(1998), Lai and Smith (2003), 
Zhang et al. (2006) 

Pyrgilauda 
blanfordi 

plain-backed 
snowfinch 

Schaller (1998), MacKinnon and 
Phillipps (2000) 

Pyrgilauda 
davidiana 

small snowfinch Meyer de Schauensee (1984), 
MacKinnon and Phillipps 
(2000), Lai and Smith (2003) 

Pyrgilauda ruficollis rufous-necked 
snowfinch 

Prejevalsky (1876), Schäfer 
(1938), Schaller (1998), 
MacKinnon and Phillipps 
(2000), Lai and Smith (2003), 
Zhang et al. (2006) 

Pyrgilauda 
taczanowskii 

white-rumped 
snowfinch 

Schäfer (1938), Meyer de 
Schauensee (1984), 
MacKinnon and Phillipps 
(2000), Lai and Smith (2003), 
Zhang et al. (2006) 
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Table 1.2. Continued. 
 
Mammalia   
Canis lupis wolf Smith et al. (1990), Schaller (1998), 

Smith and Foggin (1999) 
Felis manul Pallas’ cat Prejevalsky (1876), Schaller (1998), 

Smith and Foggin (1999) 
Mustela altaica  mountain weasel Smith et al. (1990), Smith and 

Foggin (1999), Yang et al. (2007) 
Mustela eversmanii steppe polecat Schaller (1985), Smith et al. (1990), 

Schaller (1998), Smith and 
Foggin (1999), Yang et al. (2007) 

Ursus arctos brown bear Prejevalsky (1876), Schäfer (1938), 
Smith et al. (1990), Schaller 
(1998), Smith and Foggin (1999), 
Xu et al. (2006) 

Vulpes ferrilata  Tibetan fox Prejevalsky (1876), Schaller (1998), 
Smith and Foggin (1999), Liu et 
al. (2010a) 

Vulpes vulpes red fox Prejevalsky (1876), Schaller (1998), 
Smith and Foggin (1999), Yang 
et al. (2007) 

Reptilia   
Eremias 
multiocellata 

multi-ocellated 
racerunner 

Smith and Foggin (1999) 

Phrynocephalus 
vlangalii 

Qinghai toad-
headed lizard 

Smith and Foggin (1999) 

 
1 Although the black kite, Milvus migrans, has been considered a separate 
species on the Tibetan plateau – namely M. lineatus, the black-eared kite 
(MacKinnon and Phillips 2000) – current classification lumps them with M. 
migrans (Johnson et al. 2005). 
 
 



 

30 

Table 1.3. Pikas in the diet composition of major plateau predators.  Pika species, 
SP, are given as Ochotona curzoniae, OC; O. dauurica, OD, an ecologically 
similar species; OS, not identified to species by the source; and SM, combined 
data for pikas and small rodents.  Method describes the way in which percent of 
diet was calculated. 
 

Name SP Diet Method Source 

Aves     
OD 11–17% percent occurrence in 

pellet and nest 
remnants 

Peshkov 
(1957) 

Aquila nipalensis, 
 steppe eagle 

SM 97–99% percent content of 
pellet and nest 
remnants 

Peshkov 
(1957) 

OD 73% percent occurrence in 
pellet and nest 
remnants 

Peshkov 
(1957) 

Bubo bubo, 
Eurasian eagle-
owl 

SM 100% percent content of 
pellet and nest 
remnants 

Peshkov 
(1957) 

OD 24% percent occurrence in 
nest remnants 

Peshkov 
(1967) 

OS 100% percent occurrence in 
food pellets 

Schaller 
(1998) 

OC 75% percent of diet (stable 
isotope) 

Li et al. 
(2004b) 

OC 28% percent occurrence in 
stomach contents 

Li et al. 
(2004c) 

OC 59% percent of stomach 
contents 

Li et al. 
(2004c) 

OC 70% percent occurrence 
food in pellets 

Li et al. 
(2004c) 

Buteo hemilasius, 
 upland buzzard 

OC 89% percent content of 
food pellets 

Li et al. 
(2004c) 

OS 90% percent occurrence in 
food pellets 

Schaller 
(1998) 

OD 22% percent occurrence in 
pellet and nest 
remnants 

Peshkov 
(1957) 

Falco cherrug, 
 saker falcon 

SM 96% percent content of 
pellet and nest 
remnants 

Peshkov 
(1957) 

Mammalia     
OS 6–53% percent of diet from 

scat analysis 
Schaller 
(1998) 

Canis lupis, 
 wolf 

OS 5–19% frequency of 
occurrence in scat 

Schaller 
(1998) 
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Table 1.3. Continued 
 

OD 40% percent occurrence 
in scat 

Ross et al. 
(2010) 

Felis manul, 
 Pallas’ cat 

OD 71% frequency of 
occurrence in scat 

Ross et al. 
(2010) 

SM§ 27% percent of diet 
(stable isotope) 

Yi (2005) Mustela altaica, 
mountain weasel 

OC 100% percent occurrence 
in scat 

Yang et al. 
(2007) 

SM§ 27% percent of diet 
(stable isotope) 

Yi (2005) Mustela eversmanii, 
 steppe polecat 

OC 96% percent occurrence 
in scat 

Yang et al. 
(2007) 

Uncia uncia, 
 snow leopard 

SM 0–2% percent content in 
scat 

Schaller 
(1998) 

OS 59% percent content in 
scat 

Schaller 
(1998) 

OC 78% percent occurrence 
in scat 

Xu et al. 
(2006) 

Ursus arctos, 
 brown bear 

OC 46% percent content in 
scat 

Xu et al. 
(2006) 

SM‡ 94% percent content in 
scat 

Schaller 
(1998) 

Vulpes ferrilata, 
 Tibetan fox 

OC 84% percent occurrence 
in scat 

Liu et al. 
(2010a) 

SM 51–67% percent content in 
scat 

Schaller 
(1998) 

Vulpes vulpes, 
 red fox 

OC 100% percent occurrence 
in scat 

Yang et al. 
(2007) 

 
‡ Author notes that these are mostly pika remains. 
§ Author notes that small mammals were previously poisoned in study area. 
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Table 1.4. Ecosystem services associated with prairie dog colonies. 
 

Ecosystem service Source 

Soil mixing, oxygenation Grinnell (1923), Whicker and Detling (1988), 
Huntly and Reichman (1994), Kotliar et al. (1999) 
 

Water infiltration Grinnell (1923), Whicker and Detling (1988), 
Huntly and Reichman (1994), Kotliar et al. (1999) 
 

Plant species diversity Coppock et al. (1983a), Whicker and Detling 
(1988), Stapp (1998), Ceballos et al. (1999), 
Kotliar et al. (1999), Fahnestock and Detling 
(2002) 
 

Plant species turnover Archer et al. (1987) 
 

Seed bank Fahnestock et al. (2003) 

Plant growth/ biomass Coppock et al. (1983a), Ingham and Detling 
(1984), Uresk (1985) 
 

Forage quality 
(digestibility, live-dead 
ratio, N concentration) 

Coppock et al. (1983a), Aho et al. (1998) 
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Figure 1.2.  The distribution of plateau pikas on the Tibetan plateau (Smith and Johnston 
2010). 
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a  b  
  

c  d  
 
Figure 1.3.  Anurans inhabiting plateau pika burrows in a wet Kobresia sedge-meadow.  
Meadow was located at 3900 m near Dawu Township, Qinghai Province.  These frogs 
used both active (a) and submerged burrows (b).  Both species were later caught and 
identified as Bufo raddei (c) and Nanorana pleskei (d).  Nanorana pleskei is also shown 
in (a) and (b), indicated by arrows. Images were cropped, sharpened and filtered in 
Photoshop CS4.  Photographs were taken by Brigitte Hogan (a, b, d) and Rachel 
Wasser (c). 
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CHAPTER 2 
Ecosystem functioning on the Tibetan plateau: the influence of native pika 

colonies on nutrient and water flow 
 

INTRODUCTION 

Ecosystem functioning is the cumulative effect of living organisms on the 

environment (Naeem et al. 2004, Millennium Ecosystem Assessment 2005).  

However, not all species are equally important in influencing community structure.  

Ecosystem engineers, for example, are considered to be strong interactors 

because they physically alter the environment and thus control resource 

availability to other trophic levels (Jones et al. 1994).  Ecosystem engineers can 

alter habitat as a consequence of their own growth (autogenic engineers) or via 

their physical actions (allogenic engineers) (Jones et al. 1994).  One common 

example of allogenic engineering is animal burrowing, which has wide-ranging 

environmental effects (Meadows 1991, Dickman 1999). 

The importance of one particular burrowing mammal, the plateau pika 

(Lagomorpha: Ochotona curzoniae), has led to its label as both a keystone 

species (Smith and Foggin 1999) and allogenic engineer (Lai and Smith 2003).  

Plateau pikas are endemic to the high alpine grasslands of the Tibetan plateau.  

Unlike their North American relatives (O. collaris and O. princeps), plateau pikas 

are highly social mammals that excavate extensive underground burrow systems 

(Smith and Wang 1991, Dobson et al. 2000).  As a result, these pikas share 

more ecological similarities with the North American prairie dog (Cynomys spp.; 

Smith and Foggin 1999).  Both organisms share the title of keystone species 

(Paine 1969), a rather controversial term (Power et al. 1996) used to label 

organisms of notable importance to ecosystem functioning (refer to Chapter 1).  

Kotliar et al. (1999) conclude that prairie dogs fit this definition due to the 
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uniqueness of their role in the ecosystem, and the magnitude of their disturbance 

compared to other prairie herbivores, such as bison.  The plateau pika can be 

considered a keystone for analogous reasons.  For instance, plateau pika 

burrows provide critical habitat for many small vertebrates (Feng et al. 1986, Li 

1989, Ma 1995, Schaller 1998, MacKinnon and Phillipps 2000, Lai and Smith 

2003).  Additionally, pikas serve as a prey items for many local mammals 

(Schaller 1998, Smith and Foggin 1999, Xu et al. 2006, Liu et al. 2010a) and 

raptors (Peshkov 1957, Lai and Smith 2003, Li et al. 2004b, Badingqiuying 2008, 

Cui et al. 2008). 

Another similarity between plateau pikas and prairie dogs is their present-

day conflict with humans.  An intensive poisoning campaign, resembling the 

twentieth century eradication of prairie dogs, is currently targeting the plateau 

pika (Liu et al. 1980, Shen and Chen 1984, Zhong et al. 1985, Fan et al. 1986, 

Smith et al. 1990, Ma 1995, Zhang et al. 1998, Fan et al. 1999).  Since the 1960s, 

over 200,000 km2 of high-altitude grasslands have been treated with rodenticides 

(Fan et al. 1999), a management practice which continues today (Ma 2006).  

Poisoning continues because pikas are thought to compete with livestock for 

food (Fan et al. 1999), while their burrows are said to cause soil erosion, 

rangeland degradation, and biodiversity loss (Xia 1986, Zhang et al. 1998, Fan et 

al. 1999).  Conversely, some evidence suggests that large pika populations may 

be a result of overgrazing, rather than a cause (Cincotta et al. 1992, Smith and 

Foggin 1999).  Pikas tend to favor heavily grazed areas with low cover because 

there is a wider field of view for spotting predators (Shi 1983, Bian et al. 1994, 

Zhang et al. 1998).  Other literature suggests that only when livestock reach high 
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densities are they likely to compete with pikas for food (Xia 1986, Jiang and Xia 

1987). 

The elimination of pikas from this ecosystem may have far-reaching 

consequences due to the loss of their extensive burrowing and foraging activities.  

My research investigates the impact of pika colonies on ecosystem properties, 

specifically nutrient availability and water flow, in their alpine meadow habitat.  

Before examining these possibilities, I summarize the primary features of their 

high altitude environment and detail the nature and extent of their environmental 

engineering. 

Tibetan plateau habitat 

The Tibetan plateau is the world’s largest low-latitude alpine region, 

spanning 2.5 million km2 (Schaller 1998) at an average elevation over 4000 m 

(Wang 1988, Spicer et al. 2003, Qiu 2008).  Much of this rugged environment is 

covered by grassland (Hu and Zhang 2004).  These grasslands are critically 

important at both the local and global levels. 

Due to the high elevation and harsh conditions, most of the plateau is not 

suitable for farming.  Instead, the alpine grasslands are primarily used as 

rangelands by nomadic pastoralists (Ekvall 1968, Miller 1995, Miller and Craig 

1997).  The Tibetan pastoral system of herders and livestock has existed here for 

as long as 8800 years (Miehe et al. 2009).  Livestock, primarily yak and sheep, 

closely graze meadows dominated by thick mats of Kobresia sedges.  Indeed, 

the anthropogenic grazing of livestock is thought to be the source of this sod turf, 

some of which dates back as far as 2000 years (Kaiser et al. 2008).  

Consequently, the breakup of these tightly-knit soils via animal burrowing could 

have a powerful transformative influence on the local ecosystem. 
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At the regional scale, the Tibetan plateau is significant as a major 

watershed.  The plateau is known as “China’s water tower” because it forms the 

headwaters of the Yangtze, Yellow and Mekong rivers9 (Messerli et al. 2004).  As 

a result, nearly 28% of China’s water and 34% of water for the Indian 

subcontinent originates on the plateau (Aldenderfer and Zhang 2004).  Thus, 

factors affecting this region’s hydrology, such as grazing and bioturbation, may 

influence the lives of millions of people living downstream (Xu et al. 2009). 

Finally, these high grassland soils are important as storehouses of 

organic carbon.  The Tibetan plateau contains the world’s largest expanse of 

alpine permafrost (Jin et al. 2007), or soil that has remained below freezing for at 

least two years (Brady and Weil 2002).  The cold environment has gradually 

accumulated the highest density of organic carbon in China (Zhang et al. 2007), 

which represents 2.5% of the global carbon pool (Wang et al. 2002).  Under 

climate change, this region is expected to experience higher annual and winter 

temperatures (Cruz et al. 2007).  Therefore environmental engineering within 

these alpine soils may become of increasing consequence. 

Engineering of pika burrows 

Plateau pikas are the most abundant small mammal on Tibetan 

grasslands (alpine meadow, meadow-steppe and desert-steppe) from 3000 to 

5000 m (Smith and Xie 2008), with large colonies reaching over 300 

individuals/ha (Smith et al. 1990).  The primary resource created by burrowing 

mammals is subterranean living space (Dickman 1999).  Bioturbation by pikas 

affects multiple spatial scales, ranging in extent from an individual entrance hole 

                                                
9 Known as the Chang Jiang, Huang He and Lancang Jiang, respectively. 
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to a colony of pikas, which may cover many kilometers.  Vertical variation is 

generated in the form of below-ground spaces and above-ground structures. 

Beginning at the smallest scale, an entrance hole is approximately 10 cm 

in diameter and connects a belowground tunnel with the surface (Figure 2.1a).  

The primary surface structure is a mound of excavated soil (Figure 2.1b).  This 

spoil heap develops as unwanted debris is pushed out of the entrance hole.  

Mound tailings are deposited to one of the entrance holes, forming an elliptical-

shaped pile that buries nearby vegetation and adds relief to the otherwise flat 

meadow surface.  The above-ground territory may also include shallow latrine 

pits and grazed runways connecting entrance holes (Figure 2.1c). 

The mound is a dynamic unit that grows as new soil is added and shrinks 

as environmental conditions weather the accumulated soil.  Plants colonizing the 

exposed soil eventually cover the mound with vegetative growth, and the mound 

becomes less distinguishable from the surrounding “undisturbed” meadow.  

[Older mound soil is especially difficult to distinguish in regions with low 

vegetative cover resulting from environmental conditions or high grazing 

pressure].  If an entrance hole is abandoned (due to flooding or anthropogenic 

disturbance), the surface will collapse, creating a small depression (Wei et al. 

2007) that is quickly filled by debris and vegetation.  Thus, over the lifetime of a 

small patch, the area may cycle between burrow hole, mound, and meadow. 

Typically two to three pika holes are found in a 4 m2 area.  The 

complexes of mounds and pits form patches within the colony.  Although 

entrance holes appear as distinct units on the meadow surface, they connect 

below-ground with the shared family burrow structure (the exception are “duck 

holes,” vertical tunnels used for temporary refuge (Smith and Wang 1991, 
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Dobson et al. 1998)).  Family burrow structures are cooperatively shared and 

maintained by 1 to 5 adults and can contain as many as 230 entrance holes 

(Dobson et al. 1998).  These are connected by a network of subterranean 

tunnels 20 to 25 cm below the surface (Wei et al. 2007).  The shared below-

ground space also includes nest chambers and latrines. 

At the local landscape scale, individual family burrow systems merge to 

form a larger burrow complex that is maintained over multiple generations 

(Dobson et al. 1998).  Though small patches of ground may cycle through patch 

types, these burrow complexes, or colonies, tend to be stable in spatial extent 

(Dobson et al. 1998).  Thus colonies exist as isolated regions within the 

surrounding terrain.  At high pika densities, the colony edge is often determined 

by geographic barriers such as lakes, steep slopes or roads, rather than an 

abrupt transition to uncolonized meadow.  Increasingly, uncolonized meadow is 

the result of anthropogenic poisoning.  Poisoning, when effective, quickly 

eliminates obvious traces of burrowing as abandoned holes collapse and plants 

re-colonize the exposed soil.  Thus, burrow construction generates a variety of 

micro-habitats which contribute to local landscape heterogeneity at multiple 

spatial scales. 

Influence on ecosystem processes 

Pikas cause direct as well as indirect ecosystem effects.  Burrowing 

mammals directly impact other trophic levels through their grazing, foraging, food 

caching and seed dispersal (Dickman 1999).  Herbivores are known to increase 

nutrient levels in plants through several mechanisms.  These include grazing 

older leaves, which are replaced by nutrient-rich new growth (McNaughton 1979, 

Coppock et al. 1983a); reducing the height of forage, thereby concentrating 



 

42 

nutrients (McNaughton 1979, Coppock et al. 1983a); increasing the quality of 

plant litter (Knapp et al. 1999); and providing easily available nutrients in the form 

of feces and urine (McNaughton 1979, Coppock et al. 1983b, Knapp et al. 1999).  

There is some evidence that plateau pikas preferentially graze on plants high in 

phosphorus, but not in potassium, calcium, or magnesium (Wang et al. 1992). 

Pika burrows also indirectly affect the environment via nutrient cycling.  

Burrowing moves older lower soil horizons to the surface.  The break up of soil 

clumps during tunnel construction may lower the soil’s bulk density, thereby 

increasing oxygenation in deeper layers (Hole 1981).  Burrowing can also 

increase soil fertility, water infiltration, microbial activity, and soil turnover 

(Meadows 1991).  Higher decomposition rates and carbon levels at the surface 

may lead to increased plant-available nutrients (Ayarbe and Kieft 2000).  As a 

result of these changes, variability in nutrient cycling is expected across 

microhabitats within pika colonies. 

The impact of other small burrowing mammals, particularly prairie dogs, 

has been well-documented (Grinnell 1923, Whicker and Detling 1988, Huntly and 

Reichman 1994, Kotliar et al. 1999).  Prairie dogs augment soil mixing and boost 

soil oxygenation within their colonies (Sharps and Uresk 1990).  Both Coppock et 

al. (1983a) and Aho et al. (1998) both reported higher nitrogen concentrations 

and increased plant-available nitrogen near prairie dog towns.  Ayarbe and Kieft 

(2000) found increased total organic carbon and microbial respiration on mounds 

of kangaroo rats (Dipodomys spp.).  The mounds of another Tibetan plateau 

mammal, fossorial zokors (Rodentia: Eospalax fontanierii), also have higher 

levels of plant-available nitrogen and phosphorus than surrounding soils (Wang 

et al. 1993, Zhang and Liu 2003). 
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As a consequence of variable nutrient availability, plants in varying 

proximity to pika mounds may also exhibit different nutrient concentrations.  

Evidence from vegetation composition and structure on prairie dog mounds 

supports this supposition (Bonham and Lerwick 1976, Agnew et al. 1986, 

Whicker and Detling 1988, Weltzin et al. 1997b, Fahnestock et al. 2003).  

Coppock et al. (1983a) documented increased live-to-dead ratios and greater 

plant digestibility in regions inhabited by prairie dogs.  Whicker and Detling (1988) 

reported higher nitrogen concentrations in plant shoots over prairie dog colonies.  

Likewise, certain plants growing on old haypiles of the North American pika had 

significantly higher percentages of nitrogen than the same species growing in 

surrounding areas (Aho et al. 1998).  Increased nitrogen availability may increase 

plant biomass and consequently forage availability (Aho et al. 1998).  An 

increase in the nitrogen concentration of plants has also been linked with 

phosphorus co-limitation in nitrogen limited systems (Frank 2008). 

Water transport is closely linked with nutrient cycling.  Animal burrowing 

contributes toward many aspects of water movement in soils (Hole 1981).  

Specifically, the formation of mounds and pits increases the presence of 

openings that drain water and dissolved organic matter, both of which enhance 

water infiltration rates (Hole 1981).  Previous studies found that the presence of 

burrowing animals can increase soil water infiltration and decrease water 

repellency (Leprun 1976, Ursic and Esher 1988, Garkaklis et al. 1998).  Prairie 

dogs have also been shown to increase water availability at colonized sites (Day 

and Detling 1994).  Similarly, pikas are predicted to increase soil water retention 

in terms of gravitational water (water that readily drains from saturated soil) and 
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plant-available water (water remaining in the soil above the wilting point) by 

opening voids, mixing soil, and depositing organic matter (Brady and Weil 2002). 

Goals of this work are to clarify the total effect of pikas on ecosystem 

processes, and to evaluate the consequences of small mammal poisoning in an 

alpine meadow ecosystem.  In practice, differences due to burrowing will be 

difficult to distinguish from differences due to herbivory and selective grazing.  

Therefore, pika herbivory and bioturbation will be considered concomitantly.  

Their influence on ecosystem functioning is examined in terms of soil and plant 

nutrients and water flow. 

MATERIALS AND METHODS 

Study site 

My research was conducted in Qinghai Province, from June to August in 

2006 and 2007 (Figure 2.2).  I sampled grassland, specifically alpine meadow, in 

the eastern Tibetan plateau between 3300 and 3800 m.  These meadows were 

used as winter pastures by yak and sheep, which grazed grasses and sedges to 

a uniform height.  I avoided regions with evidence of other ungulate grazers 

(horses, goats, wild ungulates etc.) and small herbivores (marmots, zokors, voles 

etc.). 

In general, soils at my site are similar to those of other grassland habitats 

(USDA mollisol/ FAO-UNESCO phaeozem), with little or no organic horizon and 

a relatively thick A horizon.  However, typical of Tibetan plateau grassland soils is 

a dense mat of roots in the top 10 to 30 cm of soil, termed the “Afe” horizon 

(Wang et al. 2003, Kaiser et al. 2008, Wang et al. 2008b).  Indeed, higher root to 

shoot ratios are found in alpine meadow and steppe (16.0 to 66.2 and 6.8 to 12.1, 

respectively) than any other plateau habitat (Luo et al. 2005).  The collective 
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depth of upper soil layers (topsoil and subsoil) in this area is relatively low, with 

layers in Qinghai and Tibet grasslands ranging between 0.2 and 1 m thick (Wang 

et al. 2002).  While much of the ground in this region is seasonally frozen, 

permafrost is primarily restricted to mountain-top “islands” and slopes with a 

northerly aspect (Qiu et al. 2002).  The most recent interpretation of soils under 

similar Kobresia meadows is as a humic cambisol (Kaiser et al. 2008), or more 

generally as alpine meadow soil (Hu and Zhang 2003, Wang et al. 2003). 

