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The analysis of human emotions plays a significant role in providing sufficient information about patients
in monitoring their feelings for better management of their diseases. Audio-based emotions recognition
has become a fascinating research interest for such domains during the last decade. Mostly, audio-based
emotions systems depend on the recognition stage. The existing model has a common issue called objec-
tivity suppositions problem, which might decrease the recognition rate. Therefore, this study investigates
the improved version of a classifier that is based on hidden conditional random fields (HCRFs) model to
classify emotional speech. In this model, we introduced a novel methodology that will incorporate mul-
tifaceted dissemination with the help of employing a combination of complete covariance Gaussian con-
creteness function. Due to this incorporation, the proposed model tackle most of the limitations of
existing classifiers. Some of the well-known features like Mel-frequency cepstral coefficients (MFCC)
are extracted in our experiments. The proposed model has been validated and evaluated on two publicly
available datasets likes Berlin Database of Emotional Speech (Emo-DB) and the eNTER FACE’05
Audio-Visual Emotion dataset. For validation and comparison against the existing techniques, we utilized
10-fold cross validation scheme. The proposed method achieved significant improvement under the
p-value <0.03 for classification. Moreover, we also prove that computational wise, our computation
technique is less expensive against state of the art works.
� 2020 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Computers and Artificial Intel-
ligence, Cairo University. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Commonly, emotion is a psychological status that impulsively
performed and raised. Emotion is not only a good pointer to deter-
mine the mental status of a human but also an effective source of
conveying our intentions in daily conversations. This is because the
automatic recognition of human sentiments is a fascinating param-
eter in order to improve the superiority of the facilities delivered
by the computer like human–computer interaction [1,2], daily life
observing in omnipresent health care systems [3]. There are certain
physiological variations like talking, blood density, heart signal,
facial expressions, etc. that express the human sentiments (emo-
tions). Among these variations, most of the researchers point out
that audio speech is the main source of emotions [4–10]. Because
audio signals are the most widely and naturalistic method for
human to human communication.
Generally, there are two steps in a typical audio-based recogni-
tion system: First step extracts the most prominent features from
the input data; while, the second step decides the appropriate label
for incoming input data. In audio-based emotion recognition sys-
tem, many methods have been proposed for the feature extraction
stage to extract the most significant features. There are four cate-
gories for such features (named continuous speech features) like
pitch of sound, formant, vitality [11,1,10], voice quality features
[1,12] (e.g harsh, tense, breathy), spectral features [11,13] (e.g
undeviating extrapolation measurements, Mel-frequency cep-
strum coefficients), and Teager energy operator (TEO) [14]. In liter-
ature of speech classification [7], certain systems [15] suggested
that some suitable feature selection are highly dependent on the
recognition task; therefore, it should be considered. Moreover, they
pointed out that for speech demonstration, the MFCC features are
the most significant features. As a new feature extraction method
is not in the scope of this study; therefore, we are utilizing an
existing technique to excerpt the MFCC features that further will
be employed in the proposed model.

Although there is relatively an enormous number of latest
research concentrating on refining the classification phase
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[11,8,12,9,2]. Mostly, in the existing audio-based emotion recogni-
tion systems, the authors utilized conformist learning model [1]
like Gaussian mixture model, hidden Markov model, artificial neu-
ral networks, support vector machines, etc. Certain studies [16–
18,13,19–22] highlighted that HMM is one the most significant
model used in audio-based emotion recognition system. Further-
more, other areas like speech classification [23], posture classifica-
tion [24,25] pointed out that HMM is a multiplicative learning
method, due to which it is least precise than its discriminative cor-
responding part such as HCRFs. The following contributions have
been made in this study.

� The previous HCRF technique is insufficient through unconven-
tionality norms that might decrease the recognition rate. There-
fore, in this work, a recognition model has been presented that
diminish the supposition by utilizing the full covariance distri-
bution, which is the first objective of this study.

