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A B S T R A C T

Software-Defined Networking (SDN) paradigm provides the ability to handle mobility more efficiently due
to its programmability and fine granularity. However, in this emerging setting, the handover procedure still
suffers delay due to exchanging and processing handover signaling messages. In this paper, we study the
relevancy between an SDN controller’s load and handover delay. We show that an over-loading state can
prolong handover delay, so as a countermeasure, reaching that state is mitigated by applying a load balancing
mechanism. Our primary metric is the controller’s response time, as it directly affects the completion of any
mobility-related procedure. We propose a load balancing management framework that deploys two concepts:
network heterogeneity and context-aware vertical mobility. Our proposal is composed of three main aspects. First,
we identify candidate users based on their context information. Second, we reduce the frequency of load
dissemination between multiple controllers, and hence, reducing processing and communication overhead.
Third, after the candidate users are determined, we optimize the decision problem on the selection among
heterogeneous candidate networks. Through simulation, our framework has shown as much drop as a 28%
drop in response time compared to previous proposals.
. Introduction

Nowadays, we witness the wide-spread availability of mobile hand-
eld devices such as smartphones and tablets. The ease and con-
enience provided by these devices lead to extensive and explosive
rowth of mobile traffic. Indeed, the traffic for mobility management
s massive, and the cost is enormous due to connection establish-
ent/release, handover, and tracking area update events [1].

There are several key benefits of SDN that can be advantageous to
obility management tasks; for instance, automated management, low-

ost forwarding devices, network technology heterogeneity support,
irtualization and segmentation support [2,3]. Behind all these key
enefits is the fine granularity forwarding imposed by SDN, which is
onsidered one of its design strengths [3]. It provides end-user-specific
low forwarding and, in return, can enforce policies per user, device,
ession, application, etc.; therefore, the SDN paradigm can be highly
eneficial to a critical procedure such as the handover [4].

In this emerging setting, however, the handover still suffers delay
ue to the processing delay of signaling messages. The processing
elay can get amplified if the managing controllers are congested. The
uthors of [5] proved that the load of the requests plays a significant
ole in processing delay. This remark was backed up by another study
y Tootoonchian et al. in [6], where they linked a controller load to its
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reactivity to requests. To tackle this issue, we target the decision before
a handover is in effect to make sure that the upcoming/handed-over
users will experience a satisfactory level of service and mitigate long
delays or breakage. That cannot happen if the new network’s controller
is over-loaded; therefore, we need to ensure having an efficient load
balancing mechanism.

The difference in characteristics among heterogeneous wireless
technologies imposes the challenge of designing mechanisms to inte-
grate different access technologies, protocols, and service demands [7,
8]. For instance, small cells, such as Wi-Fi hotspots, provide better
data rates and cost-effective connections; yet, the security and privacy
aspects can be violated. On the contrary, macrocells offered by cellular
service providers, ensure higher security and privacy levels, although
their services are costly. An interesting discussion was carried on by the
authors of [9]. They addressed the challenges in current heterogeneous
networks, as well as SDN promising features to solve some of these
issues. The main concept that this paper suggests is “openness” in
the wireless world. This concept is currently constrained due to the
proprietary and closeness nature of different technology providers. The
authors promoted the combined open service irrespective of infrastruc-
ture in order to gain access to more wireless capacity. This idea can be
beneficial to different applications, specifically, load balancing.
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In SDN-based heterogeneous networks, a distributed set of con-
rollers are built on top of different wireless infrastructures, where each
ontroller manages a domain/technology. SDN controllers have to han-
le control traffic to accomplish mobility procedures, and since these
ontrollers have limited resources, handling a large amount of traf-
ic/flows originating from switches may cause delays [10]. In practice,
s a cellular network is expected to accommodate more users compared
o other types of networks such as Wi-Fi, these networks’ resources can
e complementary in order to relieve cellular resources [11]. Vertical
obility is a solution to relieve a congested network, where it can be

chieved by switching the mobile device interface to be connected to
nother network/technology [8].

A controller’s load has a direct relationship with its response time;
ence, the bigger the load, the longer the response time and the
orse the users’ perception of services. Therefore, we approach the
ver-loading controller problem, specifically to minimize the maximum
esponse time. We mainly address the following scenario. Given a
ellular network of a controller managing network devices and mobile
sers, and multiple nested other wireless networks where each has
managing controller, how do we relieve the cellular controller by

xploiting users’ preferences and the complementary resources of other
ooperative controllers? Here, our main contribution is an approach
hat mainly aims at vertically handing over some edge users, consid-
ring some context information regarding the users and controllers.
ote that the vertical mobility in our proposal is “network-initiated”.
s a result, a controller’s response time to any mobility-related proce-
ure decreases. All in all, we argue that the inter-networking between
eterogeneous wireless technologies can be realized in practice if a con-
ederation is established between different operators and the concept of
DN is present to orchestrate such confederation.

In this work, we propose a management framework that includes
hree main parts. We identify candidate users based on their context
nformation; we adopted a decision-making tool to include the user’s
nput into our framework. Then, we proposed a novel mechanism
hat reduces the frequency of load disseminating between multiple
ontrollers. Once the candidate users are determined, we optimize the
ecision problem on the selection among several candidate networks.

The work in this paper is divided into seven sections. Section 2
resents some of the approaches that have addressed load balancing
mong multiple SDN controllers. In Section 3, we describe our system
omponents. We then go through the modeling and formulation in
ection 4. Then, our management framework is explained in Section 5.
ur experiments and evaluation are discussed in Section 6. Finally, we
onclude the paper with Section 7.

. Related work

The scalability of the control plane is a challenge for the SDN control
ogic centralization [12]. The negative impact of such a challenge is
artially mitigated when the control logic is distributed/delegated into
ither a one level of controllers (i.e., flat) or two levels of controllers
i.e., hierarchical) [13,14]. In our direction of research, we argue that
he context of network heterogeneity fits right in the multi-controller
odeling given that heterogeneous technologies belong to different

perators/service providers.
In the multi-controller setting, load balancing is crucial. Incorporat-

ng load balancing techniques into SDN multi-controller design enforces
he availability and scalability aspects of a network to provide a mini-
al response time [15]. Prior research has shown that the control plane

oad-balancing is correlated to several factors (i.e., design choices),
ncluding the type of mapping between switches and controllers, and
he network state dissemination method.