Meteorological measurements were not available at all study localities, 

but values for Dawu Township (see below) have been reported in the literature, 

and are considered typical for this habitat.  Annual precipitation is 420 – 560 mm 

(Liu et al. 2010b), most of which falls as rain from May to September (Dong et al. 

2004b).  Soil surface layers are generally dry aside from late summer monsoonal 

rains (Yang et al. 2003).  The average annual temperature is below freezing, and 

ranges from below -32 ºC in January to just above 25ºC in the warmest summer 

days (Dong et al. 2004b).  However, the daily temperature difference can be 

large and there is no absolutely frost-free period (Liu et al. 2010b).  The growing 

period is from late May to mid-September with biomass peaks in July (maximum 

sedge growth) and September (maximum grass growth) (Long et al. 1999). 

Experimental design 

Sampling was conducted at two distinct spatial scales: the local 

landscape/ colony level, which investigated localities across eastern Qinghai 

Province (Figure 2.2), and the patch/ burrow level, which focused within one 

Township (not shown).  This design allowed for inferences to be made about pika 

colonies at both the colony and patch level.  Broad sampling was conducted at 

six primary localities, often near a city or township: Dawu, Daotang He, Henan, 
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Huashixia, Qinghai Hu and Senduo (Table 2.1).  Two sites were selected at each 

locality: a pika colony (“on-colony site”) and a nearby, but uninhabited area (“off-

colony site”).  Sites were chosen with similar plant communities and livestock 

densities.  Off-colony sites had no visible evidence of pika burrows, which was 

often the result of poisoning.  Thus I cannot rule out the presence of residual 

effects from prior pika colonization in these off-colony sites.  Across Qinghai 

Province, effort was made to keep differences between localities to a minimum; 

however, differences between localities sometimes occurred.  For instance, low-

growing Kobresia sedges were the dominant vegetation in all localities except 

Daotang He and Qinghai Hu, which were drier and dominated by grasses.  The 

majority of this work, and the most intensive sampling, took place at Dawu. 

At the patch scale, sampling was conducted within multiple on-colony 

sites near Dawu Township.  At the each site, a 100 m transect line was laid 

through the densest area of the colony.  Along this transect 10 random points at 

least 2 m apart were selected.  At each point, two types of microhabitat (patches) 

were sampled.  Microhabitat was classified as either pika “disturbed” or 

“undisturbed.”  Disturbed habitat was centered on the spoil heap adjacent to 

burrow entrance.  Active burrows were easily identifiable by moist fecal matter, 

freshly excavated soil, and an entrance unobstructed by debris.  Undisturbed 

habitat consisted of meadow without evidence of pika activity and at least 1 m 

from a burrow entrance (established by a blind stone toss).  Due to the dynamic 

nature of burrowing on the terrain, I cannot rule out the possibility that 

“undisturbed” regions within a pika colony were once similar to the present 

“disturbed” regions.  For inferences at the patch level, this sampling procedure 
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was repeated at four distinct pika colonies, each separated by 3 km, near the city 

of Dawu in Golog County. 

Soil sampling 

At each on-colony site, 20 total soil cores were taken – 10 over disturbed 

patches and 10 over undisturbed patches.  At each off-colony site, 10 total soil 

cores were collected (all undisturbed patches).  Soil cores 15.3 cm (6 inches) 

deep and 4.8 cm (1.9 inches) in diameter were retrieved at the surface using an 

AMS soil core sampler with hammer attachment.  Average field weight of soils 

was approximately 330 g.  Soils cores were sieved through a 2 mm screen, and 

fine soil was saved for analysis.  Gravel and rocks were weighed and volume 

was measured by water displacement in a graduated cylinder.  Bulk density was 

used to scale nutrient concentrations to the colony level.  Soils were taken to the 

Soil Nutrition Institute of the Chinese Academy of Sciences in Beijing for 

chemical analysis.  Total nitrogen (N) was determined by the semi-micro Kjeldahl 

procedure (Zhou and Shao 1987).  This method uses concentrated sulfuric acid 

to convert sample nitrogen to ammonium.  While it can detect N in the form of 

non-resistant organic compounds and ammonium (NH4
+), it does not account for 

inorganic N in the form of N-N, N-O or heterocyclic linkages found in nitrates and 

nitrites (Mulvaney 2008).  Organic nitrogen was determined by alkaline hydrolysis 

distillation (Neyroud and Schnitzer 1975), which recovers forms of non-resistant 

organic nitrogen.  Finally, organic carbon content was determined by digestion 

with potassium bichromate sulfuric acid solution (Li et al. 1988).  Values have 

been multiplied by the Van Bemmelen factor, 1.724, are reported as total soil 

organic matter, SOM (Allison 1965).  Due to financial constraints, soil samples 

were only analyzed for the summer of 2006 for pika colonies near Dawu. 
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Water sampling 

Water infiltration rates were measured using a 7.7 cm (3 inch) diameter 

PVC ring.  Infiltrometer rings were placed on level ground and pushed into the 

soil so that water leakage was minimized from the edges.  In disturbed patches, 

rings were situated at the nearest level ground next to the burrow entrance.  The 

period it took for the falling head to travel between two marked vertical points 

(separated by 7 cm) was timed with a stop watch.  In cases when the recording 

time exceeded two hours, the experiment was stopped, and time and distance 

traveled were recorded.  Total times were converted into infiltration rates (cm/h) 

based on dimensions of the PVC ring. 

Plant sampling 

Plant samples were collected during the summers of 2006 and 2007 for 

nutrient analyses.  Due to the remoteness of the field locations and lack of 

laboratory space, I clipped only the dominant species, Kobresia humilis.  This 

species is grazed by both pikas and livestock.  Samples of K. humilis could not 

be located at Daotang He and Qinghai Hu; therefore no plants were collected 

there.  Clippings of green sedge blades were gathered in plastic whirl-pack bags 

and allowed to air dry.  They were later oven-dried at 60º C in the laboratory 

before analysis.  Dry samples were ground using a ball mill (Spex 8000D), and 

approximately 2 mg of the homogenized powder was used for nutrient analyses.  

Total plant C and N were determined using a Perkin-Elmer 2400 Series II 

CHNS/O Analyzer. 

Statistical analyses 

Statistical significance was set at p < 0.05.  When data values fit 

parametric assumptions, differences between burrow and undisturbed soil and 
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colony and off-colony were analyzed with a single-factor ANOVA blocked for site 

(pika colony or city) (SPSS 2008).  Distributions strongly different from normal 

were evaluated with Friedman’s Test.  I tested for an effect of water infiltration 

across sites with an rmANOVA with sampling repeated in space (SAS 2005).  

Non-significant results were evaluated with a power analysis. 

RESULTS 

Soil bulk density ranged from 0.80 to 0.93 g/cm3 (Table 2.2).  Total 

nitrogen varied from 0.32 to 0.43% (Figure 2.3a).  Organic matter constituted 5.8 

to 7.8% of soil (Figure 2.3b).  Plant-available organic soil nitrogen ranged from 

265 to 349 mg/kg (Figure 2.3c).  Values of soil nutrients were not significantly 

different between disturbed and undisturbed soil patches within a pika colony. 

Foliar nutrient levels in disturbed patches had lower percentages of 

carbon and higher percentages of nitrogen compared to nearby undisturbed 

patches (Figure 2.4a, b).  The C:N ratio was also lower over disturbed versus 

undisturbed patches (Figure 2.4c).  I did not detect any significant differences 

between these foliar nutrient levels within pika colonies.  At the colony scale, 

there was no consistent trend in foliar nutrients between on-colony and off-colony 

sites.  The Huashixia site showed consistently opposite results from the other 

sites, in terms of having higher plant nutrient levels off-colony than on-colony. 

The infiltration rate of water ranged from an average of 0.90 cm/h at an 

off-colony site in Huashixia to 50.46 cm/h at disturbed soil on a pika colony in 

Dawu (Figure 2.5).  One point value at the Henan colony (145.66 cm/h) was 

discarded because it fell far outside even the highest infiltration rates.  The 

extreme rapidity with which water infiltrated at this particular point was could 

have been due the location of a pika tunnel immediately under the surface.  This 
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discrepancy was remarked in the field, and a supplementary data value was 

collected from an adjacent sampling point.  For all localities but two (Daotang He 

and Henan), the infiltration rate over disturbed patches was significantly faster 

than infiltration rates at undisturbed patches within the pika colony. Excepting the 

Daotang He locality, rates of infiltration in off-colony patches were significantly 

lower than rates at either disturbed or undisturbed patches within pika colonies. 

DISCUSSION 

Soil nutrients 

My percentages of SOM fell well within the range (2.4 to 9.1%) reported 

by Kaiser et al. (2008) for Kobresia pygmaea meadows (Appendix B, Table B-1).  

Percentages of total nitrogen and plant-available organic nitrogen levels were 

also within reported values (Appendix B, Table B-2, Table B-3).  Adjusted bulk 

density tended to be at the lower end of recorded levels (from 0.69 to 1.04 g/cm3 

for non-degraded soils according to Wang et al. (2003)).  Soil density is not only 

affected by animal burrowing.  Another influencing factor is plant cover, which is 

strongly related to livestock density and grazing intensity.  Wang et al. (2003) 

found both increasing bulk density and gravel content as plant cover decreased, 

resulting in coarser soils with less pore space.  Additionally, they reported a 

decrease in soil hardness from 4.03 kg/cm2 to 0.38 kg/cm2 in undisturbed soil 

versus soil with low vegetative cover (Wang et al. 2003).  Variations in plant 

cover may mask changes in soil characteristics within pika colonies. 

Wang et al. (2005) report soil carbon and nitrogen levels of 11.307 kg/m2 

and 0.846 g/m2, respectively, in alpine Kobresia meadows.  Research from 

nitrogen addition experiments by Dong et al. (2004c) suggest that Tibetan 
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plateau soils are nitrogen limited.  Low levels of total nitrogen are probably the 

result of slow decomposition rates (Dong et al. 2004c). 

Data concerning the influence of burrowing mammals on soil carbon and 

nitrogen is conflicting.  Increased levels of soil carbon have been reported in soils 

underneath old haypiles of North American pikas (Aho et al. 1998).  Li and Zhang 

(2006) compared a site with moderate pika density (50/ha) with one poisoned for 

nearly two decades, and recorded increased SOM at 0 to10 cm and 31 to 50 cm 

depths in the pika colony.  However, Sherrod and Seastedt (2001) found 

significantly lower levels of soil carbon over areas disturbed by pocket gophers 

(Thomomys talpoides).  Zhang and Liu (2003) also found no consistent 

differences in SOM between occupied, abandoned, and unoccupied zokor 

colonies.  However, they did observe a trend for decreasing SOM in the top 10 

cm of soil with long-term zokor occupation (Zhang and Liu 2003).   

As with carbon levels, nitrogen levels of soil disturbed by burrowing 

mammals has been reported at both higher (Wang et al. 1993, Aho et al. 1998) 

and lower levels (Sherrod and Seastedt 2001) than surrounding areas.  Total 

nitrogen levels may differ from the amount of nitrogen available to plants in the 

form of nitrate and ammonium.  Significantly higher levels of plant-available 

nitrogen have been reported on zokor (Wang et al. 1993) and gopher (Sherrod 

and Seastedt 2001) mounds.  Sherrod and Seastedt (2001) postulated that lower 

nutrient levels over gopher mounds are due to lower SOM.  Gophers may lower 

SOM in mound soil by filtering out organic matter before discarding soil on the 

surface (Sherrod and Seastedt 2001). 

Several authors propose mechanisms by which burrowing mammals may 

alter soil nutrient levels.  Inouye et al. (1987) proposed that gophers increase 
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nutrient heterogeneity by transporting low-nitrogen soil to the surface.  Higher 

temperatures in the excavated mound lead to increased mineralization rates.  

Cortinas and Seastedt (1996) reported higher soil temperatures over gopher 

mounds, while research by Sherrod and Seastedt (2001) showed greater litter 

decay over gopher mounds.  Typically, nutrient availability is inversely 

proportional to shade (a measure of plant biomass).  However, small mammal 

mounds could provide bare patches of soil that are temporarily high in plant-

available nutrients through increased decomposition rates (Zhang et al. 2003).  

This remains an area for future research. 

Plant nutrients 

Although I observed higher nitrogen levels in vegetation near pika 

burrows, overall no general impact of pika burrowing on nutrients in Kobresia 

humilis were found.  Unfortunately, few references regarding plant nitrogen levels 

exist for these Tibetan meadows, particularly for sedges.  Li et al. (2004a) 

reported nitrogen levels in alpine meadow plants ranging from 1.49 to 3.69%.  

Sedges and forbs tend to have a higher nitrogen content than grasses; however, 

almost all forage is low in nitrogen (0.42 to 0.98%) starting in October (Long et al. 

1999).  Indeed, late in the season, degradable nitrogen may become more 

limiting than metabolizable energy (Long et al. 1999).  In North America, plants 

on prairie dog colonies have been found to be higher nitrogen than plants on 

uncolonized sites (Coppock et al. 1983a).  Furthermore, as time since prairie dog 

colonization increased, so did above-ground nitrogen levels (Coppock et al. 

1983a).  A similar trend for plant nitrogen was not found in my experiment for K. 

humilis, but it is possible this trend could exist in other species. 
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The calculated percentage of carbon in this study was typical for sedges 

in this region (Appendix B, Table B-4).  I found C:N ratios that were generally 

higher than reported values, due to slightly higher nitrogen levels at most sites.  

However, reported K. humilis C:N ratios tend to be high (averages of 19.3 to 23.5) 

compared with overall foliar C:N ratios for Tibetan grassland plants (17.0) and for 

all species across China’s grasslands (17.9) as reported in He et al. (2006). 

Several factors can influence plant nutrient levels.  Species composition 

plays a critical role in plant stoichiometry at an ecosystem scale.  He et al. (2006) 

determined that species community composition was more important than 

temperature or precipitation in explaining plant nitrogen content and C:N ratios 

across China’s grasslands.  Thus, while no differences in nutrient levels of K. 

humilis were observed, it is possible that other forage species vary in nutrient 

levels.  For example, Aho et al. (1998) found significantly higher percentages of 

nitrogen in two of the three plant species they found growing in haypiles of the 

North American pika.  They hypothesized that the third species was tolerant to 

low nitrogen levels, and therefore less likely to reflect differences in soil nitrogen 

availability (Aho et al. 1998).  On the other hand, plateau pikas forage in open 

grassland rather than gaps, and do not accumulate haypiles.  Therefore, results 

for my study species may differ from North American pikas’. 

Plant nutrient levels in alpine meadows are also influenced by livestock 

grazing (in terms of livestock species, stocking density and grazing intensity).  

Nitrogen levels decreased with livestock stocking rates (20.80% ungrazed to 

18.60% moderate grazing), but were highest in heavily-grazed areas (26.40%) 

(Li et al. 2004a).  Severely degraded Kobresia meadow had nitrogen and carbon 

levels equal to 47% and 38% of control values, respectively (Wang et al. 2005).  
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It is possible that differences in herbivore stocking levels may have overwhelmed 

differences between plant nutrients at pika colony and off-colony sites.  In other 

words, differences in other biotic (livestock) or abiotic (environmental variables) 

could be more important for determining nutrient levels than the presence of pika 

colonies.  However, these differences could not be quantified in this study. 

Finally, plant nutrient levels also vary temporally.  Growing season for 

plants on Tibetan plateau alpine meadows is short, from late May to mid-

September (Long et al. 1999).  Grasses, sedges, and forbs generally decrease in 

palatability quickly as their growing season progresses (Coppock et al. 1983a, 

Long et al. 1999, Li et al. 2004a).  For example, the percentage of crude protein 

in yak forage decreases from a maximum of 15.22% in new growth to 4.74% in 

dead grass (Yan et al. 2002). 

Clearly, an investigation of nutrient levels over a wider range of forage 

species is desirable for future research.  Additionally, ranges of plant carbon and 

nitrogen heterogeneity in the environment would be useful.  Limited current data 

are available.  Ni (2002) reports carbon densities of 500 to 4000 g/m2 for alpine 

meadows, while Wang et al. (2005) recorded 105.97 g/m2 above-ground carbon 

in a Kobresia meadow.  For the same meadow, Wang et al. (2005) also give 

plant nitrogen levels of 3.356 g/m2. 

Pika effects on water infiltration 

Solifluction, or the movement of waterlogged soil down slope, is a 

common phenomenon in these environments (Hall et al. 1999).  Animal 

burrowing may have profound impacts on this action as well as other erosional 

processes.  In general, water infiltration rates due to pika disturbance were 

significantly elevated both at the patch scale (within a colony) and local 
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landscape scale (between a colony and off-colony).  The only site for which this 

trend did not hold was Daotang He.  Interestingly, this site was least like the 

others in terms of species composition and ground cover (unpublished data).  

The aridity and tall grasses at this site are suggestive of a habitat type closer to 

alpine prairie than alpine meadow.  An area for future research would be to 

determine whether increased infiltration rates from burrowing are restricted only 

to alpine meadows, or are common to other plant communities as well. 

It is unlikely that plateau pikas simply choose to burrow in regions with 

greater water infiltration than surrounding regions.  If pikas exhibited bias in 

choosing to burrow in already water-permeable soils, it might also be expected 

that water infiltration would be greater in on-colony than off-colony areas.  

However, one would not necessarily expect to find a consistent difference in 

permeability levels between disturbed and undisturbed ground within a colony.  

The more probable explanation is that water infiltration is the result of changes to 

soil texture due to pika burrowing, rather than a correlated variable. 

One frequent justification for pika eradication is that pika burrowing 

behavior leads to erosion and soil loss (Xia 1986, Zhang et al. 1998, Fan et al. 

1999).  This research is the first to suggest an alternative viewpoint—namely, 

that plateau pika burrowing leads to decreased water runoff, and consequently, a 

reduced level of erosion and soil loss compared to uncolonized meadows.  This 

conclusion is supported by research on pocket gophers in North America.  

Hakonson (1999) compared runoff in bare soil, bare soil with a gopher addition, 

and a re-vegetated site.  Gophers were found to reduce runoff by a greater 

percentage than the addition of vegetation (Hakonson 1999).  Water infiltration 

was 200% higher on gopher plots compared with non-gopher plots (compared to 
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a 75% improvement with the addition of vegetation).  Furthermore, the amount of 

collected sediment (erosion) was reduced by gophers, though not to a greater 

extent than lowered by vegetation (Hakonson 1999). 

Burrowing mammals have indisputable effects on soil movement.  

Sediment transport by gophers has been shown to be long in temporal effects 

(over three years), but short in spatial impact, with most soil moved within 0.5 m 

of the burrow entrance (Sherrod and Seastedt 2001).  Hakonson (1999) 

proposed that gopher burrowing decreases erosion because water flows more 

slowly across these heterogeneous soils due to interference from mounds and 

pits.  This reduced rate allows greater time for sediment to filter out (Hakonson 

1999).  The increased water permeability found by my research, combined with 

these reduced rates of water flow across the landscape, would likely lead to 

lower erosion rates at pika colonies.  Additionally, more water could be available 

for plants at pika colonies.  Zhang and Liu (2003) also reported greater soil 

moisture levels at all soil depths from 0 to 50 cm at a site with moderate pika 

density (50/ha) compared to a site poisoned for 18 years.  These predictions 

have yet to be tested directly, but are a promising area of future research. 

Another example of ecological degradation often attributed to plateau 

pikas are so-called “black sands” (not to be confused with the highly fertile “black 

soil region” of temperate northeastern China (Zeng et al. 1983)).  Black sand is a 

type of heavily degraded alpine soil alternatively translated as black soil, black 

beach, black shoal or black mountain (Wang et al. 2003, Zhou et al. 2005).  It is 

characterized by low vegetative cover (40 to 50%), soil high in gravel content, 

and a plant community dominated by poisonous forbs (Schaller 1998, Wang et al. 

2003, Xu et al. 2008)  Black sand regions are common above 3700 m in the 
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headwaters of the Yangtze and Yellow rivers region (Zhou et al. 2005).  Some 

authors estimate up to 30% of alpine grassland can be considered black sand 

(Shang et al. 2008).  Few studies directly link pikas with black sand formation; 

rather, many investigate the relationship between livestock overgrazing and 

degradation.  Hall et al. (1999) argue that alpine solifluction is due to slope failure 

caused by overloading of livestock, rather than frost alone.  While pikas are 

known to dig burrows into the face solifluction lobes, the slope failure itself is 

linked to the overstocking of yak, which is also implicated in the creation of black 

soil (Hall et al. 1999).  Other researchers argue that black sands may be the 

result of trail erosion or global warming (Miehe 1988, 1996, Ma et al. 1997, 

Schaller 1998).  Whatever the cause, black soil does not recover easily (Shang 

et al. 2008). 

Erosion is a serious problem in China; it is estimated that 38% of the land 

has been affected by erosion (Yang and Pang 2006).  According to some 

sources, soil erosion is the most important environmental challenge in 

northeastern Qinghai (United States Embassy 2003).  One contributor to soil loss 

is reduction in vegetation cover by overgrazing.  Wang et al. (2003) estimated a 

loss of 14890 kg/hm2 SOM and 1590 kg/hm2 nitrogen with decreasing alpine 

meadow vegetation cover from 90 to 70%.  The presence of pika burrows on 

grazed sites could mitigate this effect by increasing topological variation of the 

land surface, thereby slowing the flow of water and reducing erosion.  In their 

global assessment of water towers, Viviroli et al. (2007) found that mountain 

water resources in the western and eastern Himalayas could not fully meet 

downstream water demands. 
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Another factor influencing alpine soil moisture is climate change.  

Although precipitation, evaporation and temperature all affect runoff, the most 

important influence on discharge in this region is permafrost thickness (Chang et 

al. 2007).  The thickness of permafrost at the Yellow river headwaters has been 

decreasing 10.8 cm per decade (Chang et al. 2007).  With the loss of 

impermeable permafrost, water penetrates more deeply into the soil, leaving less 

moisture on the surface (Chang et al. 2007).  Likewise, a reduction in annually 

frozen soil could lower available water levels at the surface.  On the Tibetan 

plateau, frozen soil undergoes a cycle of thawing from March to September, 

freezing at the end of September, and remaining frozen from October to March 

(Ding et al. 2000).  The highest soil moisture levels were reported when ground 

began to thaw, as the frozen soil releases water (Yang et al. 2003).  Thus, soil 

moisture will be at its lowest during the winter months.  If pika burrowing results 

in enhanced soil water storage, more water could be available during these 

critical periods.  Finally, watersheds originating on the Tibetan plateau account 

for 66.8% (1879 x 109 m3) of China’s available water (Yang and Pang 2006).  In a 

country with a low per capita water supply (Yang and Pang 2006), this potential 

for increased water availability deserves considerable attention. 

CONCLUSION 

A broad suite of ecosystem services are provided on the Qinghai-Tibetan 

plateau, including 1) NPP; 2) carbon storage and O2 release (via NPP 

production); 3) water storage; 4) soil conservation; 5) soil fertility; and 6) 

biodiversity maintenance (Yu et al. 2005).  These services have the potential to 

be strongly impacted by the presence of an endemic keystone species and 

ecosystem engineer, the plateau pika.  Because these services were generally 
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found to decrease in importance along a southeast-northwest gradient (Yu et al. 

2005), this study area is a particularly important region of the plateau.  The most 

important economic service (in terms of monetary value) provided by the Tibetan 

plateau is estimated to be water storage (Yu et al. 2005).  Likewise, of the 

ecosystem properties measured in this study, plateau pikas showed the 

strongest effects on water infiltration.  Plateau pika disturbance was not found to 

have significant effects on soil or plant nutrient values.  Current livestock grazing 

practices and natural environmental variation likely have greater influence over 

nutrient cycling in this system than pika burrowing.  
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Table 2.1.  Study localities in Qinghai Province.  Six pairs of pika on-colony and 
off-colony sites were selected for sampling across eastern Qinghai province. 
Elevation is given in meters. 
 

