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a b s t r a c t 

In microeconomics, a topic of interest is the estimation of production functions. By definition, a pro- 

duction function is a non-decreasing function that envelops all the observations (firms) from above in 

the input-output space, capturing the extreme behavior of the data. These characteristics are far from 

the usual ones assumed by machine learning techniques like Support Vector Regression (SVR) in Support 

Vector Machines, where the function to be estimated relates the response variable to the covariables in 

terms of the mean instead of the extremes and, additionally, they try to fit the data as much as possi- 

ble, determining a function that increases and decreases following a data-driven process. In this paper, 

we introduce an adaptation of SVR, denominated Support Vector Frontiers (SVF), with the objective of 

estimating production functions. To do so and seeking meeting points between SVR and the standard 

non-parametric techniques for estimating production functions, mainly Free Disposal Hull (FDH) and Data 

Envelopment Analysis (DEA), an estimator is defined in this paper through a specific input transforma- 

tion function. However, and in contrast to FDH and DEA, SVF overcomes the overfitting problems from 

using these techniques. Additionally, we show in this paper that standard FDH and DEA could be rein- 

terpreted, in some sense, as Support Vector Regression techniques. Moreover, a new robust notion of 

efficiency is introduced, called ε-insensitive technical efficiency, directly inherited from Support Vector 

Machines. Finally, the performance of SVF is measured through several experiments using synthetic data, 

showing that the new approach considerably reduces the bias and mean squared error associated with 

the estimation of the true production function in comparison with standard FDH and DEA, although at 

the expense of a more computational burden. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Support Vector Machines (SVM) is a well-known machine learn- 

ng technique based on advances in Statistical Learning. It is mainly 

ooted in the principle of structural risk minimization. In particu- 

ar, the technique aims to minimize the bound on the generaliza- 

ion error (i.e., the error made by the machine learning on data 

utside the training set) rather than directly minimizing the em- 

irical error, such as the traditional mean square error over the ob- 

erved data set. The introduction of SVM in Vapnik [ 55 , 56 ] has led

o a torrent of applications and theoretical analysis, which has now 

stablished SVM as one of the standard tools for machine learning. 
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n the last few years, there have been significant developments in 

he theoretical understanding of SVM as well as the application 

f the approach to many different em pirical contexts. The tech- 

ique has reached the point at which it is clearly viewed as one 

f the most fruitful research subareas within machine learning, a 

ubarea that has reached a high degree of maturity in both theo- 

etical insights and practical usefulness. However, there is currently 

o adaptation of SVM in the literature for approximating produc- 

ion functions in microeconomics, a field that is related to mea- 

uring the technical efficiency of firms. This is a special framework 

hat requires specific needs regarding the surface to be estimated, 

s we will go on to explain. 

Technical efficiency assessment is concerned with measuring 

he performance of firms, which convert inputs into outputs. Effi- 

iency evaluation in production has been and is a relevant topic 

or managers and policy makers, as well as an area that merits 

ttention from a practical and methodological point of view in 
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oth engineering and economics (see, for example, [ 3 , 5 , 45 ]). From

 methodological perspective, the main aim of such assessment 

s to analyze the technical efficiency of a set of entities, gener- 

lly known as Decision Making Units (DMUs), by comparing their 

erformance with respect to the so-called production possibility 

et or technology, which is unknown and must be estimated from 

 data sample (a learning sample in the terminology of machine 

earning). In this context, the cornerstone for the efficiency analysis 

f DMUs is the notion of production function. A production func- 

ion represents the maximum product obtainable from the input 

ombination at the existing state of technical knowledge. Its esti- 

ation allows calculating the corresponding technical inefficiency 

alue as the deviation of each DMU to the boundary of the tech- 

ology, characterized by the production function. In fact, given a 

evel of input consumption, the most usual and natural measure of 

echnical efficiency for firms is defined as the ratio of the actual 

roduced output and the maximal producible output, determined 

y the production function. 

As for the estimation of production functions in practice, be- 

ore Farrell’s [28] seminal contribution, economists used to spec- 

fy the corresponding production functions parametrically, e.g., a 

obb-Douglas function, relying on Ordinary Least Squares (OLS) re- 

ression analysis to estimate an ‘average’ production function, and 

ssuming that disturbance terms had zero mean. This was a clearly 

nsatisfactory estimation, as it did not follow the accepted def- 

nition of production functions in microeconomics as the ‘maxi- 

al’ feasible output for each resource combination considered. In 

his sense, Farrell [28] was the first in showing, for a single out- 

ut and multiple inputs, how to estimate a surface enveloping all 

he observations. Farrell’s contribution was based on the construc- 

ion of a technology that satisfied two usual axioms in production 

heory: convexity and monotonicity (free disposability). Convex- 

ty establishes that if two input-output bundles are feasible (pro- 

ucible), then any convex combination of them is also feasible; 

hereas monotonicity states that if inputs increase, then the pro- 

ucible output must, at least, not decrease. However, many esti- 

ators meet both properties and, consequently, additional require- 

ents are needed. In particular, the most conservative estimation 

f the production function would be that associated with a surface 

nveloping the data and, at the same time, as close as possible to 

hem. This is the principle of conservation, known also as ‘mini- 

al extrapolation’, which in the case of Farrell’s estimator leads to 

 piece-wise linear surface. 

