
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Large Scale Evaluation of Natural
Language Processing Based
Test-to-Code Traceability Approaches
ANDRÁS KICSI1, VIKTOR CSUVIK1, AND LÁSZLÓ VIDÁCS1
1MTA-SZTE Research Group on Artificial Intelligence, and Department of Software Engineering, University of Szeged, Szeged, Hungary

Corresponding authors: András Kicsi (e-mail: akicsi@inf.u-szeged.hu) and László Vidács (e-mail: lac@inf.u-szeged.hu).

This work was supported in part by the ÚNKP-20-3-SZTE and ÚNKP-20-5-SZTE New National Excellence Programs, by grant
NKFIH-1279-2/2020N, and by the Artificial Intelligence National Laboratory Programme of the NRDI Office of the Ministry of Innovation
and Technology, Hungary. László Vidács was also funded by the János Bolyai Scholarship of the Hungarian Academy of Sciences.

ABSTRACT Traceability information can be crucial for software maintenance, testing, automatic
program repair, and various other software engineering tasks. Customarily, a vast amount of test code
is created for systems to maintain and improve software quality. Today’s test systems may contain tens
of thousands of tests. Finding the parts of code tested by each test case is usually a difficult and time-
consuming task without the help of the authors of the tests or at least clear naming conventions. Recent
test-to-code traceability research has employed various approaches but textual methods as standalone
techniques were investigated only marginally. The naming convention approach is a well-regarded method
among developers. Besides their often only voluntary use, however, one of its main weaknesses is that it
can only identify one-to-one links. With the use of more versatile text-based methods, candidates could be
ranked by similarity, thus producing a number of possible connections. Textual methods also have their
disadvantages, even machine learning techniques can only provide semantically connected links from
the text itself, these can be refined with the incorporation of structural information. In this paper, we
investigate the applicability of three text-based methods both as a standalone traceability link recovery
technique and regarding their combination possibilities with each other and with naming conventions.
The paper presents an extensive evaluation of these techniques using several source code representations
and meta-parameter settings on eight real, medium-sized software systems with a combined size of over
1.25 million lines of code. Our results suggest that with suitable settings, text-based approaches can be
used for test-to-code traceability purposes, even where naming conventions were not followed.

INDEX TERMS Software Testing, Unit Testing, Test-to-Code Traceability, Natural Language Processing,
Word embedding, Latent Semantic Indexing

I. INTRODUCTION

The creation of quality software usually involves a great
effort on part of developers and quality assurance specialists.
The detection of various faults is usually achieved via
rigorous testing. In a larger system, even the maintenance
of tests can be a rather resource-intensive endeavor. It is
not exceptional for software systems to contain tens of
thousands of test cases each serving a different purpose.
While their aims can be self-evident for their authors at the
time of their creation, they bear no formal indicator of what
they are meant to test. This can encumber the maintenance
process. The problem of locating the parts of code a test

was meant to assess is commonly known as test-to-code
traceability.

Proper Test-to-Code traceability would facilitate the pro-
cess of software maintenance. Knowing what a test is
supposed to test is obviously crucial. For each failed test
case, the code has to be modified in some way, or there is
little point to testing. As this has to include the identification
of the production code under test, finding correct test-to-
code traceability links is an everyday task, automatization
would be beneficial. This could also open new doors for
fault localization [1], which is already an extensive field of
research, and even for automatic program repair [2], greatly

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

contributing to automatic fixes of the faults in the production
code.

To the best of our knowledge, there is no perfect solution
for recovering the correct traceability links for every single
scenario. Good testing practice suggests that certain naming
conventions should be upheld during the testing, and one
test case should strictly assess only one element of the
code. These guidelines, however, are not always followed,
and even systems that normally strive to uphold them
contain certain exceptions. Thus, the reliability of recovery
methods that build on these habits can differ in each case.
Nonetheless, the method of considering naming conventions
is one of the easiest and most precise ways to gather the
correct links.

In its simplest form, maintaining naming conventions
means that the name of the test case should mirror the name
of the production code element it was meant to test, its name
consisting of the name of the class or method under test and
the word "test" for instance. The test should also share the
package hierarchy of its target. In a 2009 work of Rompaey
and Demeyer [3] the authors found that naming conventions
applied during the development can lead to the detection of
traceability links with complete precision. These, however,
are rather hard to enforce and depend mainly on developer
habits. Additionally, method-level conventions have various
other complicating circumstances.

Other possible recovery techniques rely on structural or
semantic information in the code that is not as highly de-
pendent on individual working practice. One such technique
is based on information retrieval (IR). This approach relies
mainly on textual information extracted from the source
code of the system. Based on the source code, other, not
strictly textual information can also be obtained, such as
Abstract Syntax Trees (AST) or other structural descriptors.
Although source code syntax is rather formal and most
of the keywords of the languages are given, the code still
usually contains a large amount of unregulated natural text,
such as variable names and comments. There are endless
possibilities in the naming of variables, functions, and
classes. These names are usually quite meaningful. While
source code is hard to interpret for humans as natural lan-
guage text, machine learning (ML) methods commonly used
in natural language processing (NLP) could still function
properly.

Compared to a small manual dataset, Rompaey and
Demeyer [3] found that lexical analysis (Latent Semantic
Indexing - LSI) applied to this task performed with 3.7%-
13% precision while the other methods all achieved better
results. Thus, it is known that IR-based methods most
probably do not produce the best results in the test-to-
code traceability field. However, they are in constant use in
current state-of-the-art solutions. Textual methods may not
be the single best way to produce valid traceability links,
but modern approaches still employ them in combination
with other techniques. The textual methods used in these
systems are usually less current, most solutions simply rely

on matching class names or the latent semantic indexing
(LSI) technique as part of their contextual coupling. Thus,
finding better performing textual methods can improve these
possible combinations as well, having the potential of major
contributions to the field. Our findings [4] show that im-
proved versions of lexical analysis can significantly outshine
the previously mentioned low results, raising their average
precision over 50%.

To investigate the benefits of ML models and to point
out their distinction from simple naming conventions, our
experiments are organized along the following research
questions:

• RQ1: How generally are naming conventions applied
in real systems?

• RQ2: Is there a way to further improve test-to-code
traceability results relying on modern information re-
trieval methods?

• RQ3: How well do various text-based techniques per-
form compared to human data?

In the current paper, our goal is to recover test-to-code
traceability links for tests based on only the source files. To
do so, a suitable input representation is generated and from
this, an artificial intelligence model is trained for the search
of the most similar test-to-code match.

The paper is organized as follows. Section II presents
diverse background information, including our various ap-
proaches to input generation and traceability link recovery.
Our evaluation procedure and the sample projects are also
described in this section. An evaluation on eight systems
follows in Section III with the discussion of these results in
Section IV. Related work is overviewed in Section V, some
threats to validity are addressed in Section VI, while our
paper concludes in Section VII.

! </>

Source files

</>
Identifiers

Abstract
Syntax Tree

Types

{ } []
Special

characters

Input representation
optimization

Model training

lang3.AnnotationUtilsTest.testEquivalence

1. lang3.Validate
2. lang3.builder.HashCodeBuilder
3. lang3.EnumUtils
4. lang3.NotImplementedException
5. lang3.mutable.MutableObject

Text mining

Doc2vec
LSI

TF-IDF

?

!!

!

!

! Similarity
measurement

? </>

! </>

AnnotationUtilsTest

HashCodeBuilder

EnumUtils

Ranked list of
similar classes

Error prone
(soft computed)

links

Reliable
class information

FIGURE 1. A high level overview of the proposed process
2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

II. THE PROPOSED METHOD
The goal of the current paper is to investigate textual tech-
niques for the sake of improving test-to-code traceability.
This approach could improve the performance of existing
techniques on this specific problem and also serve as the
groundwork for future works on test-to-code traceability. To
achieve this, let us grasp the process in Figure 1. The input
is a software system, which consists of Java source files. The
output is a ranked list for each test case with the production
classes that are likely to be a target of the test. The input files
are transformed in such a representation, that is more suited
to machine learning than raw source code. Three techniques
are trained to measure the similarity between test and code
classes. Class information is also obtained from the source
files like the list of imported packages and the methods
defined in a class. Each model produces a list of similar code
classes but these results are susceptible to faults because of
the nature of ML techniques. Thus, these lists are filtered
with the class information which was obtained earlier.

Our research strives to achieve a comprehensive eval-
uation of three text-based techniques on the test-to-code
traceability problem rather than simply providing a new
method. Thus, our results were evaluated on eight real open-
source programs and also using a variety of source code
representations and settings. Our previous work aimed to
show that LSI itself performs better than it was previously
perceived by the research community [5], investigated the
question of source code representations in the task, and also
found that Doc2Vec can significantly outperform LSI [6]
while a suitable combination of the textual similarity tech-
niques could provide even better results [4]. Some of the
approaches used in the paper are also defined in our previous
work but they are also briefly introduced in the following
subsections.