Location County Prefecture Elevation Geographical Coordinates 
Dawu Maqen Golog 3800  34o24'03"N 100o21'38"E 

Daotang He Gonghe Hainan 3400 36o25'12"N 101o03'18"E 

Henan Henan Huangnan 3500 34o38'52"N 101o45'31"E 

Huashixia Madoi Golog 3600 35o05'51"N 98o51'29"E 

Qinghai Hu Gonghe Hainan 3300 36o36'43"N 100o20'46"E 

Senduo Guinan Hainan 3500 35o30'35"N 101o13'07"E 
 
 
Table 2.2.  Adjusted bulk density at five sampling sites near Dawu.  Mean soil 
nutrient values and standard deviations scaled to landscape levels by adjusted 
bulk density at four pika colonies (Dawu 1-4) and one off-colony site (Dawu 5). 
 

 Adjusted Bulk Density (g/ cm3) 
 Disturbed   Undisturbed 
Dawu 1 0.86 ± 0.06  0.88 ± 0.08 
Dawu 2 0.80 ± 0.10  0.78 ± 0.10 
Dawu 3 0.92 ± 0.17  0.82 ± 0.13 
Dawu 4 0.93 ± 0.15   0.92 ± 0.10 
Dawu 5 —  0.93 ± 0.07 
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Figure 2.1.  Surface structures created by plateau pikas.  These structures 
include entrance holes (a), mounds of excavated soil (b) and runways (c). 
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Figure 2.3.  Mean soil nitrogen and organic matter (SOM) within four pika 
colonies in Dawu Township.  Standard error bars are shown for total nitrogen and 
organic matter, while plant-available nitrogen is shown as twice the standard 
error.  White bars show disturbed patches and shaded bars undisturbed patches. 
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Figure 2.5.  Mean infiltration rates across six localities in eastern Qinghai 
Province.  Infiltration is shown in cm/h with standard error bars.  White columns 
represent disturbed patches, gray columns undisturbed patches within a pika 
colony.  Striped columns indicate undisturbed patches from an off-colony site.  
Different lower case letters within a locality indicate significant difference 
(p<0.05).  Each treatment has n=10. 
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CHAPTER 3 
The importance of ecosystem engineers to local landscape heterogeneity: 

plateau pikas transform alpine meadow communities 
 

INTRODUCTION 

Spatial heterogeneity is an important contributor of variation to ecological 

communities.  One source of spatial heterogeneity is natural disturbance from 

animal burrowing.  Burrowing both modifies existing habitat (through physical 

change and alteration of ecosystem processes) and generates new habitat 

(through creation of above- and below-ground structures).  The resulting patches 

may provide microhabitat types not found in the undisturbed landscape matrix, 

thereby increasing habitat diversity.  Additionally, burrows function as connective 

agent between the above-ground and below-ground environments.  Their 

presence may alter nutrient flows and species movement through these habitats.  

Despite the importance of these functions to the environment, the spatial 

structure of burrowing animals has received little attention (however, see 

Reichman and Seabloom’s (2002) review of work on pocket gophers and Lacey 

et al.’s (2000) review of subterranean rodents). 

Though all organisms interact with their environment, some species may 

play larger roles and disproportionately influence community structure (Paine 

1969, MacArthur 1972).  These species are sometimes referred to as keystones 

(Paine 1969, Kotliar et al. 1999), and those that physically transform their 

environment, as ecosystem engineers (Jones et al. 1994, Dickman 1999).  One 

such species is the plateau pika (Lagomorpha: Ochotona curzoniae), endemic to 

the alpine grasslands (specifically alpine meadow, meadow-steppe and desert 

steppe) of the Tibetan plateau (Smith and Foggin 1999).  Plateau pikas are an 

important food source for most mammalian carnivores in the region (Schaller 
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1998, Smith and Foggin 1999, Xu et al. 2006, Liu et al. 2010a), as well as a wide 

variety of raptors (Peshkov 1957, Lai and Smith 2003, Li et al. 2004b, 

Badingqiuying 2008, Cui et al. 2008).  Their range extends over most of the 

plateau (2.5 million km2 (Schaller 1998)) at altitudes of 3000 to 5000 m (Smith 

and Xie 2008).  As early as 1938, Schäfer (1938) described these regions as 

“Ochotona-steppe” due to the predominance of pika burrows on the landscape.  

The transformative nature of pikas burrows has lead to their description as an 

allogenic engineer (Lai and Smith 2003), an organism which changes the 

environment by transforming the existing habitat from one physical state to 

another (Jones et al. 1994, Dickman 1999).  Like other fossorial mammals, 

plateau pikas can be also be considered keystone engineers with impacts both 

“distinctive from processes that are strictly abiotic … and large relative to the 

purely physical processes operating in the system”  (Reichman and Seabloom 

2002). 

In contrast to North American pikas, plateau pikas are highly social 

mammals that excavate extensive underground burrow systems (Smith and 

Wang 1991, Dobson et al. 2000).  Dense populations of plateau pikas are 

considered a nuisance by herders (Formozov 1928, Ekvall 1968) and the local 

government (Ma 2006).  Pikas are accused of competing with the local livestock 

for food (Fan et al. 1999), while their burrows are said to cause soil erosion, 

rangeland degradation, and biodiversity loss (Xia 1986, Zhang et al. 1998, Fan et 

al. 1999).  Consequently, poisoning of this species continues to be a common 

management practice and has escalated since 2006 (Ma 2006). 

The objectives of this study were to evaluate ecological consequences of 

spatial heterogeneity caused by pika burrowing on alpine meadow ecosystems.  
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Specifically, I investigated impacts of these keystone engineers on plant cover 

and surface structures.  Additionally, baseline data on basic burrow system 

characteristics were collected.  By quantifying spatial heterogeneity, it may be 

possible to account for an important source of variability within grasslands and to 

assess the overall impact of plateau pikas on their environment. 

Spatial structure of pika burrows 

The burrowing activity of pikas can be described on multiple spatial 

scales.  Each scale can be considered as a unique accumulation of repeating 

smaller units.  The inherent scale is the patch size, which in this case is the 

burrow entrance hole.  Entrances holes are approximately 10 cm in diameter, 

slightly larger than the width of a pika.  They can be classified as ”burrow holes” 

connecting to the family burrow structure, and shorter “duck holes” that descend 

vertically and do not typically connect (Dobson et al. 1998).  Duck holes are used 

as areas for temporary shelter from aerial predators, rather than as continuously 

inhabited dwellings.  Each burrow structure is cooperatively shared by families of 

1 to 5 adults and can contain as many as 230 entrance holes (Dobson et al. 

1998). 

Entrance holes connect the above-ground and below-ground realms.  

Below the surface the entrance hole leads to a downward sloping tunnel that may 

level before branching or terminating.  The tunnel may be simple, with a single 

tunnel leading to a nest chamber, or complex, with branching.  Branches may 

lead to other holes (escape routes), nest chambers, storage chambers, or 

latrines.  Most burrow structures consist of a network of subterranean tunnels 

approximately 20 to 25 cm below the soil surface (Wei et al. 2007).  The entrance 

hole allows transfer of above-ground material, such as water, oxygenated air, 
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and biotic matter, to the subterranean domain.  Materials enter the tunnel both 

passively via wind and gravity and actively via the inhabitants’ behavior. The 

distribution of organic and inorganic material in the tunnel system may thus be 

spatially heterogeneous, and may be a function of distance from the entrance 

hole. 

The primary above-ground structure associated with plateau pikas is a 

mound or spoil heap (however, it should be noted that mound formation is not 

common surrounding duck holes, which are more temporary shelters).  The 

burrow begins as a depression in the ground, which may arise from a natural pit 

or an intermediate structure, such as a latrine.  As excavation is frequently 

initiated from the surface, new mounds have an elliptical (as opposed to circular) 

shape resulting from the directional deposition of soil behind the animal.  Soil, 

small rocks and unwanted debris deposited on the surface build an elevated 

mound on the otherwise even meadow surface.  This mound increases in 

diameter as the below-ground tunnel network expands.  As a pit in the 

surrounding soil surface, the entrance hole naturally collects debris.  Daily 

clearing of the entrance hole removes debris and fecal material, as does 

seasonal maintenance of underground structures, such as tunnel excavation and 

wall repair.  Over time even the mound of carefully maintained burrows flattens 

and becomes covered by vegetation. 

Other surface structures associated with the burrow system include 

runways, latrines (regions of accumulated feces) and depressions.  Grazed 

runways are usually only found in environments with particularly dense growth.  

While the tunnels of some fossorial animals are visible from the surface as raised 

ridges or lines, plateau pika burrows are not.  Abandonment of the burrow 
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structure is rare, but may occur as a result of natural flooding or, more commonly, 

following anthropogenic poisoning.    Neglect of a particular entrance hole is 

easily detectable by the lack of daily maintenance.  In such cases the entrance 

and tunnels collapse, leaving little physical evidence of the former burrow.  Thus, 

in addition to the spatial heterogeneity created by the expanding burrow structure, 

temporal heterogeneity is generated as patches cycle between depression, 

mound and meadow. 

At the local landscape level an area of heterogeneous pits and mounds 

generates relief and variation.  The unaltered meadow can be considered the 

background matrix, and the burrow structures as patches within that matrix.  

Because pikas are highly social animals, their burrow structures group within 

families to form an interconnected burrow complex.  At the local landscape or 

colony scale, adjacent groups of these separate family complexes can be 

considered as the colony unit.  The size of this colony depends on the presence 

of continuous habitat, but is maintained over multiple generations and tends have 

a relatively stable spatial extent (Dobson et al. 1998).  Colony borders are 

frequently determined by natural barriers, such as mountains, rivers, or wetlands.  

Large pika colonies have been reported to reach 300 individuals/ha (Smith et al. 

1990).  At the largest unit of scale, colonies may be separated by meters or 

hundreds of kilometers, depending on the heterogeneity of the terrain.  Pika 

burrowing therefore generates a variety of micro-habitats which contribute to 

local landscape heterogeneity at multiple spatial scales. 

Increasingly, anthropogenic activity has become a major factor in the 

distribution of pika colonies at the colony scale.  Similar to the eradication of 

prairie dogs in the western United States, an intensive poisoning campaign is 
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being waged against the plateau pika (Liu et al. 1980, Shen and Chen 1984, 

Zhong et al. 1985, Fan et al. 1986, Smith et al. 1990, Ma 1995, Zhang et al. 1998, 

Fan et al. 1999).  Aside from directly controlling pika numbers, humans may 

indirectly influence colony location through grazing practices.  Livestock grazing 

lowers the average plant height (Miehe et al. 2008), thereby increasing the 

suitability of habitat for pikas (Shi 1983, Bian et al. 1994, Bagchi et al. 2006).  

Fencing exacerbates this situation by encouraging high livestock densities and 

an uneven distribution of resources (Bauer 2005).  Thus, the heterogeneity 

generated by plateau pikas must be taken in context with human activity that 

alters the environment. 

MATERIALS AND METHODS 

My study site was located at the eastern portion of the Tibetan plateau.  

The Tibetan plateau is the world’s largest low-latitude alpine region, and spans 

approximately 2.5 million km2 (Schaller 1998) at an average elevation over 4000 

m (Wang 1988, Spicer et al. 2003, Qiu 2008).  Although the plateau covers only 

one quarter of China’s land area (Ekvall 1968, Miller 1995, Miller and Craig 1997), 

it contains 40% of the country’s grasslands (Hu and Zhang 2004).  These 

grasslands contribute 2.5% of the global carbon pool and over 20% of China’s 

contribution (Wang et al. 2002).  The Tibetan plateau is also regionally significant 

as a major watershed.  Approximately 28% of China’s water and 34% of water for 

the Indian subcontinent originates on the plateau (Aldenderfer and Zhang 2004). 

Data were collected in Qinghai Province from June to early August in 

2006 and 2007.  Four distinct pika colonies approximately 3 km apart were 

identified near Dawu Township (34o24'03"N, 100o21'38"E) in Golog County.  

Annual precipitation at this site is 420 – 560 mm (Liu et al. 2010b), most of which 
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falls as rain from May to September (Dong et al. 2004b).  The average annual 

temperature is below freezing (Dong et al. 2004b), and there is no absolutely 

frost-free period (Liu et al. 2010b).  Annual temperature ranges from -32 ºC to 

25ºC (Dong et al. 2004b), and daily temperature differences can be large as well 

(Liu et al. 2010b).  The growing period is from late May to mid-September with 

biomass peaks in July (maximum sedge productivity) and September (maximum 

grass productivity) (Long et al. 1999). 

Alpine meadows at an elevation of 3300 to 3800 m were chosen.  Low-

growing Kobresia sedges were the dominant vegetation in all localities, and they 

formed thick mats grazed to a uniform height by ungulate and small mammal 

herbivory.  All colonies were also used as winter pastures for yak and sheep.  

Although stocking rates for domestic animals could not be directly quantified, 

regions with evidence of other large grazers (horses and wild ungulates) and 

small mammal herbivores (marmot burrows and zokor mounds) were avoided. 

Data were collected in 100 m belt transects, 2 m wide, laid through the 

densest part of a pika colony.  Belt transects were wide enough to encompass 

two to three pika holes, while still allowing for collection of data at a small spatial 

scale.  Along the transect the region was analyzed in 10 cm2 blocks.  Block size 

was selected to be approximately equivalent to the size of a burrow entrance.  

Pika holes were categorized by type (burrow hole or duck hole), age (new, 

intermediate, or old) and status (active or inactive).  Burrow type was 

distinguished by the characteristics given in the introduction.  New burrows were 

considered to be holes adjacent to fresh deposits of soil covering live plants, and 

containing few or no colonizing plants.  Old burrows were identified by a mound 

level with the meadow surface, covered by vegetation and with little or no fresh 
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soil visible.  Burrows which fit neither category of young or old were identified as 

intermediate.  Status was easily determined as active (versus inactive) by the 

presence of fresh feces and the absence of debris obscuring the entrance hole. 

Statistical analysis 

Multiple measures of spatial heterogeneity have been developed to 

describe spatial distribution of points.  I used the R programming environment, R 

version 2.7.1, (R Development Core Team 2009) with the spatstat package 

(Baddeley and Turner 2005) to explore distribution of points using the intensity 

marked point processes. 

One statistical assumption of spatial data is spatial homogeneity 

(stationary).  This assumes an even intensity (λ), the mean number of points per 

unit area, across space.  Spatial homogeneity was explored using density plots 

of kernel-smoothed intensity (Diggle 1985).  The kernel (a specific function and 

bandwidth) calculates density as it moves across the point pattern.  I used an 

isotropic Gaussian kernel with edge correction and explored multiple values for 

bandwidth by varying the standard deviation, sigma. 

To assess if the point pattern was random or non-random, the distribution 

was compared to the null hypothesis of complete spatial randomness (CSR).  

CSR was generated from an envelope of 99 randomizations.  A pattern that 

differs from CSR may be clumped (aggregated) or regular.  Clustering was 

assessed by exploring the distance between all points using the mean (first order 

statistics, such as nearest-neighbor (Liu 2001)) and variance (second order 

statistics, such as Ripley’s K (Ripley 1976)).  To account for edge effects, I used 

appropriate edge corrections for each statistic.  Border correction (reduced-

sample) estimates were used in all statistics.  Kaplan-Meier correction (Baddeley 
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and Gill 1997) was calculated for nearest-neighbor distance statistics.  Ripley’s 

isotropic correction and translation corrections (Ohser 1983) were determined for 

Ripley’s K.  A theoretical curve was calculated from expected values under 

complete spatial randomness, corresponding to a homogenous Poisson process. 

RESULTS 

The number of pika holes in a 200 m2 area (200 cm x 10000 cm) ranged 

from 24 to 51; the average hole count (x‾ ± SD) across the four sites was 34 ± 

11.8 (Table 3.1).  The average intensity of holes across all four sites was (0.0017 

± 0.0010).  The densest point space occurred at site 1.  Marked pika holes (type, 

relative age, status) were also investigated (Table 3.2).  Most holes were 

classified as burrows (97 ± 4%), and consequently duck-holes were uncommon 

(Figure 3.3a).  New or relatively young burrows were also rare (7 ± 3%) in age-

marked points (Figure 3.3b).  Approximately equal numbers of burrows were 

designated medium (49 ± 13%) or old (44 ± 13%) in relative age.  However, 

relative age also showed the highest variance of any burrow classification 

measure between the colonies.  More medium aged burrows than old burrows 

were found at all sites except site 3.  Consistently more burrows were found to be 

active (74 ± 4%) than inactive (26 ± 4%) (Figure 3.3c).  Of the marked points, the 

highest intensity was reported for burrow-type holes (0.0016 ± 0.0010), followed 

by active-status holes (0.0012 ± 0.0004). 

Further analyses used all points (unmarked) at each site.  Exploring 

multiple bandwidths of the Gaussian kernel indicated that a bandwidth of 10 was 

sufficient to distinguish clusters of points at all sites (Figure 3.4); thus this 

bandwidth was used in all subsequent analyses.  No gross violations of spatial 
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homogeneity were apparent, though site 3 was somewhat suggestive of a 

uniform distribution. 

Cluster Analysis 

Clustering was first explored by visual inspection of the mapped points 

(Figure 3.2a).  Site 1, which also had the highest point intensity, appeared to be 

the least clustered.  The remaining sites had regions without burrows, suggesting 

potential clusters.  Additionally, a Steinen diagram indicated that nearest-

neighbor distances were largest at sites 2 and 4 (Figure 3.2b).  These clusters 

were statistically evaluated using summary statistics of distances between 

unmarked points assuming global spatial homogeneity (Figure 3.6 - Figure 3.9).  

The estimated edge corrections did not vary widely within test statistics, therefore 

only the border (reduced-sampled) edge-correction is shown.  In all statistics the 

wide envelope of randomizations was an artifact of experimental design.  

Because the maximum distance (r) can only be half the length of the shortest 

side of the plot (Baddeley 2008), only distances up to 1 meter are shown. 

Distances below 0.1 m are not interpreted as this is the burrow (pixel) width. 

The standard nearest-neighbor distance distribution (G function) 

measures distance between events to generate a cumulative distribution of 

nearest-neighbor distances (Figure 5).  Distributions above the CSR envelope 

are considered regular, and below CSR are considered clustered.  Site 1 shows 

clustering at small (r < 3) and possibly large intervals (r > 8).  Site 2 displays 

clustering over much of the small intervals (r < 7), and regularity at larger 

intervals (r > 8).  Site 3 shows uniform Matern-regularity (observed data at lower 

envelope) at all distances.  Site 4 shows regularity at distances up to 8. 
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An alternative method, the F function (Figure 6), measures the distance 

from a reference point to the nearest event rather than recording the distance 

from event to event.  The point-to-event method is used by the empty space 

function (F function).  It is a measure of the minimum distance to the nearest 

point.  Distributions above the CSR envelope are considered regular, and below 

CSR are considered clustered.  All sites suggest clustering at large distances (r > 

9) with the F function. 

The J function is a combination of the G and F functions: (1 - G)/(1 - F) 

(Figure 7).  Site 1 suggests CSR.  Sites 2 and 4 show regularity until a deep dip 

at r = 6 and 8, respectively.  For high r-values at site 3, the distribution 

approaches more regular spacing than expected at random. 

The reduced second moment function, Ripley’s K, (Figure 8) looks at all 

pairs of points and gives a variance of interpoint distance by comparing the 

observed to expected distances.  Site 3 and 4 lie on the lower envelope, 

suggesting a regular distribution.  This will be compared with a model of a Matern 

Inhibition process. 

DISCUSSION 

I detected less than one pika hole per square meter (0.12 to 0.26 holes/ 

m2), even in the sites with the greatest point intensity (0.26 holes/ m2).  An 

estimate of 1200 to 2250 holes/ ha is reasonable based on constant point 

intensity; however, spatial extents over 200 m2 were not directly measured.  The 

most common type of hole encountered was an active burrow of medium to old 

age.  New holes and duck-holes were uncommon. 

At each site, the overall point distribution appeared spatially 

homogeneous.  However, nearest-neighbor statistics revealed regions of 
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clustering (more points than expected under complete spatial randomness) and 

uniformity (fewer points than expected under CSR).  Interpretations were limited 

to small distances (0 to 1 m), which contained the most point-to-point (or event-

to-event) distances.  The border (reduced-sample) edge-correction was shown 

for consistency across all statistics, though it represents a highly conservative 

correction. 

At site 1, no nearest-neighbor statistics could reject CSR across most 

distances.  Variance was also as expected under CSR.  The only (weak) 

evidence for clustering is suggested at distances above 0.9 m.  Site 2 and 4 

indicated regularity (more uniform point distribution) at moderate distances (0.4 x 

0.7).  Both nearest-neighbor statistics and variance support a uniform point 

distribution at most distances for site 3. 

Location appeared to be an important factor influencing placement of 

holes over short distances (0 to 1 m).  Spatial randomness was most strongly 

evident at site 1, while sites 3 and 4 showed the most instances of uniformity.  

Interestingly, site 1 also had a notably higher point count (51) compared to the 

other sites (29, 32, 24 for sites 2, 3 and 4, respectively).  This evidence supports 

the interpretation that pika holes are randomly distributed at high densities, but 

perhaps not for lower densities. 

The sites with lower point densities (2, 3 and 4) also showed the most 

evidence for uniform Matern-regularity.  Uniform distributions, where points are 

more widely spaced than would be expected from a random distribution of points, 

are less common than clustered distributions.  This pattern suggests that when 

pika densities are low, an inhibition process is at work, forcing a wider spacing of 

holes than would be expected under CSR.  This regular spacing was most 
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frequent at moderate distances (0.4 m to 0.7 m).  All sites except site 3 

suggested clustering at large distances (> 0.9 m).  This distance probably 

indicates clusters of holes within an interconnected family burrow structure. 

The mechanisms behind these patterns were not tested directly, but the 

patterns themselves do suggest several possibilities.  One hypothesis is that a 

biological process, such as territoriality, is at work.  Plateau pikas are social 

mammals, and thus do not defend separate individual territories, though they do 

form family units.  However, the moderate distances over which regular spacing 

was most often found is too small to fit to family units.  Rather, a biological 

inhibition process at the individual level is more likely, such as inter-sibling 

competition for space or individual competition for minimum forage requirements.  

Alternatively, this regular spacing could be a consequence of each family unit 

expanding its territory to cover a maximum area.  Uniform spacing may have 

consequences at higher pika densities, such as greater chances of invasion by 

dispersing juveniles. 

An alternative hypothesis is that a predominantly abiotic, rather than biotic, 

process is at work.  The distance between holes may be a consequence of soil 

properties, such as compactness, particle size, and clay content.  The slope of 

the entrance tunnel may dictate a minimum tunnel length, and thus a minimum 

spacing of burrows.  Multiple entrance holes may destabilize the soil surface.  

Additionally, wider spacing of holes could be an attempt to minimize the 

infiltration of rain into the tunnel system.  Assuming that high pika density is 

correlated with random hole-spacing, then biotic factors may be stronger than 

abiotic mechanisms.  However, direct evaluation of these hypotheses is 

necessary to make any formal conclusions about the geometry of burrow spacing. 
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CONCLUSION 

I demonstrate the utility of spatial statistics as a way to evaluate local 

landscape heterogeneity.  While spatial statistics are often exploratory in nature, 

the process of pattern description can lead to multiple hypotheses that can be 

directly tested in the field.  These methods can motivate future tests that 

quantitatively evaluate the impacts of ecosystem engineers. 
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Table 3.1.  Frequency and average intensity of unmarked points at four sites.  
The window rectangle is [0, 20] x [0, 1000] units with a total area of 200 m2. The 
control site (not shown) had identical dimensions.  It did not contain any pika 
holes or regions of 100% bare ground.  Yak scat at the control site had a 
frequency of 8 and average intensity of 0.004. 
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Figure 3.1.  Burrow classification scheme. 
 