The switch-controller deployment can either be fixed (i.e., static)
r dynamic (i.e., switch migration). Each deployment method has its
dvantages, disadvantages, and applications. The researchers, in this

atter, have been divided into three groups.
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One group of researchers has adopted the static assignment of
switches to the controllers and exploited other strategies to balance the
load among controllers [16–18]. This approach has several advantages,
such as simple control plane management, reduced infrastructure and
complexity costs, and flexibility to be applied to connected or discon-
nected domains. One of the initial studies in SDN control plane load
balancing was done by Hu et al. [17]. The authors of this paper pro-
posed a hierarchical architecture for wide area networks (WAN). Their
approach is based on a partitioning algorithm that reallocates flows
to different controllers; it assigns the nearest controller to the switch.
Considering a flat implementation for the control plane, Koponen et al.
proposed Onix [18], which is intended to scale out a network and avoid
congestion situations. This approach used the Network Information
Base (NIB) to allow Onix instances to store, retrieve, and maintain
states. Though, as the network size grows, this method may introduce
overhead due to memory restrictions. Also, this method did not advise
for an over-loading countermeasure. In another work, the authors
of [16] proposed a rounding algorithm that showed improvement in the
controllers’ response times by using link balancing. Nonetheless, they
did not provide a clear explanation of how the distributed controllers
exchange statuses. In the static assignment, however, some controllers
are susceptible to overloading and failure due to heavy and fluctuating
loads [19,20]. Also, it suffers from inefficient resource utilization when
the load shifts, compromising the network’s ability to react efficiently
to changes, such as failure and updates [21].

Another group of scholars has focused on the switch migration
between controllers to achieve the load balancing [22–26]. This ap-
proach provides more adaptability to sudden network events than the
static assignment. Also, it improves the network QoS [20], resource
utilization [19], and security [27]. The topic of switch migration was
initially triggered by [28] and was supported by the multi-controller
feature added to OpenFlow v.1.2 and later versions [29]. The primary
issue in the dynamic assignment is the selection of a switch-controller
pair for migration. A considerable body of this group of studies has
adopted the greedy approach by selecting the heaviest switch to be
migrated from an overly utilized controller to another lightly utilized
controller [22–24,30]. However, the dynamic assignment, in general,
comes with some issues, such as complexity, high cost, and high
latency due to migration and re-association [31,32]. Switch migration
frequency has to be limited in number and time as frequent and longer
changes in mappings can lead to network instability [19].

The third group of scholars has presented a so-called partial switch
migration, which means the flow requests generated by a switch are
distributed among multiple controllers [19,31,32]. The authors in [32]
proposed a dynamic distributed control plane architecture, where they
can dynamically manage the number of controllers, switches, and
control flow while considering the topology and application demands.
Another approach proposed by Wang et al. in [31] was mainly depen-
dent on the idea of balancing the load of multiple controllers based
on shifting aggregate flows from the management of one controller to
another. The proposed approach is implemented in a hierarchical static
architecture, where a set of distributed controllers report their load
information to a root controller. Then, the root controller determines on
aggregating and redirecting the flows to ensure fairness among all the
controllers. This approach is pro-active and based on traffic prediction.
The aggregation of flows relies on installing wildcard rules on some
switches which can be hardware-wise, costly. In a recent work by Al-
Tam and Correia [19], they proposed a heuristic approach to migrate
fractional flow requests while minimizing the number of new mappings.
Their approach showed more resilience and better load balancing in
large-scale networks. All in all, the partial switch migration approach
implies that a single switch is connected to several controllers, which
still suffers from some of the dynamic migration issues.

The applicability of the previous proposals can be seen in practice
in datacenters or WANs, assuming the interconnectivity between dif-

ferent regions/domains. However, if these regions are autonomous and
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dministratively disjointed, some of the approaches mentioned above
ay fail. With such a limitation, the static assignment is the sole option.
ven though the static assignment is restrictive, its shortcomings can be
lleviated in different ways, such as flow redirection, intelligent rout-
ng, controller placement, and exploiting users’ mobility. Our approach
s based on the static deployment, yet we exploit the dynamism of
obile users to shift loads from over-loaded controllers. However, as

ar as we know, no prior study has addressed disconnected domains,
hich can be a severe challenge for most load balancing strategies.

Besides the switch-controller deployment issue, one issue that con-
ributes to degrading the performance of any multi-controller load-
alancing mechanism is the controllers’ status synchronization. A set
f controllers need to inform each other of their load status to avoid
orming choke points and, in some cases, make fair load distribu-
ion [30]. Consequently, the control overhead increases, which in turn,
an result in a costly process, temporally and spatially [28]. In light
f that, numerous studies have targeted minimizing the overhead of
xchanging the status among controllers by decreasing the amount of
oad messages. For instance, the authors of [23] proposed Dynamic and
daptive Load Balancing algorithm (DALB). Their mechanism requires
ach controller to collect its local load information periodically; when
ts load reaches a threshold, it collects other controllers’ load infor-
ation (i.e., load information aggregation). Their solution adjusts the

riggering threshold to the average load of all controllers combined to
inimize the frequent collection of statuses. In [30], Yu et al. proposed
mechanism based on reporting the load status periodically and then

toring these controllers’ information. When a controller becomes over-
oaded, there is no reactive collecting of information before making a
ecision locally, unlike [23]. Then, to reduce the frequency of load
nforming, they proposed an inhibition algorithm. Lan et al. in [22],
ake the frequency of status exchange dependent on a pre-defined

hreshold, the closer the load to the threshold, the more frequent the
tatus exchange. They proposed the use of a distributed database to syn-
hronize load information among the controllers. However, retrieving
ata from a database may cause unmanageable delays.

. System description

We consider integrating the SDN paradigm into a network of het-
rogeneous technologies, such as LTE, Wi-Fi, and WiMAX. In our
ork, our system model is depicted in Fig. 1. We propose a hierar-

hy of controllers forming the control plane, where tier-1 controllers
re different service providers (i.e., Dist-C) that manage different do-
ains/technologies [33]. Each controller only manages a domain of
particular wireless network. We omit direct communication among
172
them to ensure privacy, confidentiality, and guarantee that security
standards are met. Additionally, a tier-0 controller represents the Root-
C, where the connection and management between the different do-
mains take place. Considering SDN-based heterogeneous networks, we
argue that a hierarchical architecture provides better scalability over a
centralized architecture and less delay, compared to a flat approach.

All the traffic that goes between the switches and controllers (i.e.,
through any southbound protocol) is control traffic. We adopt the
OpenFlow southbound protocol as an enabler for our model.

As for the data plane, the Point of Attachment (PoA), whether they
are base stations (BS) or access points (AP), are each connected to an
OpenFlow-switch. MNs are hence, connected to PoAs. Within a domain,
the set of MNs can be divided into edge-users (𝑀𝑁𝑒) that are within
the coverage of other domain(s), and non-edge-users (𝑀𝑁𝑛𝑒) that are
within the coverage of only their current domain. Edge-users can be
further divided into candidates and non-candidates, based on their
mobility parameters, including the preference and position as we will
explain in the next Sections.

4. Modeling and formulation

We consider a discrete-time model, where the length of each time
slot matches the time scale at which the control requests can be
recorded.

