
Robotics and Computer–Integrated Manufacturing 72 (2021) 102180

Available online 17 May 2021
0736-5845/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Assembly sequence and path planning for monotone and nonmonotone
assemblies with rigid and flexible parts

Ellips Masehian a,*, Somayé Ghandi b

a Industrial and Manufacturing Engineering Department, California State Polytechnic University, Pomona 91768, USA
b Department of Industrial Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran

A R T I C L E I N F O

Keywords:
Assembly sequence and path planning
Flexible parts
Nonmonotone assembly plan
SPP-Flex algorithm
Bidirectional Exploration-Exploitation Tree
(BXXT)
Finite element analysis

A B S T R A C T

The Assembly Sequence and Path Planning (ASPP) problem deals with finding a proper sequence of parts to be
assembled into a finished product and short assembly paths for each part. The problem is a combination of
Assembly Sequence Planning (ASP) and Assembly Path Planning (APP) subproblems, which are both NP-
complete and therefore intractable at large sizes. Nearly in all works on ASPP, it is assumed that planning is
monotone (i.e., parts are moved only once, without considering intermediate placements) and each part is
completely rigid. These are simplifying, yet limiting assumptions, since most assembled products like ships,
aircraft, and automobiles are composed of rigid and flexible parts, and the generation of assembly sequence and
path plans for most real-world products requires intermediate placement of parts to be taken into account. None
of the existing works in the literature, however, have handled nonmonotone ASPP problems for rigid and flexible
parts, and this issue remains largely untouched. In this paper, we present a new method called SPP-Flex for
solving monotone and nonmonotone ASPP for rigid and flexible parts. SPP-Flex first utilizes a Directional As-
sembly Stress Matrix (DASM) for describing interference relations between all pairs of parts and the amounts of
compressive stresses needed for assembling flexible parts and then obtains an initial tentative assembly sequence
using a simple new greedy heuristic. Next, short assembly paths are iteratively computed and planned from
initial to goal configurations of all parts using a novel sampling-based path planner called BXXT. If finding a free
path for an active part fails due to obstruction of a previously assembled part, then such a part is identified,
relocated, and its path replanned until the active part is moved to its final position. In case of failure again, if the
part is flexible, through finite element analysis, it is determined if the part can still be assembled by undergoing
elastic deformation. To evaluate the performance of the SPP-Flex and its components, two new products were
designed and solved by four combinations of ASP and APP methods 20 times each, and the means and standard
deviations of five performance criteria (total path length, total number of generated nodes and edges in the
search tree, total number of collision (interference) checks, and total runtime) were calculated. Analysis of the
computational results showed that the proposed greedy heuristic sequence planner together with the BXXT path
planner/replanner outperformed other variations with at most 4.6% average gap in path length and 2.1%
average gap in runtime compared to the best-found solution in all runs.

1. Introduction

Assembly Planning (AP) is the process of creating a detailed assem-
bly plan to build a final product from separate parts by taking into ac-
count the final product geometry, available resources to manufacture
that product, fixture design, feeder and tool descriptions, etc. Assembly
planning is one of the most important processes in manufacturing
products since assembly processes use up to 20% of the total
manufacturing cost and more than 50% of the total production time

[55]. Therefore, efficient assembly plans can reduce manufacturing
costs and time significantly. The Assembly Planning problem has been
shown to be an NP-complete problem [38] and covers three main sub-
problems: Assembly Sequence Planning (ASP), Assembly Line Balancing
(ALB), and Assembly Path Planning (APP). The ALB problem tries to
group and allocate the assembly operations into some workstations with
approximately equal assembly times while precedence constraints be-
tween operations are satisfied. Therefore, ALB is at the macro level and
does not involve the part geometries. On the other hand, ASP and APP

* Corresponding author.
E-mail addresses: masehian@cpp.edu (E. Masehian), s.ghandi@kashanu.ac.ir (S. Ghandi).

Contents lists available at ScienceDirect

Robotics and Computer-Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

https://doi.org/10.1016/j.rcim.2021.102180
Received 10 February 2020; Received in revised form 18 April 2021; Accepted 19 April 2021

mailto:masehian@cpp.edu
mailto:s.ghandi@kashanu.ac.ir
www.sciencedirect.com/science/journal/07365845
https://www.elsevier.com/locate/rcim
https://doi.org/10.1016/j.rcim.2021.102180
https://doi.org/10.1016/j.rcim.2021.102180
https://doi.org/10.1016/j.rcim.2021.102180
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2021.102180&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

2

are at the micro level, meaning that they heavily depend on the shape
and geometry of the parts and the final assembly while the precedence
constraints are equally important. In this paper, since we deal with as-
sembly sequence and path planning of rigid and flexible parts, those two
problems are reviewed in this section.

1.1. Assembly sequence planning

The ASP problem concerns with finding a sequence of collision-free
operations that bring the assembly parts p1, …, pn together, having given
the geometry of the final product A and the positions of parts in the final
product. Since the ASP problem is shown to be NP-hard [47], in recent
years intensive research efforts have been put in developing intelligent
methods to solve the ASP problem as they have been able to improve the
efficiency of finding optimal assembly sequences while avoiding the
combinatorial explosion problem with the increase of the number of
assembly components. Many soft computing/metaheuristic algorithms
have been developed to solve the problem, such as the works mentioned
in Table 1. More surveys on the ASP and its methods are presented in
[33,58] and [16].

Here it is appropriate to elaborate on how the current paper im-
proves two of our previous publications [20] and [19]:

In [20] a Breakout Local Search algorithm (BLS) was proposed for
solving (only) the ASP problem under the following assumptions: (1) the
method could handle rigid parts only and parameters like elasticity,
force, and toleranced geometries were not considered; (2) the APP
subproblem was not tackled; (3) movements of the parts were limited to
translations at the six main directions (±x, ±y, ±z), and translating

along any other direction and/or rotation about any axis were not
accommodated; (4) other than the previously assembled parts, no ob-
stacles (e.g., nearby fixtures or tools) within the assembly workspace
were considered; (5) the plans for assembly sequences were considered
to be monotone, meaning that once assembled (i.e., moved to its final
configuration), each part cannot move again to one or more interme-
diate locations. The last assumption is very limiting as most real-world
assembly plans are non-monotone. As will be presented later in this
paper, all of the above assumptions have been discarded and the prob-
lem is modeled more realistically by considering rigid and flexible parts,
ASP and APP plans, arbitrary translations and rotations, workspace
obstacles, and non-monotone plans. Also, our other work [19] employed
the Scatter Search algorithm (SS) to solve the ASP problem, and had the
same simplifying assumptions as mentioned earlier, except that it could
handle flexible parts. Again, the current paper is still significantly
different from that work.

1.2. Assembly path planning

The APP problem consists of computing feasible (and preferably
optimal) paths for adding parts to a subassembly, having given the ge-
ometry of the final product, the initial and final positions of parts, and
the workspace in which the assembly operations take place. Assembly
paths are formed according to the assembly sequences that are the
output of the ASP problem. APP is an NP-hard problem and can be
formulated as a motion planning problem. A configuration q is a mini-
mal set of parameters defining the location of a mobile system in the
world, and Configuration Space C is the set of all configurations. In the

Table 1
Some soft computing/metaheuristic algorithms for ASP.

Advanced Immune-based Strategy [6]

Ant Colony Optimization (ACO) [24,73]
Artificial Immune System (AIS) [9]
Artificial Neural Networks (ANN) [10,11,27,64]
Bacterial Chemotaxis algorithm [85]
Breakout Local Search algorithm (BLS) [20]
Enhanced Harmony Search (HS) [74]
Firefly Algorithm (FA) [81]
Genetic Algorithm (GA) [8, 23]
Hybrid Ant-Wolf Algorithm (HAWA) [1]
Imperialist Competitive Algorithm (ICA) [84]
Memetic Algorithm (MA) [18]
Particle Swarm Optimization (PSO) [47,70,75,83]
Psychoclonal algorithm [69]
Scatter Search algorithm (SS) [19]
Simulated Annealing (SA) [28,51]

Table 2
Major solution approaches to assembly and disassembly path planning.

Approach Main methods

Graph-based
Discretizes the space via constructing a graph

Blocking Graph [77,45,44,78,43], and [57]
Visibility Graph [53,80]

Grid-based
Discretizes the space via constructing a regular mesh grid

Potential Fields [82]

Sampling-based
Abstracts the space by sampling a finite number of points in it

Probabilistic Roadmaps (PRM) [67]
Rapidly-Exploring Random Trees (RRT) [3,42,71,49]

Space Decomposition
Simplifies the problem by dividing its solution space into subspaces or subproblems and solving each one

Separating Directions [61,60,50,72,66]
Swept Volume [29,30]
Motion Space [25,68,17]

Interactive
Uses human intelligence and interaction to solve complex tasks

Interactive Path Planning [34]
Interactive Path Verification [15]

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

3

case of a system involving n mobile objects mi (e.g. the parts of the as-
sembly), the Composite Configuration Space C is the Cartesian product
of the configuration spaces of all objects, Cmi. Given the initial config-
uration qinit, the problem consists in finding a feasible path in C from qinit
to a final assembled configuration qass. A comprehensive survey on the
APP and its methods is presented in [21], which reviews the
state-of-the-art of the APP and Dis-Assembly Path Planning (DAPP)
problems and their solution approaches through two new taxonomies.
The survey also exposes and analyzes the characteristics and applica-
tions of the reviewed works widely. Table 2 presents the five major
solution approaches that have been developed for the APP/DAPP
problems.

Among the main APP approaches, Sampling-based methods have
proven to be relatively more successful in solving problems with a
higher number of parts as they do not explicitly construct the Configu-
ration space (C-space), which grows exponentially with the number of
parts. However, the main challenge for these methods is the ‘narrow
passage’ problem (requiring the planner to sample in the tight parts of
the C-space), and coping with it more effectively is still at the focus of
path planning researchers. These methods were originally proposed for
robot motion planning in the mid-1990s, and unlike early path planners
which constructed the C-space explicitly and geometrically, they
randomly sample numerous collision-free configurations (position and
orientation) and connect them by some edges to form a graph which is
then searched to obtain start-to-goal paths. In this way, they prevent
explicit construction and exhaustive search of the C-space and thus
significantly reduce the calculation time compared to exact optimal
methods.

