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Modern big data applications tend to prefer a cluster computing approach as they are linked to the distributed computing
framework that serves users jobs as per demand. It performs rapid processing of tasks by subdividing them into tasks that execute
in parallel. Because of the complex environment, hardware and software issues, tasks might run slowly leading to delayed job
completion, and such phenomena are also known as stragglers. The performance improvement of distributed computing
framework is a bottleneck by straggling nodes due to various factors like shared resources, heavy system load, or hardware issues
leading to the prolonged job execution time. Many state-of-the-art approaches use independent models per node and workload.
With increased nodes and workloads, the number of models would increase, and even with large numbers of nodes. Not every
node would be able to capture the stragglers as there might not be sufficient training data available of straggler patterns, yielding
suboptimal straggler prediction. To alleviate such problems, we propose a novel collaborative learning-based approach for
straggler prediction, the alternate direction method of multipliers (ADMM), which is resource-efficient and learns how to
efficiently deal with mitigating stragglers without moving data to a centralized location. The proposed framework shares in-
formation among the various models, allowing us to use larger training data and bring training time down by avoiding data
transfer. We rigorously evaluate the proposed method on various datasets with high accuracy results.

1. Introduction

Any organization that depends on a cloud computing en-
vironment majorly focuses on factors like CPU usage,
memory, I/O and Network for performance optimization.
However, all these parameters are susceptible to perfor-
mance degradation and may result in suboptimal quality of
service (QoS). The Google cluster’s trace study is a milestone
toward the analysis of workloads in a cloud environment
with multiple servers as studied in Dean and Ghemawat [1];
Chen et al. [2]; Reiss et al. [3]. This provides the analysis of
workload data recorded on Google cluster trace. The im-
portant contribution is the analysis of many tasks and jobs
that offer an efficient allotment of the resources for new
upcoming tasks to the cloud data center, thereby increasing a

throughput of the data center. Owing to the inherent nature
of a parallel execution in distributed computing systems,
sometimes, it experiences the slow-running tasks known as
stragglers, potentially resulting in a delayed job execution.
Cloud computing and high-performance computing
frameworks typically monitor task completion status and
launch backup tasks for stragglers during job execution.
Such redundant approaches incur huge operational and
financial costs. Even with this, they do not provide postevent
analyses to diagnose the causes of the stragglers and their
proactive prevention. Typical straggler identification is
performed in two modes: (1) reactive (online) and (2)
proactive (offline). Reactive techniques typically use a cri-
terion of comparing the task execution time with a threshold
calculated based on the median value within all the tasks [4].
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Monitoring data may not be always accessible from the user
side since the monitoring tools are hard to install and tune.
Hence, some studies focus on the offline strategy by ana-
lyzing logs instead of monitoring Lu et al.[5]. Cluster
managers, e.g., YARN in Vavilapalli et al. [6], Isard et al. [7],
Verma et al. [8], have different focuses. They provide re-
source isolation and allocation based on usages, job prior-
ities, and fairness. They do not provide answers to which
tasks are stragglers within a job or to why those tasks are
slower.

On the other hand, proactive methods analyze dynamic
features like resource utilization, node performance, and
heterogeneity that change over time. Using ML, it is possible
to build models for previously unknown values using
training data that can predict the future and identify
straggler [9]. Straggler detection and analysis using ML can
be categorized under proactive approaches. Javadpour et al.
[10] propose a dynamic method that applies neural networks
for identifying straggler tasks to increase the efficiency.
Another method of straggler-identification compares the
task’s execution time (or progress) with a threshold calcu-
lated based on the median value within all the tasks.
Moreover, there are a breed of techniques of straggler
identification based on CPU utilization. It has been iden-
tified that there is a strong correlation between high system
CPU utilization and straggler occurrence as examined in
Reiss et al. [3]; Shen and Li [11]. The reason for this oc-
currence is resource contention. This is further compounded
due to Head-of-Line blocking (HOL blocking), task inter-
ference during execution, busy locks, queue issues, hazard
rates of task execution, and launching additional speculative
replicas, which requires additional time for execution.