Our network is divided into 𝑀 domains, where each domain is
operated by a service provider, a single controller, and may represent
a different wireless technology; an example is provided in Fig. 2. Thus,
we have a set of 𝑀 distributed controllers, 𝐶𝑖, where 𝑖 ∈ {1, 2,… ,𝑀}.
ach 𝐶𝑖 has a capacity in terms of the maximum number of control
equests it can handle per a unit of time 𝑡, which is given as 𝛼𝑖. In order
o handle traffic peaks, we advise including spare processing capacity,
r a so-called decay factor 𝛽𝑖, for each 𝐶𝑖. The decay factor has a value
f 𝛽𝑖 ∈ [0, 1]; thus, the total capacity of 𝐶𝑖 can be written as: 𝛼𝑖𝛽𝑖. Note
hat the decay factor can provide a network operator with the flexibility
o adjust the capacity given different times of the day, congested places,
r even handle synchronization overhead with the Root-C. On top of the
et of controllers and connected to each of them is Root-C. The capacity
f Root-C is not taken into consideration, as it does not handle control
equests generated by the users; thus, the load on Root-C is beyond the
cope of this work.

In our model, we define three adjacency matrices as in Fig. 3, as the
ollowing:

• The switch-controller adjacency matrix 𝑋 is a binary 𝑁 × 𝑀
matrix that associates a group of switches to each controller. Each
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Fig. 2. The system model: consisting of a macrocell domain and multiple Wi-Fi
domains.

area 𝑖 consists of a set of inter-connected switches 𝑠𝑖𝑗 ∈ 𝑆 where,
𝑗 ∈ {1, 2,… , 𝑁}, and 𝑆 represents the set of all switches. Note
that each switch is connected to exactly one controller.

• The switch-user adjacency matrix 𝑍𝑠𝑖 is defined for each switch in
region 𝑖 to denote 𝑘 associated users to 𝑛 switches at time 𝑡, where
𝑧𝑏𝑗 ∈ {0, 1}, and ∑𝑛

𝑗=1 𝑧𝑏𝑗 ≤ 1 ∀ 𝑏, 𝑏 = {1, 2,… , 𝑘}. Knowing that
the main focus of our work is on the hard handover, each user
is connected to exactly one switch at any time 𝑡. Each switch is
directly connected to a PoA, so we can refer to both 𝑠𝑖𝑗 or its PoA
as one entity. There are a limited number of channels provided
by any PoA, where each channel can be assigned to one user. Let
𝑙𝑠𝑖𝑗 denote the number of channels provided by 𝑠𝑖𝑗 ; then, there are
at most 𝑙𝑠𝑖𝑗 users connected to 𝑠𝑖𝑗 , which means ∑𝑘

𝑏=1 𝑧𝑏𝑗 ≤ 𝑙𝑠𝑗 .

• The user–controller adjacency matrix 𝑌𝑡 is defined as a binary
𝐾 × 𝑀 matrix to show the connectivity between the users and
controllers. At any time 𝑡, each user has to be connected to only
one controller; thus, the matrix reflects that: ∑𝑀

𝑚=1 𝑦𝑥𝑚 = 1 ,
where 𝑥 = {1, 2,… , 𝐾}, and the number of users attached to each
controller can be obtained from: ∑𝐾

𝑥=1 𝑦𝑥𝑚.

Flows (i.e., control traffic) that are reported to 𝐶𝑖 by switch 𝑠𝑖𝑗 , at
time 𝑡 is denoted as 𝜉𝑠𝑖𝑗 (𝑡); therefore, the load on 𝐶𝑖, in terms of the total
number of control requests, is given as (𝜃𝑖) and can be modeled as:

𝜃𝑖 =
∑

𝑠𝑖𝑗∈𝑆
𝑖

𝜉𝑠𝑖𝑗 (𝑡) (1)

Defining the load is essential to model the behavior of the controllers,
since the load is closely related to the response time of the control
traffic as the Little’s theory showed [34]. In line with the results
of [16], and inspired by their approach, we model Dist-C as 𝑀∕𝑀∕1,
and we assume that the flow requests follow the Poisson distribution.
Therefore, the average response time of 𝐶𝑖, given its capacity and load,
can be defined as:

𝑅𝐶𝑖
(𝑡) = 1

𝛼𝑖𝛽𝑖 − 𝜃𝑖(𝑡)
(2)

In our model, �̄� 𝑖 represents the set of all attached users to 𝐶𝑖. �̄� 𝑖

an be further divided into edge users (𝑀𝑁 𝑖
𝑒) that reside in the overlap

area with another domain, as in Fig. 2, and non-edge users (𝑀𝑁 𝑖
𝑛𝑒)

hat represent all other users. Accordingly, the total attached users of
region 𝑖 can be represented as �̄� 𝑖 = 𝑀𝑁 𝑖

𝑒 ∪ 𝑀𝑁 𝑖
𝑛𝑒, where |�̄� 𝑖

| = 𝑘.
hese users are currently utilizing the 𝐶𝑖’s resources.

The set 𝑆𝑖 is composed of two subsets of switches, edge switches
𝑖 and every other switch 𝑆 𝑖 . Intuitively, users connected to the edge
𝑒 𝑛𝑒 n
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switches are edge users. This means;

∀𝑢𝑥 ∈ 𝑀𝑁 𝑖
𝑒 ∃ 𝑠𝑖𝑗 ∈ 𝑆 𝑖

𝑒 , where 𝑧𝑥𝑗 = 1

Naturally, the expected change in user attachments is reported by a
subset of edge switches, 𝑆𝑖

𝑒. Note that not all the traffic generated
y the switches are user-related; there is other management-related
raffic, including statistics [29]. Out of each switch 𝑠𝑖𝑗 , a set of control
essages is generated by user 𝑢𝑥 with variable rates 𝑐𝑖𝑥 (modeled as
oisson [24,35]); then, having 𝑘 attached users to the area of controller
𝑖, at time 𝑡, makes the following:

𝑖 −
∑

𝑠𝑖𝑗∈𝑆
𝑖

𝑐𝑗 =
∑

𝑢𝑖𝑥∈�̄�

𝑐𝑖𝑥 (3)

here 𝑐𝑗 is management-related traffic generated by the switches; how-
ver, they are relatively small compared to the user-related traffic [10]
nd can be neglected. Therefore, we define the remaining capacity of
𝑖 as (𝑟𝑖), as follows:

𝑖(𝑡) = 𝛼𝑖𝛽𝑖 −
∑

𝑢𝑖𝑥∈𝑈 𝑖

𝑐𝑖𝑥(𝑡) (4)

roposition 1. One main influencing factor on a controller’s load, and
ence its response time, is the number of attached users.

𝑖(𝑡) = (|𝑀𝑁 𝑖
𝑛𝑒 +𝑀𝑁 𝑖

𝑒|)𝑐
𝑖
𝑥 (5)

s a result, we can minimize the controller’s load by reducing the
umber of attached users to that controller.

