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A B S T R A C T   

Several technological solutions have emerged over the last several months to support proximity contact tracing to 
fight the COVID-19 pandemic. For this reason, today more than ever, accurate signal location is needed, even in 
indoor public areas (supermarkets, public transport, etc.). In a previous work, we proposed five methods to solve 
the problem of signal localization using elements of pole-polar geometry. The proposals were innovative, since 
they solved a geometric problem (locating a point in a coordinate system) only by applying concepts of geometry. 
Among these developed methods, the PPC (Pole-Polar Centroid model) was also presented. Although the PPC 
solves the problem of locating a device with better precision than conventional methods (based on numerical or 
optimization methods), its accuracy was found to be the worst among the five proposed geometric methods. In 
this context, this work proposes an extension to our PPC method, called the weighted Pole-Polar Centroid method 
(wPPC), which improves the accuracy of the previous PPC results. Such an extension does not change the 
complexity O(m2) or the minimum dimensionality (m = 2) of nodes, which integrate a location network to 
perform the triangulation of such signals. Moreover, this extension estimates a device’s location coordinates by 
means of the interaction, via signals, of this device with the network nodes distributed in any coordinate system. 
An IEEE 802.11 network infrastructure is used to accomplish the experiments. Errors in signal data are common, 
and our new proposed method, the wPPC, can mitigate the influence of these errors, produce more accurate 
results than the PPC, and outperform some of the other four proposed geometric methods and current numeric 
methods. Despite the use of an IEEE 802.11 network infrastructure for testing here, this range-based method for 
signal triangulation can be applied to any signal type (such as Wi-Fi, Bluetooth, and light and sound 
propagation).   

1. Introduction 

The impact of non-pharmaceutical interventions (NPIs) to reduce 
COVID-19 mortality is globally significant (Wang et al., 2020; 
Eubank et al., 2020). One of these NPIs is contact tracing, which has 
become an essential tool for helping public health and local com-
munities to prevent virus spread (Cho et al., 2020), and its use is also 
recommended by the World Health Organization (onsiderations in 
the, 2020). Besides manual contact tracing, several technological 
initiatives have emerged in recent months based on mobile phone 
apps to track exposures after an infected individual is identified [3] 
(Klonowska et al., 2020)[eHealth Network Mobile ap, 2020], such as 

the Trace Together app (Singapore) (Ng et al., 2020), the 
Pan-European Privacy Preserving Proximity Tracing (PEPP-PT) 
(-Pan-European Priv), the New Zealand initiative (Rapid Audit of 
Contact Tr, 2020), and the Apple & Google partnership (Apple and 
Google partner, 2020). One of the distributed approaches is based on 
the smart device interaction using tokens and messages through 
wireless communication by proximity.  

2. Today, most people carry mobile phones that are connected through 
wireless communication technologies, such as Bluetooth or Wi-Fi 
(the IEEE 802.11 protocol family). One of the problems of using 
these interactions to keep track of contacts based on proximity is the 
possibility of communication or signal data errors, which cause the 
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location of the device to achieve an accuracy that is lower than it 
should be (Ahvar et al., 2016; Gandotra et al., 2017; Pedhadiya et al., 
2019; Yassinet al., 1327; Hassan et al., 2015; Lau et al., 2019).  

3. The present work proposes a new signal location method based on 
weighted pole-polar geometry that improves the estimation accuracy 
of signal location.  

4. The paper is structured in five sections. Section 2 describes the initial 
considerations from our previous work. Section 3 presents a new 
method called the weighted Pole-Polar Centroid (wPPC). Section 4 
shows details experimental cases and their results. Section 5 presents 
the conclusions of this work. 

2. Considerations and algorithm formalization from previous 
work  

6. Signal location estimation by range-based methods needs to solve 
a nonlinear system with m-many equations, if obtained the 
numbers of nodes of the location network. The solution of this 
system can be obtained by the linearization of these equations. 
The linearization process can be accomplished by subtracting 
equations. One equation of this system is chosen and is used to 
subtract all others from this system. Thus, the terms of all equa-
tions of degree two are eliminated, and the system becomes 
linear. However, the realization of this subtraction also elimi-
nates from the system the equation chosen to perform this line-
arization. For example, if there were five equations before the 
linearization, after the linearization, there will be four equations 
in the system. It is important to consider that this equation that 
was eliminated contemplates data of the radial range of the signal 
acquired by a device of the location network system. Eliminating 
this equation means eliminating this device from the network, 
and its participation in the final result of the location of a point in 
space becomes indirect. The most complicated fact of performing 
the linearization of the equations system by the subtraction of its 
equations is the possibility of error propagation. Assume that the 
equation chosen to perform the linearization operation is that 
corresponding to the device that acquired the signal data with the 
highest error. By using this equation to subtract all other ones, 
such error is substantially propagated to the linearized equation 
system, damaging the accuracy of the solution.  

7. Based on these two problems that the linearization operation 
causes to the location system, (1) a device is eliminated from the 
location network, which reduces the redundancy of that network 
and compromises the ability to minimize errors in the result of 
the location estimate, and (2) the choice of an equation for this 
system to perform linearization by subtraction can substantially 
propagate the signal data errors contained in this chosen equation 
for the other equations, leading to the proposal of geometric so-
lutions to the problem of 2D signal location (Montanha et al., 
2019).  

8. The geometric solutions previously proposed have the following 
advantages over conventional methods: (1) there is no need to 
linearize the system of equations, (2) there is no need to remove a 
node from the location network, and (3) the complexity of geo-
metric methods is of order O(m2) instead of order O(m3) of the 
conventional methods. 

9. Our previous work [17] proposed five geometric methods to es-
timate the location of sources emitting/receiving signals based on 
the signal range: (1) PPC, based on a centroid of a set of polar 
points; (2) CHC, based on a convex hull region defined by a set of 
interest points; (3) PLI, based on a centroid of a set of interest 
points obtained by polar line intersections; (4) TLI, based on a 
centroid of a set of interest points obtained by tangent lines in-
tersections; and (5) MAI, based on a centroid of a set of interest 
points obtained by tangent line intersections with minimal 
angles.  

10. All of these methods have been shown to be capable of estimating 
a position in a coordinate system, by geometrically manipulating 
signal range data, with better precision than traditional methods 
such as Newton–Raphson (NRm) [17][S and Atkinson, 1990], 
Least-Squares (LSm) [17][19][Acharya, 2014], and Weighted 
Least-Squares (WLSm) [17][19][Tarrío et al., 2011], leading to 
the conclusion that the proposed geometric methods are able to 
handle errors in signal data more adequately.  