Sampling-based approaches create a search tree by sampling nodes
(or configurations) from the C-space and then searching for solutions
(paths) based on the generated tree. Each node represents a unique
position and orientation of an object currently being considered for path
planning. For example, for a free-flying part in 3D space, a node is shown
by q = (x, y, z, α, β, γ). It can be verified through a collision-checking
procedure if the part at the position and orientation defined by the
node q does collide with any other object. In case of no collision, the
node is labeled as ‘free’ and appended to a search tree. An edge is a
hypothetical collision-free line segment connecting two free nodes, and
a tree (resp. graph) is composed of acyclic (resp. cyclic) connections of
nodes in the configuration space. Two major sampling-based algorithms
are Probabilistic Roadmap Method (PRM) developed by [39] and
Rapidly-exploring Random Tree (RRT) proposed by [41]. There are
numerous variations to these two basic planners, such as MAPRM [76],
Lazy PRM [7], Fuzzy PRM [52], PRM* [36], Semi-Lazy PRM [5],
RRT-Connect [40], ML-RRT [13], T-RRT [4], RRT* [37], and Bi-RRT
[35].

Since ASP does not take into account workspace objects (e.g., fix-
tures, grippers, robots, etc.) that obstruct the motion of parts and APP
does not consider the precedence, interrelations, and sequence of parts,
it is best to combine them and perform Assembly Sequence and Path
Planning (ASPP), which is also a computationally hard problem. There
are relatively fewer works on ASPP in the literature: one work is [29] in
which a new Genetic Algorithm and Ants Algorithm (GAAA) was
designed to rapidly plan an assembly sequence based on which through
a Boundary Representation (B-Rep) filling algorithm, assembly paths
were planned interactively with the help of the user. In [72] a planner
was developed for finding optimal assembly sequences for parts stably
manipulated by robots. A subassembly generating Breakout Local
Search algorithm (SABLS) for micro-assembly applications was pro-
posed in [71], in which after performing the ASP, the parts are

manipulated to their final positions in the subassemblies using a path
planning algorithm based on RRT*.

In all of the above-reviewed works, the main assumption is that the
plans for assembly sequence and paths are monotone, meaning that once
a part is moved to its assembled place, it will not obstruct the assembly
of subsequent parts. This assumption, however, is a simplifying yet
limiting one, since generating assembly sequence and path plans for
most real-world assembled products requires intermediate placement of
parts to be taken into account. An exception, though, is our previous
work [49] in which a new method was presented to solve the ASPP
problem by first generating a heuristic sequence plan and then planning
the parts’ paths using sampling-based methods. The method can handle
nonmonotone assembly sequence plans through its path replanning
feature, which allows it to identify the assembled parts that block the
assembly of an active part, relocate them to a collision-free zone,
assemble the active part, and re-assemble the blocking parts back to
their final location.

In most of the works on ASP, APP, and ASPP, the underlying
assumption is that all parts of the assembly are rigid (not flexible) and
their shapes do not change during the assembly process. However,
considering the parts perfectly rigid is unrealistic since flexible parts
with articulated, toleranced, or flexible geometries, as defined in the next
section and such as springs, snap fits and pins, rubbers and plastics,
interference fit assemblies, revolute joints, etc., have a major role in
manufacturing industries. Unfortunately, taking flexibility into account
introduces additional degrees of complexity to the ASP and APP prob-
lems, and that is why the number of works addressing non-rigid as-
sembly planning is relatively very few, as reviewed below.

1.3. Considering flexibility of parts in assembly planning

Most real-world assembled products like ships, airplanes, and auto-
mobiles are composed of rigid and flexible parts, and so automatic
generation of assembly sequence plans for such products requires the
flexibility of flexible parts to be taken into account. The solution to the
ASP and APP problem of a product with rigid and flexible parts depends
heavily on the model that is used to simulate the deformation behavior
of flexible parts. In general, there are two approaches in modeling the
flexibility of flexible parts: Geometrical approach, in which single or
multiple control points or shape parameters are used for manual
adjustment of a flexible part in order to apply changes in its shape and
model its desired configuration and Physical approach, in which some
sort of integration mechanisms and physical principles (e.g., material
characteristics, environmental constraints, and externally applied forces
on a part) are used to compute the shapes or motions of flexible objects.
The most commonly used strategies for building flexible objects with
physical properties are: (1) Mass-spring; (2) Finite Element Methods;
and (3) Point-Based systems [22].

Assembly sequence planning of flexible parts has rarely been
addressed in the literature. [79] described the state of an assembly by a
set of relations among the features of its components together with the
basic algorithms to determine the possibility of performing a particular
operation on string-like assemblies. A few other works deal with
creating contact states of the flexible parts of an assembly. In that
approach, information for the contact states is extracted from the
geometrical models of the parts and the assembly and is used to
construct a graph representation proper for assembly sequence and path
planning. [59] identified different possible contact states between a
linear flexible object and a rigid polyhedral body, and listed the feasible
transitions between these states. A further elaboration on this formalism

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

4

characterizes contact states by their stability and defining contact state
transition classes [2]. A systematic review of the existing modeling
techniques for volumetric, planar, and linear flexible objects is pre-
sented in [32] according to the type of manipulation goal: path plan-
ning, folding/unfolding, topology modifications, and assembly.
Manipulation of Flexible Linear Objects (DLO) has potential applications
in aerospace and automotive assembly. Most of the literature on plan-
ning for flexible objects focuses on a single DLO at a time. But in [62,63]
a problem formulation for attaching a set of interlinked DLOs to a sup-
port structure through a set of clamping points was provided and a
prototype algorithm was presented to generate a solution in terms of
primitive manipulation actions. None of the above works, however,
directly focuses on ASP with flexible parts, and as a result, this field of
research has remained largely unexplored.

Flexible parts can undergo considerable variations in their shape and
may be of two types: Articulated, and Flexible. Articulated parts are
usually composed of one or two links connected to a base by revolute
joints (somewhat similar to simple manipulators) and can change shape
in certain directions. These parts are widely used in medical in-
struments, consumer products, toys, and household appliances [56]. The
only work we found on (dis)assembly path planning of articulated ob-
jects is [14], which generalized its solution method to the protein-ligand
interaction problem. Flexible parts, on the other hand, can freely and
reversibly change their shape in the form of tension, compression, twist,
or bend in as much as the modulus of elasticity of their substance
permits.

(Dis)assembly path planning of flexible objects has been addressed in
very few works: [46] proposed a method for virtual assembly via haptic
to simulate assembly operations of an elastic tube, and [26] presented a
method for automatically planning a smooth and collision-free path for a
wiring harness to be inserted into the engine compartment of a car. Also,
[31] proposed an approach to utilize wire tracing operation in recog-
nizing the wire harness for automatic mating, and in [48] an assembly
simulation method was developed to simulate the assembly process of
multi-branch cables. Also, [65] proposed a new assembly strategy for
learning skills from manual teaching to carry out the assembly process.
To fit the teaching data, a Gaussian mixture model was used and the
compliance control method was applied to conduct the assembly.

In none of the reviewed articles, the assembly sequence and path
planning have been considered simultaneously for flexible (in addition
to rigid) parts. The present paper aims to fill this gap by proposing a
method for ASPP for rigid and flexible parts with nonmonotone as-
semblies. Based on our analysis of about 85 related and cited works in
the ASP/APP literature, we can state that it is the first planner having the
following attributes all together: (1) it is designed for directly solving
ASPP problems (i.e., assembling a product from unassembled parts),
thus useful for cases when ASPP cannot be obtained by the “assembly by
disassembly” methodology, which is less challenging and contains
reversing the solution to the disassembly sequence and path planning to
reach the assembly sequence and path, (2) it can consider obstacles (e.g.,
fixtures, worktables, robot links, etc.) in the workspace, (3) it allows
planning translational and rotational movements for parts, (4) it can
handle nonmonotone ASP plans, and (5) it can solve ASPP problems for
both rigid and flexible parts.

The planner proposed in this paper (named SPP-Flex) has the
following differences from the method presented in our previous work
(ASPPR) [49]: (i) The ASPPR can handle rigid parts only, whereas the
SPP-Flex can plan for rigid and flexible (deformable) parts such as snap
pins, belts, springs, etc. by incorporating parameters like elasticity,
force, and toleranced geometry of such parts in the model. Accordingly,
we have defined a new matrix called the Directional Assembly Stress

Matrix (DASM) with elements representing the required stresses for
assembling each part in each main direction. In addition, a new
component, namely the Finite Element Analysis via the Abaqus™ soft-
ware, has been incorporated into the SPP-Flex, which assists in defining
the DASM and also determining whether parts’ deformability can be
utilized to resolve blockages during the assembly. (ii) In the ASPPR, a
greedy heuristic method was used for planning the initial assembly
sequence, after which the path planning module was triggered. There
was no assessment of the effect of the ASP quality on the overall success
of the ASPPR algorithm. However, in the present work, we have used
two ASP algorithms, a (greedy) heuristic method and a (near-optimal)
Breakout Local Search (BLS) method, and investigated the impact of
their performance on the accomplishment of the ASPP task. (iii) A new
matrix called Intersections Count Array (Qp) has been defined in this
paper to organize and record the number of times already-assembled
parts or other fixed obstacles block the assembly of a part during its
sampling-based path planning process, as presented in the detailed
pseudocodes of the algorithm.

In the next section, we present the nature, model, and assumptions of
the tackled assembly sequence and path planning problem, and in Sec-
tion 3 we introduce the developed new SPP-Flex method together with
its components and details. In Section 4, four variations and five per-
formance criteria of the SPP-Flex method are described and imple-
mented on two newly designed monotone and nonmonotone assemblies
with both rigid and flexible parts, and the results are compared and
analyzed. Finally, concluding remarks are presented in Section 5.

2. Problem assumptions

Before describing the details of our method for assembly sequence
and path planning of assemblies with rigid and flexible parts, we present
the assumptions on the nature of the tackled problem’s model and the
solution approach.