The traffic going through southbound channels for connected users,
hether Packet-in, Port-status or any control requests, is better pro-

essed by controllers providing shorter response times. Therefore, our
bjective function is to minimize the maximum response time of an
ver-loaded controller, as follows:

𝐦𝐢𝐧 𝑚𝑎𝑥 𝑅𝐶𝑖
(𝑡) (6)

𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 ∶ 𝜃𝑖 ≤ 𝛼𝑡ℎ𝑖 (7)

𝑀
∑

𝑚=1
𝑥𝑗𝑚 = 1 ∀ 𝑠𝑗 ∈ 𝑆 (8)

𝑛
∑

𝑗=1
𝑧𝑏𝑗 = 1 ∀ 𝑢𝑏 (9)

𝑘
∑

𝑏=1
𝑧𝑏𝑗 ≤ 𝑙𝑠𝑗 ∀ 𝑠𝑗 ∈ 𝑆 (10)

he set of the above constraints impose the following. No controller
s overloaded, meaning that the load of a controller is less than that
f its pre-defined threshold, 𝛼𝑡ℎ𝑖 , (Eq. (7)). Each switch is managed by
xactly one controller (Eq. (8)). To enforce hard handover, each user
as to be connected to exactly one switch at a time (Eq. (9)). Each
witch/PoA has a limited number of channels that it can provide the
sers (Eq. (10)).

In this case, load-balancing among tier-1 controllers is required
o relieve an over-loaded cellular network controller. Therefore, we
ropose a heuristic approach to balance the load among the controllers
ased on context-aware vertical mobility. We design a framework that
ackles three main aspects. First, it relieves the over-loaded controller
y exploiting vertical mobility whenever it is applicable. Second, it
educes the status synchronization overhead. Finally, it optimizes the

etwork selection for handed-over users.
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Fig. 4. A two-level load balancing management framework based on context-aware
andover.

. Management framework

Our management framework is constructed and distributed into a
wo-tier control plane. It is based on a collaboration between modules
hat reside on both Dist-Cs and Root-C. So, our proposed approach
proposed-LB) is not operated entirely by Root-C; we divide the func-
ions into local ones done by Dist-Cs, and global ones done by Root-C,
efer to Fig. 4. Consequently, the exchanging overhead between Dist-Cs
nd Root-C is minimized. The five main modules that shape our load
alancing framework are:

• The monitoring module.
• The controller status module.
• The user context module.
• The load balancing decision module.
• The network selection module.

.1. Monitoring module

This module has a global version placed on Root-C and a local
ersion on Dist-C.

The local module gathers the statistics (i.e., stats) that reflect the
witches’ state regarding flow tables and port stats. For example, a con-
roller can periodically collect port, table, and flow information within
ts domain through the use of particular stats OpenFlow messages, such
s OFPST_PORT, OFPST_FLOW, and OFPST_TABLE [10].

The global module placed at Root-C periodically collects load state
nformation from Dist-Cs. As maintaining a consistent view among the
istributed controllers can result in significant overhead, we need to
esign a mechanism that reduces the frequency of load informing.

.2. Controller status module

The authors of [30] proposed an inhibition algorithm to suppress an
nchanged controller status from being reported to other controllers;
therwise, it is redundant information. Inspired by [30] to reduce the
requency of status exchange, we propose the following load informing
trategy. We define two thresholds; maximum threshold and mini-

+ −

um threshold as 𝛼𝑡ℎ, and 𝛼𝑡ℎ, respectively. Using the two thresholds,
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any controller at time 𝑡 belongs to only one of three sets: Under-
Loaded (UL), Normally-Loaded (NL) and Over-Loaded (OL), based on
the following:

• 𝜃𝑖 ≤
−
𝛼𝑡ℎ𝑖 ⟹ 𝐶𝑖 ∈ 𝑈𝐿.

• −
𝛼𝑡ℎ𝑖 < 𝜃𝑖 <

+
𝛼𝑡ℎ𝑖 ⟹ 𝐶𝑖 ∈ 𝑁𝐿.

• 𝜃𝑖 ≥
+
𝛼𝑡ℎ𝑖 ⟹ 𝐶𝑖 ∈ 𝑂𝐿.

Note that these thresholds are adjustable to each controller based on its
network policy [19]. Root-C, in return, updates Dist-Cs with the others’
statuses in terms of what load set they have. Meaning, the distributed
controllers see only the load set that others belong to, without going
further into other details. As long as the mapping between the Dist-Cs
and their load sets do not change, the Root-C refrains from updat-
ing. Thus, we mitigate the case of reporting unchanged statuses. See
Algorithm 1 that describes our load informing strategy.

Algorithm 1: Adaptive Load Informing
Data: 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡: Current load set at 𝑡

𝐿𝑓𝑜𝑟𝑚𝑒𝑟: former load set at 𝑡 − 1

Two thresholds:
−
𝛼𝑡ℎ𝑖 ,

+
𝛼𝑡ℎ𝑖 ∀𝑖 ≤ 𝑀

Result: report = True or False: Report load status to
𝐶𝑗 ∀𝑗 ≤ 𝑀, 𝑗 ≠ 𝑖 .

1 begin
2 report=False
3 if 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝐶𝑖) ≠ 𝐿𝑓𝑜𝑟𝑚𝑒𝑟(𝐶𝑖) then
4 report=True
5 if 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 == 𝑂𝐿 then
6 Start load balancing
7 end
8 else
9 report=False
10 end
11 𝐿𝑓𝑜𝑟𝑚𝑒𝑟 = 𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
12 Return report
13 end

5.3. Candidate users selection module

A vertical handover decision is based on criteria that can be divided
into the following [36]:

• Network context, such as link quality (RSSI, CIR, BER, SIR),
coverage, bandwidth, latency, cost, and security level.

• Terminal context, such as velocity, battery, and location informa-
tion.

• User context, such as user profile and preferences.
• Service context, such as service requirements and QoS.

A context-aware handover does not only consider the traditional
ways, such as signal strength to trigger handover, but it also takes
into consideration the knowledge of the mobile node and network’s
context information. Consequently, intelligent and improved handover
decisions can be made [36]. However, combining a large number
of criteria would considerably affect the decision delay due to the
increased complexity of the decision algorithm [37].

In order to achieve our goal of relieving an overloaded controller,
we exploit the fact that multiple coverage areas are overlapping, and
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Fig. 5. A taxonomy of a user’s perspective using AHP method.

Fig. 6. A preference scale in pair-wise comparison.

obile users can switch to other networks based on a combination of
riteria. We think that the involvement of users’ preferences is essential
nd beneficial to both the user and network. In line with other studies,
or example, [38], we consider having a supporting module in the users’
evices, allowing them to specify their preferences initially and then
ynamically changing them as needed.

In the literature, several strategies are applied to include a user’s
references, such as Simple Additive Weighting (SAW), Multiplicative
xponent Weighting (MEW), Technique for Order Preference by Sim-
larity to Ideal Solution (TOPSIS), Analytic Hierarchy Process (AHP)
nd Gray Relational Analysis (GRA) [36,39]. Every strategy has its
ttributes and compliant situations.