A. LATENT SEMANTIC INDEXING
LSI is not a relatively old algorithm and there is also
previous work on its uses on this specific problem. It
builds a corpus from a set of documents and computes the
conceptual similarity of these documents with each query
presented to it. In our current experiments, the production
code classes of a system were considered as the documents
forming the corpus, while the test cases were considered as
queries. The algorithm uses singular value decomposition to
achieve lower dimension matrices which can approximate
the conceptual similarity.

B. DOCUMENT VECTORS
Doc2Vec is originated from Word2vec [7], which is an
artificial neural network that can transform (embed) words
into vector space (embedding). The main idea is that the
hidden layer of the network has fewer neurons than the
input- and output layers, thus forcing the model to learn
a compact representation. The novelty of Doc2Vec is that
it can encode documents, not just words, into vectors
containing real numbers.

C. TERM FREQUENCY-INVERSE DOCUMENT
FREQUENCY
TF-IDF is a basic technique in information retrieval. It relies
on numerical statistics reflecting how important a word is
for a document in a corpus. The frequency value is a metric
that increases each time a word appears in the document but
is offset by the frequency of the word in the whole corpus,
highlighting specific words for each document.

D. RESULT REFINEMENT WITH ENSEMBLEN

LEARNING
In our previous works [4]–[6] our experimental analysis
led us to the conclusion that different ML techniques
capture different similarity concepts. This means, that each
examined technique can provide useful information, while
generally, the desired code class appears close to the top of
every similarity list. Thus, it should be possible to refine
the obtained results a technique provides with another list
that comes from a separate technique. The algorithm is very
simple: only those code classes remain which are present in
both similarity lists. Since every code class is ranked in the
lists, we limit the search to the top N most similar ones, this
way the algorithm will drop out the classes from the first
list which are not amongst the topN links of the second.

E. SOFT COMPUTED CALL INFORMATION
Since the listed techniques do not take class information into
account, an additional simple filter can also be added. The
following assumptions should be true in most cases: (1) the
package of the class under test should either be the same as
the test’s or it should be imported in the test and (2) a valid
target class should have a definition for at least one method
name that is called inside the body of the test case. These
criteria still do not guarantee a valid match.

Methods and imports are obtained from the Java files
using regular expressions. These may differ for different
programming languages by their different syntax.

F. EXTENDED NAMING CONVENTION EXTRACTION
The above presented techniques all result in a filtered list
of soft computed links - i.e. there is no guarantee, that
those are correct. Naming conventions, however, are known
to produce traceability links with very high precision [3].
If a project lacks these good naming practices, naming
conventions simply cannot be used in finding the correct
matches. In this final approach, the naming convention is
observed first. If it is applicable, it is accepted. Otherwise,
the results of an IR-based approach (LSI, Doc2Vec, etc.) is
considered.

Even though our experiments involved systems written
in the Java programming language, the applied IR-based
techniques mainly use the natural language part of the code,
making the approach semi-independent from the chosen
programming language. Nevertheless, language invariability
cannot be guaranteed. These methods also depend on the
habits of the developers. The naming conventions and the

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

descriptiveness of the language of the natural text factors
in a great deal in textual similarity. This is why it is
also crucial that the developers possess sufficient education
and experience to produce sufficiently clean source code.
Furthermore, as it is visible with our current systems under
test, systems with similar properties can produce vastly
different results with the same methods.

Our experiments feature the extraction of program code
from the systems under test using static analysis, obtaining
different input representations, distinguishing tests from
production code, textual preprocessing, and determining
the conceptual connections between tests and production
code. During our experiments, the Gensim [8] toolkit’s
implementation was used for all three textual methods. The
initial static analysis that provides the text of each method
and class of a system in a structured manner is achieved
with the Source Meter [9] static source code analysis tool.

The proposed approach recommends classes for test cases
starting from the most similar and also examine the top
2 and top 5 most similar classes. Looking at the outputs
in such a way makes it a recommendation system, which
provides the most similar parts of production code for each
test case. Examining not only the most similar class but the
topN most similar ones has the benefit of highlighting the
test and code relationship more thoroughly.

The proposed approach was evaluated on eight medium-
sized open source projects written in Java, a further
overview of these systems is available in Subsection II-I. In
this paper, the models are not trained on plain source code,
the feasible input representations are introduced in the next
section.

boolean contains(Object target) {

for (Object elem: this.elements) {

if (elem.equals(target)) {

return true;

}

}

return false;

}

FIGURE 2. An example method declaration, from which the AST was
generated on Figure 3.

G. OPTIMAL INPUT REPRESENTATION
It is evident that the exact contents of the input are of
crucial importance. In this section, we briefly describe the
representations of code snippets (classes or methods) used
in this work. A code representation is the input of a machine
learning algorithm that computes the similarity between
distinct items. Abstract Syntax Trees (AST) were utilized to
form a sequence of tokens from the structured source code.
An AST is a tree that represents the syntactic structure of the
source code, without including all details like punctuation

and delimiters. For instance, a sample Abstract Syntax Tree
is displayed in Figure 3 which was constructed from the
source code of Figure 2. To better understand the advantages
and best possible methods of using the AST, the paper
describes experiments on five different code representations,
of which four relies on AST information. The five chosen
representations are described below. The five representations
under evaluation were constructed according to our previous
work and are some of the most widely used representations
in other research experiments [10], constructed along the
work of Tufano et al. [11].

1) SRC
Let us consider the source code as a structured text file. In
this simple case, similar methods are used in the context
of natural language processing. These techniques include
the tokenization of sentences into separate words and the
application of stemming. With natural language, the sepa-
ration of words can be quite simple. In the case of source
code, however, we should consider other factors as well. For
instance, compound words are usually written by the camel
case rule, while class and method names can be separated
by punctuation. The definition of these separators are one
of the main design decisions in this representation. For the
current work words were split by the camel case rule, by
white spaces and by special characters that are specific to
Java ("(", "[", "."). The Porter stemming algorithm was used
for stemming. This approach notably does not use the AST
of the files, making it a truly only text-based approach.

2) TYPE
To extract this representation for a code fragment, an
Abstract Syntax Tree has to be constructed. This process
ignores comments, blank lines, punctuation, and delimiters.
Each node of the AST represents an entity occurring in the
source code. For instance, the root node of a class (Compila-
tionUnit) represents the whole source file, while the leaves
are the identifiers in the code. In this particular case, the
types of AST nodes were used for the representation. The
sequence of symbols was obtained by pre-order traversal of
the AST. The extracted sequences have a limited number of
symbols, providing a high-level representation.

3) IDENT
Every node in the Abstract Syntax Tree has a type and a
value. The top nodes of the AST correspond to a higher
level of abstraction (like statements or blocks), their values
typically consist of several lines of code. The values of the
leaf nodes are the keywords used in the code fragment. In
this representation, these identifiers are used by traversing
the AST tree and printing out the values of the leaves. The
values of literals (constants) in the source code also might
occur here, these are replaced with placeholders representing
their type (e.g. an integer literal is replaced with the <INT>
placeholder, while a string literal with <STRING>). The

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

0) MethodDeclaration

2) BlockStmt1) Parameter
4) PrimitiveType

boolean

3) SimpleName

contains

6) SimpleType

Object

5) SimpleName

target
7) ForEachStmt 8) ReturnStmt

9) BlockStmt 10) FieldAccesExpr 11) VariableDeclarationExpr
false

12) BooleanLiteral

14) ThisExpr

this

15) SimpleName

elements
13) IfStmt

16) SimpleType

Object

20) SimpleName

elem

17) VariableDeclarator

19) MethodCallExpr18) BlockStmt

true

25) BooleanLiteral

21) ReturnStmt
22) SimpleName

elem

23) SimpleName

equals

24) SimpleName

target

. . .

FIGURE 3. An Abstract Syntax Tree, generated from the example of Figure 2. The numbers inside each element indicate the place of the node in the visiting order.
Leaves are denoted with standard rectangles (note that here the value and the type is also represented), while intermediate nodes are represented by rectangles
with rounded corners.

extracted identifiers contain variable names. In the current
experiments, they were split according to the camel case
rule popularly used in Java.

4) LEAF
In the previous two representations, distinct parts of the
AST were utilized to get the input. This approach takes
both the types and node values into account. Just as before,
a pre-order visit is performed from the root. If the node
is an inner node then its type, otherwise (when it is a
leaf) its value is printed. This representation captures both
the abstract structure of the AST and the code-specific
identifiers. Considering the latter, these can be very unique
and thus very specific to a class or a method.

5) SIMPLE
The extraction process is very similar to the previous one,
except that in this case only values with a node type
of SimpleName are printed out. These nodes occur very
often, they constituted 46% of an AST on average in our
experiments. These values correspond to the names of the
variables used in the source code while other leaf node
types like literal expressions or primitive types hold very
specific information. Note that in the IDENT representation,
the replacing of literals eliminated the AST node types of
literal expressions. Only the modifiers, names, and types
remained, thus becoming similar to this representation. With
this representation, however, we do not exclude the inner
structure of the AST.