11. In this context, this work proposes an extension to the PPC 
method [17]: the weighted Pole-Polar Centroid model (wPPC) 
method. It provides the PPC with the ability to process signal data 
with errors and obtain better accuracy in location estimation, 
without changing the complexity O(m2) or the minimum 
dimensionality (m = 2) of nodes in the location network system 
required by the original PPC method.  

12. This paper does not address operations or methods related to 
signal data preprocessing. This means it is assumed that there are 
errors in the acquired data. Such errors are due to the signal 
multipath, the presence of obstacles, and the co-presence of other 
electromagnetic sources. Obviously, in order to guarantee the 
accuracy of location estimation, it is necessary to ensure accurate 
data.  

13. To analyze the results produced by wPPC, this work uses the same 
data provided by previous work [17]. Such data, not pre-
processed, were acquired using the IEEE 802.11 network infra-
structure in a system of radio signal emission and reception 
devices. Each device in this network allows one to extract the 
strength value of the emission/reception of a radio signal, sup-
ported by IEEE 802.11 by access to the Received Signal Strength 
Indicator (RSSI). These strength data allow for estimations of the 
radial distance (signal range) between the sending device and 
each receiving device (or vice versa). The respective computed 
radial distances allow for estimations of the location of a specific 
device in this network. Despite using an IEEE 802.11 network 
infrastructure for testing here, this range-based method for signal 
triangulation can be applied to any signal type (such as Wi-Fi, 
Bluetooth, and light and sound propagation). 

2.1. Useful 2D geometric definitions  

14. This subsection describes some important geometric definitions 
for understanding the proposed geometric models PPC and wPPC. 
These definitions were listed and organized in the previous work 
(Montanha et al., 2019). Such definitions are labeled as, for 
example, (d-9), which means the 9th definition, and its uses are 
thus referenced in the text. Other definitions and further infor-
mation in this regard are provided by WCIPEG (Woburn Colle-
giate Institu, 2018) and Gibson (2004). 

2.1.1. Point and line 
A coordinate P(x, y) define the point P in the Cartesian plane (ℝ2). 

The line that passes through the points P(x1, y1) and Q(x2, y2), P∕=Q, is 

denoted as PQ
̅̅→←̅̅

. The line segment PQ (with endpoints P and Q) is the 

portion of the line PQ
̅̅→←̅̅

between points P and Q. 

(d-1) The Euclidean distance D
PQ
̅̅→←̅̅ between two points P(x1, y1) and 

Q(x2, y2) is given by 

DPQ=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x2  )2 + (y1 − y2)
2

√
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(d-2) For constants A, B, and C (A and B not both zero), all points (x, 
y) satisfying the equation Ax + By + C = 0 define the implicit line 
equation in the Cartesian plane. For two points P(x1, y1) and Q(x2, 
y2), a particular line equation is obtained by 

A= y1 − y2;B = x2 − x1;C = − Ax1 − By1   

(d-3) Two particular lines A1x + B1y + C1 = 0 and A2x + B2y + C2 =

0 have an intercept at the point (x+, y+) if d = A1B2 − A2B1∕=0, given 
by 

(x+, y+)=
(

B1C2 − B2C1

d
,
A2C1 − A1  − C2

d

)

If A1A2+B1B2 = 0, the lines are perpendicular. If A1B2 = A2B1, the 
lines are parallel or coincident. 

(d-4) The line equation Apx + Bpy + Cp = 0 that passes through point 
P(xp, yp) and is perpendicular to the line Ax + By + C = 0 is defined as 

Ap = − B; Bp = A; Cp = Axp − Byp.

2.1.2. Circle 
In the Cartesian plane, the equation (x-xc)2 + (y-yc)2 = r2 defines the 

implicit circle equation centered at the point C(xc, yc) with radius r. Let E 
(xe, ye) be an external point to a circle. By using E, we can obtain two 
tangent lines, t1 and t2, to the circle (Fig. 1a), which pass through points 
P(x1,y1)* and Q(x2,y2)*, respectively. Points P and Q can be computed 
by applying the geometric concept of pole-polar definition. 

(d-5) The distance δPC,r between a point P(x1, y1) and a circle line 
centered at the point C(xc, yc) with radius r is given by 

δPC,r = |r − Dpc|,

where DPC is the Euclidean distance between the point P(x1, y1) and the 
point C(xc, yc) computed by definition (d-1). 

2.1.3. Pole-polar geometry 
A pole point and polar line are, respectively, a point and a line that 

have a unique reciprocal relationship with respect to a given conic sec 
tion. If the point lies on the conic section, its polar line is the tangent 
line to the conic section at that point (Wyk and O’Rourke, 1995). If the 
pole point is external to the conic section, the polar line intercepts the 
conic section exactly at the points that allow passing tangent lines from 
this pole point (Fig. 1a). Our interest is to pass two tangent lines, t1 and 
t2, through a circle centered at point C(xc, yc) with radius r. Moreover, 
these lines must pass through a known external point E(xe, ye) (or pole 
point) to this circle (Fig. 1a). We need to locate the coordinates of the 
polar points P(x1, y1)* and Q(x2, y2)*, which define the polar line p and 
lie on the tangents lines t1 and t2. Additionally, we must find the equa-
tion of the polar line p(Ax + By + C = 0). 

(d-6) The general equation of a conic in the Cartesian coordinate 
system is given by 

axxx2+ 2axyxy+ ayyy2 + 2bxx+ 2byy+ w = 0.

