

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X

COVID EXPONENTIAL PROGRAMME

GRANT AGREEMENT ID: 101016065

D2.2 – First Sandbox Implementation and Services
Provision

Revision: v.1.0

Work Package WP2

Due date 30/04/2021

Submission
date

30/04/2021

Deliverable
lead

INTRASOFT

Version 1.0

Authors

Themistoklis Anagnostopoulos, Serafeim Tsironis, Sofia Tsekeridou
(INTRASOFT)

Alexandros Karatzos, Despina Gkatzioura (8Bells)

Borja Aroyo, Silvia Uribe, Gustavo Hernandez (UPM)

Reviewers Antonio Damasceno (F6S)

Abstract This deliverable presents the first release of the COVID-X Sandbox and

Ref. Ares(2021)2905985 - 30/04/2021

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 2 of 58

describes the services offered, including data ingestion, harmonization,
visualization, analytics, recommendation, API connectivity and
management

Keywords
Sandbox, data management, data harmonization, data integration,
visualization, elasticsearch

DOCUMENT REVISION HISTORY

Version Date Description of change List of contributors

V0.1 08/02/2021 Initial ToC INTRA

V0.2 15/02/2021 Added chapter 2 – CI/CD Stack INTRA

V0.3 10/04/2021
Added chapter 3 – Sandbox integrated
services

INTRA, UPM, 8BELLS

V0.4 20/04/2021
Added chapter 4 – Description of the
Sandbox deployment

INTRA, 8BELLS

V0.5 25/04/2021 Added chapter 5 – Sandbox User Guide INTRA, UPM, 8BELLS

V0.6 27/04/2021
Updates in all chapters, introduction and
conclusions added, submission for
internal review

INTRA

V0.7 29/04/2021 Internal review F6S

V1.0 30/04/2021
Addressing internal review comments,
updates, finalization for formal
submission

INTRA

DISCLAIMER

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 3 of 58

The information, documentation and figures available in this deliverable are written by COVID-X
project's consortium under EC grant agreement 101016065 and do not necessarily reflect the views of
the European Commission. The European Commission is not liable for any use that may be made of
the information contained herein.

COPYRIGHT NOTICE

© 2020 - 2022 COVID-X Consortium Reproduction is authorised provided the source is acknowledged

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: OTHER*

Dissemination Level

PU Public, fully open, e.g., web X

CL Classified, information as referred to in Commission Decision 2001/844/EC

CO Confidential project and Commission Services

* R: Document, report (excluding the periodic and final reports)

 DEM: Demonstrator, pilot, prototype, plan designs

 DEC: Websites, patents filing, press & media actions, videos, etc.

 OTHER: Software, technical diagram, etc.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 4 of 58

EXECUTIVE SUMMARY

The current document complements the first software release of the COVID-X Sandbox, presenting the

services comprising this release. The COVID-X Sandbox introduces a combination of different functions

that collectively aim to enable seamless access to a set of healthcare data sources. For this purpose,

the Sandbox is capitalising on the ELK Stack components to deliver data management,

harmonization/cataloguing, storage, indexing, search, visualization, querying, and retrieval services.

Furthermore, it supports the security mechanisms that prevent unauthorised access to personal data

based on the well-established encryption protocols and services and on relevant technologies. It is

based on a highly modular architecture and each component within the architecture realizes and

delivers one or more of the aggregated services. Initially, the document describes the Sandbox CI/CD

Stack that will be used for testing and integrating the internal Sandbox services, as well as external

applications and components provided by third parties. Subsequently, the services that were

developed and the software tools that were employed for realizing the Sandbox services of the 1st

release are presented. Finally, the document provides an overview of the available Sandbox

deployments and a user guide for administrators on installing and configuring the Sandbox internal

services.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 5 of 58

TABLE OF CONTENTS

Contents
1 Introduction ... 11

1.1 Purpose of the Deliverable .. 11

1.2 Structure of the Deliverable .. 11

2 Sandbox CI/CD Stack and Integration Approach ... 13

2.1 Introduction to the Sandbox CI/CD Stack .. 13

2.2 CI/CD Workflows .. 14

2.2.1 Development workflow ... 15

2.2.2 Deployment workflow ... 16

2.3 Version Control System ... 17

2.4 Automated build and testing ... 19

2.5 Portainer .. 21

2.6 JFrog Docker Registry ... 22

3 Sandbox Integrated Services – Release A .. 24

3.1 Overview of the Sandbox Architecture – Release A .. 24

3.2 Data Integration, Management, Harmonization, and Visualization Services 26

3.2.1 Elasticsearch .. 27

3.2.2 Kibana .. 28

3.2.3 Logstash ... 29

3.2.4 MongoDB ... 30

3.3 Security Services .. 30

3.4 Sandbox Interfaces for the Integration of Third Parties .. 33

3.4.1 Data ingestion ... 33

3.4.2 Data update, retrieve and delete .. 34

3.4.3 Kong API Gateway ... 34

4 Sandbox Deployment ... 37

4.1 Cloud-based deployment ... 37

4.2 Local Deployments in Clinical Partners Premises .. 40

4.2.1 ICH ... 40

4.2.2 SERMAS ... 40

4.2.3 KI .. 41

5 Sandbox User Guide ... 42

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 6 of 58

5.1 Sandbox Installation and Configuration .. 42

5.1.1 Installation of the Data Management, Integration, and Harmonization services 42

5.1.2 Configure Security Services .. 44

5.1.3 Installation of the API Gateway ... 48

5.2 CI/CD Guide .. 49

5.2.1 Gitlab Repositories .. 49

5.2.2 Jenkins ... 49

6 Conclusions .. 53

7 References ... 54

8 Appendix A: Sandbox dotenv Configuration File ... 55

9 Appendix B: Example Jenkinsfile .. 57

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 7 of 58

LIST OF FIGURES

FIGURE 1: CI/CD DEVELOPMENT WORKFLOW .. 15

FIGURE 2: SANDBOX DEVELOPMENT ENVIRONMENT .. 16

FIGURE 3: CI/CD DEPLOYMENT WORKFLOW .. 17

FIGURE 4: COVID-X GITLAB PROJECT .. 18

FIGURE 5: GITLAB PROTECTED BRANCHES.. 19

FIGURE 6: SANDBOX JENKINS DASHBOARD .. 20

FIGURE 7: JENKINS PIPELINE STAGES .. 21

FIGURE 8: PORTAINER HOME SCREEN .. 22

FIGURE 9: COVID-X JFROG DOCKER REGISTRY .. 23

FIGURE 10: SANDBOX REPOSITORIES ON GITLAB ... 25

FIGURE 11: SANDBOX RELEASE A ARCHITECTURE .. 26

FIGURE 12: KIBANA CUSTOM DASHBOARD .. 29

FIGURE 13: CONFIGURATION OF A NATIVE REALM IN XPACK .. 31

FIGURE 14: COVID-X RBAC MECHANISM .. 32

FIGURE 15: KONG API GATEWAY STRUCTURE .. 35

FIGURE 16: KONG GUI FOR SERVICE MANAGEMENT ... 36

FIGURE 17: HETZNER SERVERS HOSTING SANDBOX CLOUD-BASED DEPLOYMENT ... 37

FIGURE 18: DOCKER SWARM CLUSTER ... 38

FIGURE 19: DATA MANAGEMENT, INTEGRATION, AND HARMONIZATION REPOSITORY 43

FIGURE 20: DATA MANAGEMENT, INTEGRATION, AND HARMONIZATION CONTAINERS 44

FIGURE 21: CREATE AN ELK ROLE .. 47

FIGURE 22: CREATE AN ELK USER ... 48

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 8 of 58

 LIST OF TABLES

TABLE 1: RESOURCES OF THE SANDBOX CLOUD-BASED DEPLOYMENT ... 38

TABLE 2: SANDBOX CONTAINERS .. 39

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 9 of 58

ABBREVIATIONS

Accelerate Transfer technical, business, and ethical knowledge

AI Artificial Intelligence

API Application Programmable Interface

CD Continuous Deployment

CI Continuous Integration

COVID-X
Innovation action supported by the European Commission in the
framework of the EC call SC1-PHE-CORONAVIRUS-2020-2B

CSV Comma-Separated Values

DB Database

DSL Domain Specific Language

ELK Elasticsearch Logstash Kibana

ES Elasticsearch

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICH Instituto Clinico Humanitas

JSON JavaScript Object Notation

KI Karolinska Institute

MoSCoW MUST, SHOULD, COULD, WOULD

OC Open Calls

OWID Our Word In Data

RBAC Role-Based Access

REST Representational State Transfer

SERMAS Servisio Madrileno de Salud

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 10 of 58

Sigle Solution
(SS)

Open call line for technology providers

Single player See Single Solution

Team Solution
(TS)

Open call line for clinical partners working in a team with technology
providers

TLS Transport Layer Security

VCS Version Control System

WHO World Health Organization

XML Extensible Markup Language

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 11 of 58

1 Introduction

1.1 Purpose of the Deliverable

The current document complements the first software release of the COVID-X Sandbox, presenting the

services comprising this release. The main challenge of the COVID-X Sandbox is to integrate healthcare

datasets from various sources. These datasets are characterized by multiple types of heterogeneity.

