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Abstract 

Pediatric cancer is a rare disease with a distinct etiology and mutational landscape compared 

with adult cancer. Multi-omics profiling of retrospective and prospective cohorts coupled with 

innovative computational analysis have been instrumental in uncovering mechanisms of 

tumorigenesis and drug resistance that are now informing pediatric cancer clinical therapy. In 

this review we present the major data resources of pediatric cancer and actionable insights into 

pediatric cancer etiology stemming from the identification of oncogenic gene fusions, mutational 

signature analysis, systems biology, cancer predisposition and survivorship studies - that have 

led to improved clinical diagnosis, discovery of new drug-targets, pharmacological therapy, and 

screening for genetic predisposition. Ultimately, integration of large-scale omics datasets 

generated through the international collaboration is required to maximize the power of data-

driven approach to advance pediatric cancer research informing clinical therapy. 
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1. Introduction 

At an annual incidence of ~16,000 in the US (https://www.acco.org/us-childhood-cancer-

statistic), pediatric cancer is a disease comprised of many subtypes—more than 50% of which 

are rare cancers with an annual incidence of <200 cases based on the annual cancer diagnoses 

collected from NCI’s Surveillance, Epidemiology and End Results (SEER) program 

(https://seer.cancer.gov). To improve the clinical outcome of pediatric cancer, a concerted effort 

across the world is required to share data generated from this disease. Historically, many 
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therapeutic agents used for treating childhood cancers were a re-application of adult cancer 

therapies, which may not be optimal given the physiologic and developmental differences 

between adults and children. Indeed, multi-omics landscape mapping efforts in recent years 

have unveiled distinct drivers for pediatric cancers (1,2), re-affirming that the etiology and 

tumorigenic mechanisms involved do not always align with those of adult cancers. It should also 

be noted that the current cure rate (80%) of childhood cancer is built on the use of cytotoxic 

chemotherapy and radiotherapies that are often associated with major side effects that can 

reduce the quality of life for survivors (3). Thus, there is a critical need for advancing the 

treatment of childhood cancer based on our evolving knowledge of molecular targets identified 

through multi-omics profiling of patient samples.  

 

Pediatric cancers are thought to arise from developing tissues that undergo substantial 

expansion during early organ formation. This developmental origin has a profound effect on the 

mutational landscape which may require specialized computational tools to decode. For 

example, the paucity of observed somatic mutations and the critical role of fusion oncoproteins 

requires software tools designed for detecting variants at high sensitivity and for assessing 

variant pathogenicity given limited sample size. Therefore, establishing computational and data 

resources is essential to enable the iterative cycle of discovery on a research cohort, 

implementation of precision treatments prospectively in the clinic, study of the molecular 

features associated with clinical outcome, and the investigation of new therapies to improve the 

quality of life for survivors (Figure 1). As genomics research leading to new insights on the 

etiology and treatment of pediatric cancer have already been reviewed thoroughly (4,5), we will 

discuss key resources involved in this iterative data-driven approach and highlight the impact of 

data-driven discovery on patient clinical care below.  

 

 

2. Publicly available pediatric cancer genomic data resources  

 

At the center of recent advances in our understanding of pediatric cancer tumorigenesis are a 

series of large-scale omics profiling studies using retrospective and prospective pediatric cancer 

patient samples (see summary in Table 1). The notable retrospective studies include the St. 

Jude Children’s Research Hospital/Washington University- Pediatric Cancer  Genome Project 

(PCGP)(6), the National Cancer Institute (NCI) Therapeutically Applicable Research to 

Generate Effective Treatments (TARGET) program, the International Cancer Genome 
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Consortium (ICGC), and the Gabriella Miller Kids First Data Resource Center (KFDRC) 

Initiative. Each of these retrospective studies involved whole-genome (WGS) and/or whole-

exome sequencing (WES) and often transcriptome-sequencing (RNA-Seq). Some initiatives 

also involved micro-RNA sequencing (miRNA-Seq), bisulfite-sequencing or methylation array 

data.  