The AHP tool is considered a powerful decision-making tool origi-
ally proposed by Saaty [40]. Typically, the AHP tool defines a hierar-
hy of at least three levels, where the top level is the goal, the bottom
evel is the solution alternatives, and the middle level is the input to
his tool (i.e., decision factors). These factors can be obtained from
easurements such as weight, cost, etc., or from subjective opinions

uch as satisfaction and preference, which can be conflicting in some
ases.

In our case, we looked for a strategy that would help us evaluate
ifferent preferences inputted by a user and compare them to each
ther. On top of that, we want to get a rank to help prioritize those
references, thus making a decision. Since the judgments are made
y humans, they can be inconsistent. AHP provides means to check
he consistency of the user’s input. Therefore, we think this tool is in
lliance with our direction of measuring users’ perspectives.

AHP has the following four stages: decomposition, pair-wise com-
arison, weight calculation, and weight synthesis [40,41]. By going
hrough an example, we explain in detail the four stages.

• Stage-1: Decomposition. In this stage, a thorough understanding of
the problem and then dividing it into subproblems are crucial. As
a result, a hierarchy of the problem is obtained. In our problem,
for the user’s perspective, we can show the hierarchy as depicted
in Fig. 5. We see that the goal is to include the user’s preferences.
Different factors affect the user’s decision; for example, a user’s
inclination, response time, and cost.

• Stage-2: Pair-Wise Comparison. In this stage, each user declares
their subjective opinions regarding each pair of decision factors.
For example, let us model the hierarchy shown in Fig. 5 in a
matrix form (𝛥), and consider three decision factors: inclination

as 𝐼 , response time as 𝑅, and cost as 𝐶. Now, we draw a pair-wise
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comparison, to show how each factor is preferred over the other.

𝛥 =

𝐼 𝑅 𝐶
𝐼
𝑅
𝐶

⎡

⎢

⎢

⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤

⎥

⎥

⎦

(11)

As shown by Eq. (11), we have a 3 × 3 matrix. The elements of
this matrix are determined by selecting values that show how the
user is in favor of one factor over the other. Note that the number
of comparisons is a function of the number of decision factors
(𝑑𝑛); thus, the total number of comparisons is 𝑑𝑛(𝑑𝑛−1)

2 . There are
different attempts to quantify such scale, yet the most famous one
is the linear scale from 1 to 9, where each number describes the
factor importance degree as in Fig. 6.
Based on the user’s input, the pair-wise matrix in Eq. (11) is filled
with either a value (1–9) or a reciprocal value, while the diagonal
is always one. If the importance value is picked from the left side
of 1, then we fill the matrix element with that value, otherwise,
the matrix element is the reciprocal of that value. At this point,
we end up filling the upper triangular matrix, to get the values
of the lower triangular, we use the relation 𝑎𝑖𝑗 =

1
𝑎𝑗𝑖

. Carrying on
with our example in Fig. 5, we show a sample of a user’s choices
as the following matrix:

𝛥 =

𝐼 𝑅 𝐶
𝐼
𝑅
𝐶

⎡

⎢

⎢

⎣

1 1∕7 1∕5
7 1 3
5 1∕3 1

⎤

⎥

⎥

⎦

(12)

Apparently, to that user, the response time to their control traffic
is the most critical factor; however, we show this result mathe-
matically as we proceed further to the following stages.

• Stage-3: Weight Calculation. In this stage, we prioritize the factors
by computing the priority vector. In order to do that, we find the
normalized Eigenvector, we use the formula:

𝑎𝑖1 =
𝑎𝑖1

∑3
𝑖=1 𝑎𝑖1

(13)

Back to our example, the resulting matrix is:

𝛥 =

𝐼 𝑅 𝐶
𝐼
𝑅
𝐶

⎡

⎢

⎢

⎣

1∕13 3∕31 1∕21
7∕13 21∕31 15∕21
5∕13 7∕31 5∕21

⎤

⎥

⎥

⎦

(14)

Next, we obtain the normalized Eigenvector by taking the average
of each row according to:

𝑣𝑟𝑗 =

∑3
𝑗=1 𝑎𝑟𝑗
3

where 𝑟 = 1, 2, 3. (15)

Thus, we get the following Eigenvector 𝑉 :

𝑉 = 1
3

⎡

⎢

⎢

⎣

1∕13 + 3∕31 + 1∕21
7∕13 + 21∕31 + 15∕21
5∕13 + 7∕31 + 5∕21

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0.0738
0.6434
0.2828

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑣𝐼
𝑣𝑅
𝑣𝐶

⎤

⎥

⎥

⎦

(16)

Here, we obtained our priority vector, 𝑉 𝑇 = [0.0738, 0.6434,
0.2828], where the sum of elements of our priority vector is 1.
As indicated by the priority vector of our example above, the re-
sponse time factor has the highest priority with 64.34%, while the
cost factor is the second in ranking with 20.28%, and finally, the
least important factor is the inclination factor with only 7.38%. At
this point, we know the ranking of each decision factor. To find
the relative weight, we simply obtain the ratio among every pair;
for example, the cost factor is 3.83 (i.e., 28.28∕7.38) times more
important than the inclination factor. Thus, the relative weight
matrix can be obtained as the following:

𝑊 =

𝐼 𝑅 𝐶
𝐼
𝑅

⎡

⎢

⎢

𝑣𝐼∕𝑣𝐼 𝑣𝐼∕𝑣𝑅 𝑣𝐼∕𝑣𝐶
𝑣𝑅∕𝑣𝐼 𝑣𝑅∕𝑣𝑅 𝑣𝑅∕𝑣𝐶

⎤

⎥

⎥

(17)
𝐶 ⎣𝑣𝐶∕𝑣𝐼 𝑣𝐶∕𝑣𝑅 𝑣𝐶∕𝑣𝐶⎦
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Table 1
The random consistency index.
𝑑𝑛 1 2 3 4 5 6 7 8 9 10

𝑅𝐶 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

• Stage-4: Weight Synthesis. Since the judgments are made by hu-
mans, they can be inconsistent. In this stage, we follow the steps
proposed by Saaty in [40] to check the consistency of the user’s
input. Firstly, we find the maximum Eigenvalue as the following:

𝑣𝑚𝑎𝑥 = 13(0.0738) + 31
21

(0.6434) + 21
5
(0.2828) = 3.097 ≈ 𝑑𝑛 (18)

Then, Saaty in [40] proposed the use of a Consistency Index
(𝐶𝐼) to measure the deviation of consistency using the following
formula:

𝐶𝐼 =
𝑣𝑚𝑎𝑥 − 𝑑𝑛
𝑑𝑛 − 1

(19)

In our example 𝐶𝐼 = 0.0485. Then, we compare it to the Random
Consistency Index (𝑅𝐶(𝑑𝑛)), whose values are given in Table 1.
Finding the Consistency Ratio (𝐶𝑅) of 𝐶𝐼 and 𝑅𝐶 estimates
whether the inconsistency is acceptable or not.