For this purpose, the Sandbox capitalizes on the ELK Stack components to deliver data management,

harmonization/cataloguing, storage, indexing, search, visualization, querying, and retrieval services. It

is based on a highly modular architecture, as presented in D2.1 - Sandbox design & Datalake creation

and ingestion [1], and each component within the architecture realizes and delivers one or more of

the aggregated services. The Sandbox realizes security mechanisms that prevent unauthorized access

to personal data based on the well-established encryption protocols and services, and relevant

technologies. Furthermore, the Sandbox implements an API gateway responsible for exposing the

Sandbox services to external entities (users or applications) in a controlled and secure way. In addition

to that, it supports load balancing services that ensure high availability and increased performance.

The integration of the multiple COVID-X services follows the best practices of the Continuous

Integration and Continuous Deployment (CI/CD) process that enables development teams to deliver

code changes more frequently and reliably. COVID-X Sandbox supports a centralized cloud-based

deployment, capitalizing on virtualization and orchestration technologies. In addition to that, a local

deployment on the premises of the data providers/clinical partners can be adopted as a solution in

order to tackle the closed anonymized data access/distribution issues and ensure GDPR and national

regulations compliance. In this deployment scenario, data providers must provide a local infrastructure

that will be able to host a local instance of the Sandbox.

The first release of the Sandbox services is published on the COVID-X Gitlab repository and will be used

for integrating the software applications and services of third parties onboarded on the first COVID-X

Open Call.

1.2 Structure of the Deliverable

The deliverable is structured as follows:

● Chapter 1 introduces the deliverable and explains its overall purpose and structure.

● Chapter 2 describes the Sandbox CI/CD Stack that will be used for testing and integrating the
internal Sandbox services, as well as external applications and components provided by third
parties.

● Chapter 3 presents the developed services and the software tools that were employed for realizing
the Sandbox services.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 12 of 58

● Chapter 4 provides an overview of the centralized cloud-based deployment of the Sandbox.
Moreover, it introduces the available infrastructure at the COVID-X clinical partners' premises that
are aimed to be used for hosting the Sandbox local deployments.

● Chapter 5 provides a user guide to administrators for installing and configuring the Sandbox
services.

● Chapter 6 concludes the document and defines follow-up activities for the final release of the
Sandbox, as well as for the first integration of the third parties.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 13 of 58

2 Sandbox CI/CD Stack and Integration Approach

The COVID-X Sandbox is implemented as a combination of different functions that aim to enable

seamless access to a set of healthcare data sources and offer core data management, security,

visualization and federated learning services to third parties to use while integrating their solutions.

Various services must be integrated and work collectively for this purpose, forming a layered and

modular architecture, as described in D2.1 – Sandbox design & Datalake creation and ingestion [1].

The COVID-X Sandbox offers a Continuous Integration (CI) and Continuous Deployment (CD) stack that

enables the integration of different services into the Sandbox and performs system testing activities.

The CI process enables the extensive testing of each software component/module, as well as the

integrated Sandbox platform as a whole. Automated, per component tests and combined integration

tests performed on each new version of a component shall be executed, and upon success, the CD

process will update the integrated platform by means of deployment of the new versions of the

modules. This chapter presents the software stack that supports the CI/CD workflows. The CI/CD Stack

has been successfully deployed by month 2 of the project.

2.1 Introduction to the Sandbox CI/CD Stack

The Sandbox CI/CD stack is comprised of several open-source software tools, which collectively aim to

create an automated build system capable of integrating changes performed by developers working

on different services of the Sandbox. In addition to that, the Sandbox CI/CD stack acts as a testing and

system integration environment for effectively testing, integrating, and deploying the software

services of the Sandbox in a stable operational environment.

The key features of the Sandbox CI/CD stack are the following:

● The tools that comprise the Sandbox CI/CD stack are running in Docker containers, allowing the
whole CI/CD stack to be flexible and independent of the underlying physical infrastructure.

● Deploying the software components and services in a distributed way using Docker makes it easier
to scale the stack by introducing additional resources where necessary horizontally.

● Secure communication among the deployed software components achieved by encrypted
communications over TLS/HTTPS protocols.

● Isolation and protection from unauthorized access hosts thanks to established authentication and
authorization policies and rules.

● Triggerable events (commit, merge, etc.) that automatically initiate building, test, and deployment
pipelines with additional support for multiple environments (development, test, production) and
with multiple branches per each.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 14 of 58

● Protected branches policy that ensures that collaborators on a repository cannot make irreversible
changes to branches.

The software components that synthesize the Sandbox CI/CD platform are the following:

● Gitlab1: An easy yet powerful and intuitive git Version Control System (VCS). It offers a web-based
graphical interface with several built-in features, such as version control, issue tracking, code
review, wiki, etc. Multiple developers can concurrently create, merge and delete parts of the code
they are working on independently at their local system before applying the changes to the shared
GitLab repository.

● Jenkins2: An open-source automation server that acts as the CI/CD server, responsible for
automating the parts of software development related to building, testing, and deployment of
applications. Some of the tasks that can be automated through Jenkins include software builds,
unit testing, packaging, and pushing of container images to the Docker Registry.

● Docker Daemon3: Services running on multiple development virtual servers for the deployment of
containerized services. Docker Daemon is a background process that manages Docker images,
containers, networks, and storage volumes. The Docker Daemon constantly listens to Docker API
requests and processes them.

● JFrog Docker Registry4: A server-side application that stores and lets you distribute Docker images.
It is used to securely control where the container images are being stored and how they are
distributed.

● Portainer5: An open-source tool for managing container-based applications in various virtualization
environments. It can be used to set up and manage the environment, deploy applications, monitor
application performance, triage problems, and enable role-based access control.

2.2 CI/CD Workflows

The Sandbox CI/CD Stack supports two different kinds of workflows: the development workflow and

the deployment workflow. The development workflow is utilized when development teams implement

changes on the source code of a Sandbox service. This workflow builds the new version of the code

and runs the defined tests on a development and testing environment. On the other hand, deployment

workflow is used when a new stable release of a Sandbox service is published. This workflow pulls the

latest stable release and deploys the service to the defined operational environment.

1 https://gitlab.com/
2 https://www.jenkins.io/
3 https://www.docker.com/
4 https://jfrog.com/
5 https://www.portainer.io/

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 15 of 58

2.2.1 Development workflow

Figure 1 depicts an example CI/CD workflow during the development phase of the Sandbox services.

In this scenario, developers (from their premises) can commit source code changes, implementing new

component features or integration endpoints, and push their code to GitLab, the central source code

repository in this environment. This event automatically triggers Jenkins to pull, compile, build and test

the latest version of the source code from the specific feature branch of the code repository. If the unit

tests finish successfully, Jenkins will use Docker to create a Docker image, which will then be pushed

to the private JFrog Docker Registry with an appropriate tag. Finally, once components have been built

and their images have been pushed to the Docker Registry, they are available to be pulled from any

server with access to the said registry. This final step can be included in the Jenkins pipeline to deploy

the newest version of the application to a predefined development environment, allowing further

system integration and User Acceptance (UA) tests to be executed.

FIGURE 1: CI/CD DEVELOPMENT WORKFLOW

The development environment of the Sandbox is hosted on virtual cloud servers that have been

instantiated on a public cloud provider (Hetzner Cloud6), as depicted in Figure 2. This environment is

mainly used for the development and testing purposes of the Sandbox services. It offers an isolated

workspace that shall allow the developers to assess how their features work together and try out

improvements. Preliminary testing will happen in this stage. This method prohibits the release of

6 https://www.hetzner.com/

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 16 of 58

components before the developers make sure that their components work and reduces the number

of bugs before they proceed to the demonstration phase.

FIGURE 2: SANDBOX DEVELOPMENT ENVIRONMENT

By adopting this approach, developers are able to develop, debug and deploy their software

components independently by defining their own automated pipelines. This way, when a software

component needs to be updated and redeployed, the pipeline of this component is triggered, and the

new updates and changes to the component automatically become available.