Farrell’s approach can be categorized in the current area of non- 

arametric techniques for estimating production functions since it 

s not necessary to identify, a priori, the specific mathematical for- 

ulation of the production function to be estimated. This line of 

esearch, initiated by Farrell, was later taken up by Charnes et al. 

16] and Banker et al. [9] , resulting in the development of the 

ata Envelopment Analysis (DEA) approach, in which the deter- 

ination of the frontier is only restricted via its axiomatic foun- 

ation (mainly convexity, free disposability and minimal extrapo- 

ation). In this case, the axiom of convexity is translated into an 

dditional requirement of the production function: concavity. An- 

ther paper working in this same line, is that by Afriat [1] , show-

ng how to determine a production function with the property P 

e.g., non-decreasing concavity) that represents the set of observa- 

ions to be as nearly efficient as possible. A more natural sequel 

han the DEA literature of the previous work done by econometri- 

ians, even before Farrell’s contribution, would be Aigner and Chu 

2] , who showed how to estimate a ‘parametric’ Cobb-Douglas pro- 

uction function enveloping the data cloud from above. Further- 

ore, in a parallel way, Deprins et al. [22] introduced the alter- 

ative technique known as Free Disposal Hull (FDH), which relies 

xclusively on monotonicity and minimal extrapolation in contrast 

o DEA, which additionally assumes convexity. 
2 
Nowadays, two famous non-parametric approaches for estimat- 

ng production functions are DEA and FDH [ 21 , 45 ]. In the case of

EA, the estimator is a piece-wise linear function, while in the 

ase of FDH, the estimator is a step function. It is worth mention- 

ng that FDH may be considered the ‘skeleton’ of DEA since the 

onvex hull of the frontier estimated by FDH coincides with the 

EA frontier [20] . As for when to use FDH or DEA, Simar and Wil-

on [ [52] , p. 56] state that, if the technology is nonconvex, then 

here is no choice and one must use FDH, since DEA is inconsistent. 

f the technology is convex, then DEA is preferred over FDH since 

t offers a faster rate of convergence (but FDH still remains con- 

istent). Moreover, the Data Generating Process (DGP) assumed in 

oth techniques can be summarized as follows. If we assume that 

 inputs are involved in the production process, an unknown non- 

ecreasing function f (x ) : R 

m + → R + indicates the maximal output 

hat is producible from an input bundle x . However, in practice, 

echnical inefficiency can occur. Following Farrell [28] , technical in- 

fficiency reflects the inability of a DMU to obtain maximal out- 

ut from a given set of inputs, due, for example, to a misman- 

gement of resources. Therefore, the actual observed output for 

 DMU coincides with y = f (x ) − u ≥ 0 , where u is conceptual-

zed as a non-negative random variable linked to technical inef- 

ciency. Note that then y ≤ f (x ) , which is associated with the en- 

eloping nature of the production function described above in the 

ext. In this way, in practice, for each DMU we observe y instead 

f f (x ) , but we need to determine the ratio y/ f (x ) , which mea- 

ures the level of technical inefficiency of the considered unit. This 

s the methodological problem that is faced by researchers in the 

eld of efficiency measurement. Additionally, other recent alterna- 

ive non-parametric techniques for estimating production frontiers 

re those that apply Kernel-based approaches and local regression 

echniques. See, for example, Du et al. [23] , where the authors pro- 

ose a kernel smoothing method that can handle multiple shape 

onstraints (e.g., monotonicity) for multivariate functions, gener- 

lizing Hall and Huang [29] . Another interesting contribution is 

armeter et al. [47] , who showed how constraint weighted boot- 

trapping may be applied to impose smoothness conditions on lin- 

ar estimates. In particular, these authors estimated an input dis- 

ance function both parametrically and non-parametrically, resort- 

ng in the latter to local linear generalized kernel regression. See 

lso Henderson and Parmeter [31] . 

Analyzed as a machine learning technique, by construction, the 

DH estimator ˆ f F DH is not endowed with generalization (out-of- 

ample) capability. In particular, the principle of minimal extrap- 

lation focuses all its attention on minimizing the empirical er- 

or over the observed data set (i.e., minimizing the quantities 
ˆ f F DH (x ) − y ) , provided that ˆ f F DH (x ) : R 

m + → R + is a non-decreasing

unction enveloping the data sample from above. In this sense, 

DH suffers from the usual overfitting problem. FDH underesti- 

ates the real technical inefficiency of the observations, as this 

echnique yields estimators always located below the (underlying) 