 

PCGP generated comprehensive omics profiling for 15 pediatric cancer subtypes in leukemia (3 

subtypes) (6-11), solid tumor (7 subtypes) (12-16) and brain tumor (5 subtypes) (17-20). 

TARGET (https://ocg.cancer.gov/programs/target) focuses on leukemia (3 subtypes) (21-30) 

and solid tumors (5 subtypes) (31-35) while the primary focus of ICGC is on brain tumors (36-

44). Gabriella Miller KFDRC (https://commonfund.nih.gov/kidsfirst) focuses on familial leukemia, 

3 subtypes of solid tumors and the major histological subtypes of brain tumors (45).The 

resulting data sets are publicly available on a variety of data portals: St Jude Cloud 

(https://stjude.cloud) for PCGP, NCI Genome Data Commons (https://gdc.cancer.gov) for 

TARGET, ICGC portal (https://dcc.icgc.org), and Gabriella Miller KFDRC portal 

(https://kidsfirstdrc.org). St. Jude Cloud also hosts germline genomes of long-term survivors 

from the St Jude Life (SJLIFE) cohort and Childhood Cancer Survivorship Study (CCSS) 

profiled by WGS and WES. A retrospective cohort used for a benchmark analysis of a 3-

platform WGS, WES and RNA-Seq clinical sequencing pipeline is also accessible on St. Jude 

Cloud (46).  

 

Several prospective clinical research studies have incorporated genome-wide sequencing (e.g. 

WGS, WES plus RNA-seq). The resulting data can initiate new iterations of research 

investigations in addition to their clinical utility providing molecular diagnostics, stratification for 

clinical trials, and/or providing avenues for personalized cancer therapy. Currently, publicly 

available genome-wide sequencing data sets include: 1) St Jude Genomes for Kids (G4K), a 

feasibility study assessing the utility of multiplatform genomic testing for precision oncology 

(https://clinicaltrials.gov/ct2/show/NCT02530658); 2) St Jude Real-time Clinical Genomics (47), 

an initiative where upon performing clinical sequencing on every eligible patient at St. Jude (to 

assist diagnostic and personalized therapy), data is publicly released through a comprehensive 

workflow involving verification of patient consent, de-identification, data harmonization, and 

quality checking – being the first instance of an institutional deposition of prospective clinical 

genomics data to the scientific research community as soon as possible; 3) Zero Childhood 

Cancer (ZERO) – a precision medicine program profiling children with poor-outcome, rare, 
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relapsed or refractory cancer from Children’s Cancer Institute and Kids Cancer Centre, Sydney 

Children’s Hospital Randwick, Australia (48); and 4) The Pediatric Brain Tumor Atlas (PBTA) 

representing the world’s largest collection of childhood brain tumor data, available to assess in 

real-time via the Gabriella Miller Kids First Data Resource Portal. 

 

Resources for accessing these large data sets generated from retrospective and prospective 

studies are summarized in Table 1 and further detail presented in Supplementary Tables 1 and 

2. Furthermore, somatic variants from published pediatric genomic studies can be accessed on 

several data portals such as PeCan (https://pecan.stjude.cloud) (49), COSMIC 

(https://cancer.sanger.ac.uk) (50) and PedcBioPortal (https://pedcbioportal.kidsfirstdrc.org) 

(51,52), which are also valuable resources to the community. Further, the National Cancer 

Institute has developed the Pediatric Genomic Data Inventory 

(https://datascience.cancer.gov/resources/nci-data-catalog/pediatric-genomic-data-inventory), 

which documents genomic data sets generated from 50 studies. In addition to data derived from 

primary tumor samples, genomic data and associated compound or genetic screening data 

pertaining to pediatric cancer cell lines are also available. For instance, a total of 113 pediatric 

cancer cell lines are included as part of the Cancer Cell Line Encyclopedia (CCLE) (53) and a 

recent functional genomics screen of 82 cell lines performed by Dharia et al. (54) also represent 

valuable pediatric cancer genomic data resources.  

