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Abstract

Sesame (Sesamum indicum L.) is an important and ancient oilseed crop. Sesame seed

coat color is related to biochemical functions involved in protein and oil metabolism, and

antioxidant content. Because of its complication, the genetic basis of sesame seed coat

color remains poorly understood. To elucidate the factors affecting the genetic architecture

of seed coat color, 366 sesame germplasm lines were evaluated for seed coat color in 12

environments. The genome-wide association studies (GWAS) for three seed coat color

space values, best linear unbiased prediction (BLUP) values from a multi-environment trial

analysis and principal component scores (PCs) of three seed coat color space values were

conducted. GWAS for three seed coat color space values identified a total of 224 significant

single nucleotide polymorphisms (SNPs, P < 2.34×10−7), with phenotypic variation

explained (PVE) ranging from 1.01% to 22.10%, and 35 significant SNPs were detected in

more than 6 environments. Based on BLUP values, 119 significant SNPs were identified,

with PVE ranging from 8.83 to 31.98%. Comparing the results of the GWAS using pheno-

typic data from different environments and the BLUP values, all significant SNPs detected in

more than 6 environments were also detected using the BLUP values. GWAS for PCs identi-

fied 197 significant SNPs, and 30 were detected in more than 6 environments. GWAS

results for PCs were consistent with those for three color space values. Out of 224 signifi-

cant SNPs, 22 were located in the confidence intervals of previous reported quantitative trait

loci (QTLs). Finally, 92 candidate genes were identified in the vicinity of the 4 SNPs that

were most significantly associated with sesame seed coat color. The results in this paper

will provide new insights into the genetic basis of sesame seed coat color, and should be

useful for molecular breeding in sesame.

Introduction

Sesame (Sesamum indicum L., 2n = 2x = 26), which belongs to the Sesamum genus of the Peda-

liaceae family, is one of the earliest domesticated crops [1]. It is mainly planted in tropical and
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subtropical regions in Asia, Africa, and South America [2]. Compared with the seeds of other

main oil crops, e.g., rapeseed (Brassica napus), soybean (Glycine max), peanut (Arachis hypo-
gaea) and olive (Olea europaea), sesame seeds not only have the highest oil content, but also

are rich in proteins, vitamins, and specific antioxidants such as sesamin and sesamolin [3, 4].

Because of its high oil quality and high nutritive value, sesame seed is regarded as ‘the queen of

oil seeds’ and one of the best choices for health foods [5].

Seed coat color is one of the most important agronomic traits of sesame. It is related to bio-

chemical functions involved in protein and oil metabolism, antioxidant content, and disease

resistance [6]. The natural color of mature sesame seeds is diverse, varying from black to white

through different intermediates such as gray, dark brown, brown, pale brown, yellow and dirty

white [1]. In general, pale-colored sesame seeds contain more oil than dark-colored ones [6,

7]. Therefore, white sesame seeds are usually used to produce oil, and black sesame seeds are

favored as food and medication in China. Significant attention has been paid to the inheritance

of seed coat color in sesame. Some early classical genetic studies have suggested that sesame

seed coat color is determined by two genes [8, 9], while other reports have indicated that the

genetic basis of sesame seed coat color is far more complex, which may involve multiple genes

and their interactions [10, 11]. In recent years, the genotyping load and cost has been signifi-

cantly reduced by the next-generation sequencing (NGS) technologies [12], several high-den-

sity genetic maps have been developed and a large number of quantitative trait loci (QTLs) for

agronomically important traits have been identified in sesame [13–17], including QTLs for

seed coat color [6, 15, 18]. However, QTL mapping efforts using the segregated progeny of a

bi-parental cross only enable the detection of a subset of loci/alleles within the crop, and offer

limited resolution owing to the small number of informative recombination events between

linked genetic loci [19]. As an alternative approach to traditional QTL analysis, the genome-

wide association study (GWAS), taking advantage of both the wide phenotypic variation and

the high number of historical recombination events in natural populations, has been used for

dissecting complex traits in crop species [20, 21], such as rice, maize, soybean, cotton, and

rapeseed [22–26]. As an orphan or neglected crop, GWAS analysis in sesame is still limited.