We need the equation of the polar line p(Ax + By + C = 0) that can be 
obtained by a known pole point E(xe,ye). The required coefficients of the 
polar line p are given by 

A= axxxe + axyye + bx;B = axyxe + ayyye + by; C = bxxe + byye + w 

In this work, the expected conic section is a circle. For the circle case, 
the following simplifications are helpful: axx = 1; axy = 0; ayy = 1; bx =

− xc; by = − yc; w = x2
c + y2

c − r2. 
The next step consists in placing points P(x1, y1)

*and Q(x2, y2)
*, 

which are obtained by computing the intersection between the polar line 
p and the circle line (Fig. 1a). To compute the intersection of a line, t :
Ax+ By+ C = 0, with a circle, (x − xc)

2
+ (y − yc)

2
= r2, the following 

conditions must be considered using the parameter dtc =
|Axc+Byc+C|̅̅̅̅̅̅̅̅̅̅̅

A2+B2
√ , 

which is the distance between the polar line t and the circle center point 
C(xc,yc): 

○ if dtc > r, there is no intersection point; 
○ if dtc = r, the line is tangent to the circle and has one intersection 
point; 

Fig. 1. (a) Possible tangential straight lines t1 and t2 for the circle line obtained by an external point E(xe, ye) (pole point) (Montanha et al., 2019). Polar line p and its 
geometric relationship with the tangent lines and a given conic section (a circle in the case of this work). (b) A location system composed by two nodes and one 
device. Computation of the polar points (red dots) using as pole points (black dots) the respective centers of the signal range (blue lines). The green faced square is the 
exact emitter location computed by the PPC method in this coordinate system. 
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○ if dtc < r, the line is secant to the circle and has two intersection 
points. 

The algebraic solution for this intersection is an equation of degree 
two. Another way to solve this intersection is to apply some geometric 
relationships, as follows. To find the intersections points P(x1, y1)

*and 
Q(x2, y2)

*, which are the polar points, we first have to drop a perpen-
dicular line (by (d-4)) from the center C(xc, yc) of the circle to the line p. 

Let T(xt , yt) (Fig. 1a, yellow dot) be the intersection point and CT
̅̅→←̅̅

be the 
line that passes through C and T (Fig. 1a). 

The equation of line p(Ax+By+C= 0) is known (by (d-6)). Thus, the 

equation of line CT
̅̅→←̅̅

is CT
̅̅→←̅̅
( − Bx + Ay + Axc − Byc). This way, the 

point T(xt , yt) can be computed by intersection between p and CT
̅̅→←̅̅

lines 
(by (d-3)). 

DCT represents the Euclidean distance between points C and T; DPT 
refers to the distance between points P and T; DQT stands for the distance 
between points Q and T; DCP = DCQ = r (by (d-1)). 

The triangles ΔCPT and ΔCQT are right-angled, so we prove that 

DCT
2+DPT

2= r2  

and 

DCT
2+DQT

2= r2.

(d-7) Therefore, DQT = DPT = h =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − DCT

√ 2; now, if we translate 
the point T by h units in both directions along line p, the polar points P 
and Q (Fig. 1a) are determined as follows: 

(x1, y1)
*
=

(

xt −
Bh

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A2 + B2
√ , yt +

Ah
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A2 + B2
√

)

.

If h ∕= 0, there is a second point of tangency given by 

(x2, y2)
*
=

(

xt +
Bh

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A2 + B2
√ , yt −

Ah
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A2 + B2
√

)

.

(d-8) The location estimation of a device, Exy(Ex,Ey), is based on a set 
S that contains n points, (x, y), which are collected in a defined Re-
gion Of Interest (ROI). This location is given by the centroid point 
among all points in S, by 

Ex=

∑
x∈Sx
n

,Ey =

∑
y∈Sy
n

.

In this work, it is not necessary to define an ROI. All polar points are 
used for estimating a location point. 

An arbitrary 2D coordinate Cartesian system used for positioning a 
location system composed by two nodes (receiver devices) is shown in 
Fig. 1b. This coordinate Cartesian system is arbitrary (no units are 
necessary). The black dots define the positions, previously defined, of 
the location network nodes. The blue circle lines represent the radial 
range of the signal, perceived at each node, emitted by a device that 
needs to be located by this network with two nodes. The red dots are the 
respective polar points, which were computed using the positions of the 
nodes (the centers of each circle) as pole points, applying the definition 
(d-7). By the definition (d-8) and the set S containing all (four in this 
case) the polar points computed, the location of the respective device 
(green-faced square) was estimated by the PPC method. The location 
solution provided in previous work uses the nomenclature Exy(Ex, Ey)

(Montanha et al., 2019). This work uses the nomenclature EP
xy(Ex,Ey) to 

indicate that this solution is relative to the PPC method and EW
xy(Ex, Ey)

for the wPPC solution. 

2.2. The PPC method and Considerations 

The PPC model is a method proposed to triangulate the position of a 
device emitting/receiving signals using specific points computed in an 
arbitrary coordinate system. These specific points, polar points, are 
computed with the aid of definitions of pole-polar geometry. Basically, 
pole-polar geometry relates the lines of a circle (or any other conical 
section) with center C(xc, yc) and radius r with any point E(xe, ye), ar-
ranged in a same Cartesian coordinate system. One of the questions that 
pole-polar geometry answers is: if a spot observer is over point E, what 
fraction of the circle with center C and radius r (Fig. 1a) can they see? 

The PPC method explores the solution of this problem to perform 
triangulation and estimate a location of a specific device inserted in the 
environment covered by the coordinate system that supports the dis-
tribution of the triangulation network nodes. Through signals of some 
nature (e.g., sound or radio), the network nodes and the device interact 
(communication). These interactions allow for the extraction of data, 
such as angles and radial distances, in relation to the device’s posture 
with the physical disposition of each node in the network (Fig. 2a). 

PPC uses the radial distance rk (radial range) indicated in each node k 
of the network to perform the triangulation. Fig. 2b illustrates the case in 
which Node 2 observes the radial range of Node 1, and Fig. 2c the case in 
which Node 2 observes the radial range of Node 1. These observations 
allow for the computation of the respective polar points that provide the 
“vision” constraint on each node over the radial range of the other node. 

For a network consisting of m nodes, PPC requires that pairs of nodes 
be combined among all these nodes. The number p of possible node pairs 
is given by Equation (1). The number of polar points obtained when 
combining pairs of nodes is n = 4p (each pair of the combination pro-
vides four polar points). If the location network has m = 4 nodes, there 
are p = 6 combinations of pairs of nodes and therefore n = 24 polar 
points. In terms of m, the computational cost of PPC is O(m2) in accor-
dance with the cost to perform these combinations. 

p=
(

m
2

)

=
m!

2(m − 2)!
(1)  

2.2.1. The PPC method and the exact solution 
The exact solution of any location system depends exclusively on the 

quality of the data acquired from the signals used in the interaction of 
the device to be located with the nodes of the location network. If the 
data are perfect, the solution must be accurate. In the case of methods 
based on the data of radial ranges of the nodes (lines of the circles), to 
obtain the exact solution, these radial ranges derived from all nodes of 
the network must intersect at a single point in the coordinate system. 