{

𝐶𝑅 = 𝐶𝐼
𝑅𝐶 ≤ 10% Acceptable inconsistency.

Otherwise Unacceptable inconsistency.

Back to our example, 𝐶𝑅 = 0.0836 < 10%, so the user’s input
is acceptable, and to be considered. Otherwise, the process is
repeated with a new pair-wise comparison matrix. When the
inconsistency is unacceptable, the subjective judgment of a user
needs to be revised.

e then consider the users that provide higher weight for response
ime, along with their locations, retrieved from the Global Positioning
ystem (GPS), as the candidate users.

.4. Load balancing module

This module is local at Dist-C, where the information is gathered
rom the monitoring modules, user context module, and other net-
orks’ statuses. Upon the event of 𝐶𝑖 being overloaded, this module

is triggered in collaboration with Root-C. This module triggers the
procedure by first identifying the candidate edge users. Those users
who preferred “response time (R)” as their main metric, are candidates
to be vertically handed over to other controllers with better response
times.

We know that there are four handover execution strategies:
network-controlled handover, mobile-controlled handover, network-
assisted handover, and mobile-assisted handover [37]. For our ap-
proach to work, the vertical handover is a network-controller that is
initiated and mainly controlled by the controller as a resolution method
for load balancing. The flow chart in Fig. 7 summarizes the work-flow
of our proposed framework from 𝐶𝑖’s perspective.

Let 𝐶𝑖 control a cellular domain, with the coexistence of multiple
Wi-Fi controllers within its domain. 𝐶𝑖 vertically hands over edge users
∈ 𝑀𝑁 𝑖

𝑒 to candidate Wi-Fi networks that have their load set ∈ 𝑁𝐿∪𝑈𝐿.
Given that Dist-Cs with load belonging to 𝑈𝐿 are preferred over those
in 𝑁𝐿. The selection method is presented in the following part.

5.5. Network selection module

This module is done by Root-C. Based on the system modeling pre-
sented in Section 4, now we formulate the network selection problem
as a 0–1 integer optimization problem. Let 𝐶1 ∈ 𝐶 be considered as
overloaded at time 𝑡, then, 𝐶1 triggers the load-balancing module. First,
it identifies edge users with R as their main criterion as 𝑈1, where
ℎ
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𝑈1
ℎ ⊆ 𝑀𝑁1

𝑒 and the number of those candidates is |𝑈1
ℎ | = 𝐻 . Second, for

each candidate user, there is a set of candidate networks that currently
cover that user. Note that they can be obtained from the user–controller
adjacency matrix 𝑌𝑡 as the corresponding vector to each row (user). For
a user 𝑢ℎ, let ⃖⃖⃖⃗𝑃ℎ denote the possible candidate networks vector, where
⃖⃖⃖⃗𝑃ℎ = {𝑝2ℎ, 𝑝

3
ℎ,… , 𝑝𝑀ℎ }, and the elements of vector ⃖⃖⃖⃗𝑃ℎ are either 0 or 1,

with each element corresponds to a controller. Third, the corresponding
remaining capacity vector of candidate controllers is obtained from
Eq. (4) as ⃖⃖⃖⃖⃖⃗𝑅𝑚

ℎ = {𝑟2ℎ, 𝑟
3
ℎ,… , 𝑟𝑀ℎ }. Now, based on the remaining capacities

of candidate networks, Root-C selects the new network/controller for
each edge user, 𝑢ℎ currently attached to the overloaded controller, 𝐶1.

With the main objective of matching mobile users with better
alternatives, taking into consideration their remaining capacities, we
formulate our problem as a 0–1 integer programming problem, as
follows:

𝐦𝐚𝐱
𝐻
∑

ℎ=1

𝑀
∑

𝑚=1
( 𝑝𝑚ℎ . 𝑟

𝑚
ℎ ) (20)

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 ∶ 𝑝𝑚ℎ ∈ {0, 1} (21)

𝜃𝑖 <
+
𝛼𝑡ℎ𝑖 (22)

𝑀
∑

𝑚=1
𝑦𝑥𝑚 = 1 ∀ 𝑢𝑥 (23)

𝑘
∑

𝑏=1
𝑧𝑏𝑗 ≤ 𝑙𝑠𝑗 ∀ 𝑠𝑗 ∈ 𝑆 (24)

Our objective is vertically handing over as many users as possible, while
maintaining their requirements in terms of response time. The value of
𝑝𝑚ℎ is either 1 or 0 to indicate whether the corresponding network is
a candidate or not, respectively (Eq. (21)). The load on the candidate
networks have to be below their thresholds in order to accommodate
more users and provide them with satisfied experiences (Eq. (22));
meaning, only under-loaded and normally-loaded controllers can be
candidates. Each user is connected to only one network (Eq. (23)).
When a user, 𝑢ℎ is switching to a new network, the new PoA has to have
an available channel to be assigned to that 𝑢ℎ, otherwise, the vertical
handover fails (Eq. (24)). To solve this, a greedy search would give
us a solution in a linear time with respect to the number of available
networks and candidate users. In the worst-case scenario, the search
would consume 𝑂(𝐻𝑀), where H is the number of candidate edge
users and M is the number of available networks. We argue that the
computation overhead introduced by this step of our proposed-LB is
negligible, as the number of candidate users and controllers are limited
in practice.

6. Experiment and evaluation

In this section, we describe our simulation environment, including
the parameters and conditions. We also divide our simulations into four
experiments, where we analyze the results and draw conclusions.

6.1. Setup

In our experiments, we chose Ryu [42] as our SDN controllers
to communicate with the data plane and to test our management
framework. We implemented our data plane on Mininet v.2.1.0 [43].
The data plane is composed of OVS-switches that support OpenFlow
v1.3. We ran Ryu and Mininet on a virtual machine with intel core i7
processor and a 4 GB of RAM. The virtual machine is running Ubuntu
16.04 LTS.
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Table 2
Simulation parameters.

Parameter Setting

Tool Mininet 2.1.0
Links delay between switches 2 ms
Links delay between switches and hosts 5–10 ms
OpenFlow message v.1.3.0
Controllers Ryu
Capacity 𝛼 6000 flows/s
Decay factor 𝛽 0.2,1
Threshold 𝛼𝑡ℎ 900,5780 flows/s
Test tools iperf, ping, Tcpdump
UDP datagram 1470 Byte
UDP buffer size 208 kB
TCP window size 15 kB

In our setup, we implemented a two-tier hierarchical control plane;
e had two controllers as tier-1 Dist-Cs (𝐶1, 𝐶2), and a third controller

connected to each of them as the Root-C. We used the TCP socket as our
messaging system to get messages moving between the Ryu controllers.
𝐶1 represented the controller of a cellular network with six OVS-
switches and 20 users, while 𝐶2 represented a Wi-Fi network with a
smaller capacity and connected to two OVS-switches and four attached
users. The users were placed and moved randomly. Meanwhile, they
randomly generated streams of UDP and TCP traffic that started at
different times for random periods of time. The list of simulation
parameters is shown in Table 2.