Wei et al. [27] re-sequenced 705 diverse sesame germplasm accessions and performed a com-

prehensive GWAS on 56 agronomic traits for the first time. Using a subset of 400 accessions

from the above population, Dossa et al. [28] performed a large-scale GWAS on five traits

related to drought tolerance.

In this study, seed coat color of an association-mapping panel comprising 366 sesame

germplasm accessions was measured in 12 environments, and 42,781 SNPs were developed by

using specific-locus amplified fragment sequencing (SLAF-seq). By performing a large-scale

GWAS on seed coat color, significantly associated SNPs and candidate genes were explored.

These SNPs and candidate genes will play important roles in understanding the genetic basis

of seed coat color in sesame.

Materials and methods

Plant materials and experiment design

In a previous study, 366 diverse sesame lines were selected from the Henan Sesame Research

Center (HSRC) sesame germplasm collection, and were assembled into an association-map-

ping panel [29]. In this study, the panel was used for seed coat color evaluation and marker-

trait association analysis.

The association-mapping panel was grown at four locations in China for two to four years:

Nanyang (NY, E112.52˚, N33.00˚), from 2013 to 2014; Pingyu (PY, E114.63˚, N32.97˚), from

2013 to 2016; Shangqiu (SQ, E115.65˚, N34.45˚), from 2013 to 2014; and Sanya (SY, E109.50˚,
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N18.25˚), from 2012 to 2015. Field experiments were arranged by a randomized complete

block design, with two replications under each environment. Each accession was grown in a

plot with 23–25 plants in a single row, with a distance of 0.15 m between plants within each

row and 0.4 m between rows.

Measurement of seed coat color and statistical analysis

Sesame seeds were harvested from five randomly chosen plants in each row at maturity, and

were used to evaluate the seed coat color. Seed coat color was scored using a HunterLab color-

imeter (ColorFlex EZ, Hunter Associates Laboratory Inc., Virginia, USA), and decomposed

into L, a, and b color space values. The L-value represents brightness (black to white, 0 for

black, 100 for white), the a-value represents the color from red to green (positive represents

red, negative represents green), and the b-value represents the color from yellow to blue (posi-

tive represents yellow, negative represents blue) [30]. Descriptive statistics for sesame seed coat

color value for each environment, were computed using the PROC UNIVARIATE procedure

(α = 0.01) of SAS 8.02 software (SAS Institute, Cary, NC, USA). Best linear unbiased predic-

tions (BLUPs) were used to estimate seed coat color values across multiple environments

using the R [31] package “lme4” [32]. The BLUP model for the phenotypic trait was yijk = μ
+Gi+Ej+(GE)ij+Bk(ij)+εijk, where μ is the total mean, Gi is the genotypic effect of the ith geno-

type, Ej is the effect of the jth environment, (GE)ij is the interaction effect between the ith
genotype and the jth environment, Bk(ij) is the effect of replication within the jth environment,

and εijk is a random error following Nð0; s2
eÞ [33]. The analysis of variance (ANOVA) was

performed using QTL IciMapping V4.0 [34]. Broad sense heritability was calculated as:

H2 ¼ s2
G=ðs

2
G þ ðs

2
GE=kÞ þ ðs

2
ε=rkÞÞ, where s2

G is the genotypic variance, s2
GE is the genotype by

environment variance, s2
ε is the residual variance, k is the number of environments, and r is

the number of replications [33]. Principal component analysis (PCA) can transform a set of

correlated variables into a substantially smaller set of uncorrelated variables as principal com-

ponents (PCs), which can capture most information from the original data [35]. Borcard et al.