In solving the ASPP problem, we must find a feasible sequence for
assembling the parts, as well as calculate a set of plans for the motions of
some or all parts from their initial to final configurations. Thus, it is
essential to consider the dimension, geometry, and constraints of the
parts, as well as the limitations of the workspace where the task is
performed, and the type of moves the parts are allowed to make.

– Dimension: The parts in the problem model can be 2D polygons or 3D
polyhedrons, and may be convex or nonconvex in Euclidean space.

– Types of components: The problem model includes only assembly
parts and a number of stationary obstacles in the workspace, which
can represent jigs, fixtures, worktables, and part containers. Moving
parts such as assembly tools, equipment, grippers, or robots, which
are hardly considered in any previous work, are not considered here
as well and remain open problems in this field.

– Part geometry: We consider two types of parts: perfectly rigid, which
are assumed to have unique geometry, and flexible, which have
flexibility and deviation (tolerance) from their mathematical or CAD
model.

– Types of movements: A combination of rotation and translation is
considered for moving parts, which enables solving a wide variety of
assembly path planning problems.

– Constraints: It is assumed that the parts have precedence constraints
in sequence planning and cannot have collisions with obstacles or
intersections with other parts in path planning. In addition, physical
properties of the parts such as applied forces as well as mechanical
constraints (such as part deformations under tensional, torsional or

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

5

compressional stresses) are incorporated into (dis)assembly
operations.

The difficulty of an ASPP problem does not depend only on the
number of parts in the assembly. The way the parts should be juxtaposed
in the final assembly greatly affects the complexity of the problem. The
most important attributes of an assembly from the planning standpoint
are scale, sequentiality, monotonicity, linearity, and coherence, as
described below:

– Scale: The scale of the addressed ASPP model is considered Fine,
meaning that the free space between parts of the assembly is so
narrow that small positional errors in locating parts in the assembly
will lead to missing a feasible solution.

– Sequentiality: This refers to the maximum number of moving sub-
assemblies with respect to one another in any assembly operation.
Most real products can be assembled via sequential assembly plans,
in which at any instant, only one part is in motion and the other parts
remain fixed. As in the majority of previous researches, we also as-
sume that the ASPP problem is sequential.

– Monotonicity: This refers to the need for the intermediate placement
of at least one part of the assembly, which means some parts need to
be moved more than once in order to solve the problem. A monotone
problem needs no intermediate placements, while a nonmonotone
problem does have such a requirement. Here we assume that the
ASPP problem can be monotone or nonmonotone.

– Linearity: We assume that the problem is linear, meaning that all
assembly operations involve the inserting of a single part into the rest
of the assembly. In a nonlinear assembly, some parts need to be pre-
assembled (forming a sub-assembly) and then inserted into their final
place in the assembly.

– Coherence: In a coherent plan, each assembled part will touch at least
one previously assembled part, whereas in incoherent plans parts can
be placed anywhere, without touching another part. We assume the
plans can be coherent or incoherent.

3. The SPP-Flex algorithm

In this section, we present the proposed Assembly Sequence and Path
Planner for Rigid and Flexible parts, named SPP-Flex, which adopts a
greedy heuristic approach to assembly sequence planning and a sto-
chastic approach to assembly path planning. The overview of the
method is as follows:

First, based on the parts’ precedence relations, geometrical di-
mensions, material, density, Young’s modulus, coefficient of friction, as

well as the types of elements used for modeling the parts’ deformation
behavior and the direction of exerted forces, an Assembly Stress Matrix
(ASM) is constructed using the Abaqus™ software that contains all
applied stress to any two parts along four (in 2D) or six (in 3D) main
rectilinear directions (±x, ±y, ±z). Then through the heuristic proced-
ure GH_Sequence_Planning(), an assembly plan (a permutation of
parts and assembly directions) is generated incrementally which in each
step has minimal (could be nonzero) stress of parts in the ASM. The
initial and final configurations of the part (qinit and qgoal, respectively)
are then calculated based on the assembly sequence plan in subroutine
Initial_and_Goal_Configurations(). Afterward, starting from
the first part in the sequence and using a sampling-based path planning
method, a short and collision-free assembly path τi is planned for the
active part pi from its qinit to qgoal in subroutine BXXT_Path_Planning
().

If a path could not be found for a part after iter_max number of at-
tempts (which happens in nonmonotone problems or when the assembly
sequence is infeasible), we identify a previously assembled part that
maximally obstructs pi in reaching its final configuration, relocate it to a
free intermediate configuration using the Relocate() routine, and try
to replan a new feasible path for assembling pi using the
BXXT_Path_Planning() subroutine. If failed again, we relocate
another blocking part and do path replanning for pi. This procedure is
repeated until either a collision-free path is found for assembling pi or no
path is found after max_relocations number of attempts. In the latter case,
the movement of the part pi is simulated from its last position to the goal
configuration along the direction di using the Abaqus™ software in the
FEA_Test() routine, which is a professional finite element analysis
and computer-aided engineering tool. In this routine, moving the part pi
continues until either it reaches its final position in the assembly by
tightly passing through blocking objects due to elastic deformation, or at
least one of the previously assembled parts or the part pi itself enters its
plastic deformation region, in which case the planner reports no path is
found.

Whenever a valid path is found for a part, it is smoothened using the
procedure Smoothen_Path() and the array Plan is updated by
concatenating the number and assembly path of the part just moved. The
whole procedure is repeated for all parts until either the assembly is
complete or at some point, no path can be found for a certain part. The
overall solution to the problem is then reported as the row array of Plan.
The main algorithm of the SPP-Flex is presented in Fig. A.1 in the
Appendix.

Other attributes of the SPP-Flex method are as follows:

Fig. 1. Illustration of the Bounding Box and Assembly Vector used for assembly sequence planning of a sample product. Here part p3 is the 6th part that is assembled
along +x, therefore π6 = 3, and δ6 = d2.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

6

– Scope: Its scope is a combination of global and local planning and
benefits from the advantages of both. In the ASP subproblem, the
planner uses the partial (local) information of the parts’ interference
matrix, and in the APP subproblem, it uses the global information
about the C-space (while not computing it explicitly) to sample
collision-free configurations and connect them locally to form a
random tree.

– Completeness: Because of implementing sampling-based path plan-
ners, the proposed SPP-Flex is probabilistically complete, which means
it guarantees to find a solution to the problem if its available pro-
cessing time approaches infinity and report failure if no feasible so-
lution exists. Probabilistic completeness is an inherent property of
sampling-based or stochastic search methods.

The following subsections describe each component of the algorithm
in detail.

3.1. The assembly sequence planning component

A solution to the assembly sequence planning is a permutative
sequence of ordered pairs of parts with the direction of their assembly
operation, in the form of AS = 〈(π1, δ1), …, (πn, δn)〉. πi denotes the i th
part that is assembled and δi is the direction of the assembly operation of
part πi which takes a value among dk = {− x, +x, − y, +y, − z, +z} (k = 1,
…, 6). In order to compute the AS, we need to form some matrices and
variables defined as follows:

– bb(πi): Bounding box (a rectangle in 2D or a rectanguloid in 3D) that
bounds all the parts {π1, π2, …, πi− 1} assembled prior to the (current)
active part πi and has axes aligned with the main Cartesian directions
x, y, and z.

– avk
i : The assembly vector of part pi along direction dk, which starts

from the center of mass of the part in its initial position and extends
toward the final position of that point in the final assembly. The way
a part’s initial position in any direction is determined is discussed at
the end of this section.

Fig. 1 illustrates the Bounding Box and Assembly Vector concepts.

– ASM: The Assembly Stress Matrix is defined as an n×(n•k) matrix for
all pairs of parts pi and pj (i = 1, …, n; j = 1, …, n) and for all di-
rections dk ∈{− x, +x, − y, +y} for 2D parts and dk ∈{− x, +x, − y, +y,
− z, +z} for 3D parts, in the following form:

For any combination of pi, pj, and dk, the element sk
i,j of the ASM

matrix is constructed as follows:

(1) If the part pj does not block the movement of part pi along dk, then
we set sk

i,j = 0.

(2) If both parts are rigid and the part pj blocks the movement of part
pi along dk, then we set sk

i,j = M, where M is a large positive
number greater than the maximum stress that can be exerted by
the assembler.

(3) If the part pj blocks the movement of part pi along dk and at least
one of the parts is flexible, then their assembly operation is
simulated in the Abaqus™ software to verify if the blockage can
be resolved due to the flexibility of the part(s). If so, sk

i,j is set to
the sum of the maximum stress (in MPa) exerted on parts pi and pj
during the process of assembling part pi along direction dk after
part pj has been assembled.

(4) If the Abaqus decides that the blockage cannot be resolved
despite considering the flexibility of the parts, then we set sk

i,j =

M.

It should be noted that the blockage relation between parts can be
extracted using an existing CAD assembly model. For instance, in [54]
the geometries and interrelations of parts in an assembly creating in CAD
were used to determine if incrementally assembling parts would main-
tain the stability of the assembly. In SPP-Flex, for each combination of pi,
pj and dk, we check whether part pj blocks the movement of part pi along
dk in the CAD model. Based on the ‘Assembly by Disassembly’ strategy,
an assembly plan is obtained by disassembling a whole product into its
constituting parts and then reversing the order of disassembly. Since for
two rigid parts, we only consider the geometric constraints, there is a
bijection between assembly and disassembly sequences and paths.
Therefore, we first examine the disassembly of the parts and then
determine the blockage relationship between the parts in the assembly
mode, in the opposite direction of disassembly. For this purpose, we
deactivate all the assembly parts except the two parts pi and pj, and then
move part pi along the direction ¡dk to be transferred to a point outside
the bounding box of the whole assembly. Then we check if part pi will
collide with part pj while moving. In case of collision, it is concluded that
the part pj blocks the movement of part pi along dk.

– dsk
i =

∑n
j=1sk

j,i: Directional Stress of a part pi along direction dk, which
is equal to the sum of applied stresses to all other parts if assembled
along dk, supposing that part pi is already assembled and may block
subsequent parts (hence the order of the subscripts in the notation is
switched).