 

3. Genomics analysis discover new therapeutic targets for pediatric 

cancer  

 

Driver genetic aberrations identified by analyzing pediatric cancer genomic data have helped 

guide clinical trial design. An early example is neuroblastoma, the most common extracranial 

solid pediatric cancer originating from neural crest cells of the sympathetic nervous system. 

Anaplastic lymphoma kinase (ALK) genomic aberrations in neuroblastoma were reported in 

2008 in a series of studies via genome-wide comparative genomic hybridization analysis on a 

large series of neuroblastomas (55), genome-wide scans using high-density SNP arrays on 

primary neuroblastoma samples (56) or familial neuroblastoma pedigrees (57,58). In each case, 

activating ALK hotspot mutations were identified, providing a novel therapeutic opportunity – 

leading to the Next Generation Personalized Neuroblastoma Therapy (NEPENTHE) clinical trial 

(https://clinicaltrials.gov/ct2/show/NCT02780128) for patients whose tumors involve mutations in 
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ALK. Here patients receive combination therapy of ribociclib, a dual inhibitor of cyclin-dependent 

kinase (CDK) and the ALK-inhibitor ceritinib – having demonstrated synergy against 

neuroblastoma (59). Additional studies by Maris and colleagues employing computational 

approaches have led to the identification of candidate immunotherapeutic targets such as 

CAMKV in MYCN amplified neuroblastoma (60) or GPC2 in high-risk neuroblastoma (61) from 

the analysis of NCI-TARGET neuroblastoma RNA-Seq data – where the potential of the latter 

as a candidate for CART immunotherapy being validated upon observed anti-tumor activity of 

CAR T-cells that target GPC2 in vitro and mouse models (62).  

 

The promise of immunotherapeutic approaches relies on harnessing the specific memory of the 

immune system to target malignant cell neoepitopes, enabling durable cures with minimal 

toxicity. However, given the paucity of somatic mutations in pediatric cancers it was initially 

unclear whether immunotherapy would represent a viable approach for treatment. To ascertain 

the neoepitope landscape in pediatric cancer, following the development of an analytical 

workflow, Chang et al. (63) defined the neoepitope landscape of somatic alterations comprised 

of missense mutations and oncogenic gene fusions among 540 childhood cancer genomes and 

transcriptomes revealing at least one predicted neoepitope in 88% of leukemias, 78% of central 

nervous system, and 90% of solid tumors – where a high proportion (69.6%) of neoepitopes 

were identified within ETV6-RUNX1 in leukemias containing this fusion. Importantly, a 

subsequent study by Zamora et al. (64) reported the majority of predicted peptide neoepitopes 

in pediatric acute lymphoblastic leukemia (ALL) were recognized by patient T cells and induced 

functional responses in vitro. Further, CBFB-MYH11 fusion neoepitopes, found in 12% of 

pediatric acute myeloid leukemia (AML) (29), enable T cell recognition and killing in vitro and in 

vivo in a patient-derived murine xenograft (65). Collectively, these studies demonstrate pediatric 

ALL and AML are not necessarily immunologically silent and necessitate further exploration of 

immunotherapy for targeting fusion positive leukemias.  

 

Gene fusions are a major class of drug targets and are important biomarkers for defining 

subgroups of pediatric leukemia (e.g. ETV6-RUX1 and BCR-ABL1) for risk stratification. 

Historically, gene fusions were characterized by cytogenetics or RT-PCR in a molecular 

pathology laboratory. However, since profiling of the entire transcriptome by RNA-Seq has 

become a standard assay for research and clinical applications, novel gene fusions can be 

discovered from RNA-Seq or a combination of RNA-Seq and WGS through the use of 

innovative computational methods such as CICERO (66), FusionCatcher (67), CREST (68), and 
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DELLY (69). For example, targetable fusions involving a diverse number of kinases (e.g. ABL1, 

ABL2, CRLF2, CSF1R, EPOR, JAK2, PDGFRB, PTK2B, TSLP, or TYK2 ) were detected by 

CICERO in high-risk acute lymphoblastic leukemia (ALL) samples exhibiting a gene expression 

signature reminiscent of BCR-ABL1 (Ph-like) (70,71), suggesting tyrosine kinase inhibitor 

therapy may be effective for these patients, as had previously been demonstrated in BCR-ABL-

positive ALL patients (72). Indeed, this notion was further supported by leukemic cells and cell 

lines harboring these fusions, to exhibit respective sensitivity to ruxolitinib and dasatinib in vitro 