H. EVALUATION PROCEDURE
In their 2009 evaluation, Van Rompaey B. and Demeyer S.
[3] found that the naming conventions technique produced
100% precision in finding the tested class at each test case

it was applicable to. The authors used a human test oracle
consisting of 59 randomly chosen test cases altogether.
These can be considered too few measuring points for
proper generalization, but nevertheless, it is visible that
naming conventions can identify the class under test in the
overwhelming majority of the cases. Naming convention
pairs can also be extracted automatically from method, class,
and package names. Thus, one of our evaluation methods
relies on the naming conventions technique.

Since naming convention habits may influence this, our
approach was also evaluated on a human test oracle de-
scribed in [12]. TestRoutes is a manually curated dataset that
contains data on four of our eight subject systems, Commons
Lang, Gson, JFreeChart and Joda-Time. It is a method-level
dataset that classifies the traceability links of 220 test cases
(70 from JFreeChart, 50 from each of the others). This
information is also suitable for class-level evaluations, as
this is a relaxed version of the same problem. The dataset
lists the methods under test as focal methods (there can
be multiple focal methods for a test case), as well as test
and production context. Our current focus is on the classes
of these focal methods. For JFreeCart and Joda-Time, the
dataset specifically targeted test cases that were not covered
with simple naming conventions, this will also be evident at
our results. For the other systems, the dataset contains data
on randomly chosen test cases.

The TestRoutes data was annotated by a graduate student
familiar with software testing. The tests were not executed
during the annotation process. The annotator worked in an
integrated development environment, studied the systems’
structure beforehand, and maintained regular communica-
tion with the researchers, addressing the arising concerns.
The collected traceability links were inspected and validated
by a researcher, with another researcher also verifying the

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

links of at least ten test cases of each system.
A relatively simple yet sufficiently strict set of rules was

applied in the naming convention based evaluation. Our
NC-based evaluations were based on package hierarchy and
exact name matching. This is further detailed in Subsec-
tion III-A, where this particular naming convention ruleset
is referred to as PC (package + class).

The well-known precision metric was utilized to quantify
our results. Precision is the proportion between correctly
detected units under test (UUT) and all detected units under
test. It computes as

precision =
relevantUUT ∩ retrievedUUT

retrievedUUT

With such an evaluation, it is only possible to find one pair
to each test case correctly. Our methods produce a list of rec-
ommendations in order of similarity. Every class is featured
on this list. Thus, with our current evaluation methods, the
customary precision and recall measures always coincide,
which necessarily means that the F-measure metric would
also have the same value. This is in accordance with the
evaluation techniques commonly used for recommendation
systems in software engineering. Because of this equality,
we shall refer to our quantified results in the future as
precision only.

I. SAMPLE PROJECTS
Our results were evaluated on multiple software systems and
with multiple settings. These involved the following open-
source systems: ArgoUML is a tool for creating and editing
UML diagrams. It offers a graphic interface and relatively
easy usage. Commons Lang is a module of the Apache
Commons project. It aims to broaden the functionality
provided by Java regarding the manipulation of Java classes.
Commons Math is also a module of Apache Commons,
aiming to provide mathematical and statistical functions
missing from the Java language. Gson is a Java library that
does conversions between Java objects and Json format effi-
ciently and comfortably. JFreeChart enables Java programs
to display various diagrams, supporting several diagram
types and output formats. Joda-Time simplifies the use of
date and time features of Java programs. The Mondrian
Online Analytical Processing (OLAP) server improves the
handling of large applications’ SQL databases. PMD is a
tool for program code analysis. It explores frequent coding
mistakes and supports multiple programming languages.

The versions of the systems under evaluation, their total
number of classes and methods, and the number of their test
methods are shown in Table 1, while Figure 4 visually re-
flects these numbers. It has to be noted that several methods
of the test packages of the projects have been filtered out
as helpers since they did not contain any assertions.

TABLE 1. Size and versions of the programs used

Program Version Classes All Methods Test methods

ArgoUML 0.35.1 2 404 17 948 554
C. Lang 3.4 596 6 523 2 473
C. Math 3.4.1 2 033 14 837 3 493
Gson 2.8.0 757 2 467 924
JFreeChart 1.0.19 953 11 594 2 239
Joda-Time 2.9.6 522 9 934 3 779
Mondrian 3.0.4.11371 1 626 12 186 1 546
PMD 5.6.0 1 608 9 242 825

0

ArgoUML

Commons Lang

Commons Math

Gson

JFreeChart

Joda-Time

Mondrian

PMD

2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000

Classes
Test Methods
Production M.

FIGURE 4. Properties of the sample projects used

III. RESULTS
The current section evaluates the various approaches de-
scribed in the previous section, featuring the results obtained
from different representations and learning settings. First,
various naming convention possibilities are overviewed with
their applicability values determined via automatic extrac-
tion. Next, our experiments with the ensembleN approach
are presented, where the best N value has been sought
on NC-based and manual traceability links. Finally, the
traceability approaches are compared to each other based
on both NC and manual evaluation.

We note that production methods containing less than
three tokens in their method bodies were filtered out since
trivial and abstract production methods are not likely to be
the real focus of a test.

A. APPLICABILITY OF NAMING CONVENTIONS
Naming conventions for tests are a vague term that can mean
a multitude of various practices. The conventions are usually
agreed on by the developers and written guidelines rarely
even exist. They can also be only considered a mere good
practice, and their use varies by teams or even individuals.
As there can be various naming conventions, and their use
is different in most systems, relatively vague criteria are
needed to detect them in a versatile manner. Let us con-
sider a few general criteria for our examination. These are
presented in Figure 5. There are, of course, other possible
criteria, including abbreviations or some other distinction
for tests except the word "Test". Still, these seem to be the
most intuitive and most popular naming considerations.

Let us consider some of the possible combinations of the
listed criteria components. Figure 6 presents these. Some

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

other viable combinations can also exist, which did not seem
suitable for the unique distinction of test-code pairs. The
criteria are ordered by strictness in a descending manner.
While the stricter criteria produce more distinction between
pairs, they are less versatile and are harder to uphold. Table 2
presents the extent to which the naming conventions were
found to be applicable to the evaluated systems.

class

package
The package hierarchy must
match either completely or after
the "test" or "tests" package.

a.b.c.SomeClass test.a.b.c.TestSomeClass
a.b.c.SomeClass a.b.TestSomeClass

The name of the test class must
match completely with the
production class, the word "Test"
appended to the beginning or
the end.

The name of the class must
contain the whole name of the
production class.

The name of the test method
must match completely with the
production method, except for the
word "Test" appended to the
beginning or the end.

The name of the method must
contain the whole name of the
production method.

SomeClass SomeClassTest
SomeClass AnotherSomeClassTest
SomeClass OtherTest

someMethod
someMethod
someMethod

someMethodTest
anotherSomeMethodTest
otherTest

someMethod
someMethod
someMethod

someMethodTest
anotherSomeMethodTest
otherTest

SomeClass SomeClassTest
SomeClass AnotherSomeClassTest
SomeClass OtherTest

~class

method

~method

FIGURE 5. Various possible naming convention criteria components

PCM
Package, Class and Method

PM
Package and Method

M
Method

WM
Wildcard Method

PWM
Package and Wildcard Method

PCWM
Package, Class and Wildcard Method

PWCWM
Package, Wildcard Class and Wildcard Method

= +

=

package

package

package

package

package

= ~class

=
=

=

= method

method

+ class

class

+

+ ~method

~method

+

~class+packagePC
Package and Class

PWC
Package and Wildcard Class

WC
Wildcard Class

C
Class

package=
=

=
=

+
class

class

~class

~class

+package

+ method

+ ~method

~method+

FIGURE 6. Some of the possible naming convention criteria in descending
order of restrictiveness

As it is visible from the results of the table, there is
a significant jump in the applicability at the PC naming

convention variant, which considers package hierarchy and
an exact match to the name of the class. While the extent
of the increase of applicability varies between systems,
it is apparent that most of them produce only very few
traceability links when method names are also considered.
As our experiments at the current time feature class level
test-to-code traceability, the further results of our paper will
use PC as the default naming convention.

B. ENSEMBLE EXPERIMENTS
Figure 7 and Figure 8 show the results of our ensembleN
learning approach. As one can see in the figures, the
experiments were carried out using different N values: 50,
100, 200, and 400. These values only influence the size of
each similarity list. If N is relatively big, then the filtering on
the original similarity list (which originates from Doc2Vec)
will not drop out many entries since many of the elements
are present in the other two lists. In contrast, if N is a small
number, the filtering is stricter since every similarity list
contains only a limited number of entries. The previous
argument can be further elaborated: if N is big, the resulting
similarity list is going to rely mostly on the original one,
while if it is small, the approach makes better use of the
information from the other two approaches.

First, let us consider Figure 8, which visualizes the results
from the sample projects measured via automatic naming
convention extraction. The small flags on the top of the
bars indicate the highest values for each system in their
category (top1, top2, top5). The flag’s color is the same as
its bar; a white flag means that the highest values are equal.
Remarkably, no case was encountered where there were two
or three highest values. In this experiment, the different
source code representations are also considered. Looking at
the figure, it is apparent that most of the flags appear at the
IDENT representation. It is also worth mentioning that at
the top1 results, the ensemble50 approach seems to produce
the highest values. Considering multiple recommendations
(top2 and top5), the situation is less obvious: ensemble100
also seems to provide good results. Ensemble400 seems to
be less precise. It prevalent only in the case of Mondrian
using the SIMPLE representation. The results on the manual
dataset also reinforce this finding. In Figure 7, almost every
flag belongs to the ensemble50 approach, except in two
cases, when it produced the same value as the others.