(a) Burrow 

 

(b) Duck Hole 

 
 
(c) New burrow 

 

 
(d) Medium age burrow 

 
 
(e) Old burrow 

 

 
(f) Pika runway 
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Figure 3.2.  Maps of point locations at four pika colonies.  Locations displayed for 
holes (a) and holes and 100% bare ground (c), with x-axis expanded by 10.  
Corresponding Steinen diagrams with circle radius equal to nearest-neighbor 
distance, are shown for holes (b) and bare ground (d). 
 
 (a) 

 

 
 (b) 

 
 
 (c) 

 

 
 (d) 
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Figure 3.3.  Point patterns at four pika colonies.  Points are marked by (a) type, 
(b) relative age and (c) status.  The x-axis has been expanded for better 
visualization. 
 
(a) Type (�burrow, � duck-hole) 

 

(b) Relative Age (� new, � medium, � old) 

 
(c) Status (� active, � inactive) 
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Figure 3.4.  Kernel density plot of pika burrows at four colonies.  Plots are shown 
over bandwidth values 5, 10, 15 and 20.  Yellow represents a higher intensity of 
points and blue, a lower intensity. 
 
Dawu 1 

 

Dawu 2 

 
Dawu 3 

 

Dawu 4 
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Figure 3.5.  Kernel density plot with bandwidth = 15.  Plots show pika hole 
locations (a) and 100% bare ground (b) at four pika colonies.  Yellow represents 
a higher intensity of points and blue, a lower intensity. 
 
(a) 

 
 
(b) 
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Figure 3.6.  The cumulative distribution of nearest-neighbor distances. The G 
function by distance (in meters) is given for the theoretical CSR curve (theo), 
upper randomization envelope (hi), lower randomization envelope (lo), 
uncorrected estimate (raw) and border-correction (rs).  For Dawu 3 and Dawu 4, 
the edge-correction falls on the lower randomization envelope. 
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Figure 3.7.  The empty space function at four colonies.  The F function by 
distance (in meters) is shown for the theoretical CSR curve (theo), upper 
randomization envelope (hi), lower randomization envelope (lo), uncorrected 
estimate (raw) and border-corrected estimate (rs). 
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Figure 3.8.  The J function (combined G and F function).  The function by 
distance (in meters) is shown for the theoretical CSR curve (theo), upper 
randomization envelope (hi), lower randomization envelope (lo), uncorrected 
estimate (raw) and border-corrected estimate (rs). 
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Figure 3.9.  Reduced second moment function. Ripley’s K by distance (in meters) 
is shown for the theoretical CSR curve (theo), upper randomization envelope (hi), 
lower randomization envelope (lo), uncorrected estimate (obs) and border-
corrected estimate (border). 
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Figure 3.10.  Kcross by distance (in meters) at four colonies.  The function is 
shown for the theoretical CSR curve (theo), upper randomization envelope (hi), 
lower randomization envelope (lo), and uncorrected estimate (obs). 

 

 
 



CHAPTER 4

Modeling effects of pika and livestock herbivory on pastureland of the Tibetan

Plateau

INTRODUCTION

The Tibetan plateau stretches across 2.5 million km2, dominating nearly a quarter of

China’s landscape; 70% of this area is characterized by high alpine grasslands (Miller

1995, Miller and Craig 1997). A primary resource user of this alpine habitat is the

endemic plateau pika (Lagomorpha: Ochotona curzoniae), a small member of the order

including rabbits that builds extensive underground burrow systems. Dense populations

of these animals, which often exceed 300 per hectare, have long been considered a

nuisance by local communities and governments (Formosov 1928, Ekvall 1968, Fan

et al. 1999, Smith and Foggin 1999). Pikas are thought to compete with the local

livestock for food and to overgraze the natural grasslands. Additionally, their burrows

are said to cause soil erosion and rangeland degradation (Zhang et al. 1998, Fan et al.

1999). Potent chemicals, such as zinc phosphate, fluoroacetate, and botulin C toxin

have been used in attempts to eradicate the pika locally, while simultaneously causing

widespread environmental pollution (Fan et al. 1999) and reduction of the regional

biodiversity and ecological functioning (Smith and Foggin 1999).

On the other hand, more and more evidence points to the keystone status of the

plateau pika. Pikas are known as ecosystem engineers because of the importance of

their burrows in providing nesting habitat for small birds in a treeless landscape (Lai and

Smith 2003). The pika itself is the most abundant small mammal in the region. As such,

it is an important food source for most regional carnivores and raptors (Schaller 1998,
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Smith and Foggin 1999, Lai and Smith 2003, Badingqiuying 2008). Without pikas, bur-

rows may soon collapse and predators disappear. Pikas also contribute to ecosystem

function in a number of other ways. For instance, species with similar ecological roles

to the Tibetan pika, such as the American prairie dog, have been shown to influence

plant species richness in inhabited areas (Whicker and Detling 1988, Fahnestock and

Detling 2002). Pikas may play a similar role in their alpine meadow habitat.

Due to the high elevation (3500-5400m) and harsh conditions found on the plateau,

most of this pastureland is not suitable for farming, but only for livestock production.

In fact, Tibetan nomads have been grazing yak and sheep in coexistence with pikas

for upwards of 8000 years (Miehe et al. 2009), and Tibetan pastoralism remains the

primary human activity on the plateau (Ekvall 1968, Miller and Craig 1997). These

nomads practice a transhumant system where livestock are shifted from summer to

winter pastures with the changing of the seasons. Unlike transhumant systems in Africa

and many arid regions of the world, forage availability is not limited by water availability,

but by altitude (Meiners 1991). Livestock actually graze on senescent forage for most

of the year (Goldstein et al. 1990).

One final important issue regarding pikas is the extent to which their dietary needs

compete with those of Tibetan yak and sheep. Research suggests that only when

livestock reach high densities are they likely to compete with pikas for food (Jiang and

Xia 1987). This is because pikas graze selectively, and many of their food sources

are passed over by yak and Tibetan sheep (Jiang and Xia 1987). Additionally, the

competition for food between yak and Tibetan sheep is thought to be more intense than

the competition between these domesticated animals and pikas (Jiang and Xia 1987).

Recent government policy has been to settle Tibetan nomads and to fence rangelands
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(Yeh 2003, 2005, Foggin 2008). However, it is likely that the fencing of rangelands, and

corresponding increase in livestock density, is a source of overgrazing. Confounding

matters, pikas tend to favor heavily grazed areas with low cover because there is a

wider field of view for spotting predators (Bian et al. 1999). In this sense, large pika

populations may be a result of overgrazing, rather than a cause (Smith and Foggin

1999).

CONCEPTUAL MODEL

The main resource in this system is the alpine grassland habitat. Plant availability

is controlled by environmental conditions (primarily altitude and rainfall) and is strongly

influenced by herbivore stocking rates. Livestock (controlled by pastoralists) and pikas

are both resource users. Pika numbers are controlled by environmental conditions (e.g.

snowstorms, rainfall), plant availability, natural predation, and poisoning policies. Other

small mammalian herbivores are low in number compared to pikas, and can therefore

be ignored. Livestock numbers are also controlled by environmental conditions and

plant availability, as well as by their pastoralist managers. While wild ungulates are also

common on the Tibetan plateau, they have restricted ranges and can therefore be left

out of this simplified model. The pastoralists are in turn influenced by policies and live-

stock markets. Public infrastructure, in the form of markets and boundary enforcement,

is provided by both pastoralists and local and regional governments. Figure 1 presents

a conceptual model of this system.

A simplified conceptual model of these alpine rangelands can be restricted to the

primary resource (grassland plants) and resource users (livestock, pikas) (Figure 1,

bold text). The alpine meadow resource can divided into two major types of forage:
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graminoids, consisting grass-like herbaceous plants such as grasses and sedges, and

forbs, consisting of mainly dicotyledonous herbaceous plants. Graminoids are the pre-

ferred forage for both pikas and livestock. Because forbs often contain toxic secondary

compounds, these plants are frequently avoided by both pika and livestock. However,

because pikas have the ability to gather plants and dry them in haypiles, thereby reduc-

ing the concentration of toxic chemicals (Dearing 1997), pika avoidance of forbs should

be considered less extreme than that of ruminants. Other plant functional groups such

as trees and shrubs can be ignored because trees are entirely lacking, while shrubs are

usually restricted to north-facing slopes. Graminoids and forbs, then, are the primary

resource constituents which compete for space, nutrients, water, etc. within the alpine

habitat. Key questions that this mathematical model will address include conditions

under which a more diverse, two competitor resource base would be stable; and the

influences of herbivory by livestock and pikas on this system.

MATHEMATICAL MODEL

This model represents a highly simplified version of this ecosystem. Because the

primary resource of interest is the condition of the alpine meadow habitat, rather than

the abundances of livestock and pikas themselves, the state variables of the model

were restricted to the two main forage components: namely, graminoids and forbs.

These forage components compete for light, space and nutrients in the alpine meadow.

Therefore, this system can be based on a standard Lotka-Volterra competition equation

with graminoids (P1) and forbs (P2) as the primary competitors:

Ṗ1 = r1P1(1 − α11P1 − α12P2) (1)

Ṗ2 = r2P2(1 − α21P1 − α22P2) (2)
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where r is the growth rate, and α is the competitive interaction (intraspecific for identi-

cal subscripts and interspecific for dissimilar subscripts). Consequently, this model will

primarily quantify grassland productivity in terms of graminoid and forb aboveground

biomass. Growth rate and competitive interactions will be treated as parameters. How-

ever, (P1) and (P2) are also acted upon by the resource users. Herbivory by pikas (H1)

and livestock (H2), in addition to a metric of their preference for forage type, can be

added in as a consumptive component:

Ṗ1 = r1P1(1 − α11P1 − α12P2) − ρP1H1P1 − γP1H2P1 (3)

Ṗ2 = r2P2(1 − α21P1 − α22P2) − ρP2H1P2 − γP2H2P2 (4)

where ρ is the preference of pikas for a forage type and γ reflects the preference of

livestock. Although several other factors likely influence model relationships as well (for

instance, forage competitive abilities may be influenced by the presence of pika burrows

as new habitat or by livestock trampling and soil compaction) these processes will be

ignored for the present so that a thorough anaylsis of a simplified model can be first

constructed. After establishing these two basic equations, the model can be refined

by eliminating nonessential parameters. The number of parameters can be reduced

by three (number of equations + time) through a nondimensionalization process (see

Appendix A).

Ṗ1 = P1(1 − P1 − α12P2) − ρP1H1P1 − γP1H2P1 (5)

Ṗ2 = rP2(1 − α21P1 − P2) − ρP2H1P2 − γP2H2P2 (6)

Equations 5 and 6 are the final system of equations to represent the rangeland con-

ceptual model (Figure 1, bold text). Parameters can be interpreted as follows:
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Table 4.1 List of parameter values and definitions.

Parameter Definition

r relative growth rate of forbs to graminoids

α12 competitive effect of forbs on graminoids relative to intraspecific

graminoid competition

α21 competitive effect of graminoids on forbs relative to intraspecific

forb competition

H1 pika herbivory rate

H2 livestock herbivory rate

ρP1 pika preference for graminoids relative to the growth rate of graminoids

ρP2 pika preference for forbs relative to the growth rate of forbs

γP1 livestock preference for graminoids relative to the growth rate of graminoids

γP2 livestock preference for forbs relative to the growth rate of forbs

MODEL ANALYSIS

For nonlinear systems, stability can only be evaluated where the system is unchang-

ing; that is, at equilibrium points. Four fixed points of nondimensionalized equation 5

and 6 were found (Appendix B):

(0, 0) (7)

(0, 1 − ρP2H1 − γP2H2) (8)

(1 − ρP1H1 − γP1H2, 0) (9)

(

1 − α12 + H1(α12ρP2 − ρP1) + H2(α12γP2 − γP1)

1 − α12α21
,

1 − α12 + H1(α21ρP1 − ρP2) + H2(α21γP1 − γP2)

1 − α12α21

)

(10)

The stability at each fixed point can be assessed by taking the derivative of equation

5 and 6 in a Jacobean matrix (Appendix C). Equation (7) corresponds to a system with-

out graminoids or forbs. This system has been overgrazed to the extent that no vegeta-

tion remains. Equation (8) corresponds to a system with only forbs. All graminoids have
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been consumed as a result of overgrazing. Equation (9) is the counterpoint of equation

(8). In this case, forbs have been eliminated from the system and only graminoids re-

main. The most diverse resource base is represented by equation (10). Here both forbs

and graminoids can coexist.

We can further assess the model by examining phase plane diagrams (Figure 2).

Given two competitors (graminoids, P1, and forbs, P2), there are four possible outcomes

(Figure 3). Either one or the other competitor always wins (cases 1 and 2), the com-

petitors reach a stable equilibrium (case 3), or either competitor can win depending on

the initial conditions (case 4). Each of these cases are examined with and without the

effects of herbivory. For these cases, α12 and α21 were selected to create conditions

under which one, both, or either competitor would “win” (reach stable equilibrium). Be-

cause both pikas and livestock prefer graminoids over forbs, ρP1 and γP1 were both set

equal to 1. However, since pikas are able to tolerate increased amounts of toxins in

forbs, pikas preference for forbs (ρP2) was set higher that that of livestock (γP2) (0.5

and 0.1, respectively). Changing values of the growth rate, r , does not change the sta-

bility of the system (compare Figure 3 with Figure 4). Increasing r merely increases the

rate with which the system reaches stability. Therefore, r , was set at 1 for all analyses.

H1 and H2 were set to zero unless effects of herbivory were included in the analysis.

In case 1, one competitor (graminoids) out competes the second competitor (forbs)

(Figure 5; α12 = 0.5, α21 = 2). Therefore, there is only one stable point (0,P1), and

the population of graminoids always exceeds that of forbs. The two species cannot

coexist in the long term under these conditions. Graminoids dominate because their

intraspecific competitive ability is lower than that of forbs. However, the addition of high

levels of herbivory (Figure 5; H1 = H2 = 0.4) can cause a shift in stability from of
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the grassland from graminoid to forb dominance. This result makes intuitive biological

sense because graminoids are the preferred forage for both herbivores. When herbivory

levels are high enough, the natural competitive advantage of graminoids is not sufficient

to overcome the impact of grazing herbivores, and the graminoid population declines.

Case 2 (Figure 6; α12 = 2,α21 = 0.5) represents the opposite situation: forbs are al-

ways dominant over graminoids. This system also only exhibits stability once one com-

petitor is eliminated (in this case, P1 = 2 and P2 = 0). The parameter values indicate

interspecific competition between both species is equal, but the intraspecific graminoid

competition is larger than the intraspecific forb competition. Biologically, this means

that graminoids are more self-limiting than forbs, hence the long-term persistence forbs

alone. Unlike case 1, when herbivory is added here (Figure 6; H1 = H2 = 0.4), the

nullclines shift to lower intercepts, but remained parallel to the original condition. Thus,

the inclusion of herbivory does not influence the overall stability of the system; rather, in

the case where the intraspecific competitive effects of one species is greater than the

second, herbivory lowers the intercept (or abundance) of the winning competitor. In this

scenario, the alpine habitat becomes a forb-dominated habitat regardless of herbivory

levels.

The transition from graminoid to forb domination in this scenario can be more closely

examined by plotting each of the variables over time (Figure 7). Although the population

of graminoids always goes extinct, the rate at which the population goes extinct varies

depending on the herbivore. Under livestock herbivory (Figure 7; H1 = 0, H2 = 0−0.8),

the grassland population becomes dominated by forbs more quickly than under pika

herbivory (Figure 7; H2 = 0, H1 = 0 − 0.8). Biologically, this result occurs because

pikas remove more forbs from the system than do livestock, thereby lowering the rate at
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which conversion to forbs occurs. Consequently, the final biomass of forbs under pika

herbivory alone is always lower than that of livestock herbivory alone.

Case 3 (Figure 8; α12 = α21 = 0.5) is the only circumstance under which two

species can coexist in the long-term. Here the intraspecific competition of both species

is greater than their interspecific competition. In other words, these two species regulate

themselves better than they regulate each other. Therefore, the only stable point in

this system is (P1,P2). As moderate levels of herbivory (H1 ≺ 0.4 and H2 ≺ 0.4)

are added to this system, the nullclines for each competitor are pushed down, but the

overall stability does not change (Figure 8). There is an overall tendency of the system

to result in a forb dominated habitat as herbivory rates are varied. If high amounts of

herbivory are added, the preferred competitor (in this case, graminoids) can be pushed

to extinction. A stable habitat including both graminoids and forbs is only possible under

moderate levels of grazing.

To further investigate the resistancy of coexistence to forb dominance, this case can

also be plotted as variables over time (Figure 9). Under high levels of livestock grazing

(Figure 9; H1 = 0, H2 = 0 − 0.8), graminoids quickly become extinct. However, under

similar levels of pika grazing (Figure 9; H2 = 0, H1 = 0− 0.8), not only does the system

convert more slowly to forb dominace, but graminoids are not entirely eliminated from

the grassland. Furthermore, the ratio of forbs to grasses is much lower in a system

grazed by pikas than one grazed by livestock.

Lastly, for case 4 (Figure 10; α12 = α21 = 2), the intraspecific competition within

each species is less than the interspecific competition between species. Under these

parameters, only one species can survive. Thus, both (0, 2) and (2, 0) are stable points

for (P1,P2). Which species will win out depends on the initial conditions of the system,
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or the direction of the initial perturbation. Similarly to case 3, stability is still possible

under moderate levels of herbivory (H1 ≺ 0.4 and H2 ≺ 0.4), but the abundance of

the winning competitor will be reduced. As in case 3, high levels of grazing by either

herbivore will exclude graminoids.

CONCLUSION

Analysis of this model has shown that stability is primarily controlled by inter- and

intraspecific competitive abilities of the forage components. The most diverse resource

base, defined as a stable system of both graminoids and forbs, can occur only when

the intraspecific competitive ability of each species is greater than their interspecific

competitive effect. Under most cases, high levels of herbivory by either pika or livestock

will drive the system to forb dominance. Heavy grazing pressure cannot result in a

system dominated by graminoids, since these are the preferred forage type. However,

low to moderate grazing levels do not necessarily lead to forb dominance. It is important

to note that by observing the end result of long-term grazing to be a forb-dominated or

“degraded” system, one cannot conclude whether this outcome was the result of pika or

livestock overgrazing, or a combination of both. Rather, analysis of this model suggests

that livestock grazing, rather than pika grazing, is more likely to convert a grassland to

forb-dominance. Grazing by pikas may increase the resistance of this system to such

dominance. In conclusion, this model does not implicate pikas per se as a cause of

rangeland degradation from a two forage component stable system to one dominated

by a single less desirable plant type. Rather, overgrazing by either pikas or livestock

could remove graminoids as a forage source under these conditions.

Future avenues of exploration should include additional components of the con-
102



ceptual model (Figure 1). In addition to the negative effects of pikas on alpine plants

(represented by herbivory), pikas may also have positive influence upon their environ-

ment. By burrowing, they recycle deep alpine soil and may increase soil oxygenation

and nutrient exchange. Plant productivity could be reflected by higher nutrient concen-

tration of plants and soils near pika burrows. Furthermore, disturbance created by soil

upheaval can create new habitat which may favor colonization by particular plant types.

These impacts could be incorporated through additional variables linked to the current

parameters in the system. Analysis of these components could lead to further insights

on the relationship between forage competitors in this alpine system.
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Fig. 1: A conceptual model of the pika-livestock-human social-ecological system on

the Tibetan plateau. The resource base and resource users of a simplified conceptual

model are shown in bold.
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CHAPTER 5 
Plateau pikas influence plant species diversity 

 
INTRODUCTION 

The concept of natural disturbance has been a topic of much discussion 

in community ecology.  The exact nature of disturbance, along with description of 

its mechanisms and importance to diversity, has undergone radical change since 

disturbance was first defined by Cooper (Cooper 1926, Odum 1969) as “abrupt 

changes due to external causes.”  These early treatments of disturbance as a 

large-scale disruption to community succession (White 1979) did not account for 

the wide variation in disturbance intensity and source (Connell 1978), nor did 

they acknowledge that ecological communities rarely exist in an equilibrium state 

(Sousa 1984).  Current views recognize that ecological communities are both 

temporally dynamic and spatially heterogeneous (White 1979).  Natural 

disturbance is an integral part of this system; and biotic disturbance, in particular, 

is seen as an endogenous ecological process (Huston 1979). 

As perspectives on the nature of disturbance changed, so did 

descriptions of its mechanisms.  Disturbance was promoted from a disruptive 

force to a mechanism of species maintenance (Grime 1973).  The ideas of 

species maintenance and subsequent diversity rely strongly on coexistence 

mechanisms.  In its simplest terms, species coexistence places two species of a 

similar trophic level within the same habitat (Gause 1934, Hardin 1960).  If these 

species share similar resources, coexistence must overcome the diversity-

depleting process of competition, in which a competitively superior species 

displaces the competitively inferior one (Shmida and Ellner 1984).  One solution 

to this problem in nonequilibrium communities is niche differentiation, wherein 

each species specializes on a subset of the resources (Nicholson 1933, Odum 
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1969).  Another solution concerns the dynamics of natural disturbance.  Initially, 

these dynamics were described in terms of the trade-off between competitive 

ability and tolerance to disturbance (Grime 1973).  Under the presence of 

moderate disturbance, the competitively inferior species may have an advantage.  

In this view, disturbance prevented the competitively superior species from 

dominating the community, and consequently encouraged species coexistence 

and diversity (Grime 1973, Horn 1975).  Thus, a pattern of greater species 

diversity is expected under intermediate levels of disturbance (Roxburgh et al. 

2004).  This mechanism, and its corresponding prediction (Connell 1978), came 

to be known as the intermediate disturbance hypothesis (IDH) (1997).  More 

recently, Chesson and Huntly (Pickett and White 1985) suggested revision of the 

IDH mechanism.  They proposed IDH (their “successional mosaic hypothesis”) 

maintains diversity not through suppression of a dominant species, but by 

generating environmental variation.  Environmental variation is created through 

spatial patchiness (Roxburgh et al. 2004) and temporal variability, either working 

alone or together (Chesson and Huntly 1997).  Thus, the major contribution of 

disturbance is the generation of novel microhabitats (White 1979).  I use this 

framework to examine disturbance effects in alpine grasslands, specifically alpine 

meadows on the Tibetan plateau. 

An important source of natural disturbance in grasslands is biotic 

disturbance by burrowing animals (Ahlbrandt et al. 1978).  The topic of 

bioturbation as the “churning and stirring of sediment by organisms” (Ehrenberg 

1954) has a long history.  In marine biology and paleontology, bioturbation 

developed under the broad topic of lebensspuren, or traces of life (Frey 1973), 

which applied to both fossil and extant animals (Darwin 1881).  In spite of initial 
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attention (Meysman et al. 2006), the subject developed much more slowly in the 

terrestrial literature (Grinnell 1923, Jacot 1940, Thorp 1949, Hole 1981).  Early 

works highlighted the role of burrowing animals in soil formation, and the equal 

consideration of their activities with those of plants (Naylor et al. 2002).  The field 

is now well-developed (Kinlaw 1999, Whitford and Kay 1999) with numerous 

reviews on soil disturbance covering taxa from microbes to vertebrates in 

environments marine and terrestrial Table 5.1.  Recent reviews focus on a subset 

of these organisms in particular habitats, such as arid (Zhang and Liu 2002, Hall 

and Lamont 2003) or alpine environments (Jones et al. 1994) (Table 5.2). 