(70); and induction of remission of refractory EBF1-PDGFRB positive ALL following tyrosine 

kinase inhibitor therapy (73,74). Importantly, these findings contributed to the initiation of 

precision-medicine testing and treatment for Ph-like ALL in Children’s Oncology Group ALL 

(https://childrensoncologygroup.org/aall1521) and St. Jude Total17 

(https://clinicaltrials.gov/ct2/show/NCT03117751) clinical trials. 

 

Targetable gene fusions have also been detected in multiple pediatric cancer types. For 

example, gene fusions involving neurotrophin receptor kinases (NTRK1, NTRK2, and NTRK3) 

have been found by PCGP and ICGC in low grade gliomas (17,44) and non-brainstem high-

grade glioma (HGG) infant patients (18). Importantly, the subsequent report of the successful 

treatment of an ETV6-NTRK3 positive HGG with Larotrectinib (75) paved the way for FDA 

approval of this pan-TRK inhibitor for the treatment of solid tumors with NTRK gene fusions 

(https://www.fda.gov/drugs/fda-approves-larotrectinib-solid-tumors-ntrk-gene-fusions). Further, 

upon the FDA approval of entrectinib (https://www.cancer.gov/news-events/cancer-currents-

blog/2019/fda-entrectinib-ntrk-fusion) for the treatment of patients with solid tumors harboring a 

NTRK1, 2, and 3 fusions – the results of the abovementioned studies enabled development of, 

in addition to the stratification of pediatric cancer patients into appropriate clinical trials such as 

the St. Jude STARTRK phase I/II clinical trial study (https://www.stjude.org/research/clinical-

trials/startrk-study-of-entrectinib-in-children-with-brain-or-solid-tumors.html) of entrectinib. Given 

a NTRK fusion was also detected in leukemias by PCGP and other studies by RNA-seq (70,76), 

with demonstrated high sensitivity to TRK inhibition in mouse models (76,77), similar TRK-

inhibitor therapeutic opportunities may exist for NTRK-fusion positive leukemias. 

 

4. Mutational signature analysis unveils etiology of pediatric cancer 

initiation and relapse 
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In addition to driver gene discovery, analysis of mutational signatures has provided insight into 

the unique etiology of pediatric cancers. The mutational signatures, first reported by Alexandrov 

and colleagues (78-80),  unveiled underlying mutational processes involved in tumorigenesis. 

More recently, analysis of WGS- and WES-identified somatic mutations in 31 adult and 1 

pediatric cancers revealed a diverse set of over 100 mutational signatures (81), involving single-

base-substitutions, doublet-base-substitutions, clustered-base-substitutions, and small insertion-

and-deletion signatures. These were identified using nonnegative matrix factorization (NMF) 

approaches such as SigProfiler (81) and SignatureAnalyzer (a Bayesian variant of NMF) (82-

84). 

 

Mutational signature analysis employing these approaches identified a subset of the signatures 

in pediatric cancers, suggesting new avenues for cancer prevention or therapy. For example, 

COSMIC signature 18, associated with reactive oxygen species (ROS) exposure, was first 

discovered exclusively in neuroblastoma by Alexandrov et al. (78) in a study of 26 adult and 4 

pediatric cancers. In a recent pan-neuroblastoma study Brady et al. (85) showed that signature 

18 arises early in tumor initiation and is associated with increased expression of mitochondrial 

ribosome and electron transport chain (ETC)-associated genes, which may explain the 

connection of signature 18 and ROS.  A similar upregulated mitochondrial gene expression 

pattern was observed in signature 18 positive pediatric rhabdomyosarcomas and points to 

future therapeutic avenues targeting altered mitochondrial function in these cancers. The 

ultraviolet-light (UV) exposure associated mutational signature was another exposure-related 

signature identified in pediatric cancers, in melanoma, as expected, and, intriguingly, in a subset 

of B-cell acute lymphoblastic leukemias (1,47,86). Here, further investigation may associate a 

novel pathway with presence of UV signature in B-ALL and thus potential therapeutic avenue. 