� The second objective of this study is to show that the proposed
model significantly reduced the complexity against the previ-
ous techniques. In this method, the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) technique has been utilized
in order to find the optimal point, which is the alternative goal
of this model to determine certain factors at the training stage
to extend the conditional probability of the training data. So,
in order to calculate the conditional probability, we only
employed the forward and backward methods that further used
for computing the gradients. Due to which the computational
time has thoroughly condensed.

� In order to show the significance of the proposed model, a set of
experiments is performed that showed the best performance
compared to the latest works.

2. Related work

Recently, there has been growing research work in the field of
emotion recognition based on speech data to increase the accuracy
of such systems [1]. However, very few of these attempts truly add
to the efficiency of learning models for speech data. Authors of [1]
have rightly pointed out that, although numerous classification
methods [26–29] have been tested and used to improve the effi-
ciency of learning model, HMM still remains as the most common
and efficient method. The accuracies of HMM on various datasets
as compared to GMM, ANN, and SVM etc. is still comparable. More-
over, HMM presents the advantage and ability to process sequen-
tial data e.g. processing of frame-level features whereas GMM,
ANN, and SVM lack this and cannot process sequence of feature
vectors.

HMM, however, presents some limitations as pointed out in
[23,25,24]. The main limitations of HMM are due to its propagative
nature and the objectivity hypothesis among its states and the
interpretations. To address the limitations of HMM, a technique
called maximum entropy Markov model was proposed. This model
shows better results for certain operations/tasks including part-of-
speech tagging (POS) [30], evidence abstraction [31], and the
recognition of automatic speeches [32]. However, maximum
entropy Markov model itself suffers from the weakness/problem
of label biasness [33]. Label biasness in MEMM is mainly caused
by its per-state stabilization of transitional notches that implies a
notch conservation at every notch.

To address the label biasness in MEMM, conditional random
field [33] and hidden conditional random field (HCRF) [23,25] were
proposed. CRF and HCRF are generalizations of MEMM are general-
ized forms of MEMM and hence inherit its properties. Both, CRF
and HCRF use global normalization in contrast to MEMM’s per-
state normalization, and additionally, HCRF maintains hidden
states to be capable to absorb unknown construction of successive
records. As result, CRF and HCRF can work with weighted scores
making the set of parameters used comparatively larger as com-
pared to MEMM and HMM. We refer the reader for a comprehen-
sive and detailed analysis of HCRF and its limitations to [34].

There have been certain approaches that utilized HCRF model
and showed good results. These are explained and presented in
[35,36]. However, these systems do not address the limitations of
HCRF. In [34], the authors argue that only HCRF might be utilized
diagonal (slanting) covariance Gaussian dissemination. Particu-
larly, the variables are considered pairwise autonomous. From
now, this model is referred diagonal covariance Gaussian Mixture
hidden conditional random field. Additionally, the authors stated,
through a particular set of fixed prices, the solidity of observations
at every state converges to the Gaussian procedure. However, this
assumptions is not supported by a training algorithm, and hence
these assumptions may be counter productive i.e. decreasing the
efficiency of the model. For more in-depth study, we refer the
reader to [37,38].

To address the limitations of HCRF and other learning models
for emotion recognition on speech data, in the following section,
we present our novel approach based on HCRF method, which
has the ability to overtly exploit combination of full covariance
Gaussian dissemination. Our method gets the benefits from exist-
ing HCRF. We apply and test our model on speech data to recognize
emotions and compare its results with those obtained by HMM and
HCRF with diagonal covariance Gaussian functions.
3. The proposed method

As presented in the previous section, the current version of
HCRF model didn’t utilize full covariance matrix and cannot assure
the convergence of parameters. This leads the existing HCRF model
not being able to generate a set of values, where the provisional
probability is modeled as a mixture of usual solidity functions.
Therefore, in the feature functions, we include combinations of
Gaussian dissemination in order to solve the above problem. Our
function (feature) are given by the following equations:
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gating against Eq. (3). Hence, the conforming reflection weighti-

ness KObsr
k;l does not necessarily require to be rationalized through-

out the training phase, and this allows us to fix

KObsr
k;l ¼ 8k ð5Þ
Consequently, we can write the conditional probability as

follows:
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where Norm Y;
P

;u;C;Kð Þ is the normalization factor.
Utilizing equations(7) and (8), re-evaluate the conditional

probability using forward and backward algorithms, as shown
below step by step:
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Table 1
Average recognition rate accuracy for the proposed model along with diverse number of st