Bioturbation is often cited as a classic example of ecosystem engineering 

(Aho et al. 1998, Reichman and Seabloom 2002, Wright et al. 2002, Murdoch et 

al. 2009), especially in reference to mammals (Seabloom and Richards 2003).  

Extensive work has been done on North American pocket gophers (Miller et al. 

2007) and prairie dogs (Abaturov 1972), as well as small mammals in Russia 

(1949).  One animal which has not drawn equal attention as a biotic engineer is 

the plateau pika, Ochotona curzoniae (however, see an early reference in Thorp 

(Lai and Smith 2003, Smith and Lai 2005)).  While the importance of plateau pika 

burrows to the animal community has lead to their label as an ecosystem 

engineer (Smith and Foggin 1999) and keystone species (Smith and Xie 2008), 

less work has focused on their importance in structuring the local plant 

community.  As the most abundant small mammal on the Tibetan plateau 

(Schaller 1998), plateau pikas (hereafter, pikas) are transformative agents of the 

local community.  Here, I examine the role that pika bioturbation plays in alpine 

meadow plant communities.  Based on evidence from prairie dogs (Table 5.3), I 

hypothesized that pika burrowing generates novel microhabitat.  Specifically, I 
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predicted to find to increased plant species richness, diversity and composition in 

pika disturbed areas. 

MATERIALS AND METHODS 

Study Site 

The Tibetan plateau is the world’s largest low-latitude alpine region (Hu 

and Zhang 2004) and contains 40% of China’s grasslands (Smith and Xie 2008).  

Plateau pikas are common in open grasslands (alpine meadow, meadow-steppe 

and desert-steppe) from 3000 to 5000 m (Smith et al. 1990).  Where they are not 

poisoned, colonies have been reported to reach 380 individuals/ha (Kaiser et al. 

2008).  Alpine sedge meadows are dominated by low-growing Kobresia plants 

whose roots intertwine to form characteristic sod mats.  Anthropogenic livestock 

grazing is closely associated with the development of these Kobresia-mats, some 

of which date back as far as 2000 years (Long et al. 1999).  Thus, the breakup of 

these tightly-knit mats by burrowing animals may have important consequences 

on the plant community structure. 

My research focused on the eastern Tibetan plateau, in Qinghai Province, 

People’s Republic of China.  I identified four distinct pika colonies (on-colony 

sites) approximately 3 km apart in unfenced Kobresia-sedge meadows between 

3300 to 3800 m in elevation near Dawu Township (34º24'03" N, 100º21'38" E) in 

Golog County.  These meadows also functioned as winter pasture for livestock 

(yak and sheep).  Due to the high density of pikas in this area, I was only able to 

identify one nearby meadow without pikas to act as a control location (off-colony 

site).  I chose the closest pika colony to function as a “treatment” (on-colony site).  

Vegetation was surveyed by placing small quadrats at 10 randomly-selected 

points along a 100 m transect (see below). 
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Data collection from June to early August in 2005 and 2006 was timed to 

coincide with the growing period (late May to mid-September).  Biomass peaks in 

July for sedges and September for grasses (Liu et al. 2010b).  Annual 

precipitation at this site is 420 – 560 mm (Dong et al. 2004b), most of which falls 

as rain from May to September (Dong et al. 2004b).  Annual temperature ranges 

from -32 ºC to 25 ºC (Liu et al. 2010b), but there is no completely frost-free 

period (Chen et al. 2008). 

Vegetation sampling 

Due to the high abundance of species on these alpine meadows 

(Dohman 1968, van der Maarel and Titlyanova 1989, Kull and Zobel 1991), and 

overall low height of vegetation (< 5 cm), I used small nested quadrats (0.25 m2) 

for plant surveys.  This procedure is similar to that used in high small-scale 

diversity meadows in Europe (Stohlgren et al. 1999).  Quadrats were surveyed 

for plant species identity, percent cover, percent bare ground, and average 

height of grasses and sedges.  Photographs and vouchers of unknown plant 

specimens were taken to the Northwest Plateau Institute of Biology, Academia 

Sinica, for identification (Table D-1). 

I used a nested quadrat design to collect data on incidence (presence-

absence) as well as abundance (counts of individuals).  Abundance data is 

notoriously difficult to collect in rhizomatous plant communities where individuals 

cannot be easily distinguished.  To address this difficulty, each 0.25 m2 quadrat 

was itself divided into 25 smaller 10-cm2 sub-quadrats that were randomly 

sampled.  I used frequency of occurrence of species in 11 evenly-spaced sub-

quadrats as an approximate value for species abundance.  While not a true 

abundance count, it does allow for equal comparison between communities.  
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Thus, each 0.25 m2 quadrat contains the combined information from 11 10 cm x 

10 cm sub-quadrats. 

Placement of the quadrats at each site (on-colony and off-colony) 

followed a stratified random sampling design to account for any underlying 

environmental gradients.  At each site, 10 randomly-selected points were 

identified along a 100 m transect for sampling within quadrats.  However, the 

number of quadrats at each sampling point varied slightly with site type.  Here, 

pika activity is considered as a treatment effect.  At the on-colony site, I surveyed 

three quadrats at each of the 10 sampling points – one quadrat over disturbed 

ground adjacent to a pika burrow (treatment), a second quadrat at least 1 m from 

a pika burrow (control A), and a third quadrat also on undisturbed ground (control 

B).  Every effort was made to center the “treatment” quadrat over soil excavated 

from a pika burrow, but this was not always possible to establish precisely, as 

older mounds tended to blend in to the surrounding meadow.  The presence of a 

second control, or “third plot,” is necessary for clear evaluation of spatial 

heterogeneity (reviewed in Gotelli and Colwell 2001).  I repeated the same 

procedure at the off-colony site, except that I surveyed only two quadrats at each 

sample point, neither of which fell over an area of pika disturbance.  Thus, a total 

of 20 and 30 quadrats were sampled at each off-colony and on-colony site, 

respectively.  Although the number of quadrats sampled varied with site type (on 

or off-colony), only areas of equal size were compared for data analysis (see 

below). 

These quadrats can be considered as representing patch types in the 

local landscape – ground disturbed by pikas within the pika colony, undisturbed 

ground within the pika colony or undisturbed ground outside of the pika colony.  
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Comparisons were made between (1) a patch disturbed by pikas and a control 

patch within the pika colony, as an indicator of the within-colony treatment effect; 

(2) two control patches within the pika colony, as an indicator of within-colony 

background variation; (3) two patches at the control site, as an indicator of 

between-colony background variation; and (4) the combined patches from the 

on-colony site with those at the off-colony site, as an indicator of the between-

colony treatment effect.  As a result of this research design, I was able to draw 

conclusions on the impacts of pikas in two distinct spatial scales: first, the within-

colony, or patch scale, where I intensively sampled quadrats both on and off an 

area of pika disturbance; and second, the between-colony scale, where effects of 

an entire pika colony site on the local landscape could be interpreted. 

Data analysis 

Multiple methods have been developed for describing species differences 

in various communities.  These methods can be loosely grouped into 

descriptions of species richness (reviewed in Washington 1984), species 

diversity (reviewed in Koleff et al. 2003, Cardoso et al. 2009) and community 

similarity (Gotelli and Colwell 2001).  At its most basic level, species richness can 

be defined as the total number of species in an area.  In spite of this apparent 

simplicity, comparing richness between communities is fraught with difficulty 

(Gotelli and Colwell 2001).  Some of these issues include differences in species 

density, unequal sampling effort, and insufficient sample size (Magurran 2004). 

One method to measure richness in samples is to compare the shapes of 

species accumulation curves, which plot the cumulative number of species 

encountered during data collection (Gotelli and Colwell 2001).  Because data 

were from non-contiguous quadrats, my results produced sample-based curves  
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(Gotelli and Colwell 2001).  However, in their raw state, these curves actually 

represent sampling effort or density, rather than species richness (Magurran 

2004).  Rarefaction curves account for uneven sampling effort by plotting the 

expected number of species drawn from the total pool (Colwell 2006).  I created 

smoothed accumulation and rarefaction curves using Monte Carlo sampling in 

the program EstimateS, version 8.0 (2001).  I used sampling without replacement 

so that all samples would be included in each randomization and the final value 

would match the total number of observed species.  To make suitable species 

richness comparisons, I rescaled the x-axis on these curves from samples to 

individuals using the average number of individuals per sample, as described in 

Gotelli and Colwell (Colwell 2006). 

Total community richness can be calculated from observed species (Sobs) 

or by richness estimators.  For generating richness estimators I sampled with 

replacement so that the variance could be meaningfully compared at the right 

side of the species accumulation curves between samples (Colwell 2006).  As a 

result, these values may underestimate total species richness in the community 

(Walther and Moore 2005).  Although Sobs has been shown to perform the worst 

of all estimators, there is no consensus on the “best” estimator for all situations or 

taxonomic groups (Magurran 2004).  I used non-parametric estimators because 

they are potentially the most powerful (Walther and Moore 2005).  Specifically, I 

chose Jack1, Jack2,  and Chao2 based on their overall performance in plant taxa 

and randomized species accumulation curves (Magurran 2004).  Variance could 

be compared with 95% confidence intervals only for Chao2.  For comparison with 

other studies, I also report Sobs and its estimator, Mao Tau. 
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Although richness is informative, it does not account for all aspects of 

species heterogeneity.  For example, two communities (e.g., community A and B) 

can have an equal number of individuals (e.g., 20) and species (e.g., two), yet 

differ in those species’ relative abundances (e.g., community A has 10 individuals 

each species, while community B has 19 individuals of one and a single 

individual of the other species).  Here, community A has an even distribution of 

species, while community B is dominated by a single species.  Evenness 

measures the degree of similarity in species abundances between communities 

(Washington 1984, Mendes et al. 2008).  Richness and evenness are often 

combined into a single measure, called a diversity index.  Like richness 

estimators, there is no consensus on which diversity index functions best, 

although multiple reviews have assessed their relative merits (Washington 1984).  

I calculated two common indices that estimate the population diversity from 

multiple samples (Simpson 1949), Shannon’s H diversity and Simpson’s 

reciprocal D.  Simpson’s Index (Gini 1912), also called the Gini-Simpson Index 

(Washington 1984), is considered one of the best diversity indices (Washington 

1984, Mendes et al. 2008) when used in it’s reciprocal form (1/D).  However, it is 

also criticized for its overemphasis of dominance over richness (Shannon 1949).  

The Shannon Index (Wiener 1948), or Shannon-Wiener Index (Mendes et al. 

2008), on the other hand, considers richness and dominance equally 

(Washington 1984).  Although not as biologically relevant (Magurran 2004), it is 

commonly used in the literature.  I calculated diversity values for each quadrat 

and tested for effect of patch type using a one-way ANOVA for correlated 

samples, followed by Tukey’s Honestly Significant Difference test (HSD) for 

differences between means.  Aside from incorporating evenness into a diversity 
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measure, I also directly evaluated trends in relative species abundance.  

Absolute abundances of identical plant species were compared graphically, while 

relative abundances over patch-types were used for statistical analyses with a 

Kolmogorov-Smirnov two sample test (Koleff et al. 2003, Cardoso et al. 2009). 

The above measures all reflect alpha diversity, or diversity within a patch.  

The diversity between patches, or beta diversity, is a measure of the species 

turnover in the community.  I took two approaches to measuring beta diversity.  

First, I determined classic similarity indices from pair-wise comparisons based on 

community similarity (1912).  Specifically, I used classic Jaccard (1948) and 

Sørensen (Cardoso et al. 2009) similarity indices, both of which are commonly 

used, though Jaccard may be more robust to undersampling than Sørensen 

(Magurran 2004).  The effect of pika disturbance by patch type was tested using 

a one-way ANOVA for correlated samples as described above.  Secondly, I 

evaluated beta diversity by exploring changes to grain (patch) size.  Initially, grain 

size was equal to the quadrat dimensions used for sampling.  To increase grain 

size but keep spatial extent constant, I used combinations of two control patches 

or a control and burrow patch to recalculate species richness and diversity.  I 

compared measures from these large-patches (colony scale) to the original 

patches (patch scale) to make inferences about species heterogeneity. 

RESULTS 

Species richness 

On the pika colony, mean observed species richness differed significantly 

between patches at the colony scale (mean ± SE: control A=25.6±1.7, control 

B=25.7±1.8, burrow=18.4±2.5; one-way ANOVA for correlated samples: F=5.69, 

P<0.05).  These differences can be attributed to the lower species richness on 
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burrow patches (Tukey’s HSD: H=6.35, P<0.05); the control patches were not 

significantly different from each other.  Likewise, control patches from the off-

colony site were not significantly different (mean ± SE: control A=8.9±1.0, control 

B=9.1±1.4; one-way-ANOVA for correlated samples: F=0.2, P=0.665).  Variance 

on the burrow patches was approximately twice that of control patches on the 

pika colony (control A=28.3, control B=30.5, burrow=60.0).  In sub-samples 

(10cm x 10cm) on the pika colony, species richness averaged 12.4±0.2 and 

11.8±0.3 in controls patches and 5.8±0.4 in burrow patches (mean± standard 

error).  These sub-samples ranged from completely bare soil (no species) to a 

maximum of 23 species.  Control patches from the off-colony site had 10.9±0.2 

and 10.8±0.2 species per 0.01m2 on average.   

Species-area curves reflected trends similar to observed averages on the 

pika colony (Figure 5.1.).  The accumulation of species over burrow patches was 

lower than over either control patch (Figure 5.1., patterned versus solid gray 

lines).  When compared to off-colony control patches, species accumulation over 

on-colony patches was greater (Figure 5.1., gray versus black lines).  On the 

other hand, rarefaction curves on the pika colony, which had been re-scaled to 

individuals, showed different trends (Figure 5.3).  Rarefaction curves of burrow 

and control patches were not significantly different (Figure 5.3, patterned versus 

solid gray lines), and curves did not differ between the colony and off-colony site 

(Figure 5.3, gray versus black lines). 

When considered at a larger grain size, different patterns emerged.  The 

average species richness over combined controls on the pika colony was not 

significantly different from controls paired with burrow patches (one-way ANOVA 

for correlated samples: F=0.3, P=0.745).  A species-area curve for combined 
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burrow and control patches was distinctly higher than the combined controls at 

the off-colony site (Figure 5.2, gray versus black lines).  Rarefaction curves re-

scaled to individuals showed the same trend.  Combined patches for the pika 

colony were significantly greater in richness than the off-colony site (95% 

confidence intervals on multiple runs, P<0.05; Figure 5.4, black versus gray lines). 

Species Diversity 

Mean species diversity in terms of Shannon’s H and Simpson’s D differed 

significantly between patch types within the pika colony (H: one-way ANOVA for 

correlated samples, F=4.69, P<0.005; D: one-way ANOVA for correlated 

samples, F=7.35, P<0.005).  For both indices the diversity over burrow patches 

was significantly lower than control patches (Tukey’s HSD; Figure 5.5, Figure 

5.6).  Diversity was not significantly different between control patches within the 

pika colony or at a nearby off-colony.  Shannon diversity was significantly higher 

over the off-colony patches compared to the on-colony burrow patch. 

When species diversity was considered at the next grain size, the trends 

reversed.  Shannon diversity was significantly higher for combined patches on 

the pika colony compared to the off-colony site (one-way ANOVA for correlated 

samples, F=4.81, P<0.01).  Differences between patch groupings within the pika 

colony were not significant (Tukey’s HSD).  Values for Simpson diversity were 

also lower over the off-colony site at this grain size, but not significantly so 

(Tukey’s HSD). 

Community Similarity 

Similarity as measured by Jaccard’s and Sørensen’s index detected 

significant differences between patch types on the pika colony (one-way ANOVA 

for three correlated samples, Jaccard: F = 26, P<0.0001, Sørensen: F= 13.7, 
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P=0.00024).  For both measures, control patches were more similar to each 

other (mean ± SE: Jaccard= 61.8±1.9, Sørensen= 73.9±8.5) than either was to 

the burrow patch (mean ± SE: Jaccard= 40.1±4.8 and 43.8±4.8, Sørensen= 

55.5±5.5 and 59.4±4.8).  Post-hoc tests revealed that, for both measures, the 

control patches A and B were significantly more similar than controls compared 

to burrow patches (Tukey HSD, p<0.01).  The same tests showed that similarity 

between control A patches and burrow patches was not significantly different 

from the similarity between control B patches and burrow patches (Figure 5.7). 

A rank-abundance chart shows similar abundances for identical species 

in control patches within a pika community (Figure 5.8b).  Burrow patches had 

lower species abundances, and these abundances had fewer similarities with 

control patches (Figure 5.8a).  The largest differences in abundance were 

apparent for identical species over combined on-colony and off-colony patches 

(Figure 5.8c).  Relative abundance was significantly different between control 

and burrow patches on the pika colony (Kolmogorov-Smirnov two sample test; 

Control A: K-S=245.2, P<0.05; Control B: K-S= 267.8, P<0.05).  However, control 

patches A and B were not significantly different in terms of relative abundance 

(Kolmogorov-Smirnov two sample test, K-S=143.3, P>0.05).  Likewise, control 

patches A and B at the off-colony site were not significantly different 

(Kolmogorov-Smirnov two sample test, K-S=36.8, P>0.05).  A Whittaker, or 

rank/abundance plot (Chen et al. 2008), showed higher relative abundance of 

plant species over the pika colony (Figure 5.9). 

DISCUSSION 

Species richness was among the highest in the world for very small 

spatial scales (Table 5.4).  I recorded a maximum of 23 different species in a 
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10cm x 10cm area.  These richness values are in line with averages reported 

from alpine pasture in northeastern Qinghai (15.5–19.7 species per 0.01 m2, 

Chen et al. (2008)).  Other small-scale high-richness regions have been reported 

in European grasslands with calcareous soils (Myers and Harms 2009), longleaf 

pine savannas in Louisiana (Lamont et al. 1977) and Australian sand heaths 

(2001). 

Although pika disturbance was predicted to increase plant species 

richness, my results did not match this expectation across all spatial scales.  At 

the patch scale (0.25 m2), I found significantly lower richness over disturbed 

patches compared to control patches within the pika colony.  Yet, when richness 

at the same scale was plotted by individuals, rather than area, the differences in 

richness were no longer significant.  These contradictory outcomes are most 

likely due to uneven species density between patch types.  Density reflects the 

number of individuals in an area, rather than the number of species.  As pointed 

out by Gotelli and Colwell (Mendes et al. 2008), variation in density can confound 

measurement of species richness.  In areas of higher density more individuals 

are present, which increases the probability that more types of species will be 

found.  Such a situation could easily arise under conditions of periodic natural 

disturbance, such as pika bioturbation.  Near a pika burrow, excavated soil is 

constantly pushed to the surface where it smothers vegetation.  Therefore, fewer 

individual plants will be present near pika burrows.  Comparing total or average 

richness over different samples or areas reflects this density more than richness.  

A valid comparison of richness assumes equal densities and even distribution of 

species between patches.  Because the rarefaction curves re-scale the x-axis 

from samples to individuals, these curves are often more informative than total 
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richness or average richness measures.  Therefore, differences in richness 

between patch types were probably a spurious consequence of uneven species 

abundances.  On the other hand, more confidence can be placed in differences 

in richness at the combined patch or colony scale.  Here, pika colony patches 

had significantly more species than off-colony sites.  This outcome was the same 

even when the data were scaled to individuals using the rarefaction method. 

Even if patches do not significantly differ in species richness, the question 

remains whether these communities are equally rich, yet different in composition.  

Species diversity incorporates information on richness as well as evenness in 

species distribution.  Within the pika colony, I found significantly higher diversity 

over control patches than burrow patches.  This result cannot be attributed to 

naturally high levels of patchiness, as diversity between control patches was not 

significantly different.  This result adds further evidence that communities directly 

over burrow patches differ in composition from nearby patches. 

If the control and burrow patches contained identical plant communities, 

then considering these two patches together (the colony scale) would yield 

identical results.  That is, though the number of individuals has increased, their 

combined richness would be equal to their individual richness.  However, this is 

not the case.  At the colony scale, diversity over disturbed regions was higher 

than equally-sized control regions.  Shannon diversity at this spatial extent was 

significantly greater over pika colony patches than off-colony patches.  

The Shannon-Weiner (H) diversity index considers richness and 

dominance equally (Jost 2006).  It is technically a measure of uncertainty in the 

identity of a sample; higher values indicate less certainty due to increased 

possibilities (Mendes et al. 2008).  Unlike Shannon-Weiner, Simpson’s index (1/D) 
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places more weight on species dominance than richness (Koleff et al. 2003).  

Differences in diversity as measured by Simpson’s reciprocal index were not as 

consistent as Shannon’s.  This result suggests that differences in diversity may 

be due more to variation in species identity than species evenness.  Alternatively, 

large differences in evenness between colony and off-colony may mask 

differences in species identity.   

Both Jaccard and Sørensen are classic measures of continuity that reflect 

species turnover, or beta diversity, within a community (Shi 1983, Bian et al. 

1994).  Significantly higher values indicate a more similar community between 

control patches than between control and burrow patches.  The relative 

abundance of plant species differed significantly between control and burrow 

patches.  The high beta diversity cannot be attributed to background turnover in 

the landscape, as the turnover of control patches was not significantly different.  

Although pika bioturbation increased bare patches on the colony, the overall 

abundance of plants at this site was higher than the off-colony site.  While having 

lower diversity than adjacent control patches, burrow patches were still 

significantly richer than off-colony control patches. 

Another possible explanation for increased overall richness is that pikas 

preferentially inhabit regions of higher plant diversity.  Under this scenario, the 

plant community (in terms of its richness, diversity or composition) is not a result 

of pika bioturbation action, but a consequence of habitat choice.  I will refer to 

these two alternatives as the “habitat choice” and “bioturbation action” models.  

In support of the first model, plateau pikas are known to exhibit habitat selection 

preferences.  For example, pikas are known to inhabit areas of lower plant height, 

which are typically regions of higher livestock grazing (2001).  This effect 
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possibility cannot be conclusively ruled-out without experimental tests.  Ideally, 

this would involve replicates of grazing exclosures, controlling for pika and 

livestock abundance. 

Without these results, we can only speculate whether pikas are causal 

factors of species differences.  However, I have several reasons to believe these 

results may reflect a causal, rather than correlative, relationship.  First, under the 

habitat choice scenario, dispersing individuals would preferentially establish 

burrows in species-rich regions.  However, the addition of disturbance alone 

necessarily decreases species abundance.  Therefore, if pika bioturbation does 

not contribute to diversity (as it would not in a purely a habitat-choice model), 

over time these regions should have lower diversity than nearby uninhabited 

areas Gotelli and Colwell (2008).  This finding was not the case for my results.  

Although it is possible that species loss under the habitat-choice model would 

result in regions of equal diversity, the landscape would either have to exist in an 

unusual high state of patchiness or pika disturbance would have had very little 

impact for the community to remain more diverse after the addition of disturbance.  

Second, pikas were found to not only increase diversity, but also increase 

variability within these patches.  This outcome is expected under the 

bioturbation-action model because disturbance generates novel microhabitats 

which increase variability.  Unless the habitat-choice model includes selection for 

both diverse as well as spatially variable patches, it will not fulfill this expectation.  

Finally, only the bioturbation-action model explains differences in species 

composition.  Novel microhabitats could act as refugia for rare species.  Under 

the habitat-choice model, the species-rich region selected by pikas would simply 

contain more species than a nearby species-poor area.  However, these species 
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need not be compositionally different; the species-poor community could merely 

be a subset of the richer community.  Some other explanatory factor would be 

required to explain compositional differences.  It is more likely the off-colony site 

is the result of poisoning than habitat avoidance by pikas. 