2.2.2 Deployment workflow

Figure 3 depicts the deployment workflow that is executed when the development of a new feature is

completed and a new version of the software application is ready to be released. In this scenario, a

developer creates a new pull request to merge all the changes in the source code introduced from the

feature branch to the master branch of the repository. This event automatically triggers Jenkins to

execute a new pipeline, downloading the latest docker image from the private docker registry and

deploying the new version of the application on the defined operational environment.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 17 of 58

FIGURE 3: CI/CD DEPLOYMENT WORKFLOW

2.3 Version Control System

Version control, also known as source control, is the practice of tracking and managing changes to

software code. Version control systems (VCS) are tools that host remote repositories of files that

comprise the source code of a software application. This approach helps development teams to keep

track of every modification to the source code. Gitlab is used as VCS in the COVID-X Sandbox CI/CD

stack. Multiple developers can concurrently create, merge and delete parts of the code they are

working independently at their local system before applying the changes to the shared GitLab

repository.

A dedicated Gitlab group named "COVID-X-PRJ"7 has been created, as depicted in FIGURE 4. Under this

group, several sub-groups and repositories that will host the source code of the Sandbox services are

created. Each partner has been granted access to the appropriate sub-groups in order to create

repositories, organize users in teams and upload their source code.

7 https://gitlab.com/covid-x-prj

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 18 of 58

FIGURE 4: COVID-X GITLAB PROJECT

Each Gitlab repository should include the following configuration files in order to support the

deployment of dockerized application through the CI/CD workflows:

● Jenkinsfile: A text file that contains the definition of a Jenkins Pipeline, including the steps that must
be followed during the CI/CD process.

● Dockerfile: A text-based script of instructions that is used to create a container image.

● docker-compose.yml: A YAML configuration file for defining and running multi-container Docker
applications.

Like every other git VCS, Gitlab comes with extended branching capabilities. In most cases, there is one

main branch in a repository from which each developer who works on a specific feature or bug fix

creates an additional, diverging branch. Once the developers have concluded their changes on the

source code, they merge their side branch back into the main branch.

By default, any pull request can be merged at any time. This approach, however, introduces a risk:

Developers may inadvertently push insecure content onto the main branch. By enabling protected

branches, you can choose to enforce restrictions on how a pull request is merged into a repository,

ensuring that collaborators cannot make irreversible changes to branches. In addition to that, it can

enable other optional checks and requirements, such as requiring pull request reviews or certain status

checks to pass before allowing a pull request to merge. Protected branches policy is enabled by

creating branch rules in a repository for a specific branch, all branches, or any branch that matches a

naming pattern, as depicted in FIGURE 5.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 19 of 58

FIGURE 5: GITLAB PROTECTED BRANCHES

2.4 Automated build and testing

Continuous integration (CI) is a software development practice that enables frequently committing

code to a shared repository. When developers, as team members, commit their code changes into a

central repository, they must ensure that these changes do not introduce any errors. CI process

automates the integration of code changes from multiple contributors into a single software project.

A shorter feedback loop means having more iterations, where each iteration introduces automated

builds and unit tests on the latest code changes to immediately detect any errors, improving the overall

software quality.

Building and testing source code projects in an automated manner requires a CI server. In the Sandbox

CI/CD stack, Jenkins is used as the system CI server, running inside a Docker container. Every repository

existing under the COVID-X group in Gitlab will be connected to a Jenkins Pipeline, like the ones

depicted in FIGURE 6.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 20 of 58

FIGURE 6: SANDBOX JENKINS DASHBOARD

A CI pipeline includes the following steps:

i. Developers implement changes to the source code on their local systems.

ii. They commit the changes and push the new source code to the shared repository.

iii. CI server receives a notification from the VSC system when a push event occurs.

iv. CI server pulls the latest version of the source code, builds the software application, and runs

the defined unit and integration tests.

v. If the tests are completed successfully, the CI server assigns a build tag to the code version it

just built and pushed the produced artifacts to a registry.

vi. The CI server sends reports of the successful build and tests or alerts in case of build or test

failure to the development team.

vii. The team fixes the issues as soon as is possible and runs a new iteration.

A pipeline that includes compilation, build and test stages is shown in FIGURE 7. Each pipeline is

described in a specific file called Jenkinsfile, which is usually included in the Version Control System

repository and is pulled by Jenkins whenever a new build is triggered. Jenkinsfile allows developers to

implement pipelines in code formats.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 21 of 58

FIGURE 7: JENKINS PIPELINE STAGES

2.5 Portainer

Portainer is an open-source software component that runs in a single Docker container. It offers a

lightweight web User Interface (UI) that allows the users to monitor and manage multiple Docker

environments (docker hosts). More specifically, it can be used to manage all Docker resources

(containers, images, volumes, networks, etc.), set up and manage multiple environments, deploy

applications, monitor app performance, and triage problems.

In the CI/CD Stack, Portainer is deployed in a Docker container, along with Jenkins CI Server to enable

automated deployments on remote Docker environments. FIGURE 8 depicts the home page of the

Portainer that is running on the centralized deployment of the Sandbox on the Hetzner Cloud. The

figure presents two Docker hosts of the development environment that have been added to the

Portainer panel.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 22 of 58

FIGURE 8: PORTAINER HOME SCREEN

2.6 JFrog Docker Registry

Docker registry is a centralized storage and content delivery system that allows users to store, manage,

and distribute named Docker images, available in different tagged versions. Users and developers

interact with the registry by using the Docker push command to store a new image and pull command

to download a stored image. Private Docker registries allow Docker images to be stored and distributed

in a controlled and safe way.

In the COVID-X Sandbox, the CI/CD stack JFrog serves as the private Docker registry. Developers and

users of the Sandbox services can use this registry in order to push/pull their Docker images. JFrog is

deployed in a Docker container and offers a web UI for monitoring and managing the registry and the

stored Docker images. FIGURE 9 presents the web UI of the deployed JFrog registry on the Hetzner

Cloud.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 23 of 58

FIGURE 9: COVID-X JFROG DOCKER REGISTRY

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 24 of 58

3 Sandbox Integrated Services – Release A

This chapter describes the implementation approach that was followed for developing, testing, and

integrating services comprising the first release of the Sandbox. The first section provides an overview

of the Sandbox architecture, while the subsequent sections describe the technologies and software

applications that have been employed for the development of the Sandbox services.

3.1 Overview of the Sandbox Architecture – Release A

The Sandbox is based on a highly modular architecture, built as a collection of microservices, following

the Service-Oriented Design approach, as extensively described in D2.1– Sandbox design & Datalake

creation and ingestion [1] . By adopting the SOA approach, the Sandbox functionalities are divided into

three specific categories of services that are independently developed by different development

teams, following the CI/CD workflows described in the previous chapter. These categories are (i) Data

Ingestion, Management, Harmonization and Visualization services, (ii) Security services, and (iii)

Sandbox interfaces. A dedicated Gitlab group has been assigned to each development team

responsible for the development of the respective Sandbox service, as depicted in Figure 10.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 25 of 58

FIGURE 10: SANDBOX REPOSITORIES ON GITLAB

These services are integrated and combined to form the Sandbox architecture for the first release on

month 6 of the project, as presented in Figure 11, and already documented in D2.1 – Sandbox design

& Datalake creation and ingestion [1]. The communication among the different services is realized

through RESTful endpoints exposed internally, based on the technology and programming language

that has been employed for the implementation of each service. These endpoints expose information

about the service's resources and allow client services to perform specific actions on those resources.

These actions are defined with specific HTTP methods, such as GET, POST, PUT and DELETE, while the

JSON format is used for exchanging data.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 26 of 58

FIGURE 11: SANDBOX RELEASE A ARCHITECTURE

3.2 Data Integration, Management, Harmonization, and
Visualization Services

The Sandbox capitalizes on the ELK Stack applications to deliver data management, harmonization,

cataloging, storage, indexing, search, visualization, querying, and retrieval services. The Data

Management and Harmonization service follows a microservices approach, being further divided into

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 27 of 58

multiple building blocks. Each building block is small in size and autonomously developed, realizing a

specific microservice. Similarly to the other services of the Sandbox, these microservices are also

deployed in Docker containers. The following subsections present the technologies utilized for realizing

the data management and harmonization service.

3.2.1 Elasticsearch

Elasticsearch8 is based on Apache Lucene9 open-source search framework. It is always deployed in a

distributed manner, forming a cluster that efficiently performs data management tasks, such as full-

text search and structure data indexing, aggregation, filtering, and cataloging. In Elasticsearch, data

are encoded following a key-value pair format in JSON objects called documents. In terms of relational

databases, a document is similar to an SQL table row, representing a specific entity. Each field in the

document is conceptually related to an SQL table column. Every document has a unique id that can be

either explicitly assigned by the user or generated by Elasticsearch.