The state-of-the-art proactive models as studied analyze
the workload and compute nodes as a separate straggler
estimation task with independent models. One of the mo-
tivations for pursuing a separate ML model for each
workload and node independently is because there exists a
wide variety of resources allocation ranging from node to
node and workload to workload. Consequently, a wide
variety of straggler patterns arise because of such hetero-
geneity. This was demonstrated by Yadwadkar et al. [4].
Thus, a separate ML model training deemed to be necessary.
However, such models face a couple of major challenges: (1)
independent node and workload that need a set of new
training leading to increased time for data gathering, and (2)
data scarcity that might arise for a given workload for re-
spective node yielding suboptimal ML models. This set of
challenges can be effectively addressed by the ML model that
learns the straggler prediction task collaboratively. In such
approaches, the node, where sufficient training data would
not be available, would get the data, while it was executing
other workloads, or from other nodes running the same
workload. This can be achieved in practice using multitask
learning (MTL) as demonstrated by Yadwadkar et al. [9].
Another approach mentioned in Deshmukh et al. [12] tried
to avoid straggler occurrence through data parallelism
techniques like MPI-libraries.

Developing a distributed machine learning approach,
which distributes large scale data efficiently, is challenging.
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Standard ML techniques need the training data to be
gathered at a centralized location, i.e., on one machine orina
data center. Such data collection and analysis might be
difficult to conduct in practice because of resource con-
straints. In a distributed setting, multiple nodes collabora-
tively work toward a common optimization objective
through an interactive process of local computation and
communication, which ideally should result in all models
converging to a global optimum.

To alleviate problems, in this paper, we propose a
Collaborative Learning-based (CL) formulation for learning
predictors that are highly accurate and generalize better than
multiple independent models. This is based on the alternate
direction method of multipliers- (ADMM-) based support
vector machine (SVM), proposed by Boyd et al. [13]. The
proposed model enables the nodes to collectively learn a
shared prediction model while keeping all the training data
on nodes, decoupling the ability to do ML from the need to
store the data in the centralized manner. CL allows for
smarter models, lower latency, and less power consumption,
all while ensuring privacy. There exists a subtle difference
between parallel variants of traditional ML models and the
CL-based ones; traditional ones have single instruction
multiple data (SIMD) architecture, while the latter have
decentralized/distributed optimization of model parameters.
The local models make predictions on the nodes by bringing
the model training to the node as well.

In CL, there exist two types of nodes: (1) a common
handler that shares the model updates with other nodes,
and (2) independent nodes that are the members of the
data center. Independent node downloads the current
model, improves it by learning from data on node itself,
and then performs the model parameter changes as an
update. Only this update to the model is sent to the
common node, where it is immediately processed with
other node updates to improve the shared model. All the
training data remains on the node, and no individual
updates are stored in the common node. Consequently, no
data transfer takes place among the nodes making it highly
resource-efficient and quick. In case of straggler identifi-
cation, each independent node would be trained on the
local data, and thus, forming a local model (A) for straggler
identification, and the parameters of all such nodes are
aggregated (B) to form a consensus change. Note here that
all data reside on local nodes, while only ML model pa-
rameters are shared. The consensus change form (B) is
reflected on the global straggler identification model (C),
owing to the decentralization property of collaborative
filtering. Finally, a copy of (C) is made available on each of
(A) for straggler prediction. To that end, our key contri-
butions are as follows:

(1) A novel CL-based technique of the straggler iden-
tification problem that is resource-efficient and
captures the heterogeneous resource contention
patterns across workloads and nodes.

(2) A rigorous evaluation of the proposed system for
predicting and avoiding stragglers in both generated
data and real-world production cluster traces.
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(3) The robust CL-based formulation for straggler de-
tection even with a small number of stragglers, thus
tackling class imbalance problems, a phenomenon
that frequently occurs in ML problems because of
lack of sufficient training examples.

In what follows, we first give some background on
stragglers in Section 2. We then describe the proposed CL-
based straggler detection framework in Section 3. In Section
4, we empirically evaluate our formulations on the various
workloads. In Section 5, we describe the results substanti-
ating claims proposed in this article. We conclude with an
outlook of improvement and discussion of the proposed
work.