[36] recommended that the variables used in the PCA should be scaled to zero-mean and unit-

variance. Therefore, PCA for three color space values was performed using R function

"prcomp" with the setting "scale = TRUE" [31]. The first 2 PCs which explained 93%~97% of

the total variance in different environments, were retained for GWAS.

Marker-trait association analysis

In a previous study, the association-mapping panel was genotyped by using SLAF-seq, and

89,924 high quality SNPs (minor allele frequency (MAF)� 0.01 and integrity� 0.7) were

identified [29]. In this study, to avoid the possible false SNP affecting the result of GWAS, a set

of 42,781 SNP markers with a MAF� 0.05 and integrity� 0.7 was used to perform marker-

trait association analysis. PCA matrix of the 42,781 SNPs was performed using the GCTA soft-

ware [37]. The kinship (K) matrix was estimated using Tassel 5.0 software [38]. Marker-trait

association analysis was performed for three color space values, BLUP values and two PCs of

color space values using mixed linear models (PCA+K model) implemented in Tassel 5.0 soft-

ware [38]. In the PCA+K model, the mixed linear model correcting for both PCA-matrix and

K-matrix, were employed to reduce errors from population structure and relative kinship. The

uniform Bonferroni threshold was used for the significance of associations between SNPs and

traits at the significance level of 0.01. In this study, the threshold was −log10(0.01/42,781)� 6.6

where 42,781 is the number of SNP markers. Manhattan and QQ plots were drawn using the R

package “qqman” [39].
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Candidate gene prediction

To define the regions of interest for selection of potential candidate genes, the LD blocks, in

which flanking SNP markers had strong LD (r2> 0.6), were defined as the candidate gene

regions [40]. All genes within the same LD block (r2 > 0.6) were considered as candidate

genes. For significant SNPs outside of the LD blocks, the 99 kb (the LD decay distance) flank-

ing regions on either side of the markers were used to identify candidate genes [29]. LD heat-

maps surrounding peaks in the GWAS were constructed using the R package “LDheatmap”

[41].

Results

Phenotypic variations of sesame seed coat color

To evaluate the phenotypic variation of seed coat color in the sesame association panel, three

color space values (L-value, a-value, and b-value) in each environment and BLUP values across

multiple environments were analyzed (Fig 1 and S1 Fig). Descriptive statistics for seed coat

color were presented in S1 Table. The sesame association panel exhibited wide variations in

seed coat color. The L-value exhibited a wide range of 10.53 to 63.40, with the coefficient of

variation (CV) ranging from 14.08 to 22.94% among different environments. Similarly, the a-

value ranged from 0.08 to 11.22, with CV ranging from 24.07 to 37.40%, and the b-value ran-

ged from -0.47 to 18.75, with CV ranging from 15.51 to 24.50%. Because L-value represents

brightness ranging from black to white (0 for black, 100 for white), a-value represents the color

Fig 1. Histograms for the frequency distribution of three color space values (L-value, a-value and b-value).

https://doi.org/10.1371/journal.pone.0251526.g001
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from red to green (positive represents red, negative represents green), and b-value represents

the color from yellow to blue (positive represents yellow, negative represents blue), the mea-

sured values and distributions indicate that black, white, red, and yellow are predominant in

the sesame seed coat color, which is consistent with the observation that the seed coat color

distributions in the association panel (Figs 1 and 2 and S1 Fig). ANOVA was performed to

reveal the effects of G (genotypes), E (environment) and G × E (interaction between G and E)

for seed coat color trait in multi-environments. The results showed that there were highly sig-

nificant differences among G, E, and G × E (P < 0.01). The broad-sense heritability of the L-

value was calculated to be 98.16%, while the broad-sense heritability of the a-value and b-value

was 97.55% and 96.88%, respectively.