– DASM: The Directional Assembly Stress Matrix is defined as a size n × k
matrix of dsk

i for all parts pi and for all directions dk (k = 4 for 2D parts

and k = 6 for 3D parts), in the following form:

− x +x − y +y − z +z

DASM =

p1

p2

⋮
pn

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ds1
1 ds2

1 ds3
1 ds4

1 ds5
1 ds6

1

ds1
2 ds2

2 ds3
2 ds4

2 ds5
2 ds6

2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ds1
n ds2

n ds3
n ds4

n ds5
n ds6

n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

(1)

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

7

Fig. 2. An example of generating an assembly sequence plan for a given ASM matrix. M represents a large stress beyond the elastic deformation zones of the parts.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

8

Table 3
Main modules of the Abaqus™ FEA software used for verifying the possibility of assembling flexible parts.

Module Name Operation

Part module Creates or inputs the geometrical features of all the flexible and rigid parts
Property module Assigns physical (e.g., density) and mechanical (e.g., Young’s modulus, Poisson’s ratio, yield stress) properties of the parts
Assembly module Locates the assembled and active parts at their last configurations
Step module Sets the static and general conditions of the parts in the ‘Initial step’ and applies dynamic forces and motions to the active part in the ‘Dynamic step’
Interaction

module
Adds all surface-surface contacts and interactions between the parts to the initial step

Load module Applies the following affecting forces: (1) body force exerted by the assembler on the active part, (2) friction forces along contact surfaces between the active part
and other objects, (3) the gravity force applied to all objects along direction –y. Also, it applies boundary conditions to all other parts to constrain their
displacement and rotation while the active part is moving

Mesh module Forms seeds and meshes for the flexible parts (hexahedron-shaped) and rigid objects (tetrahedron-shaped)
Job module Creates a finite element analysis job of types: Full analysis, Recover, and Restart. We used the Full analysis option

Fig. 3. (From left to right) Simulation snapshots of assembling the flexible part p1 (top) toward its goal position inside the rigid part p2 along the direction –y. The
coefficient of friction between the surfaces is 0.35.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

9

Fig. 4. The Compact Box assembly with two rigid (parts p1 and p10) and eight flexible parts. The coefficients of friction between rigid-rigid, rigid-flexible, and
flexible-flexible contacts are 0.1, 0.1, and 0.05, respectively.

Fig. 5. Shaft Housing assembly with 11 rigid and 4 flexible (parts p2, p5, p9, and p12) parts. The coefficients of friction between rigid-rigid, rigid-flexible, and flexible-
flexible contacts are 0.1, 0.1, and 0.05, respectively.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

10

Now we can present the method of planning the assembly sequence
using the above nomenclature. To do so, we implement a greedy heu-
ristic algorithm that gives higher assembly priority to a part for which
the sum of the stress needed for assembling it into the existing assembly
(AAS) and the stress needed for assembling all subsequent parts (UAS) is
minimal. In this way, the probability of creating a ‘more feasible’ solu-
tion increases significantly. Note that we do not consider the workspace
obstacles in this stage. The proposed greedy heuristic algorithm is coded
as a subroutine called GH_Sequence_Planning() and is described in
Fig. A.2.

Fig. 2 demonstrates the procedure of obtaining an assembly sequence
from a given ASM matrix.

It is noted that since the parts to be assembled next are added
sequentially, the algorithm is greedy and thus there is no guarantee to
come up with an optimal (and even feasible) sequence. In fact, since the
ASP problem is NP-hard [47], finding a feasible solution may require
exponential time in the worst case, and that is why most researchers
attempt to solve it using metaheuristic methods. In our approach,
however, instead of spending time on finding a feasible sequence, we
accept the output assembly sequence (which is still better than random
sequences) and proceed to the APP component. However, due to its
replanning capability, the APP component will cope with any infeasible
sequence by temporarily relocating blocking parts (that create infeasi-
bility) to intermediate positions and returning to their final locations
after assembling all other necessary parts.

3.2. Determining the initial and goal configurations

Once the output of the ASP component is obtained in the form of AS
= 〈(π1, δ1), …, (πn, δn)〉, the initial (disassembled) configuration of each
part should be calculated. This is done using the geometrical informa-
tion (Geom_parts) and the assembly direction of each part. In order to
determine the initial position of a part πp along its assembly direction δp,
we need to project a hypothetical ray from the center of mass (CoM) of
the part in its final (assembled) position along the reverse direction of δp.
Since the bounding box is aligned with the main Cartesian directions,
this ray will intersect and be outward normal to one of the faces of the
current bounding box. Then the initial position (x, y, z) of the part is
obtained by placing its center of mass on the ray with a distance of 1.5
times the part’s dimension in that direction away from the bounding box
(to let sufficient maneuvering space later in the path planning phase). In
fact, the initial position is the start point of the assembly vector avδp

πp . The
orientations (α, β, γ) of the part about the main axes are assumed to be
zero. As a result, the initial configuration of a 3-dimensional part πp will
be the six-tuple:

qinit
(
πp
)
=

(
x.start

(
avδp

πp

)
, y.start

(
avδp

πp

)
, z.start

(
avδp

πp

)
, 0, 0, 0

)
, (3)

and the final (assembled) configuration of the part is simply the co-
ordinates of the part’s center of mass in its assembled position, or in

other words, it is the endpoint of the assembly vector avδp
πp :

qgoal
(
πp
)
=

(
x.end

(
avδp

πp

)
, y.end

(
avδp

πp

)
, z.end

(
avδp

πp

)
, 0, 0, 0

)
. (4)

The initial and goal configurations of all parts are determined in the
subroutine Initial_and_Goal_Configurations() (line 6 in
Fig. A.1).

3.3. The assembly path planning component

Considering the advantages of Sampling-based path planners (as
mentioned in Section 1.2) we propose a new variation of the RRT
method which is adapted to the context of assembly planning and
incorporated into the general SPP-Flex method for both path planning
and replanning. We name the new planner as BXXT.

For finding the assembly path of an active (selected) part πp, the
BXXT uses two strategies to search the C-space: Exploitation and Explo-
ration. The planner is a bidirectional search method which forms two
trees called Tactive and Tpassive initially rooted in qinit(πp) and qgoal(πp),
respectively (as indicated in lines 2–3 of the pseudocode in Fig. A.3), and
grows them toward each other until either they get connected or a
predefined number of iterations is exceeded without success. Firstly, in
the Exploitation phase, the node qinit(πp) is attempted to be directly
connected to qgoal(πp) through a hypothetical straight line in the C-space,
which is interpolated into a number of equidistant intermediate nodes
step_size apart (lines 6–8). If all these nodes are in Cfree (i.e., the obstacle-
free zones of the C-space), then the nodes and in-between edges are
added to Tactive, and the Tactive and Tpassive trees are connected (lines
10–17), meaning that the part can move from its initial (unassembled)
position to its final (assembled) position without any collision with other
objects, in which case the path planning is completed (lines 19–21).
Otherwise, starting from the root of Tactive, the algorithm adds the
interpolated nodes and their in-between edges to the Tactive until an
obstruction is encountered. Next, the Exploration phase starts with
selecting a random configuration qrand in the Cfree and finding a node
nclose on Tactive which is nearest to qrand (lines 22–24), and then
expanding the Tactive directly from nclose toward qrand through interpo-
lation and augmentation of new intermediate nodes and edges until
either qrand is reached or an obstruction is encountered (lines 25–34).

At this stage, the Tactive and Tpassive are switched, meaning that Tactive
becomes the tree rooted in qgoal(πp) and Tpassive becomes the tree rooted
in qinit(πp) (line 39). Now the Exploitation phase is relaunched, meaning
that a random node nrand is selected on the new Tpassive as a (temporary)
goal point and the nearest node on Tactive (called nnear) to nrand is found
(lines 6–7). Then, Tactive is expanded from nnear to nrand by interpolation
and node augmentation until either nrand is reached (in which case the
path planning ends) or an obstruction is encountered (lines 8–17). In the
latter case, the Exploration phase is executed, which is explained in the
previous paragraph. Again the Tactive and Tpassive trees are switched and
successive Exploitation and Exploration phases are executed until either
the two trees are connected or iter_max iterations have passed. In that
former case, the path from qinit(πp) to qgoal(πp) is reported as the as-
sembly path τ(πp) of part πp, and in the latter case, the path connecting

Table 4
Mean and standard deviation values of the performance criteria produced by running the SPP-Flex 20 times for each scenario and each product.

Scenarios Criteria
Compact Box Assembly Shaft Housing Assembly

TPL TNN TNE TCC TT TPL TNN TNE TCC TT
М σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ

GH+BXXT 1136.1 52.1 113.3 7.4 89.6 4.4 1935.3 109.2 986.5 53.4 987.3 62.5 179.8 10.2 132.6 8.1 3417.9 193.6 1456.3 68.2
GH+BRRT 1278.9 75.7 154.2 8.8 127.6 6.6 2134.9 131.2 1254.6 67.6 1123.8 69.7 213.4 11.9 157.9 8.1 3911.0 219.7 1679.2 83.8
BLS+BXXT 1139.2 71.2 112.4 6.3 87.3 5.6 1931.2 104.8 1175.4 56.2 985.2 57.2 184.2 10.5 137.9 7.2 3429.1 185.9 1649.9 99.1
BLS+BRRT 1302.8 77.8 151.9 6.7 126.8 7.3 2129.0 126.6 1461.5 70.0 1145.6 67.2 218.9 12.6 163.8 9.9 4011.1 231.5 1879.3 110.3

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

11

qinit(πp) to a node on its rooted tree which is nearest to qgoal(πp) (called
qintermediate) is returned as the path τ(πp) of part πp (lines 41–42). In both
cases, the resulting path is smoothed as is customary in random tree
methods [12] (line 43). In fact, defining qintermediate makes the SPP-Flex
algorithm capable of solving nonmonotone ASPP problems as well.