2. Related Work

Considering the dynamic nature of the cloud environment
including nonreliable resources, heterogeneous workload,
and quality of service (QoS) requirements, a static resource
management solution may not work. Therefore, a static
resource manager is extended with a monitoring module,
which collects the valuable information on the performance
of the application along with the resource utilization of
system components about the state of the system. On the
other hand, advances in machine-learning-based (ML)
methods offer all the behavioral patterns and interesting
changes of monitored components. Obtained knowledge
about nonconforming patterns, which is often referred to as
an outlier induced for a variety of reasons, helps improve the
system performance. Parallel computing frameworks that
follow the MapReduce by Dean and Ghemawat [1] paradigm
are widely used in real-world big data applications to handle
batch and streaming data. Among these, Zaharia et al. [14]
have recently gained wide adoption. Different from the
Hadoop framework as in Manikandan and Ravi [15],
Vavilapalli et al.[16], Spark supports a more general pro-
gramming model, in which an in-memory technique, called
Resilient Distributed Dataset (RDD), Zaharia et al. [17], is
used to store the input and intermediate data generated
during computation stages. Spark is an implementation of
the MapReduce model that outperforms Hadoop by
packing multiple operations into single tasks, and by uti-
lizing the RAM memory for caching intermediate data. We
target Apache Spark, because it is a widely used, efficient,
state-of-the-art platform for data analytics, and it is cur-
rently the fastest-growing such open-source platform,
Zaharia et al. [14].

Apache spark is an open-source cluster computing en-
gine for large data processing. One of the most important
factors in processing large datasets is the speed achieved
through running computations in memory. At its core,
Spark is a ‘computational engine’ that is responsible for
scheduling, distributing, and monitoring applications con-
sisting of many computational tasks across many worker
machines, or a computing cluster. Spark is designed to ef-
ficiently scale up from one-to-many thousands of compute
nodes. To achieve this while maximizing flexibility, Spark
can run over a variety of cluster managers, including

Hadoop YARN, and a simple cluster manager included in
Spark itself called the Standalone Scheduler. The Spark
context connects to the Spark cluster manager, which then
allocates resources across the worker nodes for the appli-
cation. The cluster manager allocates executors across the
cluster worker nodes. It copies the application jar file to the
workers, and finally it allocates tasks.

LATE by Zaharia et al. [18] uses progress score to en-
hance the performance as compared to speculative execu-
tion. But it exerts pressure on other running tasks by
competing for the resources and presumes that tasks make
development at a roughly constant rate, which is not always
the case. Mantri proposed by Ananthanarayanan et al. [19]
focuses more on saving computing resources of a cluster, i.e.,
task slots. If the backup job has an extremely large proba-
bility to finish early, Mantri will stop the initial task while the
cluster is active (kill-restart method). However, the kill-
restart method may not guarantee that the new task will be
completed earlier than the original one. In all reactive tech-
niques, the problem gets even worse when some tasks start
straggling when they are well into their execution. Cloning
mechanism like Dolly proposed by Ananthanarayanan et al.
[20] is proactive but focuses only on interactive jobs and is
replicative in nature, incurring additional resources.

A detailed survey of load balancing strategies using
Hadoop queue scheduling and virtual machine migration
was proposed by Dey and Gunasekhar [21]. A method was
proposed by Sravanthi and Rao [22], which is a dynamic,
processing aware job scheduler, a technique that performs
load allotment work to nodes based on their prior perfor-
mance. Similarly, a method was proposed by Naresh et al.
[23] performing optimal resource discovery and dynamic
resource allocation. It is based on improved particle swarm
optimization and cuckoo search algorithms. Load balancing
is the process of adapting to increase and decrease in the
workload with associated resource consumption in data
centers that enhance the overall performance of the system
achieving client satisfaction. An effective measure was
studied by Talasila et al. [24] for tackling the load balancing
phenomenon for efficient traffic handling in the public
cloud. Another method based on Ant colony swarm opti-
mization based on performance analysis of load balancing
techniques in cloud centers was studied by Reddy et al. [25],
to prevent the latency in real-time stream processing engines
like Apache Spark streaming, with an additional technique
like dolly retreat mechanism to avoid stragglers and process
data efficiently, as studied in Srikanth and Reddy [26]. Radha
and Rao [27] offered a comprehensive review of techniques
to increase MapReduce performance in heterogeneous cloud
environments by partitioning data locality through inter-
mediate data at the reducer side. By applying the delayed
scheduling by enhancing the data locality in MapReduce,
Radha and Rao [28] have shown the performance im-
provement in slot Utilization and Hadoop cluster. Praveen
et al. [29] proposed an effective resource allocation using a
social group optimization algorithm in conjunction with the
scheduling of tasks by application of shortest-job-first
scheduling technique for minimizing the makespan time
and maximizing throughput.