1 Mixture 2 Mixtures 3 Mixtures 4 Mixture

1 State 57.72 65.66 67.93 71.71
2 States 57.18 70.57 79.31 69.99
3 States 61.49 71.51 71.50 73.78
4 States 64.69 71.08 73.46 72.09
5 States 65.83 71.95 73.51 71.93
6 States 63.21 71.70 74.89 71.15
7 States 69.47 72.85 72.88 69.64
8 States 66.75 71.88 72.95 67.22
fScore ZjY;
X

;u;C;K
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X
k

aT kð Þ ¼
X
k

b1 kð Þ: ð11Þ

So far, in the initial (training) phase, we were focused on finding
the parameters (

P
;u;C;K) of the training data, which have the

capability to make best use of conditional probability.
We now are more interested in utilizing one of the existing well

known techniques in the proposed model to look the optimum
fact. Nevertheless, to compute this, we used only the forward
method and backward method when computing the conditional
probability (as utilized by other existing works [23]). Furthermore,
we re-used its resultant value for computing the inclines. This
expectedly reduces computational cost significantly. In the follow-
ing, we show the gradient computation method briefly:
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From Eqs. 6,8,12 we derive
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ates and mixtures under 10-fold cross validation scheme against Emo-DB dataset (%).

s 5 Mixtures 6 Mixtures 7 Mixtures 8 Mixtures

70.57 73.78 73.93 72.64
72.98 73.78 73.38 72.66
73.34 72.24 70.93 70.79
73.26 72.16 70.55 67.22
70.43 68.70 67.37 63.09
65.65 63.64 64.36 61.58
64.63 65.73 60.82 60.27
68.89 63.49 61.76 61.00



Fig. 1. Recognition rates of three techniques with 2 states and 3 mixtures against Emo-DB dataset.

Table 2
Average recognition rate accuracy for the proposed model model along with diverse number of states and mixtures under 10-fold cross validation scheme against eNTER FACE’05
dataset (%).

1 Mixture 2 Mixtures 3 Mixtures 4 Mixtures 5 Mixtures 6 Mixtures 7 Mixtures 8 Mixtures

1 State 51.00 52.76 50.49 61.89 60.22 59.95 56.88 54.75
2 States 53.27 60.82 63.51 64.63 50.64 58.88 62.85 57.47
3 States 61.58 57.36 63.64 55.65 61.15 54.89 61.70 63.21
4 States 63.09 57.37 58.70 60.43 61.93 65.73 60.95 53.83
5 States 57.22 49.55 52.16 63.26 62.09 63.46 59.08 56.69
6 States 60.79 59.93 64.24 63.34 53.78 61.50 59.51 61.49
7 States 62.66 63.38 58.78 62.98 59.99 49.31 50.57 57.18
8 States 57.64 53.93 63.78 60.57 61.71 63.93 55.66 57.72

Fig. 2. Recognition rates of three techniques with 2 states and 6 mixtures against eNTER FACE’05 dataset.
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Moreover, we get the gradients with respect to u, and
P

simi-
larly in the following:
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Fig. 3. Comparison gradient computation time of the proposed method against forward/backward on different mixture numbers, state numbers, and input sequence lengths
(as shown in Eq. (17)).
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Having the gradients computed as shown in Eqs. (13)–(18), we

now make use of the L-BFGS algorithm and find a local maximum
for the conditional probability. Since we cannot define or find a glo-
balmaximum,weexecute the algorithmseveral timeswith different
initial values/points and collect the results of each run in a set.
Among those results, we then choose the set of parameters. This
methodprovides thebest results asweshowin the following section.
4. Results evaluation and discussion

This section presents the experimental results of the designed
approach. Moreover, the experimental framework, the datasets,
and the outcomes are also presented in this section.