PPC is based on the computation of the centroid among all polar 
points. In practice, the centroid is a geometric mean (see definition (d- 
8)). The greater the radius of a circle is, the more distant, among them, 
the polar points are. These great distances move the centroid to the 
circle neighborhood with the greatest radius, and, if there is no sym-
metry in the distribution of the network nodes, the PPC can lead the 
result to a location with a significant error (see Fig. 3). 

When an exact solution exists, it can be given by a polar point. In this 
case, there is no need to compute the centroid. This exact solution is 
obtained with a sequential search on the set of polar points. If there is at 
least one polar point in that set that belongs to all lines of the circle at the 
same time, that point is the exact solution. This solution was addressed 
in previous work (Montanha et al., 2019), but it has not been formalized. 
The number of polar points that marks the exact solution depends on the 
number and geometric arrangement of the nodes in the plane of the 
coordinate system of the location network. For example, with three 
nodes (Fig. 3a), there are two polar points indicating the exact solution. 
With four nodes, there are eight (Fig. 3b). If using only two nodes, there 
is no polar point marking the solution, but in this case the PPC marks the 
exact solution (Fig. 1b). Even if there is an exact solution and the 
network has more than two nodes, there is a dependence on the 
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geometric arrangement of the nodes for a polar point to mark that so-
lution. Fig. 5c shows a case in which the solution is exact, but no polar 
point marks such a solution. Fig. 6 also illustrates this situation of an 
absence of a polar point indicating the exact solution. In the case illus-
trated by Fig. 5c, PPC finds the exact solution. In the case of Fig. 6, the 
PPC does not find an exact solution. When there is an exact solution, but 
there is no polar point marking or the PPC does not find such a solution, 
a precision value T capable of minimizing the error of the location 
estimation is needed. 

In computational practice, two real numerical values computed by 
different paths are not always the same. Even if they are mathematically 
equal, computationally, they may be slightly different due to the per-
formance of truncation and rounding operations. This means that there 
is a risk of applying definition (d-5) with the unique condition of 
obtaining zero in the result when searching for the exact solution 
marked by a polar point. It is most appropriate to establish a threshold 
value T that specifies an acceptable precision value to solve the problem 
of location. In this case, the polar point is considered an exact solution, if 
it exists, closer to all lines of the radial ranges of the nodes of the location 
system; at the same time, it is less than or equal to the pre-established T 
value (see Equation (2)). 

Let m > 2 be the number of nodes in the location network. Let Pk be 
the set of all polar points that belong to the radial range of node k. 
Consider that all polar points are stored in a list (a function) S indexed by 
the value k, Sk : k→Pk, and that k is an index identifying any node in the 
network, k ∈ {1,2,…,m}. The Sk operation accesses all the polar points 
stored in S that are on the line of the radial range of node k with center 

Ck and radius rk. Let EP
xy be an undefined point in the coordinate system. 

If in the set of polar points there is at least one point that is the exact 
solution, or with an acceptable precision, EP

xy is associated with that 
point by Equation (2). 

EP
xy=

⎧
⎨

⎩

undefined, Δ⋆ = ∅

℘, (Δ⋆ ∕= ∅)⋀(℘ ∈ dom Δ⋆)⋀(℘,min(ran Δ⋆))

(2)  

where Δ⋆ = ∪({k∈ {1,2,…,m} • Δk}); 

Δk =
{

P∈ Sk

/(
∀j∈{1, 2,…,m}

/
(j∕= k)⋀

(
δPCj ,rj

≤ T
))
•
(

P, δPCj ,rj

)}

δPCj ,rj 
is the distance between point P and the radial range of node j 

centered at Cj with radius rj (definition (d-5)); 
∪( ) is the generalized union of a set of sets, e.g., if s = {{1,2},

{2,4}}⇒ ∪ (s) = {1,2, 4}; 
dom( ), ran( ), and min( ) are, respectively, the domain and codo-

main (range) of a relationship and the minimum value of a set of real 
values. 

Fig. 4 illustrates an example of how Equation (2) works. Consider the 
radial ranges r1 and r2 of two nodes, 1 and 2, centered at C1 and C2, the 
permissible precision value T, and the respective polar points P1,  P2, P3, 
and P4, among which only P2 and P3 comply with the solution condition 
given by Equation (2). 

For all cases where Equation (2) produces the value Δ⋆ ∕= ∅, EP
xy will 

store the value of the exact solution, or with acceptable precision T. 

Fig. 2. Triangulation network with two nodes and a device to be located. (a) Possible data extracted from the signal interaction between the device and each node. 
(b) The Node 2 “view” limitation on the radial range of Node 1 fixed by the polar points. (c) The Node 1 “view” limitation on the radial range of Node 2 fixed by the 
polar points. (d) The centroid computed on the union of all polar points estimates the device location. 

Fig. 3. Exact PPC solutions. Asymmetric distribution of nodes in the location network and the PPC solution shifted from accuracy (green faced square). In this case, 
the exact solution is given by the polar point highlighted in yellow. (a) Network with three nodes. (b) Network with four nodes. 
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When producing the value Δ⋆ = ∅, EP
xy is undefined. 

2.2.2. The PPC method and restricted solutions 
Not all location methods can be applied to all location system con-

figurations. Fig. 5 illustrates some of these cases. There is a dependence 
on the methods in relation to the number of nodes used in the location 
network and the geometric arrangement of these nodes in the coordinate 
system. All these cases of restricted solution are solved by the PPC 
method with good precision. 

Fig. 1b shows a location network consisting of only two nodes. 
Methods that need to perform the linearization of the system of equa-
tions, such as LSm and WLSm, cannot solve the unknown (x, y) co-
ordinates of the device’s estimated location because, after linearizing 
the system with two equations, only one equation will be left to solve the 
two unknowns. 

However, as shown in Fig. 1b, if the lines of the two circles touch 
each other (touch one point), or if they are secant (touch two 
points—Fig. 5a), there is a direct algebraic solution. Such a solution was 
addressed in the previous work (Montanha et al., 2019). 

When the line of two circles does not intersect (Fig. 5b), the algebraic 
method also fails and, in this case, it is necessary to have a solution by 
optimization. 

If the geometric arrangement of the network nodes is collinear, 

Fig. 4. Example illustrating how Equation (2) works.  