 

Therapy-induced signatures in pediatric cancer were first reported in osteosarcoma and several 

brain and solid tumors treated with cisplatin (47,87). A recent study on relapsed pediatric ALLs 

identified two novel therapy-related signatures (COSMIC mutational signatures 86 and 87), one 

a result of thiopurine treatment which is employed during ALL maintenance therapy. These were 

present in 27% of patients and accounted for 46% of the acquired resistance mutations in TP53, 

NR3C1, PRPS1, and NT5C2 (86), which may explain the reported increase in the reported risk 

of relapse with intensification of thiopurine maintenance therapy (88). Furthermore, therapy-

induced mutations likely induce secondary malignancies in children (89) as demonstrated in a 

recent study which shows cisplatin- (signature 31 and 35) and thiopurine-signatures likely 
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caused TP53 and Ras-pathway driver variants in pediatric therapy-related myeloid neoplasms 

following exposure to cytotoxic therapy (89). This suggests altering the dosage or timing of 

thiopurine or other cytotoxic treatments should be carefully considered to circumvent relapse or 

secondary cancers in these children. 

 

5. Machine learning and systems biology approaches for improved 

clinical diagnosis and pharmacological therapy. 

 

Machine learning and systems biology approaches have proved useful in overcoming some of 

the limitations common to rare diseases. Here, combining genomic, methylation, histological, or 

pharmacological data has led to refined tumor classification, identified target genes, and 

highlighted the drug-repurposing avenue for pediatric cancer therapy. For example, the use of a 

molecular classification approach incorporating a support vector machine classifier trained on 

DNA methylation array data (90) was used by Northcott et al. (36) for the verification of 

medulloblastoma diagnosis and subtype status. DNA methylation data has also been crucial for 

diagnosing other epigenetically modified rare central nervous tumors (CNS) (91) along with 

pediatric sarcomas (92). In a study by Capper et al. (91) in order to reduce histological variability 

and enhance the precision of CNS tumor diagnoses, random forest (RF) classifiers utilizing 

genomic scale DNA methylation array data were developed across all ages and tumor 

subtypes, computationally cross-validated and clinically assessed. Here, the successful 

application of RF and other machine learning workflows on DNA methylation array data (93)  

provides an attractive avenue for precision cancer diagnostics for pediatric CNS tumors. 

Importantly, availability of the resultant classifiers online 

(https://www.molecularneuropathology.org/mnp), significantly broadens the clinical impact of 

these methodologies for pediatric cancer patients worldwide.  

 

Innovative systems biology methods have proved successful in identifying new avenues for 

cancer therapy as exemplified by a study concerning pediatric ALL (94). By combining 

pharmacological data and gene expression within a Bayesian network, they discovered an 

existing drug (dasatinib) could benefit 41% of children with T-cell acute lymphoblastic leukemia 

(T-ALL), providing a new therapeutic avenue for this hematologic cancer (94). A similarly 

advanced systems biology network approach has been applied to another significant clinical 

problem in T-ALL, namely glucocorticoid resistance. Here, a computationally inferred network of 
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master regulators was used to identify the AKT kinase activity as the major driver of 

glucocorticoid resistance in T-ALL (95). In vitro and in vivo inhibition of this gene was seen to 

effectively reverse glucocorticoid resistance (95), thus providing a new therapeutic avenue for 

these at-risk patients. 