Table 3
Comparison result of the proposed model along with the existing methods under the
two standard datasets (Unit: %).

State of the art methods Accuracy Standard Deviation

[41] 72.0 ±1.2
[42] 70.5 ±3.8
[43] 63.6 ±2.2
[44] 77.0 ±2.7
[45] 67.7 ±1.5
[46] 78.3 ±2.5
[47] 79.2 ±1.1
[48] 72.3 ±2.5
[49] 76.4 ±2.5
Proposed Method 79.3 ±3.8
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To perform a fair assessment on publicly benchmark datasets,
we use the Emo-DB dataset [39] and the eNTER FACE’05 dataset
[40]. First, from each dataset, we extract the Mel-frequency cep-
stral coefficients (MFCCs). Then, 10-fold cross validation scheme
has been employed to separate each of the above two datasets into
a training part and a validation part. We then execute classification
algorithms on these datasets and the algorithms are: 1) our pro-
posed FCGM-HCRF, 2) HMM model and 3) the HCRFs model which
uses diagonal covariance Gaussian mixtures (DCGM-HCRF). Next,
for a fair comparison of our algorithm with others, we compute
p-values using the paired t-testing. The evaluation results of those
comparisons are presented in the following.

4.1. Berlin database of emotional speech – Emo-DB

The Emo-DB dataset consists of expressive exclamations of 10
actors and actresses from German. Of which 50% are male and 50%
are female. The utterances (or the spoken sentences) are a set of pre-
defined sentences in one of the 7 defined emotional states: 1) neu-
tral, 2) boredom, 3) disgust, 4) fear, 5) sadness, 6) Joy and 7) anger.
Each successful attempt by the actors and actresses have been eval-
uated by a group of 20 judges and the final concluding utterance is
only selected if 80% of the listeners have correctly recognized.

In our experimentation for this dataset, we run HMM along
with diverse numbers of states and Gaussian mixtures. In Table 1,
for each pair of state and mixture numbers, we present the average
classification rates of 10 folds.

From Table 1, it can be seen that the HMM with exactly two
states and three Gaussian mixtures gives the highest accurate
results. Therefore, we apply the initial values of this HMM to train
and evaluate FCGM-HCRF and DCGM-HCRF algorithms. The results
of these algorithm compared to HMM are shown in Fig. 1.

4.2. The eNTER FACE’05 Audio-Visual Emotion Dataset

We now present our evaluation on the eNTER FACE’05 dataset.
This dataset consists of one thousand three hundred and twenty
(1320) videos produced by 44 subjects/actors. Each of these actors
in videos tries to simulate six different emotions: 1) anger, 2) dis-
gust, 3) fear, 4) happiness, 5) sadness, and 6) surprise. These emo-
tions are simulated while reading 5 different pre-defined
sentences. First of all, we extract the audio from the original video
files/data and then extract the MFCC coefficients. We then use
these coefficients to generate the test and traning datasets simi-
larly to what we did in the Emo-DB dataset. We also repeat the
same process of computing the initial points and evaluating the
proposed model as we did for Emo-DB dataset. Results of our
benchmark algorithms compared to the proposed approach on
eNTER FACE’05 dataset are presented in Table 2, and Fig. 2.

4.3. Computational complexity

In this section, we briefly discuss the computational complexity
of the proposed approach as compared to others. The existing HCRF
algorithm computes the gradients by a series of forward and back-
ward algorithms. We however, execute the forward and backward
algorithm once and cache the results in-memory for later use. For-

ward and backward algorithm has the complexity O TQ2M
� �

for

input sequences of length T, states of size Q and the M number of
mixtures. This complexity can be seen/derived from Eqs. (9) and
(10). On the other hand, our proposed algorithm with caching
has the complexity O TMð Þ for computing gradients. The proof for
these complexity theoretic results can be seen in Eqs. (13)–(18).