C. NC-BASED EVALUATION
Table 3 shows the top1 results of different machine learning
approaches, evaluated via naming conventions. Cells of
color teal indicate the highest values for each system
within a method, while cells of color violet indicate the
overall top values. For the EnsembleN , only those cases are
listed where N = 50, since this setting seemed to be the most
beneficial (for further discussion see Subsection III-B). The
listed approaches correspond to the ones introduced in Sec-

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

TABLE 2. The applicability of the naming conventions technique using different approaches

Naming Criteria ArgoUML Commons Lang Commons Math Gson JFreeChart Joda-Time Mondrian PMD

PCM 14.91% 17.04% 12.50% 1.74% 32.60% 3.60% 6.57% 7.93%
PM 20.73% 19.80% 16.85% 2.18% 38.95% 10.09% 9.04% 8.43%
PCWM 19.82% 56.67% 32.19% 9.59% 49.53% 23.78% 11.51% 15.86%
PWCWM 21.27% 66.73% 37.52% 9.59% 50.92% 59.65% 12.09% 16.48%
PWM 33.45% 70.79% 45.42% 15.47% 58.64% 74.42% 31.01% 25.53%
M 28.91% 19.96% 21.16% 3.05% 40.15% 11.38% 12.22% 11.90%
PC 60.18% 84.58% 75.07% 26.14% 96.47% 36.80% 17.82% 58.36%
C 64.00% 84.58% 75.07% 27.89% 96.47% 37.30% 20.81% 66.91%
WM 74.00% 80.00% 81.53% 60.24% 61.28% 78.55% 73.34% 58.36%
PWC 75.09% 99.11% 88.06% 28.87% 97.05% 98.04% 21.52% 61.09%
WC 80.55% 99.11% 91.42% 44.77% 97.41% 98.04% 35.96% 72.12%

0

10

20

30

40

50

60

70

C
o
m
m
o
n
sL
an
g

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an
g

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an
g

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an
g

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an
g

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

IDENT LEAF SIMPLE SRC TYPE

TO
P
-5

IDENT LEAF SIMPLE SRC TYPE

0

10

20

30

40

50

60

C
o
m
m
o
n
sL
an

g…

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an

g…

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an

g…

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an

g…

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an

g…

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

0
5
10
15
20
25
30
35
40
45
50

C
o
m
m
o
n
sL
an

g…

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an

g…

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an

g…

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an

g…

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

C
o
m
m
o
n
sL
an

g…

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

Ensemble-50 Ensemble-100 Ensemble-200 Ensemble-400

TO
P
-2

TO
P
-1

FIGURE 7. Results of the ensembleN learning approach measured on the
manual dataset.

tion II. The notion [approach]+CG refers to filtering with
our soft computed call information described in Section II-E.

D. EVALUATION ON MANUAL DATA
The results measured on the manual dataset are shown in
Table 4. Similarly to the previous table, teal indicates the
highest values within a method, while violet highlights
the overall highest value. The left part of the table shows

precision values of top-1 matches, while on the right side
of the table, the top-5 results are listed. The top-5 results
are always equal or higher than the top-1 numbers since
there are more than one similar matches considered during
the evaluation. Here, the results of different approaches are
compared to the dataset’s data, which contains manually
curated traceability links on four of our subject systems.
In this table, two additional rows are introduced. The first
row shows the applicability of the naming convention (that
was denoted PC in the previous subsection). These numbers
depict the conventions’ applicability to the specific test cases
in the dataset, rather than the whole system. If naming
conventions should be considered accurate, this value would
intuitively correspond to the precision that could be achieved
without any additional IR-based approach, only relying on
the names. The last line’s title contains the NC addition. Our
method here first attempts to detect the link using naming
conventions, and if it fails, the suggestion of Doc2Vec is
considered. If the resulting precision values would be lower
than before, that would either mean that the dataset is
incorrect, or the naming conventions were misleading. It
is also clear that if the results of this approach and the
plain NC approach were equal, then the IR-based addition
would be unnecessary. Eventually, none of these concerns
were found to be reflected in Table 4. In fact, this approach
produced the best results in almost every single case.

IV. DISCUSSION
A. NAMING CONVENTIONS HABITS
The previous section displayed some of the most common
naming convention techniques and some data on how fre-
quently they seem to have been utilized in the systems
currently under our investigation.

Let us consider an example of how a perfect match would
look like viewing all three of package hierarchy, class name,
and method name. One such example for Commons Math
is illustrated in Figure 9, which shows a test case (T) and
the production method it is meant to test (P). If every
single test case related to its method under test with such
simplicity, test-to-code traceability would be a trivial task.
Unfortunately, as it is visible from our applicability results,

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

0

10

20

30

40

50

60
A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

Ensemble-50 Ensemble-100 Ensemble-200 Ensemble-400

0

10

20

30

40

50

60

70

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L…

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

0
10
20
30
40
50
60
70
80

A
rg
o
U
M
L

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

A
rg
o
U
M
L

C
o
m
m
o
n
sL
an
g

C
o
m
m
o
n
sM

at
h

G
so
n

JF
re
eC

h
ar
t

Jo
d
a-
Ti
m
e

M
o
n
d
ri
an

P
M
D

IDENT LEAF SIMPLE SRC TYPEIDENT LEAF SIMPLE SRC TYPE

TOP-1

TOP-2

TOP-5

FIGURE 8. Results of the ensembleN learning approach using NC-based evaluation.

this is very far from reality.

org.apache.commons.math4.ode.events.EventFilterTest.eventOccurred

package hierarchy class method

org.apache.commons.math4.ode.events.EventFilter.eventOccurred

T

P

FIGURE 9. A trivial naming convention example from Commons Math

According to our results, the names of test methods are
much less likely to mirror the names of their production
pairs correctly. Although our experiments only deal with
eight open-source systems, it is highly probable that the
developers of other systems also tend to behave similarly
in focusing more on class-level naming conventions. WM
(wildcard method) is obviously full of noise and accidental
matches and cannot be considered seriously. PM (pack-
age+method) is a much more precise option but as it is

visible it was found to be used in about every fifth case. One
obvious reason for this can be that it is significantly harder
to convey all the necessary information in method names.
Production method names should be descriptive and lead to
an easy to understand and quick comprehension of what the
method does. This is also true about the names of test cases,
they should also refer to what functionality they are aiming
to assess. Consequently, the names of the test cases would
become rather long if they always aimed to contain both
the name of the method or methods under test and also
provide additional meaningful information about the test
itself. It can also be tough to properly reference the method
under test on method level by naming conventions only.
Polymorphism enables the creation of several methods with
identical names that perform similar functionalities with
different parameters. These should be tested individually,
and test names can have a hard time distinguishing these.
The inclusion of parameter types can be a possible solution
as performed in Commons Lang for example, at the test case
test_toBooleanObject_String_String_String_String, testing

the production method toBooleanObject that gets four String
parameters. Our manual investigation shows that test meth-

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

TABLE 3. Top-1 results featuring the different text-based models trained on various source code representations, evaluated using naming conventions. -
highest value in a row - highest value in a column

Method Representation ArgoUML C. Lang C. Math Gson JFreeChart Joda-Time Mondrian PMD

IDENT 19.63% 82.16% 50.00% 45.83% 49.22% 41.43% 66.42% 37.15%
LEAF 18.43% 61.00% 33.01% 47.92% 25.10% 20.79% 65.33% 42.04%

Doc2Vec SIMPLE 24.77% 67.91% 33.78% 47.50% 30.69% 26.26% 65.33% 34.82%
SRC 7.85% 31.32% 15.46% 16.67% 22.64% 22.30% 21.53% 15.92%
TYPE 0.60% 4.36% 0.78% 2.92% 2.36% 5.18% 0.00% 0.00%

IDENT 32.93% 66.08% 19.42% 30.83% 33.29% 35.04% 22.99% 19.96%
LEAF 14.80% 23.11% 3.63% 7.08% 9.63% 16.12% 11.31% 7.80%

LSI SIMPLE 15.71% 21.48% 3.47% 4.37% 13.15% 6.69% 4.38% 11.46%
SRC 19.64% 54.64% 24.36% 14.17% 21.48% 28.20% 31.02% 22.29%
TYPE 0.00% 0.48% 0.65% 4.58% 0.00% 0.50% 0.00% 0.00%

IDENT 35.95% 73.62% 35.78% 35.00% 45.65% 48.71% 73.72% 24.63%
LEAF 32.63% 70.94% 37.33% 38.33% 48.93% 47.77% 66.79% 23.99%