Unfortunately, due to the restrictions imposed by Mininet, we could
not implement AHP at the user’s end. Mininet supports only OpenFlow
protocol, so it does not allow messages other than OpenFlow messages
to be exchanged between the data plane and the control plane. How-
ever, to overcome such a limitation, we chose random percentages
of users to be our candidates to be handed over. The percentages
were between 10% to 14% of users, since a higher percentage can be
unrealistic.

6.2. Experiment results

Handover, along with other procedures associated with mobile
users, can exhaust the SDN controllers’ resources. Thus, load balancing
can be achieved earlier, as a part of the handover preparation stage,
to alleviate longer delays due to saturated buffers that are unable to
177
process handover signaling messages efficiently. Different controller
loads have different impacts on the completion of a critical procedure
such as a handover. To demonstrate this, we conducted an experiment
by running a UDP traffic between two hosts, where one is mobile. Fig. 8
shows the effect on two metrics, UDP throughput and jitter. As it is
depicted, we started UDP iperf traffic between two nodes for 20 s. As
one of them moved from its PoA to another, a hard handover happened
at the seventh second; we recorded the measured throughput every
0.5 s. Fig. 8a reflects the time a controller took to handle a handover
under different loads, when the controller was under-loaded, normally-
loaded, and over-loaded. It was seen that the handover delay was
higher when the controller handled more OpenFlow packets. That being
said, as the number of packets increased, the controller response time
increased as well, and thus, a handover’s completion took longer; the
handover delay has almost tripled as the controller’s load changed from
under-loaded to being over-loaded. This worsens the user experience
during a hard handover. Regarding jitter, a high variation in delay
degrades the user experience while using sensitive applications such as
VoIP. As Fig. 8b shows, as the controller load increased, the variation
in delay prolonged, thus disturbing or even disconnecting the service.

The results of the experiment found clear support for the importance
of load balancing in minimizing handover delay since the controller
response time is actually a main contributor in handling handover
signaling messages.

In a different set of experiments, we run an experiment ten times
and we recorded the average perceived response time by the con-
nected users every two seconds, as the load varied on their managing
controllers 𝐶1 and 𝐶2, refer to Fig. 9. As the load on 𝐶1 reached
its threshold at around the 30th second, our proposed-LB started by
handing over candidate users to 𝐶2. Afterward, the handed-over users’
raffic was handled by 𝐶2. We noticed a drop in perceived response
ime by 20%, as the load decreased by 14% of the connected users and
heir on-going traffic. Meanwhile, users connected to 𝐶2 experienced
n increase in 𝐶2’s response time, which was still acceptable since 𝐶2

was under-utilized and it resolved that increase rapidly.
In the previous experiment, we recorded the impact of our

proposed-LB on users within their domains. Now, we show the impact
on a candidate user, let us assume it is 𝑢𝑥, in two scenarios. In one
scenario, we recorded the impact of our proposed-LB in terms of the
perceived response time, every two seconds, including the effect of
the vertical handover. In the second scenario, we studied what would
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Fig. 8. Impact of different loads on handover during a udp traffic.
Fig. 9. Recorded users’ perceived response time.

happen if that user stayed connected to an over-loaded controller,
without a countermeasure. As Fig. 10 shows, as the managing controller
approached its threshold at around 28th second, it took longer to
respond to 𝑢𝑥. Then, since 𝑢𝑥 was a candidate user, it got vertically
anded over to another available under-utilized controller. Thus, 𝑢𝑥

experienced around four seconds of disconnection, and then restored
connection with very low response time from the new controller, which
is around an 80% decrease in the perceived response time. For a
user with response time as their main concern, that shift is favorable.
However, if 𝑢𝑥 does not get handed over, the response time would
reach unacceptable levels (the dashed line), and then the managing
controller would start dropping requests causing disruption for longer
periods until the over-loading state is resolved.

In another experiment, we compared our proposed-LB against other
two static approaches, [18] and [31]. We chose these two approaches
because they share a common ground with our approach, the static as-
signment of controller and switches. The authors of Onix [18] proposed
a flat static structure to scale out their topology. We used their approach
as a benchmark of the static mapping, so we refer to it as SM. The

other approach proposed by Wang et al. in [31] is mainly dependent

178
Fig. 10. Perceived response time in two scenarios.

on the idea of balancing the load of multiple controllers based on
shifting macroflows from the management of one controller to another.
A macroflow is a set of flows originating from a particular switch and
destined to the same switch. Unlike microflows, where the controller
installs rules in the most granular level for each connection. Even
though a macroflow can relieve the controller from handling each flow,
it requires the use of wildcards that rely on TCAM, which is expensive
and restrictive. The proposed approach by [31] is implemented in a
hierarchical architecture, where a set of distributed controllers report
their load information and flow entries stats to a root controller. Then,
the root controller determines the macroflow(s) to be redirected to
ensure fairness among all the controllers.

As shown in Fig. 11, we compared the controller load between three
approaches: SM [18], GFRD [31], and our proposed-LB. Expectedly, a
controller’s load in SM increases linearly as the requests rate per second
increases. As depicted, GFRD can minimize the load by 50%, and that is
due to the pre-installation of wildcard rules in adjacent edge switches.
Our approach, however, increases linearly as in SM except that once the
requests reach a pre-defined threshold (i.e.,

+
𝛼𝑡ℎ = 0.75×𝛼), the balancing
module is triggered to hand over candidate users. Hence, the controller
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Fig. 11. Controller load as request rate increases in three approaches.

Fig. 12. Resource utilization at different loads.

is relieved as candidate users’ traffic is shifted to other controllers. In
this experiment, we chose 𝛽 = 0.2 to make our results comparable to
the results reported by [31]. Based on the results shown in Fig. 11, we
estimated the resource utilization under different loads for the three
approaches in Fig. 12. Knowing that resource utilization is computed as:
𝑢𝑡𝑖𝑙 = 𝜃

𝛼 . Apparently, [31] reports 50% lower controller load compared
o SM and that is because of the pre-installation of macroflows wildcard
ule for traffic redirection. This rule sends out those flows as chunks
rom one controller to another through switches on the path, the thing
hat shows a reduction in the load from the beginning even before
oad balancing is triggered. In their approach, their target is to ensure
airness between controllers as well as reducing the response time of the
hole system; unlike our target, which aims to relieve the over-loaded

ellular controller.
We simulated the three aforementioned approaches on the topolo-

ies that are shown in Fig. 13 to measure their reactiveness and
ffectiveness. We triggered traffic randomly from users for 120 s and
ecorded the response times that the users perceived of their con-
rollers. The simulations were repeated ten times and the average
esponse times were taken. We plotted the results of our approach
gainst the other two approaches in Fig. 14.