In 3, we present a comparative analysis of the total execution
time when inclines are calculated using the forward method and
backwardmethodas compared to theproposedapproachwith cach-
ing. The reported execution times are measured using the Matlab
R2013a running on an Intel machine with Duo 3.6 GHz processor
and 4 GB of main memory. The proposedmodel has been compared
with state of the art methods using. The corresponding recognition
rates of the existingmethods alongwith the proposedmodel on Ber-
lin Database of Emotional Speech (Emo-DB) and eNTER FACE’05
Audio-Visual Emotion dataset are presented in Table 3. It is clear
from the Table 3 that the proposed model showed better perfor-
mance compared to other latest systems. This is because the pro-
posed model utilized full-covariance distribution that considered
most of the coefficients of thematrix, and that is one of themain rea-
son to improve the performance. Moreover, this work showed that
the existing HCRFs model has a common problem due to which it
might decrease the recognition rate. This drawback is called objec-
tivity suppositions problem. Therefore, full-covariance distribution
based model is proposed to reduce the supposition that make the
proposedmodel capable to consider the all coefficients of thematrix.
5. Conclusions

Audio-based emotion recognition has received lots of attention
over the past decade. Several audio-based emotion recognition sys-
tems have been proposed; however, still it is major issue for most
of the systems to correctly classifying the emotions. There are
some attributes which may degrade the accuracy, e.g extraction
of the prominent features, and high similarity among different
emotions that occurs in the presence of low between-class vari-
ance in the feature space.

Accordingly, we have presented a new version of the HCRF algo-
rithm that uses full covariance Gaussian density functions. Then,
we proved it theoretically and experimentally that the recognition
rates of the proposed approach is comparatively precise than exist-
ing algorithms. We also proved that these improvements are statis-
tically correct by using p-values for testing and comparisons.
Moreover, our algorithm does not only add to the accuracy of
recognition of emotions, it also has less theoretical complexity as
compared to others in training the HCRFs model. As shown in pre-
vious section, our proposed approach has a linear complexity while
the exiting methods are of quadratic complexity. This extends the
functionality of HCRF and enables it to be used in more practical
and scalable applications. Although the scope of this paper is
restricted to audio-based emotion recognition, however, it is com-
pletely possible to extend it to other related ares of recognition
including speech recognition, acoustic based context awareness,
and gesture recognition among others.
References

[1] Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz W, Taylor
JG. Emotion recognition in human-computer interaction. IEEE Signal Process
Mag 2001;18(1):32–80.

http://refhub.elsevier.com/S1110-8665(20)30113-4/h0005
http://refhub.elsevier.com/S1110-8665(20)30113-4/h0005
http://refhub.elsevier.com/S1110-8665(20)30113-4/h0005


M.H. Siddiqi / Egyptian Informatics Journal 22 (2021) 45–51 51
[2] Schuller B, Rigoll G, Lang M. Speech emotion recognition combining acoustic
features and linguistic information in a hybrid support vector machine-belief
network architecture. 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1. IEEE; 2004. pp. I–577.

[3] Tacconi D, Mayora O, Lukowicz P, Arnrich B, Setz C, Troster G, Haring C. Activity
and emotion recognition to support early diagnosis of psychiatric diseases. In:
2008 Second International Conference on Pervasive Computing Technologies
for Healthcare. IEEE; 2008. p. 100–2.

[4] Rahman MA, Hossain MF, Hossain M, Ahmmed R. Employing pca and t-
statistical approach for feature extraction and classification of emotion from
multichannel eeg signal. Egypt Inf J.

[5] Alsayat A, Elmitwally N. A comprehensive study for arabic sentiment analysis
(challenges and applications). Egypt Inf J.

[6] Nalini N, Palanivel S. Music emotion recognition: the combined evidence of
mfcc and residual phase. Egypt Inf J 2016;17(1):1–10.