As indicated in the pseudocode in Fig. A.3, in addition to generating
the assembly path of the p-th part τ(πp), another output of the path
planner is the Intersections Count Array Qp = [π1, π2, …, πp− 1 | o1, o2, …,
om], initially having all zeros (m is the number of obstacles in the
workspace). As mentioned above (and in the pseudocode), a rooted tree
(Tactive) is expanded from an existing node (nnear or nclose) toward a
random configuration (nrand or qrand) by successively adding the free
configurations on their hypothetical connecting line until a configura-
tion qj is found to be in collision with an already assembled part or a
static obstacle like a fixture. The collision checking procedure is
executed in the In_Collision() subroutine, which checks if any
vertex, edge, or face of the active part πp at configuration qj intersects
with any other vertex, edge, or face in the workspace. In the case of an
intersection, the colliding objects (parts or obstacles) are added to the
set CO. The array Qp is then updated via incrementing by 1 any of its
elements that correspond to an assembled part in CO. In this way, Qp is
updated repeatedly until the path planning algorithm terminates,
yielding an assembly path. The final Qp, therefore, shows the number of
times each previously assembled part (p − 1 parts in total) and work-
space obstacle (m in total) has obstructed the growth of the random tree
of the p-th part being assembled. For instance, Q6 = [34, 6, 27, 78, 41 |
12, 0, 47] shows the number of times the five already assembled parts π1,
π2, π3, π4, π5 and the existing workspace obstacles o1, o2, o3 intersected
the configurations generated for planning the path of part π6, indicating
that the fourth assembled part has had the most collisions.

3.4. Identifying and relocating blocking parts

The information stored in the Intersections Count Array Qp is useful
when the path planner fails to find a start-to-goal assembly path and it is
required to relocate a previously assembled part to a temporary position
to allow assembling of the current part. In fact, the part with the highest
value in Qp (let us name it πb) is the first candidate for relocation as its
excessive intersection implies that it is very close to the active part and
on the way of its assembly path.

Upon identifying the blocking part πb, the algorithm tries to move it
to another free configuration in C-space and eliminate its interference
with the active part. The new location of πb is determined by con-
structing a tree Trelocate rooted in qgoal(πb) and iteratively expanding it
toward a random free configuration qrand (again by adding interpolated
free nodes). This process is repeated as many as max_removal_attempts
times, after which among the nodes of the Trelocate, the one with the
largest distance (difference) from qgoal(πb) is found (qfar). Now the part
πb can be safely removed from its current position to the configuration
qfar. Once πb is relocated, it is added to a list called replanning_list to
remind us that it must be removed back to its final position after
assembling the active part πp. The pseudocode in Fig. A.4 presents the
details of the above procedure.

If after relocating πb, the active part πp still cannot be assembled due
to interference with other parts, the procedure Relocate() is repeated
for the part with the next highest nonzero value in Qp and the newly
relocated part is included in the replanning_list. If within at most p − 1
attempts (i.e., back to the first assembled part) it was possible to clear
the assembly path of πp, then we will replan the paths of all the parts in
the replanning_list from their relocated configurations back to their final
(assembled) configuration (lines 22–26 and 32–36 in Fig. A.1).

3.5. The FEA component

This component is executed when it is still not possible to assemble
the active part πp even after relocating all the previously assembled parts

because of geometric interferences. Consequently, the SPP-Flex algo-
rithm checks if part-part or obstacle-part obstructions can be resolved if
the flexibility of the parts are taken into account. The main operation in
this component consists of simulating the movement of the active part
from its last configuration toward its goal configuration through the
assembled parts and workspace obstacles and analyzing the stresses it
undergoes when contacting other surfaces. This is done using the Aba-
qus™ software and the FEA_Test() in which the movement of πp is
simulated and continued until either it reaches its final configuration in
the assembly (e.g., a collision-free path is found for assembling πp) or at
least one of the blocking objects or the part πp enters into its plastic
deformation zone. In that case, the SPP-Flex algorithm halts and reports
that it failed to plan a collision-free assembly path for πp and therefore
the whole assembly job is not doable. The simulation of the FEA_Test
() routine is performed via different modules of the software, as
described in Table 3. The results of the FEM analysis are generated and
reported by the software typically in a few minutes.

Fig. 3 shows snapshots of assembling the flexible part p1 along the
direction − y after that the rigid part p2 has been assembled. The
movement is simulated in Abaqus by exerting forces to p1 until it en-
counters p2 that is constrained to be fixed. Since the inner width of the p1
and the outer width of the p2 form a transition fit, the interference be-
tween the two bodies causes tensile and compressive stresses to some
elements of the parts. While the forces are maintained and the upper part
tightly slides downward, the sum of stresses exerted to the flexible part
at each time step (e.g., 1 second) is calculated and compared to its Yield
stress. If the maximum stress along the whole movement (until p1 rea-
ches its goal) lies within the part’s elastic zone, then it is concluded that
the assembly is feasible. Otherwise, the part will undergo plastic
deformation before being assembled, and thus failure is reported. In
Fig. 3, the magnitudes of applied von Mises stresses on different ele-
ments of the parts are represented by a color scale (according to the
contour plot legend), which ranges from dark blue, light blue, green,
yellow, orange, to red for indicating the lowest to highest stresses.

The FEA component is triggered also when an active flexible part
cannot reach its final configuration even if no other object is obstructing
its assembly path. This happens when the part must change its shape
(within its elastic deformation zone) at the final assembled position. An
example is a rubber band needed to bend and twist around a subas-
sembly to strap it, as shown in Figs. 7(l) and 7(n). In such cases, the part
is translated along its assembly path until it comes to contact with its
neighboring assembled part(s) in the final assembly and cannot move
further despite not having reached its final configuration. Here the FEA
Component is launched to simulate the elastic deformation of the part by
interactively exerting forces along proper directions that lead to its
shape change as required by the final assembly. It is noted that auto-
matic planning of such deformation merely using a motion planning
algorithm is extremely difficult and computationally expensive since the
number of dimensions of the C-space increases dramatically as the
number of moving elements of the flexible part (i.e., its degrees of
freedom) increases. That is why very few works exist in the literature on
motion planning of flexible objects, mostly specific to linear objects like
wires and tubes.

4. Experimental results

In this section, we present the results of solving the ASPP problem by
the proposed SPP-Flex method for two newly designed multipart prod-
ucts comprised of rigid and flexible parts. The first problem is called
Compact Box assembly (Fig. 4) and is monotone, meaning that the parts
of the product need to be moved directly from their initial (dis-
assembled) position to the goal (assembled) position only once, and no
intermediate positioning is required. The second problem, called Shaft
Housing assembly (Fig. 5), is nonmonotone, meaning that one or more of
the parts should be moved more than once, to one or more intermediate
positions.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

12

Fig. 6. Snapshots of assembly sequence and path planning of the Compact Box assembly.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

13

Fig. 7. Snapshots of assembly sequence and path planning of the Shaft Housing assembly.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

14

Fig. 7. (continued).

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

15

Fig. 8. Boxplots of the TPL, TNN, TNE, TCC, and TT criteria after solving the ASPP problems for the Compact Box and Shaft Housing assemblies by the compared
methods 20 times each.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

16

Fig. 9. Percentage of the Average Relative Gap of each scenario compared to the best among all scenarios in each of the TPL, TNN, TNE, TCC, and TT performance
criteria: (a) mean of relative gaps for the Compact Box assembly, (b) standard deviation of relative gaps for the Compact Box assembly, (d) mean of relative gaps for
the Shaft Housing assembly, (b) standard deviation of relative gaps for the Shaft Housing assembly.

Table 5
Percentage of the Average Absolute Gap of each scenario relative to the global best-found value in each performance criterion (TPL, TNN, TNE, TCC, and TT). The Gaps
are calculated using the formulas presented in the legend.

Scenarios Criteria
Compact Box Assembly Shaft Housing Assembly

GapTPL GapTNN GapTNE GapTCC GapTT GapTPL GapTNN GapTNE GapTCC GapTT

GH+BXXT 3.7% 3.6% 3.3% 6.8% 1.9% 4.6% 5.3% 3.4% 2.3% 2.1%
GH+BRRT 15.6% 39.1% 45.4% 13.3% 30.2% 16.8% 21.7% 22.1% 17.4% 18.3%
BLS+BXXT 3.9% 2.9% 3.3% 6.5% 22.1% 4.5% 7.9% 3.8% 3.1% 16.3%
BLS+BRRT 17.7% 37.1% 44.5% 13.0% 51.2% 19.1% 24.8% 26.6% 20.3% 32.1%

GapTPL =

∑k
i=1(TPLi − TPLmin)

TPLmin
× 100%, GapTNN =

∑k
i=1(TNNi − TNNmin)

TNNmin
× 100%, GapTNE =

∑k
i=1(TNEi − TNEmin)

TNEmin
× 100%GapTCC =

∑k
i=1(TCCi − TCCmin)

TCCmin
× 100%,GapTT =

∑k
i=1(TTi − TTmin)

TTmin
× 100%

Fig. 10. Percentage of the Average Absolute Gap of each scenario relative to the global best-found value for each performance criterion (TPL, TNN, TNE, TCC, TT) for
(a) the Compact Box, and (b) the Shaft Housing assemblies.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

17

The SPP-Flex method was coded in Matlab™ and run on an Intel™
Core-i7 1.8 GHz CPU with 8 GB of RAM. Each problem was solved 20
times, and the best sequence and mean values obtained for the following
five criteria were calculated:

(1) TPL: Total path length of all assembled parts from their initial
positions to final assembled positions (in length units),

(2) TNN: Total number of nodes generated in the configuration
(search) space (see Section 3.3 for a definition of a node),

(3) TNE: Total number of edges in the search tree or graph,
(4) TCC: Total number of collision checks in order to verify if a

sampled node is collision-free. Collision check for a configuration
node requires checking the intersections of vertices, edges, and
faces of the part being assembled with those of all already
assembled parts,

(5) TT: Total time of assembly sequence and path planning of all
parts (in seconds).

As mentioned earlier, according to our literature review (Section 1.3)
and to the best of our knowledge, part flexibility has not been considered
for monotone or nonmonotone assembly sequence and path planning in
previous related works, and thus we could not find a matching algorithm
to compare with the SPP-Flex. However, in order to evaluate the effec-
tiveness and efficiency of the algorithm and particularly its two main
modules, namely, the assembly sequence and assembly path planning
components, we considered two alternative methods for each of the ASP
and APP components and ran the SPP-Flex with all four possible com-
binations (scenarios) to evaluate its performance.