PCA was performed for three space color values to investigate the relationships among

three space color value variables. PC1 explained 56%~65% of the trait variances in different

environments, and three space color values showed high negative loadings on PC1. This result

suggested that seed coat color with high PC1 scores exhibited samll values for L-value, a-value

and b-value. PC2 explained 34%~43% of the trait variances. Cumulative Proportion of vari-

ances for PC1 and PC2 were 93%~97%, and the PCA results were consistent with each other

across different environments (S2 Table), suggesting that PC1 and PC2 can be used as quanti-

tative indices to characterize sesame seed coat color.

Genome-wide association analysis for sesame seed coat color

To uncover the genotypic variation of seed coat color in sesame, GWAS were performed for

three color space values from different environments and BLUP values across all environ-

ments. Using three color space values, a total of 224 significant SNPs (P< 2.34×10−7) were

identified in 12 environments (Fig 3), and the R2, the phenotypic variation explained (PVE) by

SNPs, ranged from 1.01% to 22.10%. As shown in quantile-quantile plots (S2 Fig), the genomic

inflation was considerably controlled. Among 224 significant SNPs, 35 were detected in more

than 6 environments, 24 were detected in more than 8 environments, and 14 were detected in

more than 10 environments (S3 Table). Using BLUP values, 119 significant SNPs were identi-

fied, with PVE ranging from 8.83 to 31.98% (S3 Fig). Comparing the results of the GWAS

using phenotypic data from different environments and the BLUP values, all significant SNPs

detected in more than 6 environments were also detected using the BLUP values (S3 Table).

Regarding L-value, 38 significant SNPs were detected on 5 linkage groups (LGs), with PVE

ranging from 8.75% to 21.90%. Among these SNPs, 24 were detected using the BLUP values of

Fig 2. Seed coat color variation in sesame association panel.

https://doi.org/10.1371/journal.pone.0251526.g002
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Fig 3. Genome-wide association studies (GWAS) of seed coat color in twelve environments. The red horizontal

dashed lines indicate the genome-wide significance threshold (P< 2.34 × 10−7).

https://doi.org/10.1371/journal.pone.0251526.g003
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L-value. The most significant SNP S1_6648896 on LG1 was detected in all 12 environments

and was also detected using the BLUP values. On LG2, 8 multi-environment significant SNPs

(S2_12167303, S2_12178804, S2_12178823, S2_12194998, S2_12232894, S2_12232938,

S2_12447358, S2_12247409) were significantly associated with L-value in 7, 8, 8, 8, 7, 10, 8,

and 9 environments and were also detected using the BLUP values (S3 Table). Regarding a-

value, 17 significant SNPs were identified on LG2, LG3 and LG7, and 9 were detected using

the BLUP values of a-value. Of all the significant SNPs, S7_6839839 was detected in all 12 envi-

ronments and was also detected using the BLUP values, (S3 Table). Regarding the b-value, 169

significant SNPs distributing on LG1, LG2, LG3, LG4, LG5, LG6, LG7, LG8, LG9, LG10, LG11

and LG13 were identified, with PVE ranging from 8.68% to 31.35%. The Manhattan plots

showed that 3 peaks on LG1, LG2, and LG8 were repeatedly detected in more than 6 environ-

ments and were also identified using BLUP values of b-value. Nine significant SNPs were

detected on LG1. The SNP S1_6648896 with the lowest P value on LG1 was detected in 9 envi-

ronments and was also detected using BLUP values. Seventy significant SNPs were detected on

LG2. S2_12168663 and S2_12337057 were both detected in 7 environments. S2_12336812 was

detected in 8 environments. S2_12167303 and S2_12247358 were detected in 9 environments.

S2_12026452, S2_12178804, S2_12178823 and S2_12194998 were detected in 10 environ-

ments. S2_12015779, S2_12015820 and S2_12247409 were detected in 11 environments.