[7] El Ayadi M, Kamel MS, Karray F. Survey on speech emotion recognition:
Features, classification schemes, and databases. Pattern Recogn 2011;44
(3):572–87.

[8] Bitouk D, Verma R, Nenkova A. Class-level spectral features for emotion
recognition. Speech Commun 2010;52(7–8):613–25.

[9] Iliev AI, Scordilis MS, Papa JP, Falcão AX. Spoken emotion recognition through
optimum-path forest classification using glottal features. Comput Speech
Language 2010;24(3):445–60.

[10] Lee CM, Narayanan SS, et al. Toward detecting emotions in spoken dialogs.
IEEE Trans Speech Audio Process 2005;13(2):293–303.

[11] Banse R, Scherer KR. Acoustic profiles in vocal emotion expression. J
Personality Soc Psychol 1996;70(3):614.

[12] Gobl C, Chasaide AN. The role of voice quality in communicating emotion,
mood and attitude. Speech Commun 2003;40(1–2):189–212.

[13] Nwe TL, Foo SW, De Silva LC. Speech emotion recognition using hidden markov
models. Speech Commun 2003;41(4):603–23.

[14] Teager H. Some observations on oral air flow during phonation. IEEE Trans
Acoust Speech Signal Process 1980;28(5):599–601.

[15] Xue Y, Xue B, Zhang M. Self-adaptive particle swarm optimization for large-
scale feature selection in classification. ACM Trans Knowledge Discovery Data
(TKDD) 2019;13(5):50.

[16] Cairns DA, Hansen JH. Nonlinear analysis and classification of speech under
stressed conditions. J Acoust Soc Am 1994;96(6):3392–400.

[17] Fu L, Mao X, Chen L. Speaker independent emotion recognition based on svm/
hmms fusion system. In: 2008 International Conference on Audio, Language
and Image Processing. IEEE; 2008. p. 61–5.

[18] Lee CM, Narayanan SS, Pieraccini R. Combining acoustic and language
information for emotion recognition. In: Seventh International Conference
on Spoken Language Processing.

[19] Otsuka T, Ohya J. Recognizing multiple persons’ facial expressions using hmm
based on automatic extraction of significant frames from image sequences. In:
Proceedings of International Conference on Image Processing, vol. 2, IEEE;
1997. p. 546–49.

[20] Schuller B, Rigoll G, Lang M. Hidden markov model-based speech emotion
recognition. In: 2003 IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2003. Proceedings. (ICASSP’03), vol. 2, IEEE; 2003, p.
II–1.

[21] Ververidis D, Kotropoulos C. Emotional speech recognition: resources,
features, and methods. Speech Commun 2006;48(9):1162–81.

[22] Womack BD, Hansen JH. N-channel hidden markov models for combined
stressed speech classification and recognition. IEEE Trans Speech Audio
Process 1999;7(6):668–77.

[23] Gunawardana A, Mahajan M, Acero A, Platt JC. Hidden conditional random
fields for phone classification. In: Ninth European Conference on Speech
Communication and Technology.

[24] Wang SB, Quattoni A, Morency L-P, Demirdjian D, Darrell T. Hidden conditional
random fields for gesture recognition. 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06), vol. 2. IEEE; 2006. p.
1521–7.

[25] Quattoni A, Wang S, Morency L-P, Collins M, Darrell T. Hidden conditional
random fields. IEEE Trans Pattern Anal Mach Intell 2007;10:1848–52.
[26] Farzaneh-Gord M, Mohseni-Gharyehsafa B, Arabkoohsar A, Ahmadi MH,
Sheremet MA. Precise prediction of biogas thermodynamic properties by
using ann algorithm. Renewable Energy 2020;147:179–91.

[27] Ramezanizadeh M, Ahmadi MH, Nazari MA, Sadeghzadeh M, Chen L. A review
on the utilized machine learning approaches for modeling the dynamic
viscosity of nanofluids. Renew Sustain Energy Rev 2019;114:109345.