Many researchers have attempted to avoid stragglers
through machine learning approaches. The poor performing
nodes are identified and blacklisted [30, 31] during the task
scheduling phase. These techniques again lead to resource
wastage, as they are not able to participate in the execution as
stragglers are mainly nonpersistent. Mao et al. [32], Du et al.
[33], and Zhang et al. [34] have applied a reinforcement
learning approach for mitigating stragglers, which reduce job
completion time, but the preciseness of identification of
stragglers may not be optimum. Existing approaches used in
decentralizing data consists of Alternating Direction Method
of Multipliers (ADMM) based algorithms like [35-39].

3. Proposed Work

3.1. Framework. We introduce a novel framework to
identify stragglers, as illustrated in Figure 1 which is based
on two main stages. The first stage consists of two parts: (1)
extraction of feature vectors from various job resources
utilization metrics of nodes; (2) training a global classifier
with the help of multiple independent local models as de-
scribed in the current and next sections as depicted in
Figure 2. The second stage consists of testing workloads from
the validation or unseen environment by applying the
learned model. The feature designing from the test data is the
same as mentioned above. Testing at nodes is performed by
copying the global model to a node.

The training of the proposed framework takes place in
multiple stages as depicted in Figure 2. It shows learning
phase of distributed SVM via ADMM, in which individual
worker trains SVM model concurrently and separately. In
the beginning, each worker’s local SVM will be different, but
after exchange of model parameters with global model, it
becomes more similar in each iteration. The global model
will aggregate the local model parameters and generate the
consensus model.

3.2. ADMM-Based Collaborative Learning. We consider a set
of n nodes and a central aggregator. Each node i € n has
an independent training dataset. = (a;j,b;;):

Vj € m;wherem; is the number of training samples in the
dataset D;,a;; € R%is the d — dimensional feature vector of
the j-th training sample, and b, ; € R? is the corresponding
p-dimensional data label. In this paper, we consider a star
network topology, where each node can communicate with
the central aggregator, and the aggregator is responsible for
message passing and aggregation. The goal of straggler
identification is to train a supervised learning model on the
segregated dataset D;,i € nfromnnodes. This enables pre-
dicting a label for any new data feature vector of job uti-
lization metrics. The learning objective can be formulated as
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FiGure 1: Workflow of proposed straggler detection framework.
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FIGURE 2: Training phase of the proposed architecture.

the following regularized empirical risk minimization
problem:

m;

M:

min
w

mi (a;b;jw) + AR (w), (1)

—_

i

I
—
-

w € R™P is the trained global ML model. I(-): R* x R x
R¥P — R is the loss function used to measure the quality
of the trained model, R (-) refers to the regularizer function
introduced to prevent overfitting, and A > 0 is the regularizer
parameter controlling the impact of regularization. Casting
Equation (1) can be cast into the loss function of binary
logistic regression classifier as follows:

l( ,J,blj,w) :ln(l+exp( b ;jw alj)) (2)

To apply ADMM, we reformulate Equation (1) as

w1 A
mln Z( = I(a ,],b,],w)+;R(wi)>, )

w; xsnl 1

suchthatw, =w, i=1,...,n
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In standard ADMM, the augmented Lagrangian func-
tion associated with the problem (3) is

L, (W AW} i 1Vitien) = Z L, (W w, ), (4)
i-1

3

i

M

L, (wpw,y;) =

<.
Il
—_

{:}icn € R*P* are the dual variables associated with the
constraints, and p > 0 is the penalty parameter. The standard
ADMM solves the problem in Equation (3) in a Gauss-Seidel
manner by minimizing Equation (4) with respect to {w;},,,
and w alternatively followed by a dual update of {y;},,. The
formulation is based on the work presented in [13].

3.3.  Straggler Prediction Model Using Probabilistic
Classification. The training dataset D ={(a;,b;)la; €
R4, b; € (-1,+1)}, is either -1 or +1, indicating the class to
which data point ai belongs. The objective of probabilistic
classification using logistic regression as mentioned above is
to learn the class-posterior probability p(b | a) of the training
samples dataset D. Based on the class-posterior probability,
classification of a new sample a, can be carried out
bres: =max € {—1,+1}p(bla) with confidence p(bla). Let
be{-1, +1} represent the nonstraggler and straggler class,
respectively. The task of straggler detection is to assign the
value of the estimate p(a) for test data, given training data
and model. The conditional probability of straggler is given
by p(a, 6), where 6 is the vector of parameters learned in
Section 3.2 - w, w;, p and y respectively.