  

Systems biology network approaches have also shown utility in the context of pediatric solid 

tumors such as neuroblastoma. Novel targets for high-risk MYCN amplified neuroblastomas 

have been historically difficult to identify due to their lack of frequent somatic mutations and 

rarity. However, integration of data from a whole-genome shRNA library screen with a 

computational model of master regulator proteins revealed the transcription factor activating 

protein 4 (TFAP4) as a master regulator of MYCN-amplified neuroblastoma and is synthetically 

lethal, providing a novel target for this cancer (96).  Additionally, regulatory network analysis 

identified subtype-specific master regulator proteins that were conserved across independent 

neuroblastoma cohorts. Using this approach, TEAD4 was uncovered and demonstrated to 

robustly predict poor survival, thereby suggesting a further novel therapeutic avenue for these 

tumors (97). Importantly, these studies demonstrate advanced machine learning approaches, 

when combined with genomic and other datasets, are able to overcome the limitations imposed 

by the rarity of pediatric cancer and are able to provide insight into clinical phenomenon 

otherwise intractable using conventional analytical approaches. 

 

6. Pediatric cancer high-throughput screening data providing avenues 

for clinical therapy 

 

As is the case for the abovementioned genomic sequencing data, analysis of high-throughput 

screening data also provides a unique opportunity for novel therapeutic target identification. 

Functional genomics approaches such as the genome-scale CRISPR-Cas9 loss-of-function 

screen reported by Dharia et al. (54) provide critical insight into the genes required for pediatric 

cancer survival. Here, analysis of 82 pediatric cancer cell lines, representing 13 pediatric solid 

and brain tumor types, revealed a similar complexity of genetic dependencies to adult cancers. 

However, the vulnerabilities observed were often distinct from those in adult cancer suggesting 

adult oncology drug repurposing to unlikely be successful. Visualization tools for the data and 

associated analyses are available at the Cancer Dependency Map Portal (https://depmap.org 

and https://depmap.org/peddep). 
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High-throughput drug screening of pediatric cell line models also present an opportunity for 

unique therapeutic target identification. As mentioned above, the CCLE, comprising a large 

collection of gene expression, chromosomal copy number and high-throughput sequencing data 

for over 1000 human cancer cell lines, includes data for 113 pediatric cancer lines, providing 

opportunities for the identification of actionable drugs. This is highlighted in a CCLE study by 

Barretina et al. (53) which analyzed anticancer drug screening and sequencing data using 

computational approaches to correlate drug activity with genetic changes. In addition to 

reporting known interactions between gene mutations and drug sensitivities (e.g. BRAF 

mutations and RAF inhibitors), novel chemotherapeutic sensitivities were found including within 

Ewing sarcoma (tumor of the bone and soft tissue, primarily affecting adolescents and young 

adults) cell lines. Barretina et al. found Schlafen family member 11 (SLFN11) expression, a cell 

cycle control protein, was the top predictor of drug response across all cell lines where, 

interestingly, Ewing sarcoma lines exhibited the highest SLFN11 expression. This suggests 

SLFN11 expression could stratify Ewing sarcoma patients in clinical trials that use any 

conventional chemotherapy. The results of a second large-scale CCLE drug screening study by 

Garnett et al. (98), also highlighted Ewing sarcoma, reporting a high sensitivity to poly(ADP-

ribose) polymerase (PARP) inhibitors - of consequence given 30% of Ewing sarcoma patients 

experience recurrent or metastatic disease and exhibit poor survival. Subsequently, Dyer and 

colleagues reported PARP inhibitor treatment of Ewing sarcoma cell lines induced 10-to 1,000-

fold greater cytotoxicity following treatment with the DNA-damaging agents temozolomide or 

irinotecan, likely due in part to the observed defective DNA break repair processes (99). The 

study also shown an orthotopic Ewing sarcoma mouse model exhibiting a complete and durable 

response to combination therapy comprising the PARP inhibitor irinotecan with temozolomide. 