[28] Kahani M, Ahmadi MH, Tatar A, Sadeghzadeh M. Development of multilayer
perceptron artificial neural network (mlp-ann) and least square support vector
machine (lssvm) models to predict nusselt number and pressure drop of tio2/
water nanofluid flows through non-straight pathways. Numer Heat Transfer,
Part A: Appl 2018;74(4):1190–206.

[29] Baghban A, Kahani M, Nazari MA, Ahmadi MH, Yan W-M. Sensitivity analysis
and application of machine learning methods to predict the heat transfer
performance of cnt/water nanofluid flows through coils. Int J Heat Mass Transf
2019;128:825–35.

[30] Ratnaparkhi A. A maximum entropy model for part-of-speech tagging. In:
Conference on Empirical Methods in Natural Language Processing.

[31] McCallum A, Freitag D, Pereira FC. Maximum entropy markov models for
information extraction and segmentation. ICML 2000;17:591–8.

[32] Kuo H-KJ, Gao Y. Maximum entropy direct models for speech recognition. IEEE
Trans Audio, Speech, Language Process 2006;14(3):873–81.

[33] Lafferty J, McCallum A, Pereira FC. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.

[34] Siddiqi MH, Ali R, Khan AM, Park Y-T, Lee S. Human facial expression
recognition using stepwise linear discriminant analysis and hidden
conditional random fields. IEEE Trans Image Process 2015;24(4):1386–98.

[35] Reiter S, Schuller B, Rigoll G. Hidden conditional random fields for meeting
segmentation. In: 2007 IEEE International Conference on Multimedia and
Expo. IEEE; 2007. p. 639–42.

[36] Mahajan M, Gunawardana A, Acero A. Training algorithms for hidden
conditional random fields. In: 2006 IEEE International Conference on
Acoustics Speech and Signal Processing Proceedings, vol. 1, IEEE; 2006. p. I–I.

[37] Siddiqi MH, Alruwaili M, Ali A, Alanazi S, Zeshan F. Human activity recognition
using gaussian mixture hidden conditional random fields. Computat Intell
Neurosci 2019.

[38] Lee S, Lee Y-K, et al. Emotional speech classification using hidden conditional
random fields. In: Proceedings of the Second Symposium on Information and
Communication Technology. ACM; 2011. p. 146–50.

[39] Burkhardt F, Paeschke A, Rolfes M, Sendlmeier WF, Weiss B. A database of
german emotional speech. In: Ninth European Conference on Speech
Communication and Technology.

[40] Martin O, Adell J, Huerta A, Kotsia I, Savran A, Sebbe R. Multimodal caricatural
mirror. In: eINTERFACE’05-SummerWorkshop onMultimodal Interfaces; 2005.

[41] Lotz AF, Faller F, Siegert I, Wendemuth A. Emotion recognition from disturbed
speech-towards affective computing in real-world in-car environments.
Studientexte zur Sprachkommunikation: Elektronische
Sprachsignalverarbeitung 2018;2018:208–15.

[42] Zamil AAA, Hasan S, Baki SMJ, Adam JM, Zaman I. Emotion detection from
speech signals using voting mechanism on classified frames. In: 2019
International Conference on Robotics, Electrical and Signal Processing
Techniques (ICREST). IEEE; 2019. p. 281–5.

[43] Kerkeni L, Serrestou Y, Mbarki M, Raoof K, Mahjoub MA. Speech emotion
recognition: methods and cases study. In: ICAART (2); 2018. p. 175–182.

[44] Tursunov A, Kwon S, Pang H-S. Discriminating emotions in the valence
dimension from speech using timbre features. Appl Sci 2019;9(12):2470.

[45] Choudhury AR, Ghosh A, Pandey R, Barman S. Emotion recognition from
speech signals using excitation source and spectral features, in IEEE Applied
Signal Processing Conference (ASPCON). IEEE 2018;2018:257–61.

[46] Bhavan A, Chauhan P, Shah RR, et al. Bagged support vector machines for
emotion recognition from speech. Knowl-Based Syst 2019;184:104886.
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