Documents are organized in indices. An index is the highest-level entity that users can query in

elasticsearch, and it contains a collection of logically related documents. Indices define the scheme of

the stored data, as well as configuration options, such as scalability and availability. In terms of

relational databases, indices are corresponding to SQL tables. For each available dataset, a specific

index or index group (multiple indices that follow a specific naming pattern) is created to host the data

collected from the dataset.

One of the key features of Elasticsearch is its extensive REST API which allows users to integrate,

manage and query the indexed data in multiple different ways. Moreover, these APIs can be directly

called by administrators to configure and access Elasticsearch features. Elasticsearch provides a full

Domain Specific Language10 (DSL) based on JSON to define queries.

The Sandbox deployments include an Elasticsearch cluster to realize part of the data management and

storage services, namely storing, indexing, and searching for data. Moreover, Elasticsearch offers

dataset cataloging capabilities. A new index or a group of indices following a common pattern is

created for each dataset ingested into the Sandbox. The data schema of each index is defined following

the specifications of each dataset, while the ingested data are harmonized and annotated based on

the COVID-X semantic data model defined in D2.1.

Elastic nodes are instantiated within Docker containers that may run either over the same server,

forming an all-in-one deployment, or in a distributed manner over multiple servers. The initial

configuration options of the cluster are defined through environmental variables in a "dotenv"

configuration file. More elasticsearch nodes can be added to the cluster on run time, depending on

the requirements of each use case. The new nodes add storage capacity to the cluster and improve

the system's throughput for handling queries.

8 https://www.elastic.co/elasticsearch/
9 https://lucene.apache.org/
10 https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 28 of 58

3.2.2 Kibana

Kibana11 acts as a web user interface for Elasticsearch. It comprises an analytics and visualization

platform, which allows users to process, visualize and analyze data stored in Elasticsearch efficiently.

It sends queries utilizing the standard Elasticsearch REST API, while it provides an interface for building

those queries and configure how to display the results. Kibana includes a set of applications that allows

users to create custom visualizations, such as pie charts, line charts, heat maps, and gauges, organized

in fully customizable Dashboards. In addition to the querying, visualization, and analytics capabilities,

Kibana allows users to configure certain parts of the ELK stack features, including the security

mechanisms. These mechanisms allow basic user authentication and authorization, as well as Role-

Based Access management, described in more detail in section 3.3.

The Sandbox utilizes Kibana to create a dashboard for the data management services. Through this

dashboard, users can visualize and analyze data stored in the Elasticsearch cluster. For this reason,

multiple dashboards with the appropriate access permissions are created and assigned to the third-

party users. These dashboards are configured to include multiple visualizations according to the needs

of each third-party use case. Kibana is deployed in a Docker container, running in the same server that

hosts the Elasticsearch master node. It communicates with the other services of the ELK stack over a

shared Docker network that enables encrypted traffic with TLS/HTTPS protocol. Kibana exposes a web

user interface that is reachable directly by the external users. The web UI is utilized for creating custom

visualization and dashboards per use case, like the one depicted in Error! Reference source not found. T

hird-party users will be granted access to specific dashboards that comply to their access permissions.

11 https://www.elastic.co/kibana

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 29 of 58

FIGURE 12: KIBANA CUSTOM DASHBOARD

3.2.3 Logstash

Logstash12 is an open-source data collection and processing engine. It is a plugin-based system that

provides a flexible and powerful way to parse and process most types of structured data collected from

various heterogeneous data sources. The data that Logstash collects are handled as events that are

processed and redirected to one or multiple destinations. Any type of event can be enriched and

transformed with a broad array of input, filter, and output plugins, with many native codecs, further

simplifying the ingestion process.

A Logstash pipeline consists of three stages, namely input, filter, and output, where each stage is

implemented as a collection of plugins. Input plugins read data from the queue in micro-batches and

process these through the predefined filter plugins in sequence, transforming them into the required

format. Once the data have been processed, the processing threads forward the data to the

appropriate output plugins responsible for formatting and sending data to one or more defined

destinations, such as Elasticsearch. Logstash pipelines are created based on configuration files, while

a Logstash service can simultaneously implement multiple pipelines.

The Sandbox utilizes Logstash pipelines for collecting and integrating data from various heterogeneous

data sources. For each data source, a specific pipeline is configured responsible for: (i) extracting the

data out of the data source, (ii) processing, annotating, and transforming them in a form that complies

with the defined common data model, (iii) sending them to the appropriate index in the Elasticsearch

12 https://www.elastic.co/guide/en/logstash/current/introduction.html

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 30 of 58

cluster. Depending on the use case requirements, Logstash can be deployed in one or more Docker

containers. These containers communicate with each other and other ELK stack services over a shared

Docker network that enables encrypted traffic with TLS/HTTPS protocol.

3.2.4 MongoDB

MongoDB13 is an open-source document-oriented database that can be used for storing a massive

amount of data. It is a NoSQL database, storing data in JSON formatted documents instead of SQL

tables and rows. Documents consist of key-value pairs called data fields, which are the basic unit of

data in MongoDB. A document in MongoDB corresponds to a row in an SQL database. A group of

logically related documents is known as a collection, which is roughly synonymous with an SQL table

in terms of a relational database.

MongoDB is a schema-less database, as it does not force any specific data schema on the stored

documents. Collections may contain multiple documents with different structures, making the whole

system flexible and adaptable to the requirements of each use case. Moreover, documents support

nested fields and hierarchical relationships, allowing the efficient representation and storage of

complex data structures.

The Sandbox takes advantage of the characteristics described above, utilizing MongoDB to realize the

internal data lake. This data lake is used for supporting read/write-heavy applications, with massive

workloads that store a vast amount of data. The Sandbox relies on MongoDB services to efficiently

store both relational and non-relation data, as well as data from semi-structured or unstructured data

sources. Based on the characteristics of the available data sources, as well as the needs of each use

case, the Sandbox may store data in MongoDB, in the Elasticsearch cluster, or both databases. The

metadata and characteristics of any stored data sets in the data lake are also described and cataloged

in Elasticsearch.

3.3 Security Services

The security services configured and integrated into the first release of the COVID-X Sandbox are part

of the X-Pack14 extension. They include user authentication and authorization via a role-based access

control system, encrypted inter-node communication in a multi-node cluster, and encrypted client

communication.

The Elastic Stack authenticates users by identifying the users behind the requests that hit the cluster

and verifying that they are whom they claim to be. The authentication process is handled by one or

more authentication services called realms. For the first release of the COVID-X Sandbox, the native

13 https://docs.mongodb.com/manual/introduction/
14 https://www.elastic.co/guide/en/elasticsearch/reference/current/setup-xpack.html

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 31 of 58

realm is used. The native realm is an internal realm where users are stored in a dedicated Elasticsearch

index. This realm supports an authentication token in the form of username and password and is

available by default when no realms are explicitly configured.

A realm can be added to the configuration file of elasticsearch (elasticsearch.yml) under the

xpack.security.authc.realms.native namespace. In the case of the 1st release, the native realm is used

by default since no other realms are configured. Following this process, it is mandatory for any requests

made to the realm to have user credentials attached. An indicative example of configuring a native

realm is shown in the figure below:

FIGURE 13: CONFIGURATION OF A NATIVE REALM IN XPACK

User management and authentication are feasible with the internal native realm. The Elastic Stack's

interfaces provide ways to add and remove users, assign user roles, and manage user passwords. With

regards to the Elastic Stack authorization feature, which is the process of determining whether the

user behind an incoming request is allowed to execute the request, a role-based access control (RBAC)

mechanism is set in place, enabling user authorization by assigning privileges to roles and assigning

roles to users. The COVID-X RBAC mechanism is depicted in Figure 14.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 32 of 58

FIGURE 14: COVID-X RBAC MECHANISM

The authorization process revolves around the following constructs:

● Secured Resource: A resource to which access is restricted. Indices, aliases, documents, fields,
users, and the Elasticsearch cluster itself are all examples of secured objects.

● Privilege: A named group of one or more actions that a user may execute against a secured
resource. Each secured resource has its own sets of available privileges. For example, read is an
index privilege representing all actions that enable reading the indexed/stored data. Other Security
Privileges available for indices are: write, monitor, manage, delete, create, etc.