S2_12232894 and S2_12232938 were detected in 12 environments. These 14 SNPs were also

detected using BLUP values. On LG8, 4 multi-environment significant SNPs (S8_7910606,

S8_8220220, S8_8311600, S8_8313501) were significantly associated with b-value in 7, 6, 6,

and 7 environments and were also identified using BLUP values (S3 Table).

GWAS for PC1 and PC2 identified 197 significant SNPs (P< 3.3×10−7); however, signifi-

cant SNPs were not detected for PC3 (S4 Fig; S4 Table), which indicated that PC3 might be

composed of nongenetic factors. The quantile-quantile plots were shown in S5 Fig. Among

197 significant SNPs, 30 were detected in more than 6 environments, 19 were detected in

more than 8 environments, and 14 were detected in more than 10 environments. For PC1, the

GWAS results were consistent with those for L-value and b-value. One hundred and eighty-

eight significant SNPs were identified on 12 LGs, explaining 8.68–33.93% of the phenotypic

variation. Four peaks on LG1, LG2, LG4, and LG8 were repeatedly detected in more than 6

environments. The most significant SNP S1_6648896 on LG1 was repeatedly detected in 9

environments, explaining 12.93%~20.51% of the phenotypic variation. Nineteen significant

SNPs on LG2 were indentified in more than 6 environments. The most significant SNP

S2_12232938 on LG2 with PVE of 11.95~33.93% was detected in 12 environments. The most

significant SNP S4_7766099 on LG4 was repeatedly detected in 6 environments, and explained

9.47%~15.26% of the phenotypic variation. Three significant SNPs on LG8 were detected in

more than 6 environments. The most significant SNP S8_8313501 on LG8 was repeatedly

detected in 8 environments, and explained 9.47%~15.26% of the phenotypic variation. The

GWAS results for PC2 were consistent with those for a-value. Six significant SNPs on LG7

were detected in more than 6 environments. The most significant SNP S7_6839839 was repeat-

edly detected in 12 environments, and explained 14.14%~26.18% of the phenotypic variation.

Candidate genes associated with sesame seed coat color

To predict the putative genes associated with sesame seed coat color, we focused on the most

reliable and stable peaks on different LGs, including S1_6648896, S2_12232938, S7_6839839

and S8_8313501 (Fig 4). The haplotype analysis showed that the SNPs S1_6648896,

S2_12232938 and S7_6839839 were all in genomic regions that were in state of linkage

equilibrium, while S8_8313501 was involved in a 213-kbp LD block. Within the LD block
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(S8_8313501), or 99 kbp either side of the SNPs (S1_6648896, S2_12232938 and S7_6839839),

a total of 21, 20, 31 and 20 genes were identified, respectively (S5 Table). Of the 92 genes, 26

had no definite annotation concerning their biological functions, and 12 were annotated as

putative or probable proteins. The remaining 54 genes had domains of known functions. Gene

ontology (GO) analysis indicated that 40, 39 and 31 genes were involved in the cellular compo-

nent category, the molecular function category and the biological process category, respec-

tively. In the cellular component category, these genes were grouped into cell (39 genes), cell

part (39 genes) and organelle (36 genes) subcategories. Within the molecular function cate-

gory, the majority of genes were involved in catalytic activity (14 genes), binding (15 genes),

transcription regulator activity (6 genes). In the biological process category, most gene were

Fig 4. Local Manhattan plot (top) and LD heatmap (bottom) surrounding each peak on different linkage groups.

(a) LD heatmap on LG1. The red arrow denotes the SNP S1_6648896; (b) LD heatmap on LG2. The red arrow denotes

the SNP S2_12232938; (c) LD heatmap on LG7. The red arrow denotes the SNP S7_6839839; (d) LD heatmap on LG8.