The following two alternatives were considered for the ASP
component of the SPP-Flex:

(a) The Greedy Heuristic (GH) algorithm proposed in Section 3.1,
(b) The Breakout Local Search (BLS) algorithm developed by us in

[20] for solving the ASP problem for rigid parts only. In that
work, we showed that BLS outperforms several search methods
like Simulated Annealing (SA), Genetic Algorithms (GA), Mem-
etic Algorithms (MA), Immune System-Particle Swarm Optimi-
zation hybrid method (IPSO), Harmony Search (HS), Multi-start
Local Search (MLS), and Iterative Local Search (ILS). Therefore,
selecting BLS as an alternative to the GH seems appropriate and
reasonable. It should be noted that small modifications were
made to the BLS algorithm to enable it to solve the ASP of rigid
and flexible parts.

Also, the following two alternatives were considered for the APP
component of the SPP-Flex:

(a) The Bidirectional Exploration-Exploitation Tree (BXXT) path
planner proposed in Section 3.3,

(b) The Bidirectional Rapidly exploring Random Tree (BRRT) algorithm
[35]. In BRRT, two search trees are constructed with roots on the
initial and goal nodes. Through alternating expansion, the trees
grow towards each other’s nearest nodes with edge lengths equal
to a step size until they are connected. Bidirectional searches
usually outperform unidirectional searches in terms of efficiency
and effectiveness, especially in problems known as ‘bug trap’. For
each part to be assembled, a maximum number of attempts are
made to establish new branches on the search tree.

Based on the different combinations of the above ASP and APP ap-
proaches, the following four scenarios were created and investigated:

ASP APP
Bidirectional Exploration-
Exploitation Tree

Bidirectional Rapidly-
exploring Random Tree

Greedy
Heuristic

GH+BXXT GH+BRRT

Breakout Local
Search

BLS+BXXT BLS+BRRT

Each of the four scenarios was run 20 times for solving the ASPP
problem on each of the Compact Box and Shaft Housing assemblies,
resulting in 160 simulations in total. Table 4 presents the mean and
standard deviation of the five performance criteria (TPL, TNN, TNE,
TCC, and TT) for different scenarios and products, and Figs. 6 and 7
show snapshots of assembling the Compact Box and Shaft Housing
products via the GH+BXXT scenario.

4.1. Analysis of results

In order to analyze and interpret the obtained computational results,
they are depicted in Fig. 8 as boxplots for values of the TPL, TNN, TNE,
TCC, and TT criteria for all scenarios and products obtained after
running each combination 20 times. For each box, the central mark the
median value, the bottom and top edges represent the first and third
quartiles, and the lower and upper whiskers respectively show the
minimum and maximum values of 20 runs.

Fig. 8 demonstrates that the scenarios GH+BXXT and BLS+BXXT
(the first and third boxes in each diagram) outperform the scenarios
GH+BRRT and BLS+BRRT (the second and fourth boxes) in both solu-
tion quality and execution time criteria. The reason is obviously the
better performance of the BXXT over BRRT, as it does both exploration
and exploitation in the configuration space. Note that except for the path
planning component, all other elements of the SPP-Flex remain the same
for the two groups of scenarios. Therefore, we can conclude that the
BXXT planner is quite effective and efficient compared to the BRRT.

In order to further determine the effect of the ASP component (GH or
BLS) on the overall performance of the SPP-Flex, we plot two sets of
data, (i) average relative gap of each scenario compared to the best among
all scenarios (Fig. 9), and (ii) average absolute gap of each scenario
relative to the global best-found solution (Table 5 and Fig. 10). These
plots suggest that SPP-Flex is most powerful when its assembly sequence
planning and assembly path planning components are selected to be the
introduced Greedy Heuristic (GH) and the Bidirectional Exploration-
Exploration Tree planner (BXXT), respectively.

As can be seen in Figs. 9 and 10, The GH+BRRT and BLS+BRRT
scenarios were found to be the least effective. They find solutions with
large gaps in all criteria, both in mean and standard deviation statistics.
In addition, although the scenario BLS+BXXT yielded the best mean gap
values of TNN, TNE and TCC for the Compact Box assembly, it required
considerably higher runtimes compared to scenario GH+BXXT. The
reason is that the BLS algorithm needs to generate several solutions in
order to find a good assembly sequence with the smallest total stress
among all generated solutions, which takes longer time compared to the
fast Greedy Heuristic algorithm, and is also less robust since its standard
deviation is larger compared to the GH+BXXT. Hence, we can make the
following conclusions: (1) the GH+BXXT scenario is the best among
other combinations as it provides a good trade-off for all metrics (at most
4.6% and 2.1% gaps in path length and runtime, respectively), and (2)

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

18

the SPP-Flex is not sensitive to the quality of the assembly sequence it
employs as the starting sequence (i.e., whether it is an optimal sequence
or not) as it will be able to adjust and enhance it through the identifying
and relocating blocking parts and path replanning capabilities.

5. Conclusions

The assembly sequence and path planning (ASPP) problem is a major
problem in the assembly planning of industrial products, which com-
prises up to 50% of the total production time and more than 20% of the
total manufacturing cost [55]. Both of its subproblems (ASP and APP)
are categorized as NP-complete problems, and therefore finding global
optimal solutions are not practical for most real-world problems, thus
justifying the implementation of greedy and metaheuristic algorithms.
Solution complications increase when the geometrical shapes of the
parts can undergo deformation and nonmonotone assemblies (requiring
locating the parts more than once) are considered. The above assump-
tions create a challenging problem that has not been tackled duly in the
past as nearly all existing works in the field of ASP and APP deal with
merely rigid parts.

Since most real-world assembled products like ships, aircraft, and
automobiles are composed of rigid and flexible parts, automatic gener-
ation of assembly sequence and path plans for such products requires the
flexibility of flexible parts to be taken into account. In this paper, we
have presented a new method called SPP-Flex for solving the ASPP
problem for rigid and flexible parts, which requires incorporating pa-
rameters like elasticity, force, and toleranced geometry of such parts in
the model.

SPP-Flex has three main components: (1) an ASP component, which
is a greedy heuristic that in each iteration tries to locally minimize the
applied stress between parts being assembled along the main directions,
(2) an APP component, which employs a sampling-based stochastic path
planner (BXXT) to plan start-to-goal paths for all parts while avoiding
workspace obstacles, and (3) an FEA component, which simulates the
behavior of contacting rigid and flexible parts along a given assembly
path using the Abaqus software. SPP-Flex is the first in its kind that is
specifically designed for solving the ASPP problem (other few works
extract a solution to the ASPP by reversing the solution to the Disas-
sembly sequence and path planning (DASPP)), considers obstacles in the
workspace, can handle products with rigid and flexible parts, allows
planning translational and rotational assembly movements for parts, is
probabilistically complete (will come up with a solution within suffi-
cient time), and can handle monotone and nonmonotone ASP plans.

Within the framework of the SPP-Flex, we propose a novel concept
called Intersections Count Array, Qp, which despite its simple structure,
makes it possible for the parts to be reassembled multiple times. An
implication of this feature is that the SPP-Flex is not affected by infea-
sible initial assembly sequences and can ‘correct’ infeasibilities through
relocating and replanning assembled parts, thus ‘undoing’ incorrect or
untimely assemblies. This feature empowers the SPP-Flex to handle
nonmonotone assembly planning problems, a rarely tackled case in the
assembly planning literature.

To test and measure the effectiveness of the SPP-Flex, two new
products, namely Compact Box and Shaft Housing assemblies, were
designed and solved with this method. Both of the products are
comprised of rigid and flexible parts, and the Compact Box is a mono-
tone assembly, while the Shaft Housing is nonmonotone. To analyze the
effectiveness and efficiency of the proposed ASP and APP planners, five
performance criteria were defined and four different variations of the

SPP-Flex—i.e., combinations of Greedy Heuristic (GH) and Breakout
Local Search (BLS) sequence planners with the Bidirectional Rapidly-
exploring Random Tree (BRRT) and Bidirectional Exploration-
Exploitation Tree (BXXT) path planners—were coded and imple-
mented in solving the test products for 20 times (4 × 2 × 20 = 160
simulations in total). Analysis of the computational results showed that
the SPP-Flex method is most effective (yielding short assembly paths)
and efficient (yielding low computational times) when its ASP and APP
components are the GH and BXXT, respectively, with at most 4.6% gap
in path length and 2.1% gap in runtime. Also, it was observed that
optimizing the initial assembly sequence (through BLS) and feeding it to
the APP component has little impact on the solution quality (path length
and random tree size) but increases the computational time compared to
when a simple greedy heuristic is utilized for ASP.

A future research direction in the field is the assembly sequence and
path planning for non-sequential (requiring more than two assembling
hands) and nonlinear (where a group of parts can be assembled as sub-
assemblies and then added to the final assembly) products, which
frequently occur in real-world applications. Other future works include
simulating and exerting forces along curved (nonlinear) assembly paths
in the finite element analysis component, and considering high-
dimensional composite configuration spaces for more accurately
defining all possible deformations of flexible objects.

Authors statement

We wish to confirm that there are no known conflicts of interest
associated with this publication and there has been no significant
financial support for this work that could have influenced its outcome.

We confirm that the manuscript has been read and approved by all
named authors and that there are no other persons who satisfied the
criteria for authorship but are not listed. We further confirm that the
order of authors listed in the manuscript has been approved by all of us.

We confirm that we have given due consideration to the protection of
intellectual property associated with this work and that there are no
impediments to publication, including the timing of publication, with
respect to intellectual property. In so doing we confirm that we have
followed the regulations of our institutions concerning intellectual
property.

We understand that the Corresponding Author is the sole contact for
the Editorial process (including Editorial Manager and direct commu-
nications with the office). He is responsible for communicating with the
other authors about progress, submissions of revisions and final
approval of proofs. We confirm that we have provided a current, correct
email address which is accessible by the Corresponding Author.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix –. Pseudocodes of the Algorithms

Figs. A.1, A.2, A.3 and A.4

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

19

Fig. A.1. The main algorithm of the SPP-Flex.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

20

Fig. A.2. Pseudocode of the assembly sequence planning algorithm.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

21

Fig. A.3. Pseudocode of the proposed BXXT algorithm for planning the assembly path of part πp.