TF-IDF SIMPLE 28.70% 69.49% 33.08% 30.00% 44.30% 47.77% 72.26% 23.57%
SRC 27.79% 51.51% 28.68% 18.75% 25.19% 31.08% 50.73% 22.29%
TYPE 0.00% 0.48% 0.65% 4.58% 0.00% 0.50% 0.00% 0.00%

IDENT 13.89% 48.00% 28.27% 27.92% 50.00% 30.22% 4.75% 33.97%
LEAF 11.18% 31.61% 19.29% 33.75% 33.56% 24.89% 1.45% 35.03%

Ensemble-50 SIMPLE 15.41% 28.54% 18.93% 38.75% 34.01% 22.73% 1.01% 25.48%
SRC 6.04% 20.00% 11.02% 13.33% 23.24% 16.33% 1.46% 16.35%
TYPE 0.00% 3.79% 0.12% 0.00% 1.11% 0.00% 0.00% 0.00%

IDENT 45.01% 83.14% 61.04% 85.83% 62.82% 43.02% 68.61% 54.14%
LEAF 42.29% 72.66% 45.65% 44.17% 56.48% 34.10% 73.72% 52.23%

Doc2Vec+CG SIMPLE 41.69% 71.89% 51.41% 52.92% 58.06% 24.32% 74.09% 51.80%
SRC 32.33% 54.48% 29.62% 35.42% 37.36% 23.38% 47.08% 36.31%
TYPE 3.63% 17.61% 13.22% 42.08% 10.46% 16.04% 41.24% 15.92%

ods are indeed more likely to be named after the functional-
ity they mean to test rather than after single methods even if
they only test one method. One method can also be tested
by multiple test cases. Thus this is not a very surprising
circumstance. It is apparent that naming conventions on
the method level have to be more complicated, and their
maintenance necessitates more work on the part of the
developers. Thus, method-level naming solutions are likely
to be a less valuable option in method-level test-to-code
traceability. On the other hand, method-level traceability still
requires proper class-level traceability. Thus, names should
still be helpful.

Talking about classes, production class names seem to
be mirrored more often in their test classes’ names. This,
however, still can be a highly unsteady habit depending
on the system. While in Mondrian, production class names
are only present in test names once in every fifth case, the
same applies to 2160 of the 2239 test cases of JFreeChart.
Thus, not surprisingly, it is evident that naming conventions
depend on developer habits. The remaining test cases of
JFreeChart were also examined, these are overwhelmingly
cases where a specific type of charts or other higher-level
functionalities are tested, and the test classes are named
after these. These cases often depend on multiple production
classes providing lower-level functionality.

Mirroring the package-hierarchy of the production code
while composing tests is also a good practice. The little
difference between the C (class) and PC (package+class)
values in Table 2 shows that developers are very likely

to uphold this. This convention is likely to be even more
popular than naming matches. Package hierarchy matches
are easier to maintain than names and are more convenient
as they do not really require additional work from the
developers. Even if multiple methods or classes are under
tests, their packages only rarely differ. It could also be seen
as another level of abstraction. Package hierarchy can only
provide very vague clues about traceability links but can be
suitable for the elimination of some of the false matches
or at least presenting a warning sign about some matches.
From the difference of matches found with C-PC and WC-
PWC (wildcard class - packate + wildcard class), our manual
investigation provided less conclusive results.

On the one hand, many systems contain some seemingly
arbitrary exceptions to this rule that were most probably due
to some design decision or modification in the production
code that the structure of the tests has not followed yet.
Gson, for example, has a "gson" package in its test structure
that contains similarly named test classes to the "internal"
package of the production code. Another example can be
given from PMD, where there is an extra "lang" package
in the hierarchy of the production code, that is not found
at the test structure, even though all prior packages match.
These are far from system-wide decisions as seen from the
NC applicability percentages, but can be hard to detect by
automatic means. On the other hand, some faulty matches
do exist when not considering the package hierarchy. This
can be seen at ArgoUML for instance, the "Setting" class of
the production code can match with a lot of test classes if

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

TABLE 4. Top-1 and top-5 results featuring the different text-based models and the applicability of NC on each project. Models were trained on 5 different source
code representations. - highest value in a row - highest value in a column

Method Representation Top-1 Top-5
C. Lang Gson JFreeChart Joda-Time C. Lang Gson JFreeChart Joda-Time

NC - 76.00% 26.00% 0.00% 0.00% 76.00% 26.00% 0.00% 0.00%

IDENT 58.00% 15.69% 15.49% 32.00% 62.00% 25.49% 15.49% 48.00%
LEAF 30.00% 13.73% 11.27% 20.00% 52.00% 21.57% 15.49% 52.00%

Doc2Vec SIMPLE 15.69% 17.65% 14.08% 16.00% 48.00% 21.57% 16.90% 52.00%
SRC 16.00% 9.80% 12.68% 32.00% 42.00% 29.41% 30.99% 54.00%
TYPE 4.00% 1.96% 11.27% 4.00% 22.00% 3.92% 11.27% 10.00%

IDENT 34.00% 17.65% 4.23% 10.00% 68.00% 5.64% 5.63% 44.00%
LEAF 12.00% 7.84% 4.23% 2.00% 34.00% 23.53% 5.63% 28.00%

LSI SIMPLE 4.00% 5.88% 4.23% 2.00% 30.00% 23.53% 5.63% 24.00%
SRC 34.00% 17.65% 12.68% 20.00% 70.00% 37.25% 23.94% 58.00%
TYPE 4.00% 0.00% 0.00% 0.00% 8.00% 64.71% 0.00% 14.00%

IDENT 30.00% 19.61% 4.23% 46.00% 76.00% 31.37% 5.63% 70.00%
LEAF 30.00% 19.61% 4.23% 44.00% 76.00% 33.33% 5.63% 70.00%

TF-IDF SIMPLE 28.00% 21.57% 4.23% 44.00% 72.00% 33.33% 5.63% 72.00%
SRC 38.00% 19.61% 23.94% 12.00% 78.00% 43.14% 25.35% 68.00%
TYPE 4.00% 0.00% 0.00% 0.00% 8.00% 64.71% 0.00% 14.00%

IDENT 44.00% 13.73% 4.23% 6.00% 52.00% 23.53% 4.23% 10.00%
LEAF 13.73% 13.73% 4.23% 10.00% 38.00% 19.61% 4.23% 14.00%

Ensemble-50 SIMPLE 14.00% 15.69% 4.23% 2.00% 40.00% 19.61% 4.23% 8.00%
SRC 7.84% 11.76% 11.27% 12.00% 36.00% 17.65% 28.17% 22.00%
TYPE 2.00% 1.96% 0.00% 2.00% 8.00% 1.96% 0.00% 2.00%

IDENT 58.00% 64.71% 16.90% 24.00% 76.00% 80.39% 23.94% 64.00%
LEAF 54.00% 54.90% 18.31% 20.00% 72.00% 78.43% 33.80% 66.00%

Doc2Vec+CG SIMPLE 50.00% 56.86% 25.35% 26.00% 76.00% 78.43% 45.07% 64.00%
SRC 50.00% 56.86% 36.62% 32.00% 78.00% 82.35% 66.19% 74.00%
TYPE 42.00% 47.05% 11.27% 6.00% 62.00% 74.51% 28.17% 24.00%

IDENT 76.00% 64.71% 16.90% 24.00% 86.00% 72.55% 23.94% 64.00%
LEAF 78.00% 64.71% 18.31% 20.00% 84.00% 70.59% 33.80% 66.00%

Doc2Vec+CG+NC SIMPLE 78.00% 66.71% 25.35% 26.00% 84.00% 76.47% 45.07% 64.00%
SRC 80.00% 66.67% 36.62% 32.00% 88.00% 78.43% 66.19% 74.00%
TYPE 74.00% 64.71% 11.27% 6.00% 78.00% 76.47% 28.17% 24.00%

only names are taken into account, many of these would be
faulty matches as the tests refer to different settings. Thus,
matching packages is also far from a prerequisite in real-
live systems. Like any other convention, developers make
exceptions even if they visibly strive to uphold them at
different parts of the code.

Without the insights from the developers of a system,
our analysis had to judge their choice and usage of naming
conventions based solely on the names themselves. This, of
course, can be sufficiently accurate but presents the danger
of not managing to grasp the whole system of conventions
they used, which can vary. Still, our findings should provide
a relatively accurate picture of how naming conventions are
used in real-life testing solutions.

RQ1 answer: Although serious differences can be ob-
served between systems, method-level naming conventions
are either complicated or entirely abandoned in most cases,
which means that their usefulness is negligible in a general
extraction algorithm. Class-level naming conventions seem
to be better regarded by developers, and there is a visible
effort to uphold them. Our findings show them to be suitable
for general use in automatic extraction algorithms. Matching
package hierarchies do not provide precise results but seem

to be at least as commonly used as class-level conventions.
They are likely to be suitable for filtering out false-positive
results in algorithms.

B. TRACEABILITY LINK RECOVERY TECHNIQUE
IMPROVEMENTS
It is apparent at first sight that the teal cells are overwhelm-
ingly located in the first rows in Table 3. Indeed, the IDENT
source code representation seems to be prevalent: it reaches
the highest values in 37 cases out of 48 (which is 77%).
The violet cells appear only in the last vertical segment of
the table, at the Doc2Vec+CG approach.