Fig. 5. Restricted solutions. (a) Two nodes with secant ranges. This can be solved algebraically (Montanha et al., 2019). (b) Two nodes without intersection of 
ranges. This can be solved by optimization (Luo et al., 2018). (c) Three vertical collinear nodes. This can be solved algebraically (Montanha et al., 2019) or by 
optimization (Luo et al., 2018). 

Fig. 6. Limitation of the PPC. The two nodes (white and black) are inserted into 
the radial range of the node with the greatest radial range. The polar points, 
yellow and black, are complex numbers. 
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parallel to one of the axes of the coordinate system (Fig. 5c), LSm, 
WLSm, and NRm cannot solve by eliminating all equations from the 
system of equations. 

2.2.3. Limitations of the PPC method 
The PPC method is based on obtaining polar points using a pole point 

that is outside the radial range of the network node (Figs. 1 and 2). 
However, pole-polar geometry does not preclude that the pole point 
does not belong to the region covered by the radial range of the node 
(Figs. 5c and 6). PPC combines all nodes in pairs and alternately uses the 
positions of these nodes as pole points to observe the radial range of the 
other nodes in the network. There may be situations of inclusion of one 
or more nodes in the radial range of other nodes. When this occurs, 
complex numbers are generated as polar points (Fig. 6). 

When this problem occurs, two possibilities are recommended 
(Montanha et al., 2019): discard those points represented by complex 
numbers, or use only the real part of those numbers as a solution for the 
respective polar points. 

The points highlighted in yellow and black in Fig. 6 correspond to the 
real part of the generated complex numbers. Note that these points are 
outside the context of the radial ranges of any node (the polar points 
must be on lines of circles). The result presented (the green square) was 
computed without excluding these points represented by complex 
numbers. The real part of these complex numbers was used. Even if these 
points are very much out of context, the solution obtained is close to the 
exact solution. However, the best alternative to solving this problem is to 
apply the exact solution search (Section 2.1.1) with a predefinition of an 
acceptable precision value T. Note that, in Fig. 6, there are two polar 
points near the exact solution and the search for the exact solution 
chooses one of these points as a solution to estimate the location. 

2.2.4. The PPC algorithm 
The proposed PPC method in the previous work (Montanha et al., 

2019) is applicable to the location network with m ≥ 2 nodes. The 
estimation of the location of a device EP

xy(Ex,Ey) is based on elements of 
pole-polar geometry. 

Polar-Points Centroid Model (PPC).  
Data Input 

m ≥ 2 is the number of nodes arranged in the location network. 
Ck(xk,yk), k = 1,2,…,m is the planar position of each node (geometric 
arrangement).rk, k = 1,2,…,m Is the radial signal range of each node. 
T is the specification of the minimum precision value acceptable.  

Procedure 

1: for each node k = 1,2, 3,…,m 
2: S←{(1, ∅), (2, ∅),…, (m, ∅)}; 
3: ∀j : 1, 2,…,m/k ∕= j, by (d – 6) and (d – 7), for each node position Ck, used as pole 
points, compute polar points Pkj(xpkj, ypkj) and Qkj(xqkj, yqkj) given by the 
combination of jth and kth, nodes pair with the respective centers at positions Ck 
and Cj and signals radial range rk and rj. join the points Pkj and Qkj in Sj← Sj ∪ {Pkj ,

Qkj}; 
4: end for 5: compute Δ⋆ (defined in the description of expression (2)); 
6: if Δ⋆ = ∅ then //there is not exact or acceptable solution. 
7: compute EP

xy using the definition (d-8); //the centroid among the polar points is 
the PPC solution. 
8: flag←FALSE; 
9: else //there is exact or acceptable solution. A polar point is the PPC solution. 
10: compute Ep

xy using the expression (2); 
11: flag←TRUE; 
12: end if  

Information Output 

Device location estimation EP
xy(Ex ,Ey). S set of polar points indexed by nodes. 

flag.   

The PPC algorithmic proposed in the previous work (Montanha et al., 
2019) use as input data the coordinates of each node, Ck(xk,yk), k = 1,2,
…, m, positioned on a coordinate system previously defined and the 

respective radial signals ranges rk. 
Formally, the presented work, which adds to the initial algorithm, 

suggested that the PPC can find the exact solution, when possible, or can 
estimate locations based on a criterion of minimum desired precision T. 
We then insert this innovation in the original algorithm. This new PPC 
requires a specification for T that acts as input data and is used to 
establish the criterion for achieving location estimation responses with 
acceptable precision. The gray typed text lines are instructions that help 
the original PPC algorithm to obtain the exact solution given by Equa-
tion (2) and to organize the data for the wPPC algorithm. The PPC al-
gorithm returns EP

xy, a point solution given by a polar point or by the 
centroid of the polar point set. 

3. The proposed weighted Pole-Polar Centroid method (wPPC) 

A new method, called the wPPC method, is proposed to be applicable 
to m ≥ 2 nodes that integrate a location network. By arranging these 
nodes in a known coordinate system, a system for estimating device 
locations based on data from sent/received signals among these nodes 
and devices is defined. 

wPPC is a complement to PPC. Its use is recommended when the 
signal data are compromised. In uncontrolled environments, receiving 
high quality data is extremely difficult. In this way, this work does not 
consider this eventual possibility as a solution. Our intention is to pre-
sent new methods applied to signal triangulation problems and to 
analyze their behavior facing the inherent errors in data signals. 
Regarding the problem of localization in wireless sensor networks, 
several alternative approaches and concerns have been presented about 
data signal behavior (Wang and Li, 2009; Sahoo and Hwang, 2011; PAL, 
2010). In order to achieve better results, pre-processed data were used to 
process a set of partial results that were analyzed to determine between 
them the more suitable solution (Schneider et al., 2016). As can be seen, 
acquiring accurate data signals is an arduous task. Schneider et al. 
(2016) and Lam et al. (2016) proposed methods for sampling data signal 
acquisition and discussed uncertainty and signal location. In addition, 
the environment is not predictable with multipath, fading, interference, 
and shading effects (Ilyas and Mahgoub, 2005). 

There is a consensus that signal data with greater radial range are 
responsible for propagating more significant errors in estimating the 
location of a device. Such observation is due to the fact that the greater 
the signal radial range, the greater distance separates the node from the 
device. Thus, the signal has to travel longer and suffers greater attenu-
ation by the elements of the environment (e.g. atmosphere and 
obstacles). 