E. Masehian and S. Ghandi

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

22

References

[1] M.F.F. ab Rashid, A hybrid Ant-Wolf Algorithm to optimize assembly sequence
planning problem, Assem. Autom. 37 (2017) 238–248.

[2] J. Acker, D. Henrich, Manipulation of deformable linear objects: from geometric
model towards program generation, in: Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA, 2005, pp. 1541–1547.

[3] I. Aguinaga, D. Borro, L. Matey, Path-planning techniques for the simulation of
disassembly tasks, Assem. Autom. 27 (2007) 207–214.

[4] I. Aguinaga, D. Borro, L. Matey, Parallel RRT-based path planning for selective
disassembly planning, Int. J. Adv. Manuf. Technol. 36 (2008) 1221–1233.

[5] H. Akbaripour, E. Masehian, Semi-lazy probabilistic roadmap: a parameter-tuned,
resilient and robust path planning method for manipulator robots, Int. J. Adv.
Manuf. Technol. 89 (2017) 1401–1430.

[6] M.R. Bahubalendruni, B. Deepak, B.B. Biswal, An advanced immune based strategy
to obtain an optimal feasible assembly sequence, Assem. Autom. 36 (2016)
127–137.

[7] R. Bohlin, L.E. Kavraki, Path planning using lazy PRM, in: Proceedings of the
ICRA’00. IEEE International Conference on Robotics and Automation, 2000, IEEE,
2000, pp. 521–528.

[8] F. Bonneville, C. Perrard, J.-.M. Henrioud, A genetic algorithm to generate and
evaluate assembly plans, in: Proceedings of the INRIA/IEEE Symposium on
Emerging Technologies and Factory Automation, ETFA, 1995, pp. 231–239.

[9] P.-.B. Cao, R.-.B. Xiao, Assembly planning using a novel immune approach, Int. J.
Adv. Manuf. Technol. 31 (2007) 770–782.

[10] C.P. Chen, Design of a real-time AND/OR assembly scheduler on an optimization
neural network, J. Intell. Manuf. J. Intell. Manuf. 3 (1992) 251–261.

[11] W.-.C. Chen, P.-.H. Tai, W.-.J. Deng, L.-.F. Hsieh, A three-stage integrated approach
for assembly sequence planning using neural networks, Expert Syst. Appl. 34
(2008) 1777–1786.

[12] H.M. Choset, S. Hutchinson, K.M. Lynch, G. Kantor, W. Burgard, L.E. Kavraki,
S. Thrun, Principles of Robot motion: theory, algorithms, and Implementation, MIT
press, 2005.

[13] J. Cortés, L. Jaillet, T. Siméon, Molecular disassembly with Rrt-Like algorithms,
ICRA (2007) 3301–3306.

[14] J. Cortés, L. Jaillet, T. Siméon, Disassembly path planning for complex articulated
objects, IEEE Trans. Rob. 24 (2008) 475–481.

[15] L. Da Xu, C. Wang, Z. Bi, J. Yu, AutoAssem: an automated assembly planning
system for complex products, IEEE Trans. Ind. Inf. 8 (2012) 669–678.

[16] B. Deepak, G. Bala Murali, M.R. Bahubalendruni, B. Biswal, Assembly sequence
planning using soft computing methods: a review, Proc. Inst. Mech. Eng. Part E J.
Process Mech. Eng. 233 (3) (2018) 653–683., https://doi.org/10.1177/
0954408918764459, 0954408918764459.

[17] E. Fogel, D. Halperin, Polyhedral assembly partitioning with infinite translations or
the importance of being exact. Algorithmic Foundation of Robotics VIII, Springer,
2009.

[18] L. Gao, W. Qian, X. Li, J. Wang, Application of memetic algorithm in assembly
sequence planning, Int. J. Adv. Manuf. Technol. 49 (2010) 1175–1184.

[19] S. Ghandi, E. Masehian, Assembly sequence planning of rigid and flexible parts,
J. Manuf. Syst. 36 (2015) 128–146.

[20] S. Ghandi, E. Masehian, A breakout local search (BLS) method for solving the
assembly sequence planning problem, Eng. Appl. Artif. Intell. 39 (2015) 245–266.

[21] S. Ghandi, E. Masehian, Review and taxonomies of assembly and disassembly path
planning problems and approches, Comput. Aided Des. (2015).

[22] Gibson, S.F. & Mirtich, B. 1997. A Survey of Deformable Modeling in Computer
Graphics. Technical Report TR-97-19, Mitsubishi Electric Research Laboratory,
Cambridge, MA.

[23] M. Givehchi, A.H. Ng, L. Wang, Spot-welding sequence planning and optimization
using a hybrid rule-based approach and genetic algorithm, Robot. Comput. Integr.
Manuf. 27 (2011) 714–722.

[24] J. Guo, P. Wang, N. Cui, Adaptive ant colony algorithm for on-orbit assembly
planning, in: Proceedings of the Second IEEE Conference on Industrial Electronics
and Applications, ICIEA, 2007, pp. 1590–1593.

[25] D. Halperin, J.-.C. Latombe, R.H. Wilson, A general framework for assembly
planning: the motion space approach, Algorithmica 26 (2000) 577–601.

[26] T. Hermansson, R. Bohlin, J.S. Carlson, R. Söderberg, Automatic assembly path
planning for wiring harness installations, J. Manuf. Syst. 32 (3) (2013) 417–422,
https://doi.org/10.1016/j.jmsy.2013.04.006.

[27] D. Hong, H. Cho, A neural-network-based computational scheme for generating
optimized robotic assembly sequences, Eng. Appl. Artif. Intell. 8 (1995) 129–145.

[28] D. Hong, H. Cho, Generation of robotic assembly sequences using a simulated
annealing, in: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, 1999, pp. 1247–1252.

[29] C. Hui, L. Yuan, Z. Kai-Fu, Efficient method of assembly sequence planning based
on GAAA and optimizing by assembly path feedback for complex product, Int. J.
Adv. Manuf. Technol. 42 (2009) 1187–1204.

[30] C. Hui, W. Shengmin, Q. Xi, Space swept algorithm based assembly path planning
method for aircraft, J. Beijing Univ. Aeronaut. Astronaut. 6 (2010) 012.

[31] X. Jiang, Y. Nagaoka, K. Ishii, S. Abiko, T. Tsujita, M. Uchiyama, Robotized
recognition of a wire harness utilizing tracing operation, Robot. Comput. Integr.
Manuf. 34 (2015) 52–61.

[32] P. Jiménez, Survey on model-based manipulation planning of deformable objects,
Robot. Comput. Integr. Manuf. 28 (2012) 154–163.

[33] P. Jiménez, Survey on assembly sequencing: a combinatorial and geometrical
perspective, J. Intell. Manuf. J. Intell. Manuf. 24 (2013) 235–250.

[34] X. Jin, T. Zhang, H. Yang, An analysis of the assembly path planning of decelerator
based on virtual technology, Phys. Procedia 25 (2012) 170–175.

[35] M. Jordan, A. Perez. Optimal Bidirectional Rapidly-Exploring Random Trees.
Technical Report MIT-CSAIL-TR-2013-021, Computer Science and Artificial

Fig. A.4. Procedure for relocating the blocking part to an intermediate configuration.

E. Masehian and S. Ghandi

http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0001
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0001
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0002
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0002
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0002
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0003
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0003
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0004
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0004
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0005
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0005
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0005
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0006
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0006
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0006
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0007
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0007
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0007
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0008
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0008
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0008
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0009
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0009
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0010
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0010
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0011
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0011
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0011
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0012
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0012
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0012
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0013
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0013
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0014
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0014
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0015
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0015
https://doi.org/10.1177/0954408918764459
https://doi.org/10.1177/0954408918764459
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0017
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0017
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0017
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0018
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0018
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0019
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0019
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0020
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0020
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0021
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0021
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0023
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0023
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0023
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0024
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0024
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0024
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0025
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0025
https://doi.org/10.1016/j.jmsy.2013.04.006
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0027
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0027
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0028
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0028
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0028
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0029
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0029
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0029
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0030
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0030
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0031
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0031
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0031
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0032
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0032
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0033
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0033
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0034
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0034
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0035
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0035

Robotics and Computer-Integrated Manufacturing 72 (2021) 102180

23

Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA,
2013.

[36] S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion planning,
Int. J. Robot. Res. 30 (2011) 846–894.

[37] S. Karaman, M.R. Walter, A. Perez, E. Frazzoli, S. Teller, Anytime Motion Planning
Using the RRT, Institute of Electrical and Electronics Engineers, 2011.

[38] L. Kavraki, J.-.C. Latombe, R.H. Wilson, On the complexity of assembly
partitioning, Inf. Process Lett. 48 (1993) 229–235.

[39] L. Kavraki, P. Svestka, M.H. Overmars, Probabilistic Roadmaps For Path Planning
in High-Dimensional Configuration Spaces, Unknown Publisher, 1994.

[40] J.J. Kuffner, S.M. Lavalle, RRT-connect: an efficient approach to single-query path
planning, in: Proceedings of the IEEE International Conference on Robotics and
Automation, 2000 ICRA’00, IEEE, 2000, pp. 995–1001.

[41] Lavalle, S.M. 1998. Rapidly-exploring Random trees: A new Tool For Path
Planning.

[42] D.T. Le, J. Cortés, T. Siméon, A path planning approach to (dis) assembly
sequencing, in: Proceedings of the IEEE International Conference on Automation
Science and Engineering, IEEE, 2009, pp. 286–291.

[43] S. Lee, H. Moradi, Disassembly sequencing and assembly sequence verification
using force flow networks, in: Proceedings of the IEEE International Conference on
Robotics and Automation, 1999, IEEE, 1999, pp. 2762–2767.

[44] T. Lozano-Perez, R.H. Wilson, Assembly sequencing for arbitrary motions, in:
Proceedings of the IEEE International Conference on Robotics and Automation
1993, IEEE, 1993, pp. 527–532.

[45] T. Lu, B. Zhang, P. Jia, Assembly sequence planning based on graph reduction, in:
Proceedings of the 1993 IEEE Region 10 Conference on Computer,
Communication, Control and Power Engineering, TENCON’93, IEEE, 1993,
pp. 119–122.