● Permissions: A set of one or more privileges against a secured resource. Permissions can easily be
described in words; A few examples are listed below:

▪ read privilege on the products data stream or index

▪ manage privilege on a cluster

▪ run_as privilege for a user

▪ read privilege on documents that match query X

▪ read privilege for a field

● Role: A role has a unique name and identifies a set of permissions that translate to privileges on
resources. You can associate a user with an arbitrary number of roles. The complete set of
permissions that a specific user has is defined by aggregating the permissions in all its roles.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 33 of 58

Elastic Stack security features realized through X-Pack enable the encryption of all traffic between

HTTP clients and the Elasticsearch cluster, as well as the encryption of all communications between

nodes of a cluster, through the establishment of secure connections based on Transport Layer Security

(TLS/SSL). TLS requires X.509 certificates to perform encryption and authentication of the application

that is being communicated with. In order for the communication between nodes to be truly secure,

the certificates must be validated. The certificate authority validation in an Elasticsearch cluster is done

by the certificate authority (CA) that signs the certificate. Following this approach, as nodes are added

to the cluster, they need to use a certificate signed by the same CA, and the node is automatically

allowed to join the cluster.

3.4 Sandbox Interfaces for the Integration of Third Parties

The Sandbox interfaces provide the usual communication capabilities between the client and the

system. Most of the ingested dataflows and requests are collected by an API (Application Programming

Interface) gateway, which is responsible for redirecting the requests internally to the appropriate

Sandbox services. The software selected for this task is the Kong API gateway15, which is based on

NGINX. Kong manages incoming and upstream network traffic efficiently, allowing redirection of the

incoming requests. In addition to that, it can act as a message broker. The COVID-X Sandbox exposes

a single port to handle the requests by exploring the path included in the URL. Accordingly, these

endpoints are provided based on the internal paths and the corresponding security policies. Otherwise,

traffic is rejected.

The API services represent all the CRUD operations that may occur in any database. All these

operations are either authorized or rejected by the security mechanisms provided by the X-Pack

security features of the ELK stack. Specifically, the end-users are allowed to perform data ingestion

both in a batch and streaming way, reading, updating, and deleting operations using DSL (ElasticSearch

Query: Domain Specific Language). Moreover, every request must have the authorization header

provided by the role each end-user has. The following sections detail all this information.

3.4.1 Data ingestion

As it has just been aforementioned, the data ingestion process can follow two different pipelines:

1. Batch pipeline: Kong redirects the request to a flask application16. Flask is a library in python

which offers a simple way to create APIs. The endpoints can be customized by the usage of

15 Kong API Gateway: https://konghq.com/
16 Flask Library: https://flask.palletsprojects.com/en/1.1.x/

https://konghq.com/
https://flask.palletsprojects.com/en/1.1.x/

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 34 of 58

routes. Like any other service inserted in the Sandbox, this application is dockerized. The whole

process followed by a specific request is described as follows:

a. A POST request is sent to the specific endpoint exposed with Kong; it should contain

not only the kong endpoint but also the name of the organization and the

index/dataset to which data should be added. Note that the index must exist in

advance. This request should have the same credentials as those used in Elasticsearch.

The type of request has to be multipart with a file attached and must have the key

"file".

b. The application checks the structure of the request searching for the file included in

its body and verifying its extension.

c. The application sends a request to the elastic cluster using the credentials that have

been provided. This request does not query any kind of data; it just gets some

metadata of the target index to check if the user has permission to ingest files.

d. If the response is a 200 status code, the application writes the file into the disk using

a hierarchy established as /<org>/<index>/<file>.

2. Stream pipeline: the request is directly redirected to the logstash listening port with several

requirements:

a. Each index must have a specific logstash service associated. This way, the

authentication can take place.

b. Kong must have different routes for each of these logstash endpoints, so every port at

which the ingestion may occur is mapped to a kong path.

3.4.2 Data update, retrieve and delete

For data update, retrieve, search, and delete operations, Kong directly sends the request to the

Elasticsearch cluster, utilizing the available set of APIs. These queries follow the typical DSL17 syntax

and can be either rejected or accepted by the X-pack security extension of the ELK stack. For each

operation, the respective API endpoing on Kong is defined.

3.4.3 Kong API Gateway

Kong offers several ways to achieve the desired configuration: (i) specifying a declarative file read at

the service instantiation, (iI) using the appropriate REST requests, or (iii) using a GUI (Konga). For the

17 https://elasticsearch-dsl.readthedocs.io/en/latest/

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 35 of 58

Sandbox implementation, the declarative file option is promoted. This file is saved in YAML format and

allows the configuration of several essential properties, like the following:

● Ensure that Kong does not reach an inconsistent state. The declarative file is either entirely read or
entirely ignored in case that an error occurs. This approach is similar to a transaction in an SQL
database.

● There is no need to provide an external database for storing all the Kong configuration files. Instead,
it is stored in memory, which allows faster responses.

Both of these settings make the API gateway more robust. They enable Kong to be reliably instantiated
in a Docker container, preventing requests that might fail to reach the appropriate endpoint. The
following figures present the Kong API gateway structure and the web UI enabled by Kong for
managing and monitoring the internal services:

FIGURE 15: KONG API GATEWAY STRUCTURE

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 36 of 58

FIGURE 16: KONG GUI FOR SERVICE MANAGEMENT

In addition to the API gateway services, Kong provides a load balancer that can be used to redirect the

requests to all the nodes established in the cluster. This property is beneficial to the Sandbox, as it

allows high availability and increased performance when handling incoming requests. Like the

previously mentioned settings, this feature is enabled in the YAML declarative configuration file, so all

of the benefits of using this approach are preserved. In order for Kong to provide the load balancing

service, the endpoints of the nodes that realize the same service must be configured in advance. Load

balancing service can be used for adding different traffic weights on each endpoint, based on the

specified use case scenario.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 37 of 58

4 Sandbox Deployment

This chapter provides an overview of the different Sandbox deployments that are utilized to fulfill both

COVID-X Clinical partners needs and legal/operational constraints, as detailed in D2.1, as well as

foreseen third-parties’ requirements. The first part of this chapter describes the centralized Sandbox

deployment in a cloud-based deployment. Subsequent sections describe the process that must be

followed when deploying the Sandbox on the clinical partner's premises and provides an overview of

the available infrastructures reserved for deploying local Sandbox instances.

4.1 Cloud-based deployment

The centralized instance of the COVID-X Sandbox is deployed on five virtual servers instantiated on

Hetzner public cloud, as depicted in Figure 17. It realizes all the core services described in the previous

chapter to collect and integrate data from various data sources and provide a visualization panel

through a web user interface. Data from the clinical partner's sources that are stored in the cloud-

based deployment are fully anonymized, ensuring compliance to GDPR and specific national

regulations. For this purpose, Hetzner provides the option to create a Data Protection Agreement

(DPA) following Article 28 of the General Data Protection Regulation (GDPR) by filling a form in the

Hetzner dashboard. In addition to these data, selected publicly available datasets are included in the

cloud version of the COVID-X Sandbox.

FIGURE 17: HETZNER SERVERS HOSTING SANDBOX CLOUD-BASED DEPLOYMENT

The virtual servers are attached to a Hetzner private network that realizes secure internal

communication. In addition to that, each server is assigned a public IP address, enabling external

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 38 of 58

communication. The access is secured and protected by dedicated firewalls running on each server, as

well as security policies enabled by the cloud provider, permitting access only to authorized users.

Finally, as an extra security measure, servers ensure storage encryption at rest. Table 1 summarizes

the provisioned computational resources for the cloud-based deployment of the Sandbox. Additional

resources can be appended to the existing ones if required by a specific use case scenario. This can be

achieved either by rescaling the already instantiated virtual servers increasing computational power

or by adding supplementary servers for accommodating the Sandbox services.

TABLE 1: RESOURCES OF THE SANDBOX CLOUD-BASED DEPLOYMENT

Virtual Server vCPU Memory Storage

covidx06 4 16 GB 160 GB

covidx07 4 16 GB 160 GB

covidx08 2 4 GB 40 GB

covidx09 2 4 GB 40 GB

covidx10 2 4 GB 40 GB

The Sandbox services are deployed in a distributed manner running in Docker containers. For this

purpose, Docker daemon has been installed on all the virtual servers, configured to run in swarm

cluster mode18, as shown in Figure 18. This mode enables multi-host Docker networking, which is

necessary in order for the containers running on different servers to be able to communicate with each

other directly. A dedicated overlay Docker network has been created for this purpose, enforcing

encrypted traffic between the Docker containers.