These elements interact and degrade the signal by the action of 
several mechanisms, such as scattering, reflection, absorption, multi-
path, and the co-presence of other signal sources. 

In this context, if there is no exact solution for the position of a device 
caused by errors in the signal data, data with errors are assumed, and a 
coordinate that minimizes the location error is estimated. Assuming that 
it is possible that radial ranges with a larger radius contribute the largest 
portion of the error in estimating the location of a device in a location 
system, an alternative to minimize the error of this estimation is to 
decrease the influence of the largest radial ranges when computing the 
coordinate location. A second alternative, through error analysis, is to 
eliminate these greater ranges of location computation, which is 
possible if there is a redundancy of nodes in the location network. Let us 
consider Equation (3): 

EW
xy =

∑m
k=1

(
wk

∑n
j=1Sk,j

)

n
∑m

k=1Wk
(3)  

where: n = 2(m − 1); the pole point rk places two polar points on each 
radial range of the nodes, except on the line of its own range; 
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wk =
1
rk
, for  k = 1, 2,…,m;

Sk : k→Pk k is an index identifying any node in the network, and k ∈
{1,2,…,m} is the set of all polar points that are over the radial range 
of node k; 
Sk,j, j = 1,2, … , n is the jth polar point that belongs to the range of 
node k. 

Equation (3) can be written in matrix form: 

EW
xy =

wΠ
nOwt (4)  

where

⎧
⎪⎨

⎪⎩

w =
[

1
r1

1
r2

… 1
rm

]

1×m

O = [1 1 … 1 ]1×m

and Π =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑n

j=1
S1,j

∑n

j=1
S2,j

⋮
∑n

j=1
Sm,j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

m×1

.

The wPPC method, described by Equation (3) or (4), uses the alter-
native that minimizes the error of the estimated location by decreasing 
the influence of the largest radial ranges in computing this location. 
Such a decrease in influence is made by reducing the values of the polar 
points that are over the range of a given node by a weight value equal to 
the inverse of the range (radius) of that same node. The greater the range 
is, the more drastic this reduction is. 

Weighted Polar-Points Centroid Model (wPPC)  
Data Input 

m ≥ 2 is the number of nodes arranged in the location network. 
Ck(xk,yk), k = 1,2,…,m, is the planar position of each node (geometric 
arrangement). 
rk, k = 1,2,…,m, is the radial signal range of each node. 
T is the specification of the minimum acceptable precision value.  

Procedure 

1: [EP
xy , S, flag] = PPC(m,C, r,T); call PPC and return: EP

xy, location by PPC; S, set of 
polar points by node and a flag indicating whether an exact, or acceptable, solution 
was found by PPC or not. 
2: if not flag then //PPC no found satisfactory solution. Do not have polar point that 
solves the location. 
3: if EP

xy is not solution then //verify, by (2), if PPC solution EP
xy is not satisfactory. 

5 4: compute EW
xy by Equation (3) or (4); //solve the location using wPPC. 

5: else 
6: EW

xy = EP
xy; //PPC solves location. The centroid among the polar points is the 

solution. 
7: end if 
8: else 
9: EW

xy = EP
xy; //PPC found satisfa ctory solution. One polar point solves the location. 

10: end if  

Information Output 

Device location estimation EW
xy(Ex ,Ey).     

19 The wPPC algorithm uses the PPC to compute and to organize the 
polar point data. wPPC and PPC require the same input data: the 
coordinates of each node, Ck(xk, yk), k = 1,2,…,m, the respective 
radial ranges rk, the specification of the minimum precision value 
T acceptable, and the number of nodes m ≥ 2 arranged in the 
location network to return the location estimation EW

xy . 

4. Experimental cases and results 

To perform the experimental cases, the present work uses the same 

dataset used in the previous work (Montanha et al., 2019). It is detailed 
in Appendix A. 

Using the IEEE 802.11 Network Infrastructures, we define a location 
system composed of a local coordinate system, a set of nodes (Access 
Points – AP Tp-Link Wireless N 300 Mbps TL-WR849 N) arranged on the 
coordinate system, thus defining the network of location nodes. Such 
nodes emit radio signals with a 2.4 GHz frequency. 

The location system developed in the previous work used five nodes, 
which were geometrically distributed (location network) in a region of 
space (coordinate system) (see Table A1). The device to be located was 
positioned at different coordinates (see Table A3), in that region (12 
cases) and the respective radial distances (see Table A3) between that 
device and each node in the network was estimated using Equation (5) 
based on the signal strength measured by the device in each experi-
mental case (see Table A2). 

A signal receiving device (a commercial cell phone with the Android 
operational system) was used to acquire the signals emitted by the nodes 
of the network. The receiving device, the cell phone, has the ability to 
identify the source of the signal (the device knows that a given signal 
was emitted by a specific node—BSSID) and to measure the reception 
strength ρk (see Table A2), in dBm, of each of these signals (RSSI). 

Using this signal strength data emitted by the nodes, the device can 
estimate the radial distances (signal ranges) rk, k = 1, 2,…,m (see 
Table A3). This is from each node k of the network in Equation (5). Fig. 7 
shows the preprocessed data generated by the 10th experiment (see 
Table A3). 

rk = 10
ρk

0 − ρk
10L k (5)  

where 
ρk is the signal strength value (dBm) emitted by the kth node and 

measured by the receiver device placed on a specific position on the 
coordinate system; 

ρk
0 is the signal strength value (dBm) at some reference distance d0 

(the calibration of the device with the kth node). The authors of (Mon-
tanha et al., 2019) used d0 = 1m  for  all  nodes; 

L k is an empirical value that defines the attenuation factor of the 
signal (path-loss parameter) emitted by the kth node. The authors of 
(Montanha et al., 2019) used the value L k = 2.2 for all nodes. 

4.1. Results 

This section presents the results comparing PPC and wPPC. The 
experimental cases used in this work are the same as those used in the 
previous one (Montanha et al., 2019), which provided 12 study cases. In 

Fig. 7. The 10th experimental case performed in the previous work (Montanha 
et al., 2019). The location system consisting of a location network with five 
nodes and the respective coordinate system is defined in Table A1. The signal 
strength data for each node measured on the device to be located are in 
Table A2 (10th row), and the actual position of this device and the respective 
radial ranges of each node are in Table A3 (10th row). 
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this section, four cases are presented. The other eight cases are described 
in Appendix B. The captions of Figs. 8 and 9, used to show the results, 
also reference the index of experimental data provided in the previous 
work (Montanha et al., 2019) and recorded in Table A3. For example, 
(X-7) refers to the data from the 7th experimental case that are found in 
Row 7 of Table A3. 