The red arrow denotes the SNP S8_8313501.

https://doi.org/10.1371/journal.pone.0251526.g004

PLOS ONE Genome-wide association study of sesame seed coat color

PLOS ONE | https://doi.org/10.1371/journal.pone.0251526 May 21, 2021 8 / 14

https://doi.org/10.1371/journal.pone.0251526.g004
https://doi.org/10.1371/journal.pone.0251526


annotated to metabolic process (23 genes), cellular process (31 genes), response to stimulus

(20 genes).

Discussion

GWAS has become an efficient and powerful tool at identifying genetic variations and loci

responsible for the agronomically important traits. In 2015, a GWAS of oil quality and agro-

nomic traits with 705 sesame lines identified several causative genes, demonstrating the feasi-

bility of GWAS in sesame [27]. In the present study, the panel of sesame accessions with wide

geographic distribution, plentiful phenotype variation, sufficient genetic variation and weak

population structure is advantageous for GWAS implementation [29]. However, the reliability

of GWAS is usually disturbed by phenotypic variance associated with the environment. Multi-

environment analysis and unbiased predictions are practical ways to correct for this error [25].

The trait experiments were performed at four sites, which belong to three climate classifica-

tions, temperate monsoon climate (PY and SQ), subtropical monsoon climate (NY), and tropi-

cal marine monsoon climate (SY). Among four sites, there are large differences in geographic

position and climate. ANOVA showed that significant variations were observed in G, E and

G×E. This result suggested that sesame seed coat color was controlled by the genetic, environ-

ment effect and their interaction. Then, GWAS for coat color traits were performed in 12 envi-

ronments, and many significant SNPs were only detected in a specific environment. However,

the SNPs detected in more than 6 environments were detected using BLUP values in a multi-

environment trial analysis. These multi-environment SNPs are reliable and will be used for

further analysis. Therefore, the multi-environment trial analysis could effectively avoid influ-

ences from the environments, and is the way forward in the study of complex quantitative

traits.

PCA is an effective approach for collecting information from complex, multiple traits that

are highly correlated; furthermore, it is valuable for extracting underlying factors for traits by

dimension reduction [35]. As PC scores represent integrated variables, they can result in

robust, reliable GWAS results [35]. In this study, PCA on three space values (L-value, a-value

and b-value) revealed that PC1 captured 56%~65% of variations for all values, PC2 captured

34%~43% of variations for L-value and a-value. Cumulative Proportion of variances for PC1

and PC2 were 93%~97% (S2 Table). Thus, PC1 and PC2 are good indicators for sesame seed

coat color. Using the three color space values, 224 significant SNPs (P< 2.34×10−7) were iden-

tified. After combining the same SNPs associated with different seed coat color values (L-

value, a-value and b-value), 185 SNPs were remained. Using the PC scores (PC1 and PC2) for

GWAS, 201 significant SNPs associated with PCs were identified. The GWAS results for PC1

and PC2 were consistent with those for three color space values, indicating PC1 and PC2 can

represent three space color values to perform GWAS.

To further confirm these significant SNPs associated with seed coat color in this paper, we

compared our GWAS results with QTLs from previous linkage studies. Wang et al. [15] identi-

fied 4 QTLs (qSCa-4.1/qSCb-4.1/qSCl-4.1, qSCa-8.1/qSCb-8.1/qSCl-8.1, qSCl-8.2, and qSCb-
11.1/qSCl-11.1) for seed coat color in a RIL population. Most of QTLs (3/4 QTLs) were verified

by significant SNPs in the present study. Eighteen significant SNPs on LG2 were mapped to

the confidence interval of the QTL qSCa-4.1/qSCb-4.1/qSCl-4.1. One significant SNP

(S1_6648896) and three significant SNPs (S1_9324398, S1_9330855 and S1_9332327) on LG1

were mapped to the confidence intervals of QTLs qSCa-8.1/qSCb-8.1/qSCl-8.1 and qSCl-8.2,

respectively. These comparison results corroborated our findings. Zhang et al. [6] found 4

QTLs (QTL1-1, QTL11-1, QTL11-2, and QTL13-1) for sesame seed coat color, however,

because of AFLP markers having been mainly used in the study of Zhang et al. in an
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independent genetic map, it is difficult to determine the relationship of the present loci to

them. The remaining SNPs, which were not mapped to the confidence intervals of reported

QTLs, indicated the likely existence of new seed coat color-related sites or environment-spe-

cific SNPs.