Chen et al. (Chen et al. 2008) attribute high plant species richness on 

Tibetan alpine meadows to two factors: seasonal grazing and plant community 

structure.  Livestock grazing on standing dead biomass during the winter creates 

gaps and removes plant litter, which facilitates light penetration at the start of the 

next growing season.  These spaces are equally likely to be filled by grazing 

tolerant or intolerant plants because grazing pressure is absent during the 

summer.  A second process is the overall low height of the plant community (5-

20cm, 3.0-3.3g biomass per 0.01 m2), which reduces competition for light that 

would result from shading (1940).  To these factors, I would like to include natural 

disturbance as a generator of novel microhabitat.  In combination with the above 

factors, pika bioturbation makes a rich community even richer. 

CONCLUSION 

When considered together, these results suggest that pika disturbance 

increases plant species diversity at the local landscape level, but not at the patch 

scale.  However, this does not establish a direct causal relationship between pika 

activity and species richness.  My results clearly support that community 

differences are correlated with pika bioturbation.  The activity of pikas appears to 

generate novel microhabitats which lead to increased richness in the plant 

community.  These results should be substantiated through experimental tests of 

the potential causal mechanisms. 
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Table 5.1.  Broad-scale reviews with a focus on terrestrial bioturbation.  These 
articles cover a wide range of taxa, from plant and microbes to invertebrates and 
vertebrates.  Specialized vocabulary used by the authors to refer to soil 
disturbance is given under “neologisms.” 
 
Source Scope Examples discussed Neologisms 

Jacot 
(1949) 

Terrestrial 
invertebrates and 
vertebrates 

mammal (cow, rodent), 
bird, reptiles, toad, 
insect, mollusk, 
nematode, 
earthworm 

geenton 

Thorp 
(1978) 

Mainly terrestrial 
invertebrates and 
vertebrates 

earthworm, ant, 
termite, crustacean, 
rodent 

 

Ahlbrandt et 
al. (1981) 

Terrestrial 
Invertebrates 
burrowing on 
inland sand dunes 

sand wasp, camel 
cricket, crane fly 
larvae, tiger beetle 
larvae, ants, termite, 
wolf spider 

bioturbation1 

Hole (1987) Mainly terrestrial 
vertebrates and 
invertebrates that 
affect soil 

earthworm, insect, 
spider, bird, 
mammals (rodent, 
elephant, bison) 

amphihabitant, 
exopedonic, 
endopedonic  

Andersen 
(1988) 

Terrestrial fossorial 
herbivores 

rodent, nematode, 
insect (beetle, fly, 
cicada, moth and 
butterfly) 

fossorial herbivore, 
excavator, 
tunneler 

Viles (1991) Terrestrial micro-
organisms, plants, 
vertebrates and 
invertebrates 

 biogeomorphology 

Meadows 
and 
Meadows 
(1993) 

Terrestrial and 
aquatic burrowing 
invertebrates and 
vertebrates 

meiofaua, nematode, 
insect (beetle, 
wood-borer, ant), 
fish, mammal 
(rabbit, badger, 
rodent) 

bioturbation, fossorial 

Hansell 
(1995) 

Nests and burrows of 
terrestrial 
arthropods, birds 
and mammals 

spider, wasp, 
ambrosia beetle, 
termites, ants, 
honeybee, bird, 
mammals (rodent, 
badger) 

 

Butler 
(2002) 

Terrestrial 
vertebrates and 
invertebrates 

mammal, bird, reptile, 
amphibian 

zoogeomorphology 

Naylor 
(2002) 

Marine and terrestrial 
micro-organisms, 
plants, vertebrates 
and invertebrates 

microfilm, coral reef, 
lichen, beaver, 
goose 

bioerosion, 
bioconstruction, 
bioprotection 
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Table 5.1  Continued. 
 
Johnson 
(2003) 

Conceptual models 
of bioturbation 

earthworm biomantle, 
bioturbation, dy-
namic denudation, 
floralturbation, 
faunalturbation, 
pedoturbation, 
pedogeomorphic 
agent 

Gabet et al. 
(2006) 

Terrestrial plants, 
invertebrates and 
vertebrates 

earthworm, ant, 
termite, rodent 

bioturbation 

Meysman et 
al. (1923) 

Marine and terrestrial 
invertebrates and 
vertebrates 

mammal (rodents, 
dugong) earthworm, 
crustacean, stingray 

biogenic disturbance, 
bioturbation, bio-
irrigation 

1 The term “bioturbation” was probably in use before this time 
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Table 5.2. Reviews focused on terrestrial bioturbation by mammals. 

Source Scope Examples discussed Notes 

Grinnell 
(1972) 

Burrowing rodents in 
California 

ground squirrel, kangaroo 
mouse, pocket mouse, 
kangaroo rat, pocket 
gopher (Thomomys spp.) 

animal 
“workings,” 
such as 
mounds and 
burrows 

Abaturov 
(1990) 

Small mammals in 
Russian forest 
and semi-desert 

mole (Talpia europea), ground 
squirrel (Spermophilus 
pygmaeus) 

 

Reichman 
and 
Smith 
(1999) 

Burrowing mammals rodent (Bathyergidae, 
Ctenomyidae, Geomyidae, 
Muridae, Octodontidae), 
aardvark, pangolin, 
armadillo, some foxes 

fossorial, 
subterra-
nean 

Whitford 
and Kay 
(1999) 

Mammals in deserts echidna, rodent (Bathyergidae, 
Geomyidae, 
Heteromyidae, Hystricidae, 
Sciuridae) jackrabbit, fox, 
badger, aardvark 

biopedturbation 

Dickman 
(1999) 

Rodents rodent (Castoridae, 
Geomyidae, 
Heteromyidae, Hystricidae, 
Sciuridae) 

allogenic 
engineering, 
biotic 
engineering 

Kinlaw 
(2002) 

Vertebrates in arid 
environments 

reptile, gopher tortoise, gecko, 
wombat, rodent (prairie 
dog, gerbil, kangaroo-rat) 

primary 
modifier, 
secondary 
modifier 

Zhang and 
Liu 
(2003) 

Small mammals in 
North America 
and China 

rodent (pocket gopher, vole), 
plateau pika, vole 

 

Hall and 
Lamont 
(2008) 

Mammals in alpine 
areas 

Spermophilus spp., Marmota 
spp., Ursus arctos 
horribilus, Bos grunniens 

 

 
 
 
Table 5.3. Ecological impacts of bioturbation by prairie dogs.

Impact Source 

Soil mixing, oxygenation 
and water infiltration 

Grinnell 1923, Whicker and Detling 1988, Huntly and 
Reichman 1994, Kotliar et al. 1999 

Plant diversity, turnover Archer et al. 1987, Coppock et al. 1983a, Whicker and 
Detling 1988, Stapp 1988, Ceballos et al. 1999, Kotliar et 
al. 1999, Fahnestock and Detling 2002 

Plant growth, forage 
quality 

Aho et al. 1998, Coppock et al. 1983a, Ingham and Detling 
1984, Uresk 1985 
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Table 5.4. Locations of high species diversity reported in the literature.  Table is 
based on Chen et al. (2008) and shows study site (altitude), dominant vegetation 
type and diversity measures.  The altitude of coastal sites was assumed to be at 
sea level.  Abbreviations for countries are CZE, Czech Republic; EST, Estonia; 
NLD, Netherlands; PRC, China; and SWE, Sweden.  S is the size of quadrat in 
m2, N is the number of quadrats, and R is mean species richness.  Richness is 
given as an average, a range, and/ or a maximum value (in parenthesis).

Study area Vegetation type S N R Source 

Dawu, 
PRC 
(3300-
3800 m) 

Winter grazed 
Kobresia meadow 
inhabited by 
plateau pikas 

0.01 110 5.8-12.3 (23) this 
research 

Haibei, 
PRC 
(4000 m) 

Winter grazed alpine 
meadow 
dominated by 
Festuca ovina and 
Stipa aliena 

0.01 80 19.1-19.7 (30) Chen et al. 
(1991) 

Laelatu, 
EST 
(0 m) 

Wooded meadow of 
Sesleria coerulea–
Filipendula 
hexapetala 

0.01 30 4.0–17.7 (25) Kull and 
Zobel 
(1993) 

Limburg, 
NLD 
(130-170 
m) 

Chalk grassland of 
Mesobrometum 
erecti 

0.01 50 5.85–12.87 Willems et 
al. (1993) 

Öland, 
SWE 
(0 m) 

Alvar habitat of 
Veronica spicata–
Avenula pratensis 

0.01 40 12.1–16.3 
(29) 

van der 
Maarel & 
Sykes 
(1995) 

" " 0.01 10-
35 

9.5–13.1 van der 
Maarel et 
al. (1995) 

" " 0.01 10 11.2, 12.5, 
13.3* 

Wilson et 
al. (1999) 

Saaremaa 
& Muhu, 
EST 
(0 m) 

Alvar type grassland 
of Filipendula 
hexapetala–
Trifolium 
montanum 

0.04 10 10–25 Pärtel and 
Zobel 
(2000) 

Hanila, 
EST 
(0 m) 

Alvar grassland of 
Filipendula-
Trifolium montani 

0.01 60 13.2–17.1 Zobel et al. 
(2001) 

CZE 
(400 m) 

Bromus erectus and 
Carex montana 
dominated 
grassland 

0.015…§ 1 29 Klimeš et 
al. (1966, 
1969) 

*Data from three different sites 
§ 0.015625 
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Figure 5.7.  Measures of community similarity for Jaccard (bold) and Sorensen 
(grey) indices on a pika colony.  Comparisons were made between control 
patches (Control A vs. Control B) and between control and burrow patches 
(Control A vs. Burrow, Control B vs. Burrow).  The control patches were more 
similar to each other than either was to the burrow patch.  Identical letters within 
a similarity measure are not significantly different at p < 0.01 (Tukey’s HSD). 
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(c) 

 
Figure 5.8.  Abundance rank of identical species over different patch types.  
Comparisons are shown between control and burrow patches on a pika colony 
(a), two control patches on a pika colony (b), and the pika colony and a nearby 
off-colony site (c). 
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Figure 5.9.  Whittaker plot (rank/abundance plot) of patches on a pika colony 
(thick lines) and a nearby off-colony site (thin lines).  The y-axis shows relative 
abundance of species on a logarithmic scale and the x-axis shows species 
ranked from most to least abundant.  The relative abundance of plants on burrow 
patches was significantly different from control patches (Kolmogorov-Smirnov, 
P<0.05).  Control patches were not significantly different within the on-colony or 
off-colony site (Kolmogorov-Smirnov, P>0.05). 
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CHAPTER 6 
Conclusions 

 

Plateau pikas excavate vast burrow complexes in alpine meadows on the 

Tibetan Plateau.  They are the most abundant small animal in this environment, 

and their colonies can reach over 300 individuals/ha.  Previous research has 

labeled these animals as both a keystone species and allogenic engineer.  I find 

that plateau pikas function as keystone engineers by increasing plant species 

diversity, enhancing soil mixing, and boosting water infiltration, and contributing 

novel microhabitats. 

Results of this research indicate that pika colonies have both patch-level 

and local landscape-level effects.  At the small patch scale, their burrowing does 

generate bare patches in soil and areas of reduced species richness.  However, 

these outcomes are reversed at higher spatial scales.  Nonlinearity is a common 

attribute of ecological communities.  In landscape ecology, this phenomenon is 

termed the Modifiable Areal Unit Problem.  Because pikas limit plant growth only 

in areas of very small spatial extent, the impact of a pika colony is not equal to 

that of a disturbed patch. 

A major contribution of pika disturbance is increased spatial heterogeneity, 

which likely underlies differences in the plant community.  These findings suggest 

that the positive impact of plateau pikas on rangeland resources has been 

undervalued.  In concurrence with other studies, this work concludes that plateau 

pikas provide valuable ecosystem services on the Tibetan plateau. 
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n
h
y
d
ra

 l
u
tr
is
 

H
o
lt
 (
1
9
8
0
) 

k
e
y
s
to
n
e
 p
re
y
 

 

A
 p

re
y
 s

p
e
c
ie

s
 w

it
h
 a

 h
ig

h
 r
e
la

ti
v
e
 v

a
lu

e
 f
o
r 
r/
a
 i
s
 a

 “
k
e
y
s
to
n
e
” 
s
p
e
c
ie

s
 i
n
 t
h
e
 

c
o
m

m
u
n
it
y
 (
s
e
n
s
u
 P

a
in

e
, 
1
9
6
9
),
 i
n
a
s
m

u
c
h
 a

s
 i
ts

 p
ro

p
e
rt
ie

s
 b

o
th

 c
o
n
tr
o
l 
th

e
 

d
e
n
s
it
y
 o

f 
th

e
 p

re
d
a
to

r 
a
n
d
 r
e
s
tr
ic

t 
th

e
 r
a
n
g
e
 o

f 
p
a
ra

m
e
te

rs
 o

p
e
n
 t
o
 o

th
e
r 
p
re

y
. 

s
n
o
w
s
h
o
e
 

h
a
re
, 
L
e
p
u
s
 

a
m

e
ri
c
a
n
u
s
 

G
ilb
e
rt
 (
1
9
8
1
) 

m
o
b
il
e
 l
in
k
, 
k
e
y
s
to
n
e
 

m
u
tu
a
li
s
t 

 

…
I 
c
a
ll 

s
u
c
h
 o

rg
a
n
is

m
s
 “
m
o
b
il
e
 l
in
k
s
” 
b
e
c
a
u
s
e
 t
h
ro

u
g
h
 t
h
e
ir
 f
o
ra

g
in

g
 

m
o
v
e
m

e
n
ts

, 
th

e
y
 a

re
 o

f 
m

u
tu

a
l 
c
o
n
c
e
rn

 t
o
 t
h
e
 r
e
p
ro

d
u
c
ti
o
n
 o

f 
m

a
n
y
 d

if
fe

re
n
t 

u
n
re

la
te

d
 p

la
n
ts

 w
h
ic

h
, 
in

 t
u
rn

, 
s
u
p
p
o
rt
 o

th
e
rw

is
e
 i
n
d
e
p
e
n
d
e
n
t 
fo

o
d
 

w
e
b
s
. 
 …

.K
e
y
s
to
n
e
 m
u
tu
a
li
s
ts

 a
re

 t
h
o
s
e
 o

rg
a
n
is

m
s
, 
ty

p
ic

a
lly

 p
la

n
ts

, 
w

h
ic

h
 

p
ro

v
id

e
 c

ri
ti
c
a
l 
s
u
p
p
o
rt
 t
o
 l
a
rg

e
 c

o
m

p
le

x
e
s
 o

f 
m

o
b
ile

 l
in

k
s
. 

c
a
n
o
p
y
 t
re
e
 

C
a
s
e
a
ri
a
 

c
o
ry

m
b
o
s
a
 

N
o
y
-M

e
ir
 (
N
a
im
a
n
 e
t 

a
l.
 1
9
8
6
) 

…
 t
h
e
 m

o
re

 p
re

d
a
to

r-
to

le
ra

n
t 
p
re

y
 B

 c
a
n
 b

e
 c

a
lle

d
 a

 "
k
e
y
s
to
n
e
 s
p
e
c
ie
s
,"
 s

in
c
e
 

it
s
 i
n
tr
o
d
u
c
ti
o
n
 a

llo
w

s
 s

ta
b
le

 c
o
e
x
is

te
n
c
e
 o

f 
A
 w

it
h
 t
h
e
 p

re
d
a
to

r,
 w

h
ic

h
 i
s
 

im
p
o
s
s
ib

le
 i
n
 t
h
e
 a

b
s
e
n
c
e
 o

f 
B
. 
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  T
a
b
le
 A
-1
. 
 C
o
n
ti
n
u
e
d
 

 
(1
9
9
0
) 

k
e
y
s
to
n
e
 m

o
d
if
ie
r 

 

O
v
e
ra

ll,
 o

u
r 
fi
e
ld

 o
b
s
e
rv

a
ti
o
n
s
 a

n
d
 d

a
ta

 s
h
o
w

 t
h
a
t 
b
e
a
v
e
r,
 t
h
ro

u
g
h
 t
h
e
ir
 f
e
e
d
in

g
 

a
n
d
 d

a
m

-b
u
ild

in
g
 a

c
ti
v
it
ie

s
, 
a
c
t 
a
s
 a

 k
e
y
s
to
n
e
 s
p
e
c
ie
s
 (
s
e
n
s
u
 P

a
in

e
 1

9
6
6
, 
1
9
6
9
, 

1
9
7
4
) 
to

 a
ff
e
c
t 
e
c
o
s
y
s
te

m
 s

tr
u
c
tu

re
 a

n
d
 d

y
n
a
m

ic
s
 f
a
r 
b
e
y
o
n
d
 t
h
e
ir
 i
m

m
e
d
ia

te
 

re
q
u
ir
e
m

e
n
ts

 f
o
r 
fo

o
d
 a

n
d
 s

p
a
c
e
. 

 

b
e
a
v
e
r,
 C

a
s
to

r 
c
a
n
a
d
e
n
s
is
 

B
ro
w
n
 a
n
d
 H
e
s
k
e
 

(1
9
8
6
) 

k
e
y
s
to
n
e
 g
u
il
d
 

 

In
 t
h
e
 p

re
s
e
n
t 
c
a
s
e
, 
th

e
 “
k
e
y
s
to

n
e
” 
o
rg

a
n
is

m
 w

h
o
s
e
 r
e
m

o
v
a
l 
c
a
u
s
e
d
 l
a
rg

e
 

c
h
a
n
g
e
s
 i
n
 e

c
o
s
y
s
te

m
 s

tr
u
c
tu

re
 a

n
d
 d

y
n
a
m

ic
s
 w

a
s
 n

o
t 
a
 s

in
g
le

 s
p
e
c
ie

s
, 
b
u
t 
a
 

g
u
ild

 o
f 
th

re
e
 t
a
x
o
n
o
m

ic
a
lly

 r
e
la

te
d
 a

n
d
 e

c
o
lo

g
ic

a
lly

 s
im

ila
r 
k
a
n
g
a
ro

o
 r
a
t 

s
p
e
c
ie

s
. 
 …

. 
 I
n
 t
h
is

 e
c
o
s
y
s
te

m
 k

a
n
g
a
ro

o
 r
a
ts

 a
re

 a
 k
e
y
s
to
n
e
 g
u
il
d
: 
th

ro
u
g
h
 

s
e
e
d
 p

re
d
a
ti
o
n
 a

n
d
 s

o
il 

d
is

tu
rb

a
n
c
e
 t
h
e
y
 h

a
v
e
 m

a
jo

r 
e
ff
e
c
ts

 o
n
 b

io
lo

g
ic

a
l 

d
iv

e
rs

it
y
 a

n
d
 b

io
g
e
o
c
h
e
m

ic
a
l 
p
ro

c
e
s
s
e
s
. 

 

k
a
n
g
a
ro
o
 r
a
ts
, 

D
ip

o
d
o
m

y
s
 

s
p
p
. 

T
e
rb
o
rg
h
 (
1
9
8
6
) 

k
e
y
s
to
n
e
 p
la
n
t 

re
s
o
u
rc
e
s
 

K
e
y
s
to
n
e
 p
la
n
t 
re
s
o
u
rc
e
s
 a

re
 t
h
u
s
 c

h
a
ra

c
te

ri
ze

d
 a

s
 p

la
y
in

g
 p

ro
m

in
e
n
t 
ro

le
s
 i
n
 

s
u
s
ta

in
in

g
 f
ru

g
iv

o
re

s
 t
h
ro

u
g
h
 p

e
ri
o
d
s
 o

f 
g
e
n
e
ra

l 
fo

o
d
 s

c
a
rc

it
y
. 
 A

n
 a

d
d
it
io

n
a
l 
k
e
y
 

fe
a
tu

re
 o

f 
th

e
s
e
 r
e
s
o
u
rc

e
s
 i
s
 r
e
lia

b
ili
ty

. 
 

p
a
lm
 n
u
ts
, 

fi
g
s
, 
n
e
c
ta
r 

W
e
lls
 e
t 
a
l.
 (
1
9
9
2
) 

tr
a
n
s
fo
rm

e
r 
s
p
e
c
ie
s
 

 

H
o
w

e
v
e
r,
 4

7
 o

f 
th

e
 s

p
e
c
ie

s
 w

e
re

 i
d
e
n
ti
fi
e
d
 a

s
 w

e
e
d
s
 o

f 
c
o
n
c
e
rn

 t
o
 

c
o
n
s
e
rv

a
ti
o
n
is

ts
, 
th

a
t 
tr
a
n
s
fo
rm

 h
a
b
it
a
ts

 o
r 
la

n
d
s
c
a
p
e
s
…

 i
.e

. 
c
h
a
n
g
e
 t
h
e
 

c
h
a
ra

c
te

r,
 c

o
n
d
it
io

n
, 
fo

rm
 o

r 
n
a
tu

re
 o

f 
a
 n

a
tu

ra
l 
e
c
o
s
y
s
te

m
 o

v
e
r 
a
 s

u
b
s
ta

n
ti
a
l 

a
re

a
. 
…

 n
e
it
h
e
r 
th

e
 a

lie
n
 n

o
r 
th

e
 t
ra
n
s
fo
rm
e
r 
s
p
e
c
ie
s
 d

e
a
lt
 w

it
h
 h

e
re

 s
h
o
u
ld

 b
e
 

re
g
a
rd

e
d
 a

s
 t
h
e
 o

n
ly

 o
n
e
s
 i
n
 s

o
u
th

e
rn

 A
fr
ic

a
. 

 

in
v
a
s
iv
e
 p
la
n
t 

A
c
a
c
ia

 
b
a
ile

y
a
n
a
 

L
a
m
o
n
t 
(1
9
9
2
) 

fi
rs
t-
, 
s
e
c
o
n
d
-,
 a
n
d
 

th
ir
d
-o
rd
e
r 
k
e
y
s
to
n
e
s
 

s
p
e
c
ie
s
; 
th
ir
d
-o
rd
e
r 

k
e
y
s
to
n
e
 g
u
il
d
 

 

I 
th

e
re

fo
re

 d
e
fi
n
e
 a

 f
ir
s
t-
o
rd
e
r 
(a
rc
h
) 
k
e
y
s
to
n
e
 s
p
e
c
ie
s
 a

s
 e

s
s
e
n
ti
a
l 
a
s
 

e
s
s
e
n
ti
a
l 
fo

r 
th

e
 c

o
n
ti
n
u
e
d
 p

re
s
e
n
c
e
 o

f 
o
n
e
 o

th
e
r 
s
p
e
c
ie

s
 w

it
h
in

 a
n
 e

c
o
s
y
s
te

m
. 
 