Fig. 8a and b shows how PPC and wPPC work when operating on 
high-quality data. Fig. 9a and b shows how PPC and wPPC work when 
operating on low-quality data. In both cases, wPPC produced location 
estimation results more accurately than PPC. 

4.2. Results analysis 

Figs. 8 and 9 and all those presented in Appendix B show the 12 
experimental cases, with actual data, used in the previous work (Mon-
tanha et al., 2019). It can be seen in these figures that the wPPC method 
is able to compute these data (with errors) more accurately than the 
PPC. In all these cases, there are errors in the acquired signal data. 

As we mentioned before, the previous work (Montanha et al., 2019) 
proposed five variations of geometric methods (PPC, Polar-Point 
Centroid, CHC, Convex Hull Centroid, PLI, Polar Line Intersection 
Centroid, TLI, Tangent Line Intersection Centroid, and MAI, Minimal 
Angle Tangent Line Intersection Centroid) and compares the results 
achieved by the methods that we developed with the results produced by 
traditional methods (NRm, the Newton-Rapson method, LSm, the Least 
Squares method, and WLSm, the Weighted Least Squares method). 
Extensive error evaluation was performed on the actual data acquired in 
the experiment carried out. In order to analyze the results produced by 
the methods previously proposed, statistical metrics were applied to 
compare the results produced by the new proposed methods with the 
results produced by other methods. The same data and the same struc-
ture generated in the previous work to analyze the results are used in this 
case (Tables 1 and 2). The only difference is the inclusion of the results 
produced by the wPPC method in this analysis. 

This analysis performed in the previous work considers three data-
sets of errors: (1) the error in distance measurement (the Euclidean 

Fig. 8. PPC vs. wPPC. Acquired data with high accuracy. a) (X-12). b) (X-2).  

Fig. 9. PPC vs. wPPC. Acquired data with significant errors. a) (X-5). b) (X-4).  
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distance between the estimated device location Exy(Ex, Ey), computed 
for each method, and the actual device position Pn(xn, yn) (see 
Table A3)), (2) the absolute error along the x-axis given by |Ex − xn|, and 
3) the absolute error along the y-axis given by 

⃒
⃒Ey − yn

⃒
⃒. The present 

work uses this same strategy to analyze the results of the wPPC and 
compares them with results obtained previously (Montanha et al., 
2019). 

The analysis of the errors considers four metrics applied to the three 
datasets of errors, minimum, maximum, mean, and standard deviation 
(Tables 1 and 2), and a fifth metric for analyzing global errors called the 
Effective Variability of the Errors (Table 2). 

Table 1 presents an evaluation of the error values considering all 
experiments for each geometric model and numerical method. These 
values explain that some geometric models produce results with errors 
equivalent to those produced by numerical methods. Errors committed 
by PPC are equivalent to those committed by numerical methods 
(WLSm, NRm, and LSm). We can observe that errors may be larger or 
smaller depending on the quality of the acquired data, but in the general 
context, geometric models present better results than numerical 
methods. 

The minimum error values presented in Table 1 create a hypothetical 
case of the lowest possible error in the evaluated dataset. In other words, 
depending on the available data, this operation sets up a case in which 
the data are accurate. As can be seen, even considering this hypothetical 
case that includes the most adequate data values, traditional methods 
(NRm, LSm, and WLSm) and geometric methods (MAI and TLI) propa-
gate more significant errors when the data are of high quality. wPPC, 
among these minimum errors, has an average of 0.4. The CHC and PLI 
average 0.3. That is, when the data are good, wPPC produces a response 
as accurate as CHC and PLI. 

Similarly, the maximum error values presented in Table 1 create the 
case for the greatest possible error in the evaluated dataset. For this case, 
traditional methods produce error averages between ~13 and ~20. 
Among geometries, PPC and PLI average ~15, and wPPC and CHC 
average ~10. MAI and TLI average ~8. 

In the case of moderate errors, contemplating the occurrence of the 

most expected situation in the real world, wPPC has the lowest average 
error among all other methods. 

With these analyses, Table 1 shows that, when there is high accuracy 
in the data, wPPC produces results with acceptable precision. When the 
data are bad or have moderate errors, the wPPC response is more ac-
curate than other methods. 

When considering the results of all experimental cases, Table 2 shows 
the variability of the errors committed (for each evaluating metric) by 
the methods in function of the errors in the data. 

The Effective Variability of the Errors (Table 2) allows one to analyze 
how sensitive a method is to variation in data quality. In other words, 
this value is a metric that defines how well a method can approach an 
exact solution when it operates on data with errors. The lower this value 
is, the less sensitive the method is to errors in data; the method can 
therefore produce more accurate results. A simple analysis of the data in 
Table 2 shows that the proposed geometric models, compared with the 
traditional WLSm, NRm, and LSm methods, are more robust when they 
operate on data with errors. Among the geometric methods, the TLI, 
MAI, and wPPC have a greater capacity to process data with errors. 

5. Conclusion 

This work proposed the wPPC method as an extension of the PPC 
method, without increasing the computational cost O(m2) and without 
increasing the minimum number of nodes (m≥ 2) in the composition of 
the location network. 

The ability of the PPC method to produce an exact solution has been 
formalized in Section 2.1.1. The results produced by wPPC are more 
accurate when processing data with errors (significant or not). This work 
helps to cope with the problem of applying 2D point location in a geo-
metric relationship by reducing the number of arithmetic operations 
needed by the current conventional methods in use and the inherent 
error propagation in the acquired data. Therefore, this method can 
benefit wireless interaction among mobile phones for proximity contact 
tracing by improving the estimation accuracy of signal locations. The 
computational cost O(m2) of the geometric methods contrasts signifi-
cantly with the cost O(m3) of the numerical and optimization methods. 
This fact allows for the development of localization applications for 
devices (such as cell phones) that have a low processing capacity. Such 
an application can run in the background and process signal data (Wi-Fi, 
Bluetooth, ultrasound, etc.) for location estimation. Each device can 
have the capacity to compute the locations of other devices in its vi-
cinity, in either outdoor or indoor public areas (street, parks, super-
markets, public transport, etc.), offering support for the measuring and 
tracing of proximity relative to another device. The proposed wPPC 
method has the following limitations: (1) it is a 2D solution, and (2) it 
requires that the device be located inside the coverage area of the node 
network. Future work will include a 3D solution. When the device to be 
located is outside the region covered by the location network nodes, 
complex numbers are generated in the coordinates of the polar points. 
For this reason, in order to apply geometric methods, there is a need for 

Table 1 
Magnitude in meters of errors in the experimental cases.   