Considering SNPs detected in the most environments with high genetic affect, 4 reliable

and stable peaks on 4 LGs were focused on, and 92 candidate genes in the vicinity of 4 signifi-

cant SNPs were identified. For the 4 SNPs (S1_6648896, S2_12232938, S7_6839839 and

S8_8313501), the annotation genes included pentatricopeptide repeat-containing protein

(SIN_1006005, SIN_1006010, SIN_1012034), malate dehydrogenase (SIN_1006006),

basic helix-loop-helix (BHLH) DNA-binding superfamily protein (SIN_1006020 and

SIN_1024895), cytochrome P450 94A2 (SIN_1006022), polyphenol oxidases (SIN_1016759

and SIN_1023237), F-box/LRR-repeat protein 3 (SIN_1023224), etc. SIN_1016759 encodes a

predicted polyphenol oxidase (PPO), which participates in the oxidation step in the biosynthe-

sis of proanthocyanidin, lignin, and melanin, and produces black pigments via the browning

reaction in plants [42–44]. In sesame, Wei et al. [27] reported that SIN_1016759 was strongly

associated with seed coat color, Wang et al. and Wei et al. [15, 18] showed that SIN_1016759

was located in the genomic region of a major QTL for seed coat color. qRT-PCR showed that

SIN_1016759 was highly expressed in black sesame seeds from 11 to 20 days but not expressed

in white sesame seeds [18], indicating that SIN_1016759 may play an important role in the

formation of sesame black coat color. SIN_1023237 encodes a laccase-3 which belongs to mul-

ticopper oxidase family [45]. Laccase enzymes were shown to contribute toward cell morphol-

ogy, secondary cell-wall biosynthesis, and resistance to biotic and abiotic stresses in plant [46].

They also play major roles in proanthocyanidins and lignin deposition and are involved in

browning reactions on seed coat pigments [42, 43, 47]. SIN_1006022 encodes a cytochrome

P450 protein, and may be related to the formation of seed coat color. Cytochromes P450 play

important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocy-

anins, which are responsible for the pigmentation pattern of vegetative parts and seed [48–51].

SIN_1023226 encodes a WRKY-type transcription factor, which is one of the WRKY family

members [52]. The WRKY genes family in flowering plants encode a large group of transcrip-

tion factors which play essential roles in diverse stress responses, developmental, and physio-

logical processes [53]. SIN_1024895 encodes a bHLH transcription factor. Plant bHLHs are

involved in secondary metabolism (including the flavonoid pathway), organ development and

responses to abiotic stresses [54–56]. Previous reports have shown that the WRKY and bHLH
genes are involved in regulation of seed coloration [57–60].

Conclusions

In this study, GWAS for sesame seed coat color were performed using 42,781 SNPs with 366

sesame germplasm lines in 12 environments. GWAS for three color space values, BLUP val-

ues from a multi-environment trial analysis and PCs of three color space values identified

224, 119, and 197 significant SNPs, respectively. The 35 significant SNPs detected in more

than 6 environments were also detected using the BLUP values. Furthermore, GWAS results

for PCs were consistent with those for three color space values. Multiple QTLs reported in

previous studies were verified by significant SNPs in the present study, corroborating the

GWAS results. Moreover, the most reliable and significant SNPs (S1_6648896, S2_12232938,

S7_6839839 and S8_8313501) on 4 different LGs were focused on, and 92 candidate genes

were identified. The GWAS showed great power in uncovering genetic variation in sesame

seed coat color, and the results will provide new insights into the genetic basis of sesame seed

coat color.
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