[46] Q. Luo, J. Xiao, Haptic rendering involving an elastic tube for assembly
simulations, in: Proceedings of the 6th IEEE International Symposium on Assembly
and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005.
(ISATP 2005), IEEE, 2005, pp. 53–59.

[47] H. Lv, C. Lu, An assembly sequence planning approach with a discrete particle
swarm optimization algorithm, Int. J. Adv. Manuf. Technol. 50 (2010) 761–770.

[48] N. Lv, J. Liu, X. Ding, H. Lin, Assembly simulation of multi-branch cables, J. Manuf.
Syst. 45 (2017) 201–211.

[49] E. Masehian, S. Ghandi, ASPPR: a new Assembly Sequence and Path Planner/
Replanner for monotone and nonmonotone assembly planning, Comput. Aided
Des. 123 (2020), 102828.

[50] H. Mosemann, T. Bierwirth, F. Wahl, S. Stoeter, Generating polyhedral convex
cones from contact graphs for the identification of assembly process states, in:
Proceedings IEEE International Conference on Robotics and Automation, 2000
ICRA’00., IEEE, 2000, pp. 744–749.

[51] S. Motavalli, A.-.U. Islam, Multi-criteria assembly sequencing, Comput. Ind. Eng.
32 (1997) 743–751.

[52] C.L. Nielsen, L.E. Kavraki, A two level fuzzy PRM for manipulation planning, in:
Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2000.(IROS 2000), IEEE, 2000, pp. 1716–1721.

[53] J.H. Oliver, H.-.T. Huang, Automated path planning for integrated assembly
design, Comput. Aided Des. 26 (1994) 658–666.

[54] L.-.M. Ou, X. Xu, Relationship matrix based automatic assembly sequence
generation from a CAD model, Comput. Aided Des. 45 (2013) 1053–1067.

[55] C. Pan, Integrating CAD Files and Automatic Assembly Sequence Planning, Iowa
State University, 2005. PHD thesis.

[56] A.K. Priyadarshi, S.K. Gupta, Algorithms for generating multi-stage molding plans
for articulated assemblies, Robot. Comput. Integr. Manuf. 25 (2009) 91–106.

[57] S. Rakshit, S. Akella, The Influence of Motion Path and Assembly Sequence On the
Stability of Assemblies, Robotics: Science and Systems IX, 2013.

[58] M.F.F. Rashid, W. Hutabarat, A Tiwari, A review on assembly sequence planning
and assembly line balancing optimisation using soft computing approaches, Int. J.
Adv. Manuf. Technol. 59 (2012) 335–349.

[59] A. Remde, D. Henrich, H. Wom, Manipulating deformable linear objects-contact
state transitions and transition conditions, in: Proceedings of the 1999 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 1999. IROS’99., IEEE,
1999, pp. 1450–1455.

[60] B. Romney, Atlas: an automatic assembly sequencing and fixturing system.
Geometric Modeling: Theory and Practice, Springer, 1997.

[61] B. Romney, C. Godard, M. Goldwasser, G. Ramkumar, An efficient system for
geometric assembly sequence generation and evaluation, Comput. Eng. (1995)
699–712.

[62] A. Shah, L. Blumberg, J. Shah, Planning for manipulation of interlinked deformable
linear objects with applications to aircraft assembly, IEEE Trans. Autom. Sci. Eng.
(2018) 1–16.

[63] A.J. Shah, J.A. Shah, Towards manipulation planning for multiple interlinked
deformable linear objects, in: Proceedings of the 2016 IEEE International
Conference on Robotics and Automation (ICRA),, IEEE, 2016, pp. 3908–3915.

[64] C. Sinanoglu, H.R. Börklü, An assembly sequence-planning system for mechanical
parts using neural network, Assem. Autom. 25 (2005) 38–52.

[65] J. Song, Q. Chen, Z. Li, A peg-in-hole robot assembly system based on Gauss
mixture model, Robot. Comput. Integr. Manuf. 67 (2021), 101996.

[66] Q. Su, A hierarchical approach on assembly sequence planning and optimal
sequences analyzing, Robot. Comput. Integr. Manuf. 25 (2009) 224–234.

[67] S. Sundaram, I. Remmler, N.M. Amato, Disassembly sequencing using a motion
planning approach, in: Proceedings of the 2001IEEE International Conference on
Robotics and Automation, 2001, ICRA, IEEE, 2001, pp. 1475–1480.

[68] U. Thomas, M. Barrenscheen, F.M. Wahl, Efficient assembly sequence planning
using stereographical projections of c-space obstacles, in: Proceedings of the IEEE
International Symposium on Assembly and Task Planning, 2003., IEEE, 2003,
pp. 96–102.

[69] M. Tiwari, A. Kumar, A. Mileham, Determination of an optimal assembly sequence
using the psychoclonal algorithm, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 219
(2005) 137–149.

[70] Y.-.J. Tseng, F.-.Y. Yu, F.-.Y. Huang, A green assembly sequence planning model
with a closed-loop assembly and disassembly sequence planning using a particle
swarm optimization method, Int. J. Adv. Manuf. Technol. 57 (2011) 1183–1197.

[71] V. Venkatesan, J. Seymour, D.J. Cappelleri, Microassembly sequence and path
planning using sub-assemblies, J. Mech. Robot. 10 (6) (2018) 1–14, https://doi.
org/10.1115/1.4041333.

[72] W. Wan, K. Harada, K. Nagata, Assembly sequence planning for motion planning,
Assem. Autom. 38 (2018) 195–206.

[73] J. Wang, J. Liu, Y. Zhong, A novel ant colony algorithm for assembly sequence
planning, Int. J. Adv. Manuf. Technol. 25 (2005) 1137–1143.

[74] L. Wang, Y. Hou, X. Li, S. Sun, An enhanced harmony search algorithm for
assembly sequence planning, Int. J. Model. Ident. Control 18 (2013) 18–25.

[75] Y. Wang, J. Liu, Chaotic particle swarm optimization for assembly sequence
planning, Robot. Comput. Integr. Manuf. 26 (2010) 212–222.

[76] S.A. Wilmarth, N.M. Amato, P.F. Stiller, MAPRM: a probabilistic roadmap planner
with sampling on the medial axis of the free space, in: Proceedings of the 1999
IEEE International Conference on Robotics and Automation, 1999, IEEE, 1999,
pp. 1024–1031.

[77] R.H. Wilson, On Geometric Assembly Planning, STANFORD UNIV CA DEPT OF
COMPUTER SCIENCE, 1992.

[78] R.H. Wilson, L. Kavraki, J.-.C. Latombe, T. Lozano-Pérez, Two-handed assembly
sequencing, Int. J. Robot. Res. 14 (1995) 335–350.

[79] J. Wolter, E. Kroll, Toward assembly sequence planning with flexible parts, in:
Proceedings of the 1999 IEEE International Conference on Robotics and
Automation,, IEEE, 1996, pp. 1517–1524.

[80] S. Yi, Y. Jianfeng, L. Yuan, Y. Haicheng, An assembly-path-planning algorithm for
improving aircraft assembly, J.-Northwest. Polytech. Univ. 19 (2001) 121–124.

[81] Z.B.L.M.Z. Yi, M Jianhua, Research on assembly sequence planning based on firefly
algorithm, J. Mech. Eng. 11 (2013) 25.

[82] J. Yoon, Assembly simulations in virtual environments with optimized haptic path
and sequence, Robot. Comput. Integr. Manuf. 27 (2011) 306–317.

[83] H. Zhang, H. Liu, L. Li, Research on a kind of assembly sequence planning based on
immune algorithm and particle swarm optimization algorithm, Int. J. Adv. Manuf.
Technol. (2013) 1–14.

[84] W. Zhou, J. Yan, Y. Li, C. Xia, J. Zheng, Imperialist competitive algorithm for
assembly sequence planning, Int. J. Adv. Manuf. Technol. 67 (2013) 2207–2216.

[85] W. Zhou, J.-.R. Zheng, J.-.J. Yan, J.-.F. Wang, A novel hybrid algorithm for
assembly sequence planning combining bacterial chemotaxis with genetic
algorithm, Int. J. Adv. Manuf. Technol. 52 (2011) 715–724.

E. Masehian and S. Ghandi

http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0035
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0035
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0036
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0036
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0037
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0037
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0038
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0038
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0039
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0039
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0040
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0040
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0040
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0042
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0042
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0042
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0043
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0043
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0043
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0044
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0044
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0044
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0045
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0045
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0045
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0045
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0046
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0046
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0046
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0046
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0047
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0047
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0048
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0048
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0049
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0049
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0049
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0050
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0050
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0050
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0050
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0051
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0051
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0052
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0052
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0052
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0053
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0053
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0054
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0054
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0055
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0055
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0056
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0056
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0057
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0057
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0058
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0058
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0058
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0059
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0059
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0059
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0059
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0060
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0060
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0061
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0061
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0061
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0062
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0062
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0062
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0063
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0063
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0063
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0064
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0064
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0065
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0065
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0066
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0066
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0067
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0067
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0067
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0068
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0068
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0068
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0068
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0069
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0069
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0069
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0070
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0070
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0070
https://doi.org/10.1115/1.4041333
https://doi.org/10.1115/1.4041333
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0072
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0072
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0073
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0073
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0074
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0074
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0075
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0075
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0076
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0076
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0076
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0076
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0077
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0077
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0078
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0078
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0079
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0079
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0079
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0080
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0080
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0081
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0081
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0082
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0082
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0083
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0083
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0083
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0084
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0084
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0085
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0085
http://refhub.elsevier.com/S0736-5845(21)00063-6/sbref0085

	Assembly sequence and path planning for monotone and nonmonotone assemblies with rigid and flexible parts
	1 Introduction
	1.1 Assembly sequence planning
	1.2 Assembly path planning
	1.3 Considering flexibility of parts in assembly planning

	2 Problem assumptions
	3 The SPP-Flex algorithm
	3.1 The assembly sequence planning component
	3.2 Determining the initial and goal configurations
	3.3 The assembly path planning component
	3.4 Identifying and relocating blocking parts
	3.5 The FEA component

	4 Experimental results
	4.1 Analysis of results

	5 Conclusions
	Authors statement
	Declaration of Competing Interest
	Appendix – Pseudocodes of the Algorithms
	References