A
 f
ir
s
t-
o
rd
e
r 
k
e
y
s
to
n
e
 g
u
il
d
 b

e
c
o
m

e
s
 a

 g
ro

u
p
 o

f 
fu

n
c
ti
o
n
a
lly

 r
e
la

te
d
 s

p
e
c
ie

s
, 

in
d
iv

id
u
a
lly

 o
r 
c
o
lle

c
ti
v
e
ly

 r
e
s
p
o
n
s
ib

le
 f
o
r 
th

e
 c

o
n
ti
n
u
e
d
 p

re
s
e
n
c
e
 o

f 
a
n
o
th

e
r 

s
p
e
c
ie

s
. 
A
 s
e
c
o
n
d
-o
rd
e
r 
(v
a
u
lt
) 
k
e
y
s
to
n
e
 h

a
s
 a

n
 e

s
s
e
n
ti
a
l 
(u

s
u
a
lly

 t
h
e
 s

a
m

e
) 

fu
n
c
ti
o
n
 f
o
r 
a
 f
e
w

 s
p
e
c
ie

s
…

.A
 t
h
ir
d
-o
rd
e
r 
(c
a
th
e
d
ra
l)
 k
e
y
s
to
n
e
 s
p
e
c
ie
s
 h

a
s
 a

 
p
ri
m

e
 r
o
le

 i
n
 f
u
n
c
ti
o
n
in

g
 o

f 
th

e
 e

c
o
s
y
s
te

m
, 
c
o
n
s
is

te
n
t 
w

it
h
 t
h
e
 o

ri
g
in

a
l 
c
o
n
c
e
p
t 
o
f 

k
e
y
s
to

n
e
 s

p
e
c
ie

s
 (
P
a
in

e
 1

9
6
9
).
 …

A
 t
h
ir
d
-o
rd
e
r 
k
e
y
s
to
n
e
 g
u
il
d
 i
s
 a

 g
ro

u
p
 o

f 
fu

n
c
ti
o
n
a
lly

-r
e
la

te
d
 s

p
e
c
ie

s
 t
h
a
t 
h
a
s
 a

 p
ri
m

e
 r
o
le

 i
n
 f
u
n
c
ti
o
n
in

g
 o

f 
th

e
 e

c
o
s
y
s
te

m
. 

w
a
s
p
s
 t
h
a
t 

p
o
lli
n
a
te
 

D
ra

k
e
a
; 

V
e
rt
ic

o
rd

ia
 

n
it
e
n
s
; 

B
a
n
k
s
ia

 
s
p
e
c
io

s
e
 

176 



  T
a
b
le
 A
-1
. 
 C
o
n
ti
n
u
e
d
 

 
H
o
lli
n
g
 (
1
9
9
3
) 

e
x
te
n
d
e
d
 k
e
y
s
to
n
e
 

h
y
p
o
th
e
s
is
 

 

T
h
e
 E
x
te
n
d
e
d
 K
e
y
s
to
n
e
 H
y
p
o
th
e
s
is

: 
A
ll 

te
rr
e
s
tr
ia

l 
e
c
o
s
y
s
te

m
s
 a

re
 c

o
n
tr
o
lle

d
 a

n
d
 

o
rg

a
n
iz

e
d
 b

y
 a

 s
m

a
ll 

s
e
t 
o
f 
k
e
y
 p

la
n
t,
 a

n
im

a
l,
 a

n
d
 a

b
io

ti
c
 p

ro
c
e
s
s
e
s
. 
T
h
e
y
 f
o
rm

 
in

te
ra

c
ti
n
g
 c

lu
s
te

rs
 o

f 
re

la
ti
o
n
s
h
ip

s
, 
e
a
c
h
 o

f 
w

h
ic

h
 d

e
te

rm
in

e
s
 t
h
e
 t
e
m

p
o
ra

l 
a
n
d
 

s
p
a
ti
a
l 
s
tr
u
c
tu

re
 o

v
e
r 
a
 c

o
n
s
tr
a
in

e
d
 r
a
n
g
e
 o

f 
s
c
a
le

s
. 
T
h
e
 o

v
e
ra

ll 
e
x
te

n
t 
o
f 
th

e
s
e
 

in
fl
u
e
n
c
e
s
 c

o
v
e
rs

 a
t 
le

a
s
t 
c
e
n
ti
m

e
tr
e
s
 t
o
 h

u
n
d
re

d
s
 o

f 
k
ilo

m
e
tr
e
s
 i
n
 s

p
a
c
e
 a

n
d
 

m
o
n
th

s
 t
o
 c

e
n
tu

ri
e
s
 i
n
 t
im

e
. 

 

d
is
tu
rb
a
n
c
e
 

m
e
c
h
a
n
is
m
s
 

o
f 
m
a
c
ro
s
c
o
p
ic
 

p
la
n
ts
 

B
o
n
d
 (
1
9
9
4
) 

…
s
u
c
h
 a

n
 a

g
e
n
t 
is

 a
 k

e
y
s
to

n
e
 s

in
c
e
 i
ts

 e
lim

in
a
ti
o
n
 o

r 
a
d
d
it
io

n
 w

ill
 c

h
a
n
g
e
 t
h
e
 

a
b
u
n
d
a
n
c
e
 o

f 
c
o
m

p
e
ti
ti
v
e
 d

o
m

in
a
n
ts

 a
n
d
 t
h
u
s
 r
e
s
u
lt
 i
n
 s

u
c
c
e
s
s
io

n
a
l 
c
h
a
n
g
e
 w

it
h
 

lo
c
a
l 
lo

s
s
 o

f 
s
p
e
c
ie

s
 

 

 

J
o
n
e
s
 e
t 
a
l.
 (
1
9
9
4
) 

k
e
y
s
to
n
e
 e
n
g
in
e
e
r 

 

O
u
r 
v
ie

w
s
 a

re
 v

e
ry

 c
lo

s
e
 t
o
 H

o
lli
n
g
's

 (
1
9
9
2
) 
E
x
te

n
d
e
d
 K

e
y
s
to

n
e
 H

y
p
o
th

e
s
is

…
. 
W

e
 

w
o
u
ld

 a
d
d
 t
w

o
 p

o
in

ts
. 
F
ir
s
t 
a
 c

ri
ti
c
a
l,
 b

u
t 
n
o
t 
e
x
c
lu

s
iv

e
 c

o
n
tr
o
lli
n
g
 m

e
c
h
a
n
is

m
 i
s
 

s
o
m

e
 f
o
rm

 o
f 
e
n
g
in

e
e
ri
n
g
; 
a
n
d
 s

e
c
o
n
d
, 
w

e
 b

e
lie

v
e
 t
h
a
t 
k
e
y
s
to
n
e
 e
n
g
in
e
e
rs

 o
c
c
u
r 

in
 v

ir
tu

a
lly

 a
ll 

h
a
b
it
a
ts

 o
n
 e

a
rt
h
, 
n
o
t 
ju

s
t 
te

rr
e
s
tr
ia

l 
o
n
e
s
 

 

 

M
e
n
g
e
 e
t 
a
l.
 (
1
9
9
2
, 

1
9
9
5
) 

…
c
o
m

m
u
n
it
ie

s
 m

a
y
 b

e
 a

ff
e
c
te

d
 b

y
 s

tr
o
n
g
 o

r 
w

e
a
k
 p

re
d
a
ti
o
n
, 
a
n
d
 t
h
o
s
e
 w

it
h
 s

tr
o
n
g
 

p
re

d
a
ti
o
n
 m

a
y
 b

e
 u

n
d
e
r 
th

e
 i
n
fl
u
e
n
c
e
 o

f 
e
it
h
e
r 
k
e
y
s
to
n
e
 o

r 
d
if
fu

s
e
 p
re
d
a
ti
o
n
. 

 

s
e
a
s
ta
r,
 

P
ia

s
te

r 

W
a
lk
e
r 
(1
9
9
6
) 

…
 t
h
e
 b

e
s
t 
re

tu
rn

 f
o
r 
c
o
n
s
e
rv

a
ti
o
n
 e

ff
o
rt
 w

ill
 c

o
m

e
 f
ro

m
 c

o
n
c
e
n
tr
a
ti
n
g
 o

n
 e

n
s
u
ri
n
g
 

th
e
 w

e
lf
a
re

 o
f 
th

o
s
e
 s

p
e
c
ie

s
 t
h
a
t 
a
re

 s
o
le

 r
e
p
re

s
e
n
ta

ti
v
e
s
 o

f 
fu

n
c
ti
o
n
a
l 
g
ro

u
p
s
—

b
y
 

d
e
fi
n
it
io

n
, 
k
e
y
s
to
n
e
 s
p
e
c
ie
s
. 
 T

h
e
s
e
 g

ro
u
p
s
 a

re
 t
h
o
s
e
 i
n
 w

h
ic

h
 t
h
e
re

 i
s
 n

o
 

re
d
u
n
d
a
n
c
y
. 

 

 

P
o
w
e
r 
e
t 
a
l.
 (
1
9
9
6
) 

…
w

e
 d

e
fi
n
e
 a

 k
e
y
s
to
n
e
 s
p
e
c
ie
s
 a

s
 o

n
e
 w

h
o
s
e
 i
m

p
a
c
t 
o
n
 i
ts

 c
o
m

m
u
n
it
y
 o

r 
e
c
o
s
y
s
te

m
 i
s
 l
a
rg

e
, 
a
n
d
 d

is
p
ro

p
o
rt
io

n
a
te

ly
 l
a
rg

e
 r
e
la

ti
v
e
 t
o
 i
ts

 a
b
u
n
d
a
n
c
e
. 

 

 

F
o
lk
e
 e
t 
a
l.
 (
1
9
9
7
) 

k
e
y
s
to
n
e
 p
ro
c
e
s
s
 

s
p
e
c
ie
s
 

A
 l
im

it
e
d
 n

u
m

b
e
r 
o
f 
o
rg

a
n
is

m
s
 a

n
d
 g

ro
u
p
s
 o

f 
o
rg

a
n
is

m
s
 s

e
e
m

 t
o
 d

ri
v
e
 o

r 
c
o
n
tr
o
l 
th

e
 

c
ri
ti
c
a
l 
p
ro

c
e
s
s
e
s
 n

e
c
e
s
s
a
ry

 f
o
r 
e
c
o
s
y
s
te

m
 f
u
n
c
ti
o
n
in

g
, 
w

h
ile

 t
h
e
 r
e
m

a
in

in
g
 

o
rg

a
n
is

m
s
 e

x
is

t 
in

 t
h
e
 n

ic
h
e
s
 f
o
rm

e
d
 b

y
 t
h
e
s
e
 k
e
y
s
to
n
e
 p
ro
c
e
s
s
 s
p
e
c
ie
s
. 
 S

u
c
h
 

o
rg

a
n
is

m
s
 m

o
d
if
y
, 
m

a
in

ta
in

, 
a
n
d
 c

re
a
te

 h
a
b
it
a
ts

. 
 

m
ig
ra
to
ry
 

in
s
e
c
ti
v
o
ro
u
s
 

b
ir
d
s
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  T
a
b
le
 A
-1
. 
 C
o
n
ti
n
u
e
d
 

 
D
e
 L
e
o
 a
n
d
 L
e
v
in
 

(1
9
9
9
) 

k
e
y
s
to
n
e
 g
ro
u
p
 

In
 m

o
s
t 
c
a
s
e
s
, 
it
 i
s
 i
n
d
e
e
d
 g

ro
u
p
s
 o

f 
s
p
e
c
ie

s
, 
ra

th
e
r 
th

a
n
 i
n
d
iv

id
u
a
l 
s
p
e
c
ie

s
, 
th

a
t 

a
s
s
u
m

e
 i
m

p
o
rt
a
n
c
e
, 
fo

rm
in

g
 "
k
e
y
s
to
n
e
 g
ro
u
p
s
" 
o
r 
"f
u
n
c
ti
o
n
a
l 
g
ro

u
p
s
,"
 a

 
g
e
n
e
ra

liz
a
ti
o
n
 o

f 
th

e
 n

o
ti
o
n
 o

f 
k
e
y
s
to

n
e
 s

p
e
c
ie

s
. 

 

 

P
ir
a
in
o
 a
n
d
 F
a
n
e
lli
 

(1
9
9
9
) 

‘k
e
y
’ 
s
p
e
c
ie
s
 

…
T
h
o
s
e
 s

p
e
c
ie

s
 d

ri
v
in

g
 e

c
o
s
y
s
te

m
 p

ro
c
e
s
s
e
s
 o

r 
e
n
e
rg

y
 f
lo

w
s
 a

re
 g

e
n
e
ra

lly
 

re
fe

rr
e
d
 a

s
 "
k
e
y
" 
s
p
e
c
ie
s
, 
b
u
t 
o
n
ly

 a
 f
e
w

 o
f 
th

e
m

 a
re

 k
e
y
s
to

n
e
s
 

 

s
e
a
s
ta
r,
 

P
ia

s
te

r 

J
o
rd
á
n
 e
t 
a
l.
 (
2
0
0
0
) 

A
 s

p
e
c
ie

s
 c

a
n
 b

e
 c

o
n
s
id

e
re

d
 a

s
 k
e
y
s
to
n
e
 f
o
r 
it
 i
s
 i
n
 a

 k
e
y
 p

o
s
it
io

n
 i
n
 t
h
e
 f
o
o
d
 f
lo

w
 

n
e
tw

o
rk

 a
n
d
/o

r 
fo

r 
it
 i
s
 r
e
s
p
o
n
s
ib

le
 f
o
r 
la

rg
e
 f
lu

x
e
s
 o

f 
m

a
tt
e
r 
a
n
d
 e

n
e
rg

y
. 

 

 

K
o
tl
ia
r 
(2
0
0
5
) 

…
I 
p
ro

p
o
s
e
 t
h
a
t 
a
 t
h
ir
d
 c

ri
te

ri
o
n
 b

e
 i
n
c
o
rp

o
ra

te
d
 i
n
to

 t
h
e
 d

e
fi
n
it
io

n
: 
k
e
y
s
to
n
e
 

s
p
e
c
ie
s
 p

e
rf
o
rm

 r
o
le

s
 n

o
t 
p
e
rf
o
rm

e
d
 b

y
 o

th
e
r 
s
p
e
c
ie

s
 o

r 
p
ro

c
e
s
s
e
s
. 

 

p
ra
ir
ie
 d
o
g
s
, 

C
y
n
o
m

y
s
 s
p
p
. 

E
b
e
n
m
a
n
 a
n
d
 

J
o
n
s
s
o
n
 (
2
0
0
3
) 

W
e
 c

h
o
s
e
 h

e
re

 t
o
 d

e
fi
n
e
 k
e
y
s
to
n
e
 s
p
e
c
ie
s
 a

s
 a

 s
p
e
c
ie

s
 w

h
o
s
e
 l
o
s
s
 i
s
 l
ik

e
ly

 t
o
 

tr
ig

g
e
r 
a
 s

ig
n
if
ic

a
n
t 
n
u
m

b
e
r 
o
f 
s
e
c
o
n
d
a
ry

 e
x
ti
n
c
ti
o
n
s
. 

 

 

D
a
v
ic
 (
1
9
9
4
) 

 
…

a
 k
e
y
s
to
n
e
 s
p
e
c
ie
s
 i
s
 a

 s
tr
o
n
g
ly

 i
n
te

ra
c
ti
n
g
 s

p
e
c
ie

s
 w

h
o
s
e
 t
o
p
-d

o
w

n
 e

ff
e
c
t 
o
n
 

s
p
e
c
ie

s
 d

iv
e
rs

it
y
 a

n
d
 c

o
m

p
e
ti
ti
o
n
 i
s
 l
a
rg

e
 r
e
la

ti
v
e
 t
o
 i
ts

 b
io

m
a
s
s
 d

o
m

in
a
n
c
e
 w

it
h
in

 a
 

fu
n
c
ti
o
n
a
l 
g
ro

u
p
. 
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  T
a
b
le
 A
-2
. 
 M
e
th
o
d
s
 o
f 
a
 p

ri
o
ri
 k
e
y
s
to
n
e
 s
p
e
c
ie
s
 i
d
e
n
ti
fi
c
a
ti
o
n
. 

 

A
u
th
o
r 

In
d
e
x
/ 
M
e
th
o
d
 

Q
u
o
te
 

T
a
n
n
e
r 
e
t 
a
l.
 

(1
9
9
6
) 

S
e
n
s
it
iv
it
y
 a
n
a
ly
s
is
 

W
e
 s

u
g
g
e
s
t 
th

a
t,
 f
o
r 
c
e
rt
a
in

 a
s
s
e
m

b
la

g
e
s
, 
th

is
 [
id
e
n
ti
fi
c
a
ti
o
n
 o
f 
k
e
y
s
to
n
e
s
] 
c
a
n
 a

ls
o
 

b
e
 d

o
n
e
 b

y
 m

e
a
n
s
 o

f 
a
 s

e
n
s
it
iv

it
y
 a

n
a
ly

s
is

 o
f 
a
 m

a
tr
ix

 o
f 
tr
a
n
s
it
io

n
 p

ro
b
a
b
ili
ti
e
s
. 

 

P
o
w
e
r 
e
t 
a
l.
 

(1
9
9
9
) 

C
o
m
m
u
n
it
y
 

im
p
o
rt
a
n
c
e
 

In
 m

a
th

e
m

a
ti
c
a
l 
te

rm
s
, 
C

I 
=
 [
d
(t
ra

it
)/
d
p
] 
[1

/(
tr
a
it
)]
 w

h
e
re

 p
 i
s
 t
h
e
 p

ro
p
o
rt
io

n
a
l 

a
b
u
n
d
a
n
c
e
 (
in

 m
o
s
t 
c
a
s
e
s
, 
p
ro

p
o
rt
io

n
a
l 
b
io

m
a
s
s
 r
e
la

ti
v
e
 t
o
 t
h
e
 t
o
ta

l 
b
io

m
a
s
s
 o

f 
a
ll 

o
th

e
r 
s
p
e
c
ie

s
 i
n
 t
h
e
 c

o
m

m
u
n
it
y
) 
o
f 
th

e
 s

p
e
c
ie

s
 w

h
o
s
e
 a

b
u
n
d
a
n
c
e
 i
s
 m

o
d
if
ie

d
. 
T
ra

it
 

re
fe

rs
 t
o
 a

 q
u
a
n
ti
ta

ti
v
e
 t
ra

it
 o

f 
a
 c

o
m

m
u
n
it
y
 o

r 
e
c
o
s
y
s
te

m
. 

 

J
o
rd
á
n
 e
t 
a
l.
 

(2
0
0
1
) 

K
e
y
s
to
n
e
 i
n
d
ic
e
s
 i
n
 

fo
o
d
 w
e
b
 n
e
tw
o
rk
s
 

W
e
 c

h
a
ra

c
te

ri
ze

 s
p
e
c
ie

s
 b

y
 t
h
re

e
 k

e
y
s
to

n
e
 i
n
d
ic

e
s
: 
K

b
 f
o
r 
b
o
tt
o
m

-u
p
, 
K

t f
o
r 
to

p
-

d
o
w

n
 a

n
d
 K

 f
o
r 
b
id

ir
e
c
ti
o
n
a
l 
p
ro

c
e
s
s
e
s
 (
w

h
e
re

 K
 =

 K
b
 +

 K
t)
. 

 

S
o
lé
 a
n
d
 

M
o
n
to
y
a
 (
2
0
0
2
) 

to
p
o
lo
g
ic
a
l 
a
n
a
ly
s
is
 

o
f 
e
c
o
lo
g
ic
a
l 

n
e
tw
o
rk
s
 

In
 t
h
is

 r
e
s
p
e
c
t,
 o

u
r 
a
p
p
ro

x
im

a
ti
o
n
 t
o
 t
h
e
 f
ra

g
ili
ty

 o
f 
s
p
e
c
ie

s
-r
ic

h
 f
o
o
d
 w

e
b
s
 t
h
ro

u
g
h
 

to
p
o
lo

g
ic

a
l 
c
h
a
n
g
e
s
 m

a
y
 h

e
lp

 t
o
 d

e
s
ig

n
 n

e
w

 m
e
th

o
d
s
 f
o
r 
a
 p
ri
o
ri
 i
d
e
n
ti
fi
c
a
ti
o
n
 o

f 
k
e
y
s
to

n
e
 s

p
e
c
ie

s
. 
 W

e
 c

a
n
 i
d
e
n
ti
fy

 s
u
c
h
 s

p
e
c
ie

s
 a

s
 h

ig
h
ly

 c
o
n
n
e
c
te

d
 b

e
c
a
u
s
e
 o

f 
th

e
 e

ff
e
c
ts

 o
f 
th

e
ir
 r
e
m

o
v
a
l 
in

 t
e
rm

s
 o

f 
s
e
c
o
n
d
a
ry

 e
x
ti
n
c
ti
o
n
s
 a

n
d
 f
o
o
d
-w

e
b
 

fr
a
g
m

e
n
ta

ti
o
n
. 

 

J
o
rd
á
n
 a
n
d
 

S
c
h
e
u
ri
n
g
 

(2
0
0
4
) 

to
p
o
lo
g
ic
a
l 
a
n
a
ly
s
is
 

o
f 
e
c
o
lo
g
ic
a
l 

n
e
tw
o
rk
s
 

A
lt
h
o
u
g
h
 t
h
e
 s

tu
d
y
 o

f 
la

rg
e
 a

n
d
 c

o
m

p
le

x
 n

e
tw

o
rk

s
 m

a
y
 h

e
lp

 e
c
o
lo

g
is

ts
 i
n
 a

n
s
w

e
ri
n
g
 

c
e
rt
a
in

 q
u
e
s
ti
o
n
s
, 
w

e
 s

u
g
g
e
s
t 
th

a
t 
fo

r 
e
v
a
lu

a
ti
n
g
 t
h
e
 r
o
le

 o
f 
a
 s

p
e
c
ie

s
 i
n
 a

 
c
o
m

m
u
n
it
y
 (
i.
e
. 
id

e
n
ti
fy

in
g
 k

e
y
s
to

n
e
s
),
 e

c
o
lo

g
y
 n

e
e
d
s
 a

 m
o
re

 l
o
c
a
l 
v
ie

w
 o

n
 t
h
e
 

n
e
tw

o
rk

 o
f 
in

te
rs

p
e
c
if
ic

 i
n
te

ra
c
ti
o
n
s
 …

.W
e
 a

rg
u
e
 t
h
a
t 
c
o
n
s
id

e
ri
n
g
 e

it
h
e
r 
o
n
ly

 d
ir
e
c
t 

p
a
rt
n
e
rs

 o
r 
th

e
 w

h
o
le

 c
o
m

m
u
n
it
y
 i
s
 n

o
t 
th

e
 k

e
y
 t
o
 a

s
s
e
s
s
in

g
 t
h
e
 i
m

p
o
rt
a
n
c
e
 o

f 
a
 

s
p
e
c
ie

s
. 
R

a
th

e
r,
 a

 ‘
‘m

e
s
o
-s

c
a
le

’’ 
v
ie

w
 i
s
 p

ro
p
o
s
e
d
: 
it
 s

h
o
u
ld

 b
e
 t
a
k
e
n
 i
n
to

 a
c
c
o
u
n
t 

th
a
t 
th

e
 s

tr
e
n
g
th

 o
f 
in

d
ir
e
c
t 
e
ff
e
c
ts

 i
s
 g

e
n
e
ra

lly
 t
h
o
u
g
h
t 
to

 b
e
 d

e
c
re

a
s
in

g
 w

it
h
 t
h
e
 

le
n
g
th

 o
f 
th

e
 p

a
th

w
a
y
. 

 

O
k
e
y
 e
t 
a
l.
 

(2
0
0
5
) 

R
e
m
o
v
a
l 
s
im
u
la
ti
o
n
s
 

u
s
in
g
 E
c
o
p
a
th
 a
n
d
 

E
c
o
s
im
 

W
e
 u

s
e
d
 t
h
e
 i
n
te

ra
c
ti
o
n
 s

tr
e
n
g
th

 i
n
d
e
x
 (
IS

I)
, 
th

e
 s

u
m

 o
f 
a
ll 

re
s
u
lt
in

g
 r
e
la

ti
v
e
 

c
h
a
n
g
e
s
 i
n
 t
h
e
 s

y
s
te

m
 (
th

e
 t
o
ta

l 
a
b
s
o
lu

te
 r
e
la

ti
v
e
 c

h
a
n
g
e
s
 i
n
 a

ll 
b
u
t 
th

e
 r
e
m

o
v
e
d
 

g
ro

u
p
).
 T

h
e
 ‘
k
e
y
s
to

n
e
’ 
in

d
e
x
 i
s
 t
h
e
 I
S
I 
e
x
p
re

s
s
e
d
 i
n
 t
e
rm

s
 o

f 
th

e
 r
e
la

ti
v
e
 b

io
m

a
s
s
 o

f 
th

e
 r
e
s
p
e
c
ti
v
e
 g

ro
u
p
s
 …

. 