This therapeutic combination approach was later incorporated into the NCI-phase II trial 

studying how well irinotecan hydrochloride, temozolomide, and combination chemotherapy 

treats newly diagnosed Ewing sarcoma patients (https://www.cancer.gov/about-

cancer/treatment/clinical-trials/search/v?id=NCI-2013-01094&r=1). Consequently, careful 

analysis of pediatric cell line drug screening data in conjunction with subsequent in vitro and in 

vivo studies has paved the way for exploration of combinatoric therapy for Ewing sarcoma 

patients. A further example of high-throughput screening of cell lines and xenografts leading to 

the identification of new therapeutic opportunities is presented by Vernooij et al. (100) who 

report the identification of idasanutlin as a resensitizing drug for venetoclax-resistant 

neuroblastoma. 
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7. Germline cancer predisposition for childhood cancer patients and 

long-term survivors 

 

The study of germline cancer predisposition is critical for understanding the etiology of pediatric 

cancer. This is exemplified in the case of Wilms tumor, the most common renal malignancy in 

childhood where studies of familial cases via unbiased DNA sequencing of tumor genomes has 

identified a series of genes harboring germline mutations in this cancer such as WT1 (101) 

DICER1 (102), PALB2 and CHEK2 (32). A copy number variation (CNV) genome-wide analysis 

by Egolf et al. (103) identified enrichment of a germline 550kb deletion at 16p11.2 within two 

independent neuroblastoma cohorts (total n=5,585). Interestingly, this CNV has been linked to 

other neurodevelopment al disorders and Egolf et al. suggest the inherent dysregulation of 

neurodevelopmental pathways likely result in neublastoma in addition to influencing other 

neurological phenotypes. 

 

More broadly, the prevalence of germline mutations in cancer predisposition genes has been 

investigated by Zhang et al. (104) in a comprehensive study involving analyzing WGS and WES 

of 1,120 patients enrolled in PCGP. Here, a comprehensive analysis pipeline involving a 

germline variant classifier, MedalCeremony (105), was developed, and they reported 8.5% 

germline mutational prevalence in cancer predisposition genes (104). More importantly, <50% 

of the patients had known family history, suggesting the need for screening germline cancer 

predisposition mutations for all pediatric cancer patients. Similarly, a pan-cancer analysis 

estimated a 6% prevalence in all childhood cancer patients after correction for cohort bias (2). 

Higher rates of pathogenic germline variants were reported within the: BASIC3 study of 150 

children with CNS or non-CNS solid tumors (10% germline mutation prevalence) (106); Zero 

Childhood Cancer Program’s cohort (n=252) of poor-outcome, rare, relapsed or refractory 

cancers (pathogenic cancer-predisposing variants identified in 16.2%) (48) and Memorial Sloan 

Kettering Cancer Center-integrated mutation profiling of actionable cancer targets (MSK-

IMPACT) analysis of 751 pediatric solid tumor patients (pathogenic/likely pathogenic variants 

identified in 18% patients) (107). The differences in mutational prevalence reflect the differences 

in patient cohorts, gene lists as well as criteria for inclusion of mutations affecting genes 

associated with autosomal recessive cancer-predisposition syndromes.  
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The impact of germline mutations in cancer predisposition genes has been analyzed in long-

term survivors of pediatric cancer. Wang et al reported 5.8% germline mutation prevalence in 

the study of 3,006 survivors enrolled in SJLIFE, a retrospective cohort with prospective clinical 

follow-up of childhood cancer survivors (108). Mutations were associated with secondary 

neoplasms such as breast cancer and sarcoma among irradiated survivors. A subsequent study 

which expands the cohort to include SJLIFE as well as CCSS (Childhood Cancer Survivor 

Study) identified BRCA2 as a predisposition gene for pediatric or adolescent non–Hodgkin 

lymphoma (108). These findings highlight the importance of the knowledge on germline cancer 

predisposition in the clinical management of pediatric cancer patients, which may enable 

developing potentially lifesaving measures for cancer surveillance and prevention among 

survivors 

 

8. Concluding Remarks 

 