From Fig. 14, we observe the following. There were two periods
f over-loading, one started around the 28th second, while the other

tarted at the 92nd second; the three approaches handled these periods
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ifferently. GFRD did not show drastic changes as this approach based
n a proactive strategy that ensures no over-utilization may happen.
egarding SM, there is no proactive mechanism to over-loading states;

herefore, the controller load reached its cap and started dropping
lows as it could not handle more traffic. As for our proposed-LB, once
he controller load reached a pre-defined threshold (i.e., 𝛼𝑡ℎ = 5780

flows/s), 10% of the connected users and their on-going traffic got
handed over to an under-utilized controller. Those users helped in
relieving the over-loaded controller resources enhancing the response
time for other connected users, and gaining better response time from
their new controller. Yet, they experienced some data loss due to the
vertical hand over that is around 8%, while in the SM, the data loss is
at least 15% until overloading state is resolved.

In this part, we refer to an essential metric called “balance time”
[26].

Definition 1 (Balance Time). The period of time starting from when the
unbalance state is detected until that state is resolved.

For instance, the balance time in our approach starts from reaching
a threshold in term of load, then identifying the candidate users,
selecting more suitable network(s), and then vertically handing over
the users. Intuitively, the lower the balance time, the more efficient
the load balancing strategy. In our simulation, the balance time was
the period between [28–36] seconds.

To further analyze and measure the effectiveness of our approach,
we need to address the impact on different types of users, including
those that remain connected to the over-loaded controller and the ones
that are connected to the under-loaded controller before, during and
after the balance time. Therefore, we recorded the response time of
four categories of users. Since both periods of over-loading showed
the same trend, we focus only on the first 60 s that contained the
first over-loading period as in Fig. 15. Here, 𝑢𝑦 is a non-edge user
connected to 𝐶1, 𝑢𝑧 is a non-edge user connected to 𝐶2, 𝑢𝑤 is a user
in GFRD, and 𝑢𝑥 is an edge user to be vertically handed over when the
load balancing mechanism is triggered. Note that 𝐶1 got over-loaded,
while 𝐶2 was under-loaded at the time of network selection. The user
connected to 𝐶1, 𝑢𝑦 ∈ 𝑀𝑁1

𝑛𝑒, experienced a response time around 4.5 s
at the 28th second, then about 10% of users got handed over resulting
in 36% drop in the perceived response time from 𝐶1. Meanwhile,
as the load on 𝐶2 was incremented by the load of the handed-over
sers, 𝐶2’s response time increased at the 36th second for a short
eriod, which is still acceptable given that 𝐶2 was able to accommodate
ore users and provided less delay. Regarding the user’s perceived

esponse time in GFRD, we can see that they experienced a nearly-
teady pattern of response time due to the pre-configuration of wildcard
ules that maintain the whole system in a fair state among controllers.
eanwhile, the candidate edge users connected to 𝐶1, 𝑢𝑥 ∈ 𝑀𝑁1

𝑒 , after
he balance time, as they got connected to another controller 𝐶2, they
xperienced in average 28% drop in the response time compared to
FRD, during the period between [36−60] seconds.

Based on multiple criteria, we evaluate our approach and the other
wo, GFRD and SM, in Table 3. Note that we use (––) to indicate
hat this property has not been investigated, and the (✖) to indicate
nsatisfied property by that method. An important property that we
ant to shed light on is the fact that the methods followed by [18]
nd [31] require inter-connection between domains for their algorithms
o work, meaning that the concept of completely isolated domains is not
aken into consideration. Unlike our approach, we provide a solution
or both connected and disconnected domains since our proposal is
rrespective to infrastructure. Still, the SPoF issue persists; however, not
s severe as placing the control logic of a network entirely on a single
ontroller.

On another note, in our approach, we aim at reducing the number of
tatus synchronization messages between tier-1 controllers in order not
o introduce intercommunication overhead. Note that the previously
iscussed two approaches, [18] and [31], did not provide algorithms
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Fig. 13. Simulation topologies.
Fig. 14. The perceived response time by a mobile users in three scenarios.

Table 3
Evaluation of the three approaches.

Property SM GFRD Proposed

Scalability ✔ ✔ ✔

Static switch-controller assignment ✔ ✔ ✔

Minimized synchronization ✖ – ✔

Functionality distribution ✔ ✖ ✔

Mitigating bottlenecks ✔ ✖ ✖

Isolated domains ✖ ✖ ✔

Low response time ✖ ✔ ✔

Efficient resource utilization ✔ ✔ ✔

Hardware restrictions – ✔ ✔

Data loss percentage 15% – 8%
Mobility consideration ✖ ✖ ✔

User preference inclusion ✖ ✖ ✔

Fairness ✖ ✔ ✖

Considering non-uniform capacities ✖ ✖ ✔
180
Fig. 15. The perceived response time by different users in two approaches.

to reduce the inter-controller overhead. Therefore, we consider other
studies that have proposed mechanisms to minimize the number of
messages between controllers. In this part, we compare the complex-
ity in terms of the number of messages, in the worst-case scenario,
between [26], DALB [23], and our strategy. As reflected in Fig. 16, the
approach in [26] has the highest synchronization messages among the
three. As for DALB, it performs well when there are fewer controllers
interconnected; however, as the number of controllers grows, the over-
head increases. Our strategy performs well regardless of the number
of interconnected controllers. As the number grows, our proposed
strategy outperforms the other two approaches, since Root-C limits the
frequency of updating when a controller does not change its load set.

7. Conclusion

Indeed, the timely delivery of a huge number of control messages in
SDN is critical. Since the control/signaling messages have to be handled
by a controller, that controller’s response time has a vital impact on the
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Fig. 16. Synchronization complexity in term of number of messages.

completion of mobility management procedures, including handover.
Therefore, we approach the over-loading controller problem, specif-
ically to minimize the maximum response time by exploiting users’
preferences and the complementary resources of other cooperative
controllers. We have proposed a management framework that requires
three main functions. First, we should identify candidate users based
on their context information; we have used AHP, a decision-making
tool to include the user’s input into our framework. Second, we need a
mechanism that reduces the frequency of load disseminating between
multiple controllers, and hence, reducing overhead. Third, we have to
optimize the decision problem on the selection among several candidate
networks. We have compared our mechanism against two other static
ones, and in our approach, the vertically handed-over users experienced
lower response time compared to the other approaches.

So far, in our proposed-LB, we assume the vertical handover hap-
pens to users and their on-going traffic with a guarantee of an avail-
able channel only, yet, there was no guarantee of minimum channel
bandwidth with respect to their service requirements. An interesting
research direction would be coupling the control plane response time
with the service requirement at the data plane level in our network
selection approach. In this case, we would extend our vertical handover
decision process to include the service type to ensure the channel
capacity of the new attachment guarantees the bandwidth requirement
of the handed-over user QoS.
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