179 



  T
a
b
le
 A
-2
. 
 C
o
n
ti
n
u
e
d
 

 
C
h
ri
s
ti
a
n
o
u
 a
n
d
 

E
b
e
n
m
a
n
 

(2
0
0
6
) 

to
p
o
lo
g
ic
a
l 
a
n
a
ly
s
is
 

o
f 
e
c
o
lo
g
ic
a
l 

n
e
tw
o
rk
s
, 
in
c
lu
d
in
g
 

in
te
ra
c
ti
o
n
 s
tr
e
n
g
th
 

In
 t
h
is

 s
tu

d
y
 w

e
 i
n
v
e
s
ti
g
a
te

 t
h
e
 r
o
le

 o
f 
in

te
ra

c
ti
o
n
 s

tr
e
n
g
th

 b
e
tw

e
e
n
 s

p
e
c
ie

s
 

(m
e
a
s
u
re

d
 a

s
 t
h
e
 p

e
r 
c
a
p
it
a
 e

ff
e
c
ts

 o
f 
o
n
e
 s

p
e
c
ie

s
 o

n
 a

n
o
th

e
r)
. 
In

 p
a
rt
ic

u
la

r,
 w

e
 

e
x
p
lo

re
 h

o
w

 t
h
e
 n

u
m

b
e
r 
a
n
d
 p

o
s
it
io

n
 o

f 
s
tr
o
n
g
 a

n
d
 w

e
a
k
 l
in

k
s
 a

ff
e
c
t 
th

e
 r
e
s
p
o
n
s
e
 

o
f 
m

o
d
e
l 
c
o
m

m
u
n
it
ie

s
 t
o
 s

p
e
c
ie

s
 l
o
s
s
. 

 

J
o
rd
á
n
 e
t 
a
l.
 

(2
0
0
6
) 

to
p
o
lo
g
ic
a
l 
a
n
a
ly
s
is
 

o
f 
e
c
o
lo
g
ic
a
l 

n
e
tw
o
rk
s
 

W
e
 p

re
s
e
n
t 
a
 d

e
ta

ile
d
 n

e
tw

o
rk

 a
n
a
ly

s
is

 b
a
s
e
d
 o

n
 p

u
re

 t
o
p
o
lo

g
y
 (
p
a
rt
ly

 e
x
te

n
d
e
d
 

a
ls

o
 t
o
 a

 w
e
ig

h
te

d
 n

e
tw

o
rk

)…
. 
W

e
 u

s
e
 a

 v
a
ri
e
ty

 o
f 
n
e
tw

o
rk

 i
n
d
ic

e
s
 f
ro

m
 l
o
c
a
l 
to

 
g
lo

b
a
l 
o
n
e
s
, 
in

c
lu

d
in

g
 n

o
d
e
 d

e
g
re

e
, 
k
e
y
s
to

n
e
 i
n
d
ic

e
s
, 
c
e
n
tr
a
lit

y
 i
n
d
ic

e
s
 a

n
d
 t
h
e
 

m
o
s
t 
g
e
n
e
ra

l 
to

p
o
lo

g
ic

a
l 
im

p
o
rt
a
n
c
e
 i
n
d
ic

e
s
 d

e
ri
v
e
d
 f
ro

m
 m

a
tr
ix

 a
lg

e
b
ra

. 
 

L
ib
ra
la
to
 e
t 
a
l.
 

(2
0
0
7
) 

N
e
tw
o
rk
 m
ix
e
d
 

tr
o
p
h
ic
 i
m
p
a
c
t 

a
n
a
ly
s
is
 w
it
h
 E
c
o
s
im
 

T
h
e
 h

ig
h
 g

e
n
e
ra

l 
a
g
re

e
m

e
n
t 
b
e
tw

e
e
n
 t
h
e
 m

ix
e
d
 t
ro

p
h
ic

 i
m

p
a
c
ts

 e
s
ti
m

a
te

d
 b

y
 t
h
e
 

m
a
s
s
-b

a
la

n
c
e
 r
o
u
ti
n
e
, 
E
c
o
p
a
th

, 
a
n
d
 t
h
e
 o

b
s
e
rv

e
d
 r
e
la

ti
v
e
 c

h
a
n
g
e
s
 i
n
 t
h
e
 

b
io

m
a
s
s
e
s
 o

b
ta

in
e
d
 w

it
h
 l
o
n
g
-t
e
rm

 E
c
o
s
im

 s
im

u
la

ti
o
n
s
, 
a
llo

w
e
d
 u

s
e
 o

f 
th

e
 m

ix
e
d
 

tr
o
p
h
ic

 i
m

p
a
c
t 
m

a
tr
ix

 M
 a

s
 a

 s
tr
a
ig

h
tf
o
rw

a
rd

 b
a
s
is

 t
o
 q

u
a
n
ti
fy

 t
h
e
 e

ff
e
c
t 
o
n
e
 

fu
n
c
ti
o
n
a
l 
g
ro

u
p
 h

a
s
 o

n
 a

ll 
th

e
 o

th
e
r 
g
ro

u
p
s
 i
n
 t
h
e
 e
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APPENDIX C

Nondimensionalization

To nondimensionalize equation 5 and 6, we first replace each variable by the nonpa-

rameterized version, represented by “*”:

Ṗ∗

1UP1 = r1UP1P
∗

1 (1 − α11UP1P
∗

1 − α12UP1P
∗

2 ) − ρP1H1UP1P
∗

1 − γP1H2UP1P
∗

1

Ṗ∗

1 = r1P
∗

1 (1 − α11UP1P
∗

1 − α12UP1P
∗

2 ) − ρP1H1P
∗

1 − γP1H2P
∗

1

Ṗ∗

2UP2 = r2UP2P
∗

2 (1 − α21UP2P
∗

1 − α22UP2P
∗

2 ) − ρP2H1UP2P
∗

2 − γP2H2UP2P
∗

2

Ṗ∗

2 = r2P
∗

2 (1 − α21UP2P
∗

1 − α22UP2P
∗

2 ) − ρP2H1P
∗

2 − γP2H2P
∗

2

Now we can choose values of U to eliminate two of the parameters in the set α11, α12,

α21, α22.

UP1 = 1
α11

UP2 = 1
α22

Ṗ∗

1 = r1P
∗

1 (1 − P∗

1 − α12
α11

P∗

2 ) − ρP1H1P
∗

1 − γP1H2P
∗

1

Ṗ∗

2 = r2P
∗

2 (1 − α21
α22

P∗

1 − P∗

2 ) − ρP2H1P
∗

2 − γP2H2P
∗

2

To eliminate the final parameter, we can rescale time
dP∗

dt
in terms of

dP∗

dτ
:

dP∗

dτ
=

dP∗

dt
∗

dt

dτ

dP∗

dt
=

dP∗

dτ
∗

dτ

dt

dP∗

dt
=

dP∗

dτ
∗ Ut

dP∗

1

dτ
=

r1P
∗

1
Ut

(1 − P∗

1 − α12
α11

P∗

2 ) − ρP1
Ut

H1P
∗

1 − γP1
Ut

H2P
∗

1

dP∗

2

dτ
=

r2P
∗

2
Ut

(1 − α21
α22

P∗

1 − P∗

2 )ρP2
Ut

H1P
∗

2 − γP2
Ut

H2P
∗

2
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We can choose Ut so that Ut = r1:

dP∗

1

dτ
= P∗

1 (1 − P∗

1 −
α12

α11
P∗

2 ) −
ρP1

r1
H1P

∗

1 −
γP1

r1
H2P

∗

1

dP∗

2

dτ
=

r2

r1
(1 −

α21

α22
P∗

1 − P∗

2 ) −
ρP2

r1
H1P

∗

2 −
γP2

r1
H2P

∗

2

As a final step, we can remove “*” and rename the nondimensionalized parameters:

Ṗ1 = P1(1 − P1 − α12P2) − ρP1H1P1 − γP1H2P1

Ṗ2 = rP2(1 − α21P1 − P2) − ρP2H1P2 − γP2H2P2

where r = r2
r1

, α12 = α12
α11

, α21 = α21
α22

, ρP1 = ρP1
r1

, ρP2 = ρP2
r1

, γP1 = γP1
r1

and γP2 = γP2
r1

.

Calculation of Fixed Points

The fixed points of nondimensionalized equation 5 and 6 are be determined as follows:

Ṗ1 = P1(1 − P1 − α12P2) − ρP1H1P1 − γP1H2P1

0 = P1(1 − P1 − α12P2) − ρP1H1P1 − γP1H2P1

The solution to the above equation is either 0 = P1 or 0 = (1 − P1 − α12P2 − ρP1H1 −

γP1H2). Solving for the nontrivial solution:

0 = 1 − P1 − α12P2 − ρP1H1 − γP1H2 (11)

P1 = 1 − α12P2 − ρP1H1 − γP1H2

In the case where P2 = 0 we are left with:

P1 = 1 − ρP1H1 − γP1H2
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Complementary equations can be found for P2:

Ṗ2 = P2(1 − α21P1 − P2) − ρP2H1P2 − γP2H2P2

0 = P2(1 − α21P1 − P2 − ρP2H1 − γP2H2)

0 = 1 − α21P1 − P2 − ρP2H1 − γP2H2 (12)

P2 = 1 − α21P1 − ρP2H1 − γP2H2whenP1 6= 0

P2 = 1 − ρP2H1 − γP2H2whenP1 = 0

We can also solve for the fixed points when both P1 6= 0 and P2 6= 0:

P1 = 1 − α12P2 − ρP1H1 − γP1H2

P1 = 1 − α12(1 − α21P1 − ρP2H1 − γP2H2) − ρP1H1 − γP1H2

P1 = 1 − α12 + α12α21P1 + α12ρP2H1 + α12γP2H2 − ρP1H1 − γP1H2

P1 − α12α21P1 = 1 − α12 + α12ρP2H1 + α12γP2H2 − ρP1H1 − γP1H2

P1(1 − α12α21) = 1 − α12 + α12ρP2H1 + α12γP2H2 − ρP1H1 − γP1H2

P1 =
1 − α12 + H1(α12ρP2 − ρP1) + H2(α12γP2 − γP1)

(1 − α12α21)

The complementary equation for P2 is:

P2 =
1 − α12 + H1(α21ρP1 − ρP2) + H2(α21γP1 − γP2)

(1 − α12α21)

Stability Evaluation of Fixed Points

The stability at each fixed point can be assessed by taking the derivative of equation 5

and 6 in a Jacobean matrix:

J =





δP1
δP1

δP1
δP2

δP2
δP1

δP2
δP2



 (13)
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δP1

δP1
=

δ

δ
P1(P1 − P2

1 − α12P1P2 − ρP1H1P1 − γP1H2P1) = 1 − 2P1 − α12P2 − ρP1H1 − γP1H2

δP1

δP2
=

δ

δ
P2(P1 − P2

1 − α12P1P2 − ρP1H1P1 − γP1H2P1) = −α12P1

δP2

δP1
=

δ

δ
P1(P2 − α21P1P2 − P2

2 − ρP2H1P2 − γP2H2P2) = −α21P2

δP2

δP2
=

δ

δ
P2(P2 − α21P1P2 − P2

2 − ρP2H1P2 − γP2H2P2) = 1 − α21P1 − 2P2 − ρP2H1 − γP2H2

J =





1 − 2P1 − α12P2 − ρP1H1 − γP1H2 −α12P1

−α21P2 1 − α21P1 − 2P2 − ρP2H1 − γP2H2





(14)

Each of the four fixed points should then be evaluated using the Jacobean:

Point (0, 0)

J(0,0) =





1 − 2P1 − α12P2 − ρP1H1 − γP1H2 -α12P1

-α21P2 1 − α21P1 − 2P2 − ρP2H1 − γP2H2





J(0,0) =





1 − ρP1H1 − γP1H2 0

0 1 − ρP2H1 − γP2H2





where λ1 = 1 − ρP1H1 − γP1H2 and λ2 = 1 − ρP2H1 − γP2H2 . This point will be

stable when both λ1 and λ2 are less than zero:

λ1 ≺ 0

1 − ρP1H1 − γP1H2 ≺ 0

ρP1H1 + γP1H2 ≻ 1

λ2 ≺ 0

1 − ρP2H1 − γP2H2 ≺ 0

ρP2H1 − γP2H2 ≻ 1
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The point (0, 0) is stable when the sum of herbivory on forage type multiplied by pref-

erence for that forage type is less than 1. This situation reflects circumstances when

grazing pressure is so high that all forage is driven to zero biomass.

Point (0,P2)

J(0,P2) =







1 − α12(1 − ρP2H1 − γP2H2) 0

-α21(1 − ρP2H1 − γP1H2)
1 − 2(1 − ρP2H1 − γP2H2)

− ρP2H1 − γP2H2







=











1 − α12 + α12ρP2H1 + α12γP2H2

−ρP1H1 − γP1H2
0

-α21(1 − ρP2H1 − γP2H2)
-1 + 2ρP2H1 + 2γP2H2

− ρP2H1 − γP2H2











=







1 − α12 + H1(α12ρP2 − ρP1)

+ H2(α12γP2 − γP1)
0

-α21(1 − ρP2H1 − γP2H2) -1 + ρP2H1 + γP2H2







where λ1 = 1−α12+H1(α12ρP2−ρP1)+H2(αγP2−γP1) and λ2 = −1+ρP2H1+γP2H2

.

This point will be stable when both λ1 and λ2 are less than zero:

1 − α12 + H1(α12ρP2 − ρP1) + H2(α12γP2 − γP1) ≺ 0

α12 − H1(α12ρP2 − ρP1) − H2(α12γP2 − γP1) ≻ 1 (15)

-1 + ρP2H1 + γP2H2 ≺ 0

ρP2H1 + γP2H2 ≺ 1 (16)

Given these circumstances, point (0, 0) and (0,P2) cannot both be stable because

equations (15) and (16) are contradictory.
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Point (P1, 0)

J(P1,0) =









1 − 2(1 − ρP1H1 − γP1H2)
−ρP1H1 − γP1H2

-α12(1 − ρP1H1 − γP1H2)

0 1 − α21(1 − ρP1H1 − γP1H2)
− ρP2H1 − γP2H2









=







1 − 2 + 2ρP1H1 + 2γP1H2 −
ρP1H1 − γP1H2

-α12(1 − ρP1H1 − γP1H2)

0
1 − α21 + α21ρP1H1 − α21γP1H2

−ρP2H1 − γP2H2







=







-1 + ρP1H1 + γP1H2 -α12(1 − ρP1H1 − γP1H2)

0
1 − α21 + H1(α21ρP1 − ρP2)

+ H2(α21γP1 − γP2)







where λ1 = −1+ρP1H1+γP1H2 and λ2 = 1α21+H1(α21ρP1−ρP2)+H2(α21γP1−γP2)

.

This point will be stable when both λ1 and λ2 are less than zero:

-1 + ρP1H1γP1H2 ≺ 0

ρP1H1 + γP1H2 ≻ 1 (17)

1 − α21 + H1(α21ρP1 − ρP2) + H2(α21γP1 − γP2) ≺ 0

α21 + H1(α21ρP1 − ρP2) + H2(α21γP1 − γP2) ≺ 1 (18)

Point (P1, 0) also cannot be stable while point (0, 0) is stable because equations (17)

and (15) are contradictory.

Point (P1,P2)

J(P1,(P2) =







1 − 2P1-α12P2 − ρP1H1
− γP1H2

-α12P1

-α21P2
1 − α21P1 − 2P2 − ρP2H1

− γP2H2







(19)

From equations (11) and (12) we know that at equilibrium 1 − P1 − α12P2 − ρP1H1 −

γP1H2 and 1− P2 − a21P1 − ρP2H1 − γP2H2 equal zero. Therefore, equation (19) can
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be rewritten as follows:

J(P1,P2) =









(1 − P1 − α12P2 − ρP1H1
− γP1H2) − P1

-α12P1

-α21P2
(1 − P2 − α21P1 − ρP2H1

− γP2H2) − P2









=





-P1 -α12P1

-α21P2 -P2



 (20)

=





-(1 − ρP1H1 − γP1H2) -α12(1 − ρP1H1 − γP1H2)

-α21(1 − ρP2H1 − γP2H2) -(1 − ρP2H1 − γP2H2)





=





-1 + ρP1H1 + γP1H2 -α12 + α12ρP1H1 + α12γP1H2

-α21 + α21ρP2H1 + α21γP2H2 -1 + ρP2H1 + γP2H2





T = -1 + ρP1H1 + γP1H2 − 1 + ρP2H1 + γP2H2

= -2 + H1(ρP1 + ρP2) + H2(γP1 + γP2)

D = (-1 + ρP1H1 + γP1H2)(-1 + ρP2H1 + γP2H2) − (-α12 + α12ρP1H1 + α12γP1H2)

(-α21 + α21ρP2H1 + α21γP2H2)

= 1 − ρP1H1 − ρP2H2 + ρP1ρP2H
2
1 − γP1H2 − γP2H2 + γP1γP2H

2
2 + γP1ρP2H1H2 +

γP2ρP1H1H2 − α12α21 + alpha12α21ρP1H1 + α12α21ρP1H2 + α12α21ρP2H1 −

α12α21ρP1ρP2H
2
1 − α12α21γP1ρP2H1H2 + α12α21γP2H2 − α12α21γP2ρP1H1H2 −

α12α21γP1γP2H
2
2

= 1 − ρP1H1 − ρP2H2 + ρP1ρP2H
2
1 − γP1H2 − γP2H2 + γP1γP2H

2
2 + γP1ρP2H1H2 +

γP2ρP1H1H2 − α12α21 + α12α21ρP1H1 + α12α21(ρP1H2 + ρP2H1 − ρP1ρP2H
2
1 −

γP1ρP2H1H2 + γP2H2 − γP2ρP1H1H2 − γP1γP2H
2
2 )

= (1 − α12α21)(1 − ρP1H1 − ρP2H1 − ρP1ρP2H
2
1 − γP1H2 − γP2H2 + γP1γP2H

2
2 +

γP1ρP2H1H2 + γP2ρP1H1H2)

(21)

λ1,2 =
T ±

√

(T 2 − 4D)

2

= 1
2(−2 + H1Φ + H2Θ) ± 1

2

[

(−2 + H1Φ + H2Θ)2 − 4
(

(1 − α12α21)(1 −

H1Φ − H2Θ + H1H2(γP1ρP2 + γP2ρP1) − H2
1ρP1ρP2 + H2

2γP1γP2)
)]

−
1
2 (22)
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where (ρP1 + ρP2) = Φ and (γP1 + γP2) = Θ .

This last point is stable when equation (22) is less than zero. However, because is

no straightforward interpretation of (22), it may be helpful to look at an earlier version,

equation (20). By solving for the trace and determinant at this equation, we can evaluate

the stability of the fixed point using a stability diagram for two dimensional continuous

systems.

T = -P1 − P2

T = -(P1 + P2) (23)

D = (-P1)(-P2) − (-α21P2)(-α12P1)

D = P1P2(1 − α21α12) (24)

Equation (23) suggests the trace is positive as long as (P1+P2) is negative. However,

because a negative biomass does not make biological sense, the trace will always be

negative. Therefore, the trace determinant value will fall in regions I (stable spiral), II

(stable node), or III (saddle point) of typical trace-determinant diagram. Given that P1

and P2 are positive numbers, the determinant (24) will be negative if α21α12 is greater

than one, corresponding to region III (saddle point). α21 and α12 can be expressed as

ratios of interspecific competition to intraspecific competition:

α21α12 ≻ 1

(

α21
α11

) (

α12
α22

)

≻ 1

(

α21
α11

)

≻
(

α22
α12

)

α12α21 ≻ α22α12 (25)

For α21α12 to be greater than one, the product of interspecific competition must be
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larger than the product of intraspecific competition. Therefore, the system will be unsta-

ble (a saddle point) if interspecific competition is larger than intraspecific competition.

The trace determinant value will fall in regions I (stable spiral) or II (stable node) if

α21α12 is less than one. In this case, the product of interspecific competition is less

than the product of intraspecific competition. Therefore, the system will be a stable

node (or spiral) if intraspecific competition is greater than interspecific competition.
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APPENDIX D 

 
Table D-1.  List of plants collected in Dawu Township.  Type A plants were found 
only at the on-colony site, type B only at the off-colony site and type C on both 
sites. 
 

Family Species Type 

Apiaceae Pleurospermum camtschaticum  C 

 Pleurospermum hedinii A 

Asteraceae Ajania khartensis C 

 Anaphalis lactea C 

 Aster flaccidus  A 

 Leontopodium pusillum C 

 Saussurea arenaria C 

 Saussurea leontodontoides B 

 Saussurea superba C 

 Taraxacum leucanthum C 

Boraginaceae Microula tibetica A 

Brassicaceae Draba lanceolata A 

 Hedinia tibetica A 

 Lepidium apetalum A 

Caprifoliaceae Lonicera rupicola C 

Caryophyllaceae Melandrium apetalum A 

 Silene conoidea C 

 Stellaria sagioroides A 

Chenopodiaceae Axyris amaranthoides  A 

 Chenopodium glaucum  A 

Cyperaceae Carex moorcraftii C 

 Kobresia humilis C 

 Kobresia macrantha C 

 Kobresia pygmaea C 

 Scirpus distigmaticus C 

Elaeagnaceae Hippophae rhamnoides  A 

Fabaceae Amblytropis diversifolia C 

 Astragalus fenzeliarus C 

 Astragalus sp. 1 C 

 Astragalus sp. 2 A 

 Oxytropis glabra C 

Gentianaceae Comastoma pulmonarium C 

 Gentiana leucomelaena A 

 Gentiana sp. C 

 Gentiana squarrosa C 

 Gentiana straminea C 

 Gentianopsis paludosa B 

Iridaceae Iris sp. A 

Lamiaceae Ajuga lupulina A 

 Elsholtzia densa A 

 Lamiophlomis rotata C 
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Table D-1. Continued. 

Liliaceae Allium sikkimense  B 

 Polygonatum sibiricum C 

Morinaceae Morina kokonorica A 

Papaveracaae Hypecoum leptocarpum A 

Poaceae Compressed purple C 

 Elymus nutans C 

 Koenigia pilosa A 

 Poa bomiensis B 

 Ptilagrostis concinna C 

 Stipa sp. A 

Polygonaceae Polygonum sibiricum A 

Primulaceae Androsace gmelinii var. geophila A 

 Androsace marie C 

 Glaux maritima C 

 Pomatosace filicula A 

Ranunculaceae Aconitum pendulum A 

 Aconitum sp. C 

 Delphinium caeruleum A 

 Delphinium densiflorum A 

 Ranunculus brotherusii C 

 Ranunculus membraneous C 

 Ranunculus nephelogenes C 

 Thalictrum rutifolium C 

 Callianthemum pimpinetloides B 

Rosaceae Potentilla anserina C 

 Potentilla nivea C 

 Potentilla saundersiana C 

Rubiaceae Galium verum A 

Saxifragaceae Parnassia trinervis C 

 Saxifraga stolonifera C 

Scrophulariaceae Euphrasia pectinata subsp pectinata A 

 Euphrasia pectinata  A 

 Lancea tibetica C 

 Pedicularis kansuensis B 

 Pedicularis lyrata C 

 Pedicularis sp. A 

 Veronica ciliata C 
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