heoretical frontier f . Nevertheless, Free Disposal Hull is able to 

orrectly ‘describe’ the situation of a particular set of observa- 

ions from a ‘relative’ to the sample or sample-specific efficiency 

valuation point of view, standing out as a descriptive statistic 

ool with little inferential capability for smaller samples (see its 

symptotic properties and rates of convergence in [53] ). It is worth 

entioning that something similar happens with the DEA estima- 

or ˆ f DEA . Consequently, despite the recognized data-driven nature 

f FDH and DEA, a conceptual gap remains in the literature be- 

ween these common techniques in the field of efficiency evalu- 

tion and the world of machine learning. Anyway, there are cer- 

ain key previous papers in the literature that have dealt with FDH 

nd DEA techniques in order to transform them into inferential 

ools. Chronologically speaking, Banker and Maindiratta [10] and 

anker [11] showed that DEA can be interpreted as a Maximum 
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ikelihood estimator. Later, Simar and Wilson [50] and Simar and 

ilson [ 51 , 52 ] introduced how to determine confidence intervals 

or the efficiency score of each DMU, the ratio y/ f (x ) in our con- 

ext, through adapting the bootstrapping methodology by Efron 

24] to the context of Free Disposal Hull and Data Envelopment 

nalysis. More recently, Kuosmanen and Johnson [36] and Kuos- 

anen and Johnson [37] have shown that DEA may be interpreted 

s non-parametric least-squares regression subject to shape con- 

traints on the production frontier and sign constraints on resid- 

als. Additionally, these authors introduced the Corrected Con- 

ave Non-parametric Least Squares and showed that, if the data- 

enerating process is deterministic and the inefficiency terms are 

dentically and independently distributed, their estimator is con- 

istent and asymptotically unbiased. However, none of them ad- 

resses the problem through machine learning techniques, despite 

he data-driven nature of DEA and FDH. One recent exception is 

steve et al. [25] , where Classification and Regression Trees (CART) 

re adapted for estimating production functions through step func- 

ions, so competing against the standard Free Disposal Hull tech- 

ique. See also Hong et al. [32] , Pendharkar & Troutt [48] , Misiunas

t al. [41] , Badiezadeh et al. [7] , Zhu et al. [60] , Zhu [59] , Arreola

t al. [6] , Charles et al. [15] , Lee and Cai [38] , Mirmozaffari et al.

40] and Li et al. [39] to read about the recent interest of the DEA

ommunity in bridging the gap between Data Envelopment Analy- 

is and data science, machine learning and big data. 

In this paper, for the first time, the SVM technique is adapted 

or estimating production functions, satisfying the usual axioms es- 

ablished in microeconomics textbooks. The new approach will be 

amed Support Vector Frontiers (SVF). SVF will allow estimating 

roduction functions by applying the structural risk minimization 

rinciple. In particular, the technique will also consider the gener- 

lization 

1 and empirical errors, and not just the minimization of 

he empirical error as happens with FDH and DEA. In this way, 

his paper contributes to bridging the conceptual gap, pointed out 

bove, by demonstrating that FDH and DEA can fit well within a 

ore complex machine learning technique. More specifically, we 

rove that the FDH and DEA estimators are always feasible pro- 

uction functions generated by the optimization model linked to 

VF, although they are not necessarily the optimal ones, except 

nder restrictive conditions. To prove that, we introduce a spe- 

ific input transformation function that transforms the original re- 

ressor hyperplane in order to provide a suitable step function 

s an estimation surface. In this way, the SVF method offers an 

DH-type estimator. At the same time, the convex hull of our step 

unction yields a convex estimation of the production possibility 

et, therefore, generating a DEA-type estimator. The notion of ε- 

nsensitive technical efficiency will be also introduced in this pa- 

er. This concept is directly related to the estimated (SVM) margin 

hrough cross-validation and endows the traditional notion of ef- 

ciency with more robustness than usual. Additionally, the perfor- 

ance of SVF is checked through several experiments using syn- 

hetic data, showing that the new approach significantly reduces 

he mean squared error and bias associated with the estimation of 
1 Standard SVM tries to make inference but not in the traditional way, in the 

ense that SVM aims to identify the actual function that is behind the Data Gen- 

rating Process. SVM is based on Statistical Learning (Vapnik, 20 0 0). If the right 

alance is struck between the accuracy attained on some particular data (the ob- 

ervations), and the ability of the approach to learn any dataset without error, then 

 suitable estimation of the underlying function to be estimated will be achieved. 

his ability to learn any possible dataset is linked to the notion of the generaliza- 

ion error (also called prediction error, out-of-sample error or test error in the lit- 

rature). The theoretical generalization error of a model cannot be calculated but it 

ay be approximated by resorting to test samples or cross-validation and the tradi- 

ional concept of prediction. Our approach inherits the feature of the standard SVM 

echnique for trying to infer the underlying function behind the Data Generating 

rocess that generated the observations. 

d

w

l

o

v

l

o

o

i

t

(

c

3 
he true frontier in comparison with standard FDH and DEA tech- 

iques. Nevertheless, several drawbacks in this new approach must 

e highlighted. For example, from a computational perspective, the 

ew technique is more intensive than previous non-parametric ap- 

roaches, such as FDH or DEA. Additionally, several user-defined 

arameters must be tuned through cross-validation, to name