4. Experimental Study

4.1. Configurations. The various configuration parameters
are mentioned in Table 1.

4.2. Cluster Setup. We have a network of nodes in a Hadoop
Cluster as per the configurations as shown in Table 1. We
have built the Hadoop Cluster of five nodes to estimate the
proposed solution for discovering straggler nodes. One of
the nodes is picked as a master node, and it runs the Hadoop
Distributed File System (Name-node) and MapReduce run
time (Resource manager). The remaining four nodes are
slave nodes (Data-nodes and Node-managers). The regular
block size in Hadoop is 128 MB. When a larger file is inserted
into HDFS, it will be broken down into 128 MB pieces and
divided between data nodes. All systems in the multinode
setup use Ubuntu v16.04 operating system, JDK 1.7, and
Hadoop 2.7.1 version for performance.

4.3. Workload. We executed two different types of jobs on
intensive Hadoop memory and intensive CPU utilization.
Memory intensive tasks such as machine learning-based

1 A
Eil(ai’j) bi,j’ wi) + E

where

R(w;) = ypw; —w + g"wi - wuz’ (5)

K-Nearest neighbors and image-processing were performed.
CPU intensive tasks were created by kernel Support vector
machines and similar algorithms. Some network intensive
tasks using heavy uploads and downloads were also created
in conjunction with the first two types of load creation
mechanism.

4.4. Dataset

4.4.1. Features. We have used 22 features, most of them
related to CPU utilization (e.g., CPU idle time, user time,
system, CPU wait, I/O and CPU speed, etc.), disk utilization
(e.g., amount of free space, local read/write statistics from
the data nodes, maximum percent used for all partitions,
etc.), memory utilization (e.g., Amount of buffered, cached,
shared, free and total amount of available memory, etc.),
network utilization (e.g., packets in and out per second, etc.),
and system-level features (e.g., total number of processes,
total number of running processes, total amount of swap
memory, amount of available swap memory, etc.). The job
history server traces job execution time through start time,
finish time, task execution time, read data in bytes, write data
in bytes, and elapsed time that are also obtained. We have
not used any feature reduction technique as the number of
features is already lower in number, and performance
demonstrated using the proposed method in section 5 does
not seem to be affected by the number of features.

4.4.2. Dataset Generation. For constructing the prediction
models, we require a labelled dataset consisting of {feature,
label} pairs. We have used Ganglia-based node-monitor by
Massie et al. [40] to capture resource utilization metrics of
nodes. We get the features related to jobs from Hadoop. We
select a subset consisting of five features, that is, execution
time, average CPU utilization ratio, memory usage, disk I/O
time, and cycles per instruction, empirically using the
proposed ADMM. The metric used for deciding the straggler
is normalized duration (execution) time suggested by
Yadwadkar et al. [4]:

nd(t) = task execution time
| (amount of work bytes read/written by task t) |
(6)
An " task t of job J is calld a straggler if

n d(t;)> (B x median{n d(t;)}), where B is the threshold
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TaBLE 1: Hardware and software configurations used.
Attributes Values
Hadoop cluster installation mode Fully distributed
Number of cluster nodes 5
RAM at nodes 1, 2,3, and 4 4GB

Star with master-slave
500 GB
Has a job follower
Data node and task follower
128 MB
2.7 GHz

Network topology
Hard disk space
Master node
Slave node

File block size
Clock frequency

coefficient, taken as 1.3, as a rule of thumb. However, we see
the variation of performance metrics across various values of 3.

4.5. Experimental Setup. With labelling the dataset, we
evaluate the performance of straggler prediction on all the
workloads using ADMM-based SVM. First, each node
builds its local classification model by collecting data on that
node. To get the features related to the straggler node, we
have overloaded each node alternatively and then captured
its features. This process of capturing the dataset for straggler
and nonstraggler in the training phase requires little time,
and we incrementally increased the number of stragglers in
the system. The standard feature normalized data is fed to
the ADMM SVM written in the Spark environment by Dhar
et al. [41]. This reduces the model building time with a small
amount of model parameter transfer. This completes the
model training phase. This global model would reside on
each node for the classification.

In this experiment, we have chosen a binary classification
method, where +1 is the label for straggler and -1 for
nonstraggler. For ADMM-SVM for logistic regression, lo-
gistic loss is used. The practical implementation of ADMM-
LR is referred to in [34]. For ADMM-SVM with least square
formulation, the loss function is least square for both
methods, and the regularization parameter is elastic net. The
parameters A and p are set to 1. For MPI logistic regression
from Scikit-learn by Pedregosa et al. [42], we use L2 penalty,
with regularization constant C being set to 1.