On the one hand, the Ensemble50 approach produced
better results than standalone techniques (Doc2Vec, LSI,
TF-IDF) and the soft-computed call graph information even
improved upon this. On the other hand, Doc2Vec supple-
mented with this call information resulted in the highest
precision values. How is this even possible? The most proba-
ble explanation is that EnsembleN is a filter technique: the
resulting similarity list is a reduced one compared to the
original (especially when N is a relatively small number).
Thus it can happen, that even before applying CG, the
Ensemble50 already dropped out some of the correct links.

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

According to the results of the table, IDENT seems the
most precise approach. The only exception is the Mondrian
project, where the SIMPLE representation appeared to per-
form best. The difference between IDENT and SIMPLE,
however, is not remarkable. It is also worth mentioning
that where IDENT is not predominant, SIMPLE was found
best in 5 cases out of 11. Subsection II-G already stated
that IDENT and SIMPLE are quite similar. This is also
reflected in the results. In contrast, TYPE seems to produce
weaker results with every single approach. LEAF is also
less precise, probably because its inner structure shares
a significant part with TYPE (LEAF is essentially the
combination of IDENT and TYPE). From this, a conclusion
can be made that the TYPE information of an AST holds
less important information for the text-based test-to-code
traceability task.

RQ2 answer: Our inspections concluded that Doc2Vec
seems to be the best-performing standalone technique in
the field. Although combinations of different techniques can
also boost the results, the textually extracted soft-computed
call information is likely to boost IR-based approaches even
more. In a scenario of combined techniques, call graphs can
be a valid filter even for textual connections.

C. PERFORMANCE ON MANUAL DATA
Compared to the NC-based evaluation, the results captured
on the manual dataset are less easy to interpret. As it is
visible in Table 4, not every violet cell appears in the
last row, only most of them. Let us first analyze the top-
1 results which are shown on the left side of the table.
At 3 out of 4 systems, the highest precision values are
reached using Doc2Vec combined with the call information
and naming conventions. The only exception is Joda-Time,
where TF-IDF seems to be prevalent. In our previous
work [4], a similar case has already been noted, where
TF-IDF also provided the highest precision values. Even
in these experiments, however, TF-IDF results are found
to be much more variable than others, and this individual
case is most probably a result of chance. It is visible,
however, that doc2vec+CG still seems to have produced
high precision values, and that applying naming conventions
can further boost the approach. In the case of JFreeChart and
Joda-Time, the results did not improve despite the added
naming convention pairs. This is not surprising since as
it is visible, the naming conventions were not applicable
for any methods of these systems (as the dataset contained
specifically such links by intention). It can, therefore, be
stated that IR-based approaches can successfully supplement
naming conventions while still maintaining their useful
properties.

Looking at the right side of Table 4, the precision values
are higher than before. It is quite self-evident since here
the text-based models have a broader range to guess for
the correct matches. While observing top-1 results, the best
performing technique was not unanimous. Here, the highest
precision values are all located in the last segments. While

top-1 results varied in their precision, JFreeChart and Joda-
Time having lower results than the other two systems, even a
small number of additional candidate links has significantly
contributed to the correctness of the matches. By further
experiments, it was found that when considering top-10 or
even top-20 results, a 100% match would not be uncommon
either, though searching through a list of 10 artifacts is not a
likely behavior of real-life developers. Thus, their everyday
use of these would not be viable. Five results, however,
could still make a simple recommendation system.

By studying the manual database, it can be observed that
in the cases of projects where proper naming conventions
were used, the traceability links can be extracted relying
only on this information. However, for those projects which
lack these good programming practices, IR-based techniques
can find the correct links in a significant part of the cases.
Comparing the results of the final Doc2Vec approach and
NC itself, the precision values are higher by 28% on
average. Even in the cases where some more complex,
system-specific naming conventions were utilized, IR-based
methods can provide great assistance. While there are likely
to be some special cases in the practical use of every naming
convention, the use of good programming practices can also
improve the performance of text-based techniques which
still rely on names in a more versatile manner.

From these results, the choice of an ideal input rep-
resentation is a more elusive question than in the previ-
ous case. While at the NC-based comparison, the IDENT
representation seemed prevalent against others, here the
SRC representation seems to have produced the highest
precision values. It is worth mentioning that among the
representations that rely on AST information, SIMPLE
performed best. At the Top5 values, it is also clear that
the SRC representation won. The good results of SRC
are also advantageous since SRC is a purely text-based
representation. Since the Doc2Vec+CG+NC method features
call information extracted via regular expressions, this is a
viable option even without static analyzer tools. While both
IDENT and SRC are shown to contribute valuable data, this
difference between their relative performance on thousands
of test cases of eight systems and the manual data on 220
test cases of four systems makes it harder to believe in a
single best representation. Since the possible mistakes in the
automatically gathered NC data and the less than ideal size
of the manual dataset can both contribute to less than precise
results in this respect, further research is still necessary for
the question of best representation.

RQ3 answer: According to the manual data, Doc2Vec
achieves the best results in most cases. In exceptional cases,
however, other text-based techniques can still outperform it.
The use of naming conventions and call information also
tends to improve the results further. Naming conventions, if
existing, are highly precise and can be supplemented with
other IR-based techniques to achieve a more versatile text-
based approach.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

D. IMPLICATIONS
Our experiments show some simple implications for those
who research and aim to build new test-to-code traceability
solutions.

While naming conventions are reliable tools and are
very precise if applied, they are harder to implement on
the method level, and the source code generally contains
fewer such connections that could be extracted via simple
rules. However, packages and class names can imply the
connections rather well, even for this level, even if method
names are not as informative. Thus, naming conventions
can be extremely useful on every level of traceability
link extraction, and new extraction methods would most
probably benefit from considering them.

Doc2Vec seems an important upgrade to the more main-
stream semantic similarity techniques. While it is still some-
what more resource-intensive than LSI, the difference is not
prominent, and just like the other techniques, Doc2Vec is
also capable of providing real-time results of most similar
parts of code for a test case. Thus, if a single textual
technique should be considered, Doc2Vec seems to be the
right choice.

The combination of Doc2Vec and other techniques can
produce even better results. However, as it was seen that
applied as filters, other textual techniques can drop out some
of the valuable data, and even if they performed better
together in separation, this combination could negatively
impact the overall cooperation with other, non-semantic
techniques. Call information, even if just gathered via reg-
ular expressions, tends to boost these techniques greatly.
Combination with call graphs obtained via static or dynamic
analysis could undoubtedly result in even better precision,
as seen in current state-of-the-art solutions where the LCBA
(last call before assert) technique is considered one of the
most reliable methods.

Source code representations are less conclusive at the
current time. IDENT seemed best in our previous and cur-
rent NC-based evaluations, but manual data shows that SRC
contributes most to the correct extraction. Thus, additional
experiments are still required to announce a clear best
representation. Nevertheless, these two are the most likely
options.

V. RELATED WORK
Traceability in software engineering research typically refers
to the discovery of traceability links from requirements
or related natural text documentation towards the source
code [13], [14]. Based on the study of Borg et al. [15], most
of the traceability evaluations have been conducted on small
bipartite datasets containing fewer than 500 artifacts, which
is a severe threat to external validity. While data limitations
still persist, the current paper’s evaluation is conducted on
eight software systems, using different oracles. While to the
best of our knowledge, test-to-code traceability is not the
most widespread topic amongst other recovery tasks, several
well-known approaches aim to cope with this problem. Still,

as yet, none of them has provided a perfect solution for
the problem [3]–[6], [16], [17]. The current state-of-the-art
techniques [18] rely on a combination of diverse methods
- i.e. techniques based on dynamic slicing and contextual
coupling. The use of textual information is common in
these techniques. Our current work took a closer look at
various textual similarity techniques, and combinations of
these resulted in promising recovery precision.

In a recent work [19], authors presented TCtracer, a
tool which combines an ensemble of new and existing
techniques and exploits a synergistic flow of information
between the method and class levels. The tool observes test
executions and create candidate links between these artefacts
and the tested artefacts. It then assigns scores (which are
used to rank the candidates) to the candidate links. These
scores are calculated using the combination of eight test-
to-code traceability techniques including four string-based
techniques, two statistical, call-based techniques, Last Call
Before Assert (LCBA) and Naming Conventions (NC). Al-
though this and our work share many common factors, there
are significant differences. First of all, our technique does
not rely on information based on test-execution. Secondly,
the two rankings are fundamentally different: our work relies
on IR techniques (and refine these using various approaches,
with an initial static analysis), while White et al. calculate
the ranking scores based on formulas defined in the paper.
Finally, we also researched different ways of representing
the source code.