When compared to adults, pediatric cancer has an impressive cure rate of ~80% (109) in 

developed countries. However, as this rate is largely due to the success of therapies for acute 

lymphoblastic leukemias, much effort is still required for the identification of treatments for many 

subtypes of pediatric cancer, often having poor outcomes. Further, successful treatment of 

childhood cancers is largely dependent on the use of cytotoxic chemotherapy and 

radiotherapies, often associated with side effects that reduce the quality of life of survivors (3). It 

is widely believed targeting genetic alterations underpinning childhood cancer will facilitate the 

development of less toxic treatments. Central to this endeavor are large-scale pediatric data 

resources and innovative computational tools, when combined, have led to the discovery of new 

drug-targets, new clinical trials, a greater understanding of cancer predisposition, and insights 

into the genetic risk factors associated with secondary neoplasms in survivors. In addition to the 

abovementioned datasets, single-cell and circulating tumor DNA (ctDNA) data are becoming 

increasingly available and present new opportunities. Single-cell tumor gene expression data 

may enable deeper insight into the developmental origin of pediatric cancer (110,111) and 

clonal evolution/relapse, especially when compared to single-cell gene expression in normal 

tissues as represented within the Pediatric Cell Atlas (https://humancellatlas.org/pca) (112). 

Further, ctDNA screening data and development of associated analytical tools holds promise for 

the early detection and/or non-invasive diagnosis of new and relapsed pediatric cancer. 
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While adoption of a data-driven approach has shed light on underlying genomic aberrations and 

guided therapeutic development, challenges surrounding data sharing and integration remain. 

Data sharing ecosystems such as St. Jude Cloud (47) and Gabriella Miller KFDRC and 

initiatives such as the Childhood Cancer Data Initiative (CCDI) aim to address these challenges 

– the former by creating a data sharing and analysis ecosystem – and the latter by enabling a 

coordinated effort for the collection, analysis, and sharing of data via the establishment of a data 

ecosystem of connected repositories, registries, and tools for the research community. Data 

federation of large scale pediatric omic data resources (TARGET, ICGC, KFDRC, St. Jude 

Cloud, ZERO) in addition to integration with associated clinical phenotypic and patient 

information represent an additional exciting opportunity to leverage these large-scale datasets 

for further research and clinical benefit. 

 

In summary, the activities surrounding the data-driven approach for pediatric cancer research 

and clinical care requires the concerted effort of dedicated teams of computational biologists, 

genomic experts, molecular and cellular biologists, pharmacologists, pathologists and 

oncologists to effectively translate these omic-derived findings into clinical care. This broad-

based scientific collaboration offers an unprecedented opportunity to overcome the unique 

limitations associated with pediatric cancer research and improve clinical outcomes for these 

children. 

 

 
9. Display Items 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

Figure 1. Data-driven Approach for Pediatric Cancer Research and Clinical Care. 

Following the collection and generation of patient tumor analytes, computational analysis of 

various data types in conjunction with clinical research activities directly impact the clinical 

management and care of pediatric cancer patients. ‘Prevention and surveillance’ of childhood 

cancer survivors: refers to activities concerned with the surveillance and identification of 

secondary neoplasms arising in survivors following 5+ years of remission; and also provides 

retrospective insights directly refining current treatment protocols. Features of this data-driven 

approach to cancer patient care specific to pediatrics are indicated in green font. Abbreviation: 

structural variant (SV). 

 
Table 1. Publicly available datasets generated from major pediatric cancer genomic 

studies. 

Data Access Portal Pediatric Cohort #Subtypes WGS  WES RNA-Seq  miRNA-Seq 

NCI Genome Data Commons 
(https://gdc.cancer.gov) 

NCI-TARGET1 8 1171 (2199) 1457 (2955) 1342 (1561) 2409 (2529) 
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ICGC data portal (https://dcc.icgc.org) ICGC1,* 5 769 23 303 20 

Kids First Data Resource Center 
Resource portal 
(https://kidsfirstdrc.org) 

KFDRC1,2,* 13 1817 (2987) 170 (314) 1050 (1995) 21 (42) 

St. Jude Cloud 
(https://www.stjude.cloud) 

Cancer Patients1,2 27 1962 (3811) 2446 (4714) 2300 (2476)   

Survivors1 
26 

7743 (7746) 3317 (3322) 0   

EGA (https://ega-archive.org) ZERO2 23 252 (504)   228 (228)   

 

Patient cohorts are denoted as retrospective1 or prospective2.   

*For ICGC and KFDRC, we only include data from pediatric cancer patients (aged 20 years or 

younger).  Genomic profiling data is summarized as: #subjects (#samples). 
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