We consider a 5-fold cross validation method to de-
termine the performance metrics. Here, we provide the
results of ADMM-SVM with logistic regression and least-
squares SVM and centralized parallel (message passing in-
terface) SVM (LIBLINEAR) from Pedregosa et al. [42] and
Fan et al. [43] and then evaluate them using the following
scenarios:

(1) Classification accuracy when there is sufficient data

(2) Classification accuracy when sufficient data is not
available We also provide the performance across
various f3. Overall, we have 724 stragglers and 21000
nonstraggler records.

Security and Communication Networks

5. Results and Discussions

5.1. Performance Evaluation Metrics. We use Precision,
Recall, and F1-Score (denoted as F1) to evaluate the per-
formance of all models: the true positives (TP) are the true
straggler detected by the system. False positives (FP) are the
nonstraggler data points detected as stragglers. True nega-
tives (TN) are the correct nonstragglers detected by the
system, and false negatives (FN) are stragglers detected as
nonstragglers by the system. With this set of definitions,

. TP
Precision = ———,
TP + FP

TP

Recall = ———, (7)
TP + FN
2 x Precision Recall
F1score =

Precision + Recall

5.2. Evaluation. We report the quantitative improvement
for identification of stragglers: Figure 3 presents the F1 score
(harmonic mean of precision and recall) of straggler de-
tection averaged across the 5-fold with 80/20 ratio of train
and test. All data points on the plot are a 5-fold quantity
average. Figure 3 reports values of F1 score for various values
of B. From the figures, our approaches outperform the MPI-
based methods. We have an extremely high F1-score of more
than 98% for beta values 1.6 to 1.8. The benchmark method
has a lower performance. A potential reason for MPI-based
SVM to perform slightly worse is because it is not easily
scalable. Besides, the class imbalance between stragglers and
nonstragglers is problematic for most supervised learning
methods. Our framework alleviates these problems by in-
cluding a training dataset estimating correct data distributions
of each class. Figure 4 represents the classification accuracy
when sufficient data is not available. It represents the accuracy
of 5-fold straggler detection average with 80/20 ratio of train
and test. All data points on the plot are a 5-fold quantity
average. With the increase in the number of straggler class
examples available for training, the straggler detection im-
proves. Again, ADMM-LR-SVM performs best, while its
variant ADMM-LS-SVM is not far from it. With just 183 sets
of straggler examples, our framework achieves more than 94%
accuracy. The performance of both of these methods remains
constant with increased inclusion of straggler records.

MPI based SVM performs relatively poorly because of
class imbalance examples. Similarly, Figure 5 represents the
F1 score computed against various numbers of straggler
records. With increasing the number of straggler examples,
Fl-score of straggler detection improves. Again, ADMM-
LR-SVM performs best, while its variant ADMM-LS-SVM is
not far from it. With just 183 sets of straggler examples, our
framework achieves F1l-score more than 98%. As seen in
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FIGURE 3: The Fl-score variation across various values of f3.
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FIGURE 4: Variation of accuracy with increasing number of
stragglers.
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FIGURe 5: Variation of Fl-score with increasing number of
stragglers.

Figures 3-5, there is considerable improvement of lesion
detection, thanks to the proposed framework.

6. Conclusion

We have introduced a novel method for straggler detection
based on support vector machine variants of alternating
directions of method of multipliers. The efficacy of our
method was evaluated through rigorous evaluation on

straggle data. We have demonstrated that our method
achieves better performance compared to the benchmark
method: MPI-based SVM. Our formulation can achieve
better accuracy with only a third of the training data and can
generalize better than other approaches for learning tasks
with little or no data. Thus, the class imbalance problem is
tackled naturally. Our methodology is more suitable for
straggler analysis because of its ability to capture hetero-
geneous distribution of stragglers correctly. This perfor-
mance suggests that it can provide valuable assistance in
detecting the stragglers in production with high reliability.
The proposed framework is generic in nature and can be
extended to various types of workloads, e.g., workloads
across varjous data centers, independent of big data com-
puting frameworks. The framework described here allows
for exploration of additional information with node and job
utilization resources. For example, one can consider infusing
distribution of node utilization metrics with task utilization
metrics and thus can help in further management of
scheduling of jobs. The adaptation of ADMM-SVM inves-
tigated for learning a comprehensive predictor with better
accuracy and reduced job completion along with improved
data privacy as no data movement from client site is required
for sensitive applications.
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