FIGURE 18: DOCKER SWARM CLUSTER

18 https://docs.docker.com/engine/swarm/

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 39 of 58

Administrator users from the teams responsible for developing the core Sandbox services are

responsible for installing and maintaining the cloud-based deployment. The deployment in this

operational environment follows the deployment workflow of the CI/CD process described in Section

2.2.2. This workflow uses Docker images that have successfully passed the necessary unit and

integration tests and have been pushed into the project's private repository. Docker containers are

deployed using Docker compose19 files and wrapper shell scripts. The Table below presents the

deployed containers comprising the Sandbox services.

TABLE 2: SANDBOX CONTAINERS

Container Name Application Sandbox service

sandbox-elasticsearch-master Elasticsearch master node &

X-Pack

- Data Management &

Harmonization services

- Security services

sandbox-es-node1 Elasticsearch data node & X-

Pack

- Data Management &

Harmonization services

- Security services

sandbox-es-node2 Elasticsearch data node & X-

Pack

- Data Management &

Harmonization services

- Security services

sandbox-es-node3 Elasticsearch data node & X-

Pack

- Data Management &

Harmonization services

- Security services

sandbox-kibana Kibana & X-Pack - Visualization services

- Security services

sandbox-logstash Logstash - Data Management &

Harmonization services

sandbox-apigw Kong - Sandbox interfaces

sandbox-ingestfile Python Flask - Sandbox interfaces

sandbox-datalake MongoDB - Data Management &

Harmonization services

19 https://docs.docker.com/compose/

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 40 of 58

4.2 Local Deployments in Clinical Partners Premises

In addition to the centralized cloud-based deployment of the Sandbox, COVID-X realizes local

deployments of the Sandbox running on the premises of the data providers/clinical partners. This

solution could be adopted to tackle the closed anonymized data access/distribution issues and ensure

GDPR and national regulations compliance, in addition to addressing needs of legal certification of the

relevant infrastructure and remain in control of the Data Controllers of the closed health data sets. In

this deployment scenario, data providers must provide a local infrastructure that will be able to host a

local instance of the Sandbox. Typically for the initial local deployment at the clinical partner

infrastructure, a multi-core machine with 64GB of RAM should be available with SSD Drive(s). The disk

space has to be a multiple of the volume of the data that will be stored. Multiple hosts would be ideal

as a setup of 3x64GB RAM or 3x32GB RAM, or 3x16GB RAM machines would be significantly better

and allow for a Highly Available setup. Additional hosts should/could be added depending on the needs

of each use case scenario. Clinical partners must allow remote access (SSH) to the machines that will

accommodate the necessary Sandbox services, most preferably over a secured VPN tunnel.

Administrator privileges will also be required. The general requirements are defined in more details in

D2.1.

4.2.1 ICH

Humanitas is providing a Virtual machine that is hosted on the Google Cloud Platform, which has been

legally certified to host their data. Access has been provided only to certified users with the

appropriate permissions in order to be able to configure the prerequisites of the COVID-X Sandbox as

well as adjust its deployment to the underlying infrastructure. The available hardware infrastructure

includes a multi-core machine with 64GiB of RAM and 100GiBs of memory.

4.2.2 SERMAS

Sermas aims to provide a local infrastructure that can host the local deployment of the COVID-X

Sandbox, thus ensuring GDPR and national regulations compliance. The initial data samples provided

from the clinical partner represent the expected datasets that will be ingested. Sermas has provided

ssh access to their system only to certified users through an IPSEC VPN tunnel. A system user has the

necessary permissions in order to be able to install and configure the prerequisites of the COVID-X

Sandbox as well as adjust its deployment to the underlying infrastructure. The available hardware

infrastructure includes a multi-core machine with 128GiB of RAM and 4TBs of memory, allowing for an

ideal and highly available setup.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 41 of 58

4.2.3 KI

Karolinska Institutet provides to the COVIDX project a virtual (VLAN) environment which is hosted in

KI’s LIME department. Within this environment the test version of the Clinical History Taking program

(CLEOS) is operating in a Windows Server. The hardware specifications of the physical server are listed

as follows:

● PowerEdge R740/R740XD - Motherboard

● Intel Xeon Gold 6208U 2.9G, 16C/32T, 10.4GT/s, 22 M Cache, Turbo, HT (150W) DDR4-2933

● iDRAC,Factory Generated Password

● iDRAC Group Manager, Enabled

● Chassis with up to 8 x 2.5" SAS/SATA Hard Drives for 1CPU Configuration

● PowerEdge 2U Standard Bezel

● Riser Config 1, 4 x8 slots

● 3200MT/s RDIMMs

● 32GB RDIMM, 3200MT/s, Dual Rank

● Amount: 6

● iDRAC9,Enterprise

● 1.92TB SSD SATA Read Intensive 6Gbps 512 2.5in Hot-plug AG Drive, 1 DWPD, 3504 TBW

● PERC H330 RAID Controller

● Minicard

KI has set up access requests (SSH) to the allocated VM for the COVIDX partners responsible for the

deployment of Sandbox application.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 42 of 58

5 Sandbox User Guide

This chapter provides guidance to administrators on how to install and configure the 1st release of the

COVID-X Sandbox on top of physical or virtual servers. Moreover, it gives assistance to users who will

be responsible for integrating their services into the Sandbox platform through the CI/CD Stack. It is

aimed as reference documentation for joining third parties, being either solution providers to integrate

their solution with the core services of the Sandbox or clinical partners wishing to locally deploy the

Sandbox and ingest their health data sets.

5.1 Sandbox Installation and Configuration

This section presents the necessary steps that administrators should follow to install the Sandbox

services. The minimal Sandbox deployment requires a multi-core virtual or physical server with 64GB

of RAM, equipped with the necessary SSD Drives. The disk space has to be a multiple of the volume of

the data that will be stored in the specific Sandbox deployment. Sandbox services can also be

distributed to multiple hosts, as long as all hosts can communicate with each other. The software

applications that must be installed to support the Sandbox deployment are listed below:

● Docker version >= 18.02

● Docker compose version >= 1.17

● Python >= 3.5

Detailed instructions of the installation process can be found in the respective COVID-X Gitlab

repositories

5.1.1 Installation of the Data Management, Integration, and Harmonization
services

The Sandbox is capitalizing on the ELK Stack to support data management, integration, and

harmonization services, including visualization services, as described in section 3.2. For this purpose,

an Elasticsearch cluster is deployed, along with Kibana and Logstash. Moreover, Sandbox

administrators may choose to install MongoDB that will be used to realize the Sandbox datalake for

storing a massive amount of unstructured data.

An administrator must first download the source code from the COVID-X Gitlab repository to install

the data management, integration, and harmonization services. Note that an invitation to the

respective repository is required in order for someone to have access to the source code. On a Linux

environment, the commands that must be executed are the following:

● git clone https://gitlab.com/covid-x-prj/datamgmt/data-mgmt-harmonization.git

● cd data-mgmt-harmonization

https://gitlab.com/covid-x-prj/datamgmt/data-mgmt-harmonization.git

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 43 of 58

The root directory contains one subdirectory for each application that needs to be instantiated, as
depicted in Figure 19. The installation process is based on Docker Compose for instantiating the
necessary Docker containers and wrapper Shell scripts for configuring and preparing the environment.

FIGURE 19: DATA MANAGEMENT, INTEGRATION, AND HARMONIZATION REPOSITORY

Before starting the data management and harmonization services, the Sandbox administrator must

create and configure the .env file. This configuration file defines various parameters of the system,

such as the name of the cluster, the exposed network ports of the services, the admin password, etc.

The full specification of the .env file is presented in Appendix 1.

To launch the data management, integration, and harmonization services, the administrator must

execute the bin/deploy.sh script:

bash bin/bash.sh -k --kibana --logstash -- mongodb

This script utilizes the docker-compose.yml file to launch the defined Docker containers. The options

passed to deploy script are the following:

● -k | --keystore: Run elasticsearch-keystore to generate a new Keystore and elasticsearch-certutil to
generate a new certificate under the secrets directory. Elasticsearch Keystore is used to store
sensitive information and settings. The keystone will be created by default if there is not a Keystore
under the secrets directory, even if this option is not enabled. You can use this option to replace a

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 44 of 58

previously created keystore or certificate. All the steps that are followed when enabling this option
are described in detail in the next section.

● --kibana: Launch a Kibana service that will be connected to the instantiated Elasticsearch cluster.
Kibana is configured based on the parameters in the .env file.

● --logstash: Launch a Logstash service that will be connected to the instantiated Elasticsearch
cluster. Logstash is configured based on the parameters in the .env file.

● --mongodb: Launch the MongoDB database along with the ELK Stack services.

● -h | --help: Print a help message and quit.

If the deployment is successful, the docker ps command will list all the deployed containers realizing

the data management, integration, and harmonization services. A similar output is depicted in Figure

20.