Minimum Error Maximum Error Mean Error 

x-axis y-axis distance x-axis y-axis distance x-axis y-axis distance 

wPPC 0.4 0.2 0.6 12.0 5.2 13.0 2.6 2.0 3.4 
PPCa 0.4 0.2 2.7 15.5 12.5 15.7 4.5 4.4 6.9 
CHCa 0.1 0.1 0.6 11.9 6.0 12.8 2.5 2.4 3.7 
PLIa 0.1 0.1 0.7 12.8 15.9 16.3 2.4 3.8 5.0 
MAIa 1.6 0.3 1.7 7.9 5.3 8.9 4.2 1.5 4.7 
TLIa 2.3 0.3 2.3 8.3 3.9 9.2 4.1 1.3 4.4 
NRma 0.1 1.1 1.3 14.7 12.2 15.2 2.8 5.1 6.5 
LSma 0.3 1.2 1.8 14.1 22.5 23.7 3.6 6.4 7.9 
WLSma 0.1 0.7 1.3 13.6 15.3 17.7 3.5 4.9 6.5  

a Available in (Montanha et al., 2019). 

Table 2 
Standard deviation of the errors.  

Methods Standard Deviation of the Errors Effective Variability of the Errors 

x-axis y-axis distance 

wPPC 3.2 1.5 3.3 2.7 
PPCa 4.1 3.8 4.5 4.1 
CHCa 3.1 2.1 3.4 2.9 
PLIa 3.3 4.1 4.9 4.1 
MAIa 2.5 1.6 2.6 2.2 
TLIa 2.3 1.0 2.3 1.9 
NRma 4.0 4.0 4.9 4.3 
LSma 4.3 6.7 7.4 6.1 
WLSma 4.2 4.3 5.5 4.7  

a Available in (Montanha et al., 2019). 
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the device to be surrounded by the nodes of the location network. We 
should investigate, in future work, a better interpretation of the meaning 
of polar point coordinates given by complex numbers in the context of 
signal location using geometric methods. 
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Appendix A. Experimental Data 

Tables A1, A2, and A3 present the data of the 12 experimental cases provided in (Montanha et al., 2019). Table A1 presents the coordinates of each 
node, in an arbitrary coordinate system (as shown in Fig. 7 and in the following). Each of these figures, including all figures presented in Appendix B, 
uses this same coordinate system and the same network nodes. Table 1 also presents the calibration parameter of the signal reference for each node (at 
1 m in dBm). Table A2 presents the signal strength data acquired by each node in these 12 experimental cases. Table A3 presents the preprocessed data 
for generating the radial range of each node for each experimental case and presents the actual coordinates of the device that generated these signal 
data.  

Table A1 
Node positions and their respective calibration parameters.  

Node k  Node Position (in meters) Ck(xk,yk) Signal Reference (at 1 m in dBm) ρk
0  

xk  yk  

1 17.53 3.45 42.83 
2 9.60 − 2.84 38.17 
3 0.00 0.00 43.50 
4 0.68 9.81 42.33 
5 10.33 10.34 44.67   

Table A2 
Measured signal strength from each node in each experimental case.  

Experimental Case 
n  

Measured Signal Strength ρk (in dBm)node k  

1 2 3 4 5 

1 70 63 51 55 68 
2 71 60 63 59 71 
3 70 56 60 66 69 
4 62 57 71 68 67 
5 48 67 75 69 60 
6 52 60 71 68 68 
7 60 59 74 67 68 
8 63 56 70 62 62 
9 65 71 71 66 49 
10 62 59 69 63 50 
11 62 67 66 62 59 
12 61 61 66 66 63   

Table A3 
Experimental cases and the respective actual device positions and the signal range measured in each node.  

Experimental Case 
n  

Actual Device Position (in meters) 
Pn(xn,yn)

Radial Ranges rk (in meters) 
node k  

xn  yn  1 2 3 4 5 

1 0.00 2.00 17.2 13.5 2.2 3.8 11.5 
2 0.00 4.00 19.1 9.8 7.7 5.7 15.7 
3 0.00 6.00 17.2 6.5 5.6 11.9 12.8 
4 0.00 8.00 7.4 7.2 17.8 14.7 10.4 
5 15.53 3.41 1.7 20.4 27.0 16.3 5.0 
6 13.53 3.41 12.6 9.8 17.8 14.7 11.5 

(continued on next page) 
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Table A3 (continued ) 

Experimental Case 
n  

Actual Device Position (in meters) 
Pn(xn,yn)

Radial Ranges rk (in meters) 
node k  

xn  yn  1 2 3 4 5 

7 11.53 3.41 6.0 8.9 24.3 13.2 11.5 
8 9.53 3.41 8.3 6.5 16.0 7.8 6.1 
9 10.33 8.34 10.2 31.1 17.8 11.9 1.6 
10 10.33 6.34 7.4 8.9 14.4 8.7 1.7 
11 10.33 4.34 7.4 20.4 10.5 7.8 4.5 
12 10.33 2.34 6.7 10.9 10.5 11.9 6.8  

Appendix B  

26. Figs. 8 and 9 show the final results of the four experiments (2, 4, 5, and 12) shown in Table A3. The others eight results are presented by the 
figures in Appendix B. All these figures are referenced, in the respective caption, with a code (X – #). The nomenclature of these codes is as 
follows: X indicates that experimental data were used, and # is a number that indicates the experimental data, registered in Tables A2 and A3, 
corresponding to the result shown in the respective figure. 
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State University of Maringá (Brazil).He works with signal 
processing and has extensive experience in academic, scientific 
and business projects.He is currently a member of Intel’s 
Internet of Things Council, Chairman of the ABINC (Brazilian 
Association of Internet of Things) Smart Cities Committee.  

Airton M. POLIDORIO is an adjunct professor at the State 
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in Electrical Engineering and Industrial Informatics by Federal 
Technological University of Paraná (UTFPR), and doctorate in 
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