The utilization of structural information has also occurred
in other works [18], [20], [21]. In their 2015 work, Ghafari
et al. [22] also employed structural information. Here, the
main goal was to identify traceability links between test
cases and methods under test, which is still not a mainstream
topic in the field, as most methods aim for production
classes. The proposed approach correctly detects focal meth-
ods under test automatically in 85% of the cases. Bouillon
et al. leveraged a failed test case to find the location of
errors in source code [23]. To link the tests to the production
code, they built the static call graph of each test method
and annotated each test with a list of methods which may
be invoked from the test. The use of structural information
also occurs in other extraction methods, feature extraction
for instance, where it was shown that its combination with
LSI is capable of producing good results [24]. In the current
paper, structural information was used in several source code
representations. Call information was also utilized, even
though it was extracted only from the text. Even so, it was
found a valuable addition as a filter.

Like LSI, TF-IDF is also a text-based model commonly
used in the software engineering domain. This technique
was, for instance, used by Yalda et al. [25] to trace textual
requirement elements to related textual defect reports, and
by Hayes et al. [26] in the after-the-fact tracing problem. In
requirement traceability, the use of TF-IDF is so widespread,
that it is considered a baseline method [27]. Text-based
models are still very popular in the requirement traceability

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

task also, they are incorporated in several recent publi-
cations [28], [29]. Our experiments covered LSI and TF-
IDF as standalone techniques and also as a refinement for
Doc2Vec, which was shown in our previous work [4] to
produce higher quality results.

In our findings, the use of document embeddings resulted
in the highest precision values. Word2Vec [30] gained a
lot of attention in recent years and became a very popular
approach in natural language processing. Calculating simi-
larity between text elements using word embeddings became
a mainstream process [10], [11], [31]–[34]. Doc2Vec [7]
is an extension of the Word2Vec method dealing with
whole documents rather than single words. Although not
enjoying the immense popularity of Word2Vec, its use is
still prominent in the scientific community [35]–[38].

The use of recommendation systems is widespread in the
field of software engineering [1], [39], [40]. Presenting a
prioritized list of most likely solutions seems to be a more
resilient approach even in traceability research [5], [6].

Because of the numerous benefits of tests, developers tend
to create a lot of them even though it is challenging to
determine what new tests to add to improve the quality
of a test suite. Since 100% coverage is often infeasible,
several new approaches have been proposed for interpreting
coverage information. For instance, Huo et al. [41] intro-
duced the concepts of direct coverage and indirect coverage,
that address these limitations. In addition, several other
challenges are present in general software testing [42], like
coherent testing, test oracles and compositional testing. The
more challenges are solved, and the more the community
understands about testing in general, the better test-to-code
traceability results can become [43]. The current paper also
aimed to shed some light on class and method naming habits
which can lead to a better understanding of testing in real-
life software systems.

Although natural language based methods are not the
most effective standalone techniques, state-of-the-art test-
to-code traceability methods like the method provided by
Qusef et al. [18], [21] incorporate textual analysis for more
precise recovery. Jin et al. in [44] presented a solution that
uses deep learning and word embeddings to incorporate
requirements artifact semantics and domain knowledge into
the tracing solution. The authors evaluated their approach
against LSI and VSM (Vector Space Model). They found
that their neural-based approach only outperforms these
when the tracing network has a large enough training data
which is hard to obtain. Other works also explore the
use of word embeddings to recover traceability links [32],
[44]–[46]. Our current approach differs from these in many
aspects. To begin with, we make use of different similarity
concepts and further refine these with structural information.
Next, our document embeddings are computed in one step,
while in other approaches this is usually achieved in several
steps. Finally, our models were trained only on source code
(or on some representation which was obtained from it), and
there was no additional natural language corpus.

VI. THREATS TO VALIDITY
Although our experiments were conducted with the intention
of providing a large-scale evaluation and a relatively deep
comprehension of current textual methods, some threats
to the validity of the derived conclusions still have to be
mentioned. While naming conventions are considered a very
precise source of information, they have clear limitations.
Thus, our automatically-collected evaluation data may con-
tain some errors and is likely to miss at least some valid
links. Although manual data is usually considered best,
naming conventions enabled us to assess hundreds of tests
for each system and even thousands for most. On the other
hand, our manual dataset used for the evaluation is limited in
size. Thus, noise in the data could cause discrepancies in the
results. This could be tackled by the inclusion of additional
manual data, which will hopefully be more widely available
in the future.

Our experiments only covered systems written in the Java
language. This is a significant limitation as Java differs
greatly from several other popular programming languages.
Even the structure of the code can show severe differences.
Popular naming conventions can vary in these circum-
stances, new viable combinations could be constructed, and
others could become less relevant. This also reflects a great
amount on the source code representations. Even the text
and even variable names could be susceptible to such a
difference. On the other hand, textual methods, building on
semantic information rather than program structure, are still
the most likely to retain their properties this way.

The experiments were conducted on JUnit tests. The JUnit
framework is one of the trail-blazers of current software
testing and is extremely popular among developers. Still,
it is easy to see that other tests could perform differently
when subjected to the experiments. Even in this, however,
semantic information should be the least affected as it does
not rely on a specific structure or specific forms of assertion
statements.

Similarly to the difference in programming languages, the
size of the systems could also influence the results. Our
systems under evaluation are all medium-sized open-source
systems. There is no guarantee that small or large systems
would perform the same way, even though the question
of proper traceability is probably easier for small systems.
The same questions can arise about the domains of the
systems, which could also affect traceability. It is visible that
systems vary significantly in their properties. An average
value of precision is thus hard to pinpoint, it is easier to
compare techniques to each other. Our experiments covered
more than 1.25 million code lines to provide a large-scale
investigation, significantly more than our previous inquiries.

Our experiments with naming conventions and even the
source code representations represent the options we found
most viable. There might be many more naming conventions
that could be applied to some systems with great success,
even with automated extraction. As there are usually no
descriptions about naming conventions for software systems,

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

finding these and judging their usefulness is highly complex.
Our experiments considered some of the most simple and
widely used conventions. There seems to be a balance
between complete precision and easy usage in naming con-
ventions. Our experiments also attempted to investigate this,
building our subsequent experiments on a middle way that
seemed widely applicable but still precise for our current
level.

VII. CONCLUSIONS
The current paper showcased our experiments with the
textual aspect of aiding test-to-code traceability. Two main-
stream techniques, reliance on naming conventions and
information retrieval were investigated, new ideas, exper-
iments and observations were given on their possible im-
provements and combination opportunities. The paper pre-
sented an in-depth investigation of the naming convention
habits of developers via experiments with eight open-source
systems and nine possible combinations of generalizable
and simple rules. This experiment revealed that package and
class level conventions are generally followed with at least
a moderate effort, but method level conventions, although
present in every system, are less generally upheld. Besides
our evaluation on manual data, an automatic extraction was
also used for further evaluation,relying on package and
class level conventions. The six investigated traceability
link extraction methods were evaluated with five different
source code representations. From these, the identifier-
centric (IDENT) representation that utilizes abstract syntax
trees came out on top in the overwhelming majority of the
cases during the naming convention based evaluation but
the text-centric (SRC) representation proved more precise
when compared to a limited amount of manual data. Call
information retrieved via regular expressions was found to
contribute significantly to the results when used as a filtering
technique for Doc2Vec. Although the use of LSI and TF-
IDF also seems a good candidate for the same purpose,
the combination of Doc2Vec and the call information was
found to produce the best results. While properly defined
and upheld naming conventions can yield extremely precise
traceability links, their use is still limited. Automatic recov-
ery of naming conventions, however, can very easily benefit
from the addition of other text-based techniques, together
constituting a versatile semantic technique that can still be
used in combination with other mainstream methods.

REFERENCES
[1] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on

automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016. New York,
New York, USA: ACM Press, 2016, pp. 165–176.

[2] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch
correctness in test-based program repair,” in Proceedings - International
Conference on Software Engineering, vol. 11, may 2018, pp. 789–799.

[3] B. V. Rompaey and S. Demeyer, “Establishing traceability links between
unit test cases and units under test,” in European Conference on Software
Maintenance and Reengineering, CSMR. IEEE, 2009, pp. 209–218.

[4] V. Csuvik, A. Kicsi, and L. Vidács, “Evaluation of Textual Similarity
Techniques in Code Level Traceability,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 11622 LNCS. Springer Verlag,
2019, pp. 529–543.

[5] A. Kicsi, L. Tóth, and L. Vidács, “Exploring the benefits of utilizing
conceptual information in test-to-code traceability,” Proceedings of the 6th
International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering, pp. 8–14, 2018.

[6] V. Csuvik, A. Kicsi, and L. Vidács, “Source code level word embeddings in
aiding semantic test-to-code traceability,” in 10th International Workshop
at the 41st International Conference on Software Engineering (ICSE) –
SST 2019. IEEE, 2019.

[7] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
Representations of Words and Phrases and their Compositionality,” Tech.
Rep., 2013.

[8] “Gensim gensim webpage,” https://radimrehurek.com/gensim/, accessed:
2019.

[9] “SourceMeter webpage,” https://www.sourcemeter.com/, 2019.
[10] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learn-

ing code fragments for code clone detection,” Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering
- ASE 2016, pp. 87–98, 2016.