FIGURE 20: DATA MANAGEMENT, INTEGRATION, AND HARMONIZATION CONTAINERS

The Sandbox administrator can create or modify the files under /logstash/pipelines directory to modify

the methods and sources that will be used for ingesting data into the system.

5.1.2 Configure Security Services

As described in section 3.3, the security services that are configured and integrated in the first release

of the COVID-X Sandbox are part of the elastic X-Pack extension and include user authentication and

authorization via a role-based access control system, authorized and encrypted inter-node

communication in a multi-node cluster and encrypted client communication. For enabling the security

services of the COVID-X Sandbox the basic X-Pack license is utilized, realizing all the aforementioned

security features. In the configuration file of elasticsearch the following lines must be added:

xpack.license.self_generated.type: basic
xpack.security.enabled: true

The Sandbox administrator must execute the following three steps to generate the certificates that

will be used for enabling encrypted communication among the multiple ndoes of the ELK cluster:

● Generating a certificate authority (CA): elasticsearch-certutil ca

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 45 of 58

● Generating and signing certificates for each node with the CA: elasticsearch-certutil cert --ca
elastic-stack-ca.p12

● Copy the node certificate to the corresponding nodes of the cluster.

In order to generate certificates for securing inter- and intra-cluster communications the following

steps are followed:

● Create a certificate authority for the Elasticsearch cluster: When generating a CA, a PKCS#12
keystore, elastic-stack-ca.p12, that contains the public certificate for the CA and the private key
that is used to sign the certificates for each node, is created. Moreover, a password to protect the
file containing the certificate and the key is defined. This file is retained along with its password in
order to be able to add more certified nodes in the cluster. It is important to note that all nodes
have a certificate that has been signed by the generated CA.

● Generate a certificate and private key for each node in the cluster: A PKCS#12 keystore, elastic-
certificates.p12, is created for each that includes the node certificate, node key, and CA certificate.
These files are also password protected and can be used by every node of the cluster.

● Attach the certificates to each node of the cluster: Each node certificate will be attached to the
corresponding directory which is configured in the elasticsearch.yml of each node of the cluster as
explained below for the case of Encrypting communications between nodes in a cluster and
Encrypting HTTP Client communications.

The following snippet showcases the required commands needed to enable TLS and specify the

information required to access the node’s certificate in order to establish encrypted communications

between nodes. We modify the elasticsearch.yml for each node of the cluster adding the following

configurations:

server.ssl.enabled: true

elasticsearch.ssl.verificationMode: certificate\

xpack.security.transport.ssl.keystore.type: PKCS12

xpack.security.transport.ssl.keystore.path: /path/to/the/certificate.p12

xpack.security.transport.ssl.truststore.type: PKCS12

xpack.security.transport.ssl.truststore.path: /path/to/the/certificate_ca.p12

The above enables SSL and define the use of certificates and a certificate authority as the verification

mode for our case. Furthermore, the type and the full path to the node certificate as well as the trusted

keystore file are defined. Truststore is a trusted keystore file which includes the CA certificate which is

used to sign the SSL/TLS certificates in the Elasticsearch cluster and it is also a PKCS12 file.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 46 of 58

To enable encrypted HTTP Client communications, the following parameters must be added to the

elasticsearch.yml file:

xpack.security.http.ssl.enabled: true

xpack.security.http.ssl.keystore.type: PKCS12

xpack.security.http.ssl.keystore.path: path/to/certificate.p12

xpack.security.http.ssl.truststore.type: PKCS12

xpack.security.http.ssl.truststore.path: path/to/certificate_ca.p12

Since the node's certificates are secured with a password, the administrator should also update the

keystore and truststore files with the secure password:

elasticsearch-keystore add xpack.security.transport.ssl.keystore.secure_password

elasticsearch-keystore add xpack.security.transport.ssl.truststore.secure_password

By default, Kibana automatically detects whether to enable the security features based on the license

and whether Elasticsearch security features are enabled. Thus, the administrator also needs to add the

appropriate security commands for encrypted communications in the configuration file of kibana

(kibana.yml):

server.ssl.enabled: true

elasticsearch.ssl.verificationMode: certificate

xpack.security.transport.ssl.keystore.type: PKCS12

xpack.security.transport.ssl.keystore.path: /path/to/the/certificate.p12

xpack.security.transport.ssl.truststore.type: PKCS12

xpack.security.transport.ssl.truststore.path: /path/to/the/certificate.p12

Once the ELK Stack services have been deployed, following the instructions from the previous section,

the Sandbox administrator can add roles with specific permissions and users. The roles can be assigned

to one or multiple users. Kibana provides a useful web UI that for implementing these tasks, as shown

in the figures below:

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 47 of 58

FIGURE 21: CREATE AN ELK ROLE

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 48 of 58

FIGURE 22: CREATE AN ELK USER

5.1.3 Installation of the API Gateway

The final task in the Sandbox installation process is the deployment of the API Gateway service. For

this purpose, the Sandbox administrator must follow the steps listed below:

● Download the source code from the Gitlab repository: git clone https://gitlab.com/covid-x-
prj/sandboxapi/flaskapi.git and git clone https://gitlab.com/covid-x-prj/sandboxapi/kong. These
commands will download the kong and flaskAPI directories.

● In the kong directory, modify the kong.yml file, adding the following parameters:

▪ Modify the Kong upstream, adding all the target endpoints on the instantiated nodes
of the Elasticsearch cluster

▪ For each Logstash HTTP pipeline, add a service that sends the required request to the
adequate port, depending on the index.

● In both directories, modify the docker-compose.yml in the following parts:

▪ Add the Docker network that is used for attaching the other services of the Sandbox.

▪ Expose the desired ports. Note that the admin port should not be accessible externally.

● In both directories, execute the following command to deploy the API Gateway services: docker-
compose up -d

https://gitlab.com/covid-x-prj/sandboxapi/flaskapi.git
https://gitlab.com/covid-x-prj/sandboxapi/flaskapi.git
https://gitlab.com/covid-x-prj/sandboxapi/kong

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 49 of 58

5.2 CI/CD Guide

This section provides guidance to the Sandbox CI/CD pipeline that supports multiple branches in an

entirely distributed environment by deploying software components over Docker. The Sandbox CI/CD

has been described in detail in chapter 2. A template Jenkinsfile is included in Appendix 2.

5.2.1 Gitlab Repositories

A dedicated Gitlab group named "COVID-X-PRJ" has been created to host the source code of

applications that will be integrated into the COVID-X platform. In order for partners to push their

source code to the COVID-X repository, they must own a Gitlab account. Users can sign up in Gitlab

using the following URL: https://gitlab.com/users/sign_up. Subsequently, a separate Gitlab project will

be created for each partner under the COVID-X project. Partner must provide their email accounts

associated with Gitlab to be invited to the respective Gitlab repository. An application should include

the following files in order to be able to be deployed through the CI pipeline in a Docker container:

● Jenkinsfile: Define the Jenkins Pipeline as code.

● Dockerfile: File for building the Docker application.

● docker-compose.yml (optional): Deploy Dockerized application.

5.2.2 Jenkins

A Jenkins account will be provided to each partner with write permissions on specific workspaces. After

that, a username/password will be communicated to them to start creating pipelines. Jenkins users

can create pipelines following the steps:

1. Create and configure a Jenkins pipeline

a. Create a New Item in Jenkins.

• Enter an item name. It is recommended to give a name that matches the Gitlab

project and the associated branch).

• Select pipeline and click OK

b. In the General tab, select Gitlab as a Gitlab Connection.

c. The Build Triggers define when the pipeline runs. In the Build Triggers tab, select the

options depicted in the following picture:

https://gitlab.com/users/sign_up

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 50 of 58

d. Click on the Advanced option and generate a Secret Token. Keep the token as it will

be used for connecting the Gitlab repository with the pipeline.

e. Keep the GitLab webhook URL on the option title, as it will be used for connecting the

Gitlab repository with the pipeline.

f. There is the option to launch a job after another project is finished. In such a scenario,

where the job needs to be launched after another job is finished (ex: integration test-

jobs, acceptance test jobs, etc.), the following option needs to be checked, referencing

the job that precedes:

g. In the Pipeline tab:

• Definition: Pipeline script from SCM

• Add the Repository URL (e.g. https://gitlab.com/covid-x-prj/<my-software-

module>.git)

• Add your Gitlab credentials (username/password)

• In "Branches to build", add either branch (e.g. */master,*/development, etc.)

• Add Script Path (e.g., Jenkinsfile)

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 51 of 58

h. Save the configuration.