[11] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshy-
vanyk, “Deep learning similarities from different representations of source
code,” Proceedings of the 15th International Conference on Mining Soft-
ware Repositories - MSR ’18, vol. 18, pp. 542–553, 2018.

[12] A. Kicsi, L. Vidács, and T. Gyimothy, “Testroutes: A manually curated
method level dataset for test-to-code traceability,” in Proceedings of the
17th International Conference on Mining Software Repositories, MSR
2020, IEEE. IEEE, jun 2020, pp. 593–597.

[13] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970–983, oct
2002.

[14] A. Marcus, J. I. Maletic, and A. Sergeyev, “Recovery of Traceability
Links between Software Documentation and Source Code.” International
Journal of Software Engineering and Knowledge Engineering, pp. 811–
836, 2005.

[15] M. Borg, P. Runeson, and A. Ardö, “Recovering from a decade: a system-
atic mapping of information retrieval approaches to software traceability,”
Empirical Software Engineering, vol. 19, no. 6, pp. 1565–1616, dec 2014.

[16] N. Kaushik, L. Tahvildari, and M. Moore, “Reconstructing Traceability
between Bugs and Test Cases: An Experimental Study,” in 2011 18th
Working Conference on Reverse Engineering. IEEE, oct 2011, pp. 411–
414.

[17] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley, “SCOTCH:
Test-to-code traceability using slicing and conceptual coupling,” in IEEE
International Conference on Software Maintenance, ICSM. IEEE, 2011,
pp. 63–72.

[18] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley, “Recovering
test-to-code traceability using slicing and textual analysis,” Journal of
Systems and Software, vol. 88, pp. 147–168, 2014.

[19] R. White, J. Krinke, and R. Tan, “Establishing multilevel test-to-code
traceability links,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 861–872.

[20] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D. Poshy-
vanyk, and A. De Lucia, “When and How Using Structural Information
to Improve IR-Based Traceability Recovery,” in 2013 17th European
Conference on Software Maintenance and Reengineering. IEEE, mar
2013, pp. 199–208.

[21] A. Qusef, G. Bavota, R. Oliveto, A. D. Lucia, and D. Binkley, “Evaluat-
ing test-to-code traceability recovery methods through controlled experi-
ments,” Journal of Software: Evolution and Process, vol. 25, no. 11, pp.
1167–1191, nov 2013.

[22] M. Ghafari, C. Ghezzi, and K. Rubinov, “Automatically identifying focal
methods under test in unit test cases,” in 2015 IEEE 15th International
Working Conference on Source Code Analysis and Manipulation (SCAM).
IEEE, sep 2015, pp. 61–70.

[23] P. Bouillon, J. Klinke, N. Meyer, and F. Steimann, “EZUNIT: A framework
for associating failed unit tests with potential programming errors,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4536
LNCS. Springer Verlag, 2007, pp. 101–104.

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3083923, IEEE Access

Kicsi et al.: Large Scale Evaluation of NLP-based Test-to-Code Traceability Approaches

[24] H. Eyal-Salman, A.-D. Seriai, C. Dony, and R. Al-msie’deen, “Recovering
traceability links between feature models and source code of product
variants,” in VARiability for You Workshop on Variability Modeling Made
Useful for Everyone - VARY ’12. ACM Press, 2012, pp. 21–25.

[25] S. Yadla, J. H. Hayes, and A. Dekhtyar, “Tracing requirements to defect
reports: An application of information retrieval techniques,” Innovations in
Systems and Software Engineering, vol. 1, no. 2, pp. 116–124, sep 2005.

[26] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Improving after-the-
fact tracing and mapping: Supporting software quality predictions,” IEEE
Software, vol. 22, no. 6, pp. 30–37, nov 2005.

[27] S. K. Sundaram, J. H. Hayes, and A. Dekhtyar, “Baselines in requirements
tracing,” in ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4.
New York, New York, USA: ACM Press, 2005, p. 1.

[28] J. M. Florez, “Automated fine-grained requirements-to-code traceability
link recovery,” in 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-Companion), 2019, pp.
222–225.

[29] T. Hey, “Indirect: Intent-driven requirements-to-code traceability,” in 2019
IEEE/ACM 41st International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), 2019, pp. 190–191.

[30] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” NIPS’13
Proceedings of the 26th International Conference on Neural Information
Processing Systems, vol. 2, pp. 3111–3119, dec 2013.

[31] N. Mathieu and A. Hamou-Lhadj, “Word embeddings for the software
engineering domain,” Proceedings of the 15th International Conference
on Mining Software Repositories - MSR ’18, pp. 38–41, 2018.

[32] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically Enhanced Software
Traceability Using Deep Learning Techniques,” in Proceedings - 2017
IEEE/ACM 39th International Conference on Software Engineering, ICSE
2017. IEEE, may 2017, pp. 3–14.

[33] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining Word Embedding
with Information Retrieval to Recommend Similar Bug Reports,” in Pro-
ceedings - International Symposium on Software Reliability Engineering,
ISSRE. IEEE, oct 2016, pp. 127–137.

[34] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen, “Exploring
API embedding for API usages and applications,” in Proceedings - 2017
IEEE/ACM 39th International Conference on Software Engineering, ICSE
2017. IEEE, may 2017, pp. 438–449.

[35] Z. Zhu and J. Hu, “Context Aware Document Embedding,” jul 2017.
[36] A. M. Dai, C. Olah, and Q. V. Le, “Document Embedding with Paragraph

Vectors,” jul 2015.
[37] S. Wang, J. Tang, C. Aggarwal, and H. Liu, “Linked Document Embedding

for Classification,” in Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management - CIKM ’16.
New York, New York, USA: ACM Press, 2016, pp. 115–124.

[38] R. A. DeFronzo, A. Lewin, S. Patel, D. Liu, R. Kaste, H. J. Woerle, and
U. C. Broedl, “Combination of empagliflozin and linagliptin as second-
line therapy in subjects with type 2 diabetes inadequately controlled on
metformin,” Diabetes Care, vol. 38, no. 3, pp. 384–393, jul 2015.

[39] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation Systems
for Software Engineering,” IEEE Software, vol. 27, no. 4, pp. 80–86, jul
2010.

[40] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann, Recommen-
dation Systems in Software Engineering. Springer Publishing Company,
Incorporated, 2014.

[41] C. Huo and J. Clause, “Interpreting Coverage Information Using Direct
and Indirect Coverage,” in 2016 IEEE International Conference on Soft-
ware Testing, Verification and Validation (ICST). IEEE, apr 2016, pp.
234–243.

[42] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 85–103.

[43] R. M. Parizi, S. P. Lee, and M. Dabbagh, “Achievements and Challenges in
State-of-the-Art Software Traceability Between Test and Code Artifacts,”
IEEE Transactions on Reliability, vol. 63, pp. 913–926, 2014.

[44] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced software
traceability using deep learning techniques,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), 2017, pp. 3–
14.

[45] T. Zhao, Q. Cao, and Q. Sun, “An Improved Approach to Traceability
Recovery Based on Word Embeddings,” in Proceedings - Asia-Pacific
Software Engineering Conference, APSEC, vol. 2017-Decem. IEEE, dec
2018, pp. 81–89.

[46] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th International Conference on
Software Engineering - ICSE ’16. New York, New York, USA: ACM
Press, 2016, pp. 404–415.

ANDRÁS KICSI is an assistant research fellow
at the University of Szeged where he obtained
his computer science master’s degree in 2017. His
main research interests are the uses of natural lan-
guage in several innovative research and industrial
topics, especially in artificial intelligence appli-
cations. Currently, these fields include machine
understanding of medical reports and images, au-
thor identification of general text, the facilitation
of test-to-code traceability, and software product

line adoption. He is taking part in various projects of the MTA-SZTE
Research Group on Artificial Intelligence and has a passion for education.
(e-mail: akicsi@inf.u-szeged.hu)

VIKTOR CSUVIK received his MSc degree in
computer science from the University of Szeged,
where he currently is a PhD-student. His main
research interests lie in automatic program repair
and machine learning in general. He is also in-
terested in the topics of data visualization and
software product lines. Besides his academic ac-
tivities at MTA-SZTE Research Group on Artifi-
cial Intelligence, Csuvik worked several years as a
software developer at the Department of Software

Engineering of the University of Szeged. Moreover he has teaching duties
at the University of Szeged, and is currently gaining industry software
development experience as an intern at an international software company.
(e-mail: csuvikv@inf.u-szeged.hu)

LÁSZLÓ VIDÁCS is a senior research fellow,
deputy head of MTA-SZTE Research Group
on Artificial Intelligence, while his research is
strongly connected to the Department of Software
Engineering, University of Szeged, Hungary. He
received his PhD in 2010 from the University
of Szeged. He received best paper awards at the
IEEE ICPC 2009 and the IEEE CSMR-WCRE
2014 conferences. He continuously takes part in
R&D&I projects based on academia/industry col-

laborations with leading national and international companies. Building on
program analysis and testing research background, he is recently working
at the intersection of artificial intelligence and software engineering with
special interest in natural language processing and deep learning. (e-mail:
lac@inf.u-szeged.hu)

16 VOLUME 4, 2016