2. Create a Gitlab webhook to trigger the pipeline:

a. On the Gitlab repository that needs to be connected to the created Jenkins pipeline,

navigate to Menu > Settings > Webhook page:

b. Fill the URL and Secret Token fields with the ones produced in the Jenkins pipeline.

c. Select the Giltab events that you want to trigger a new build of the pipeline.

d. Select "Add the webhook" when you are done. A new project hook appears at the

bottom of the page. You can run a test to check that the pipeline is successfully

launched.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 52 of 58

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 53 of 58

6 Conclusions

This deliverable has presented the activities related to the implementation of the first release of the

COVID-X Sandbox, describing the internal services that have been developed for realizing the data

management, integration, harmonization, and visualization functionalities, the security and API

gateway services, as well as the components comprising the Sandbox CI/CD Stack to facilitate both the

Sandbox services integration and testing but also the integration of third party solutions software. The

development of the internal Sandbox services has followed the Service-Oriented Architecture

approach, described in D2.1, as well as the best practices of the CI/CD process. By adopting this

approach, development teams of the COVID-X project were able to develop and deploy the necessary

services independently and therefore managed to introduce functionality to the system

simultaneously with minimal dependency between them.

The deliverable has also presented the centralized cloud-based Sandbox deployment. Furthermore, it

defines the requirements and the process that must be followed for deploying the Sandbox services at

the local infrastructure of a clinical partner/data provider, to account for relevant emerging needs.

The first release of the Sandbox will be used for integrating and interconnecting the applications and

components provided by the successful third-party SMEs that have joined the project during the 1st

Open Call. This process will be described in deliverable D2.4 - First Report on interconnection of third

parties, CI/CD and policies due month 12 of the project. The second and final release of the Sandbox

will be described in D2.3 - Final Sandbox implementation and services provision due month 12.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 54 of 58

7 References

[1] COVID-X Consortium, “D2.1 – Sandbox design & Datalake creation and ingestion,” 2021.

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 55 of 58

8 Appendix A: Sandbox dotenv Configuration File

This appendix presents the .env configuration file that defines the environmental variables used for

deploying the Sandbox. For every variable, there is a default value that is set if not explicitly defined.

Variables that will be used for deploying the ELK Stack

Fil the variable that you want to define or elase the default value will

be used/

Use: VARIABLE_NAME=VALUE

***** Hosts and Ports of the initial ELK Stack *****

**

Thse variables will match the values defined in the docker-compose.yml

file

They can be used for configuring pipelines and other internal ELK

processes

Default values:

ELASTIC_INIT_MASTER_NODE=dmht-elasticsearch

ELASTICSEARCH_REQUEST_PORT=9200

ELASTICSEARCH_CLUSTER_PORT=9300

KIBANA_HOST=dmht-kibana

KIBANA_PORT=5601

LOGSTASH_HOST=dmht-logstash

LOGSTASH_PORT=8080

ELASTIC_INIT_MASTER_NODE=dmht-elasticsearch

ELASTICSEARCH_REQUEST_PORT=9200

ELASTICSEARCH_CLUSTER_PORT=9300

KIBANA_HOST=dmht-kibana

KIBANA_PORT=5601

LOGSTASH_HOST=dmht-logstash

LOGSTASH_PORT=8080

***** Hostnames of master eligble elasticsearch instances *****

**

This variable will be used for adding data-nodes to elasticsearch cluster

The value must match the resolvable hostname/IP of a cluster's master

eligible node

Default value: ELASTIC_DISCOVERY_SEEDS=dmht-elasticsearch

ELASTIC_DISCOVERY_SEEDS=dmht-elasticsearch

***** ELK Stack Resources *****

The resources that will be reserved for the ELK applications

Default values:

ELASTICSEARCH_HEAP=1024m

LOGSTASH_HEAP=512m

ELASTICSEARCH_HEAP=1024m

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 56 of 58

LOGSTASH_HEAP=512m

***** ELK Stack Version *****

The version of the ELK services

Default value: ELK_VERSION=7.12.0

ELK_VERSION=7.12.0

***** Credientals *****

Password for the admin user of Elasticsearch cluster (elastic).

This is used to set the password at setup, and used by others to connect

to Elasticsearch at runtime.

Default values:

ELASTIC_PASSWORD=elastic

ELASTIC_PASSWORD=elastic

***** Cluster Bootstrap Info *****

General information about the ELK and Docker that will host the cluster

Default values:

ELASTIC_CLUSTER_NAME=ELK_Cluster

ELASTIC_DOCKER_NETWORK=elk-net

ELASTIC_CLUSTER_NAME=ELK_Cluster

ELASTIC_DOCKER_NETWORK=elk-net

***** Elasticsearch Data Nodes *****

The number of data nodes that will be created when launching the ELK

Stack

More data nodes can be added later

Default value ELASTIC_DATA_NODE_NUMBER=0

ELASTIC_DATA_NODE_NUMBER=0

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 57 of 58

9 Appendix B: Example Jenkinsfile

This Appendix presents an example of a Jenkinsfile that defines the five main stages of the CI pipeline:

pipeline {

 agent any

 tools {

 maven 'Maven 3.6.3'

 jdk 'jdk8'

 }

 environment {

 APP_NAME = "test-module-rest"

 ARTIFACTORY_SERVER = "https://static.133.181.202.116.clients.your-

server.de:443/artifactory/cvregistry/"

 ARTIFACTORY_DOCKER_REGISTRY = "static.133.181.202.116.clients.your-

server.de:443/cvregistry/"

 BRANCH_NAME = "master"

 DOCKER_IMAGE_TAG = "$APP_NAME:R${env.BUILD_ID}"

 VM_DEV01 = "188.34.202.183:2376"

 VM_DEV02 = "157.90.24.51:2376"

 VM_DEV03 = "157.90.21.236:2376"

 }

 stages {

 stage('Checkout') {

 steps {

 echo 'Checkout SCM'

 checkout scm

 checkout([$class: 'GitSCM',

 branches: [[name: env.BRANCH_NAME]],

 extensions: [[$class: 'CleanBeforeCheckout']],

 userRemoteConfigs: scm.userRemoteConfigs

])

 }

 }

 stage('Build with Maven') {

 steps {

 echo 'Build with Maven'

 sh 'mvn -f pom.xml clean package'

 }

 }

 stage('Build image') { // build and tag docker image

 steps {

 echo 'Starting to build docker image'

 script {

 def dockerImage =

docker.build(ARTIFACTORY_DOCKER_REGISTRY + DOCKER_IMAGE_TAG)

 }

 }

 }

 stage ('Push image to Artifactory') {

 steps {

COVID-X | D2.2: First Sandbox
Implementation and Services Provision

COVID-X has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 101016065.

© 2020-2022 COVID-X Page 58 of 58

 withCredentials([[$class: 'UsernamePasswordMultiBinding',

credentialsId: 'jFrog_deployer_creds', usernameVariable: 'USERNAME',

passwordVariable: 'PASSWORD']]) {

 echo 'Login to Artifactory Registry'

 sh "docker login --password=${PASSWORD} --

username=${USERNAME} ${ARTIFACTORY_SERVER}"

 echo 'Pull image with Build-ID'

 sh 'docker push

"$ARTIFACTORY_DOCKER_REGISTRY$DOCKER_IMAGE_TAG"'

 echo 'Logout from Registry'

 sh 'docker logout $ARTIFACTORY_SERVER'

 }

 }

 }

 stage('Docker Remove Image from CI Server') {

 steps {

 sh 'docker rmi

"$ARTIFACTORY_DOCKER_REGISTRY$DOCKER_IMAGE_TAG"'

 }

 }

 stage('Deploy Image') {

 steps{

 script {

 docker.withServer("$VM_DEV01", 'dev_vm_pems') {

 withCredentials([[$class: 'UsernamePasswordMultiBinding',

credentialsId: 'jFrog_deployer_creds', usernameVariable: 'USERNAME',

passwordVariable: 'PASSWORD']]) {

 echo 'Login to Artifactory Registry'

 sh "docker login --password=${PASSWORD} --

username=${USERNAME} ${ARTIFACTORY_SERVER}"

 echo 'Pull image with Build-ID'

 sh 'docker pull

"$ARTIFACTORY_DOCKER_REGISTRY$DOCKER_IMAGE_TAG"'

 echo 'Deploy image to VM'

 sh 'docker run -d -p 8080:8080 --name "$APP_NAME"

"$ARTIFACTORY_DOCKER_REGISTRY$DOCKER_IMAGE_TAG"'

 echo 'Logout from Registry'

 sh 'docker logout $ARTIFACTORY_SERVER'

 }

 }

 }

 }

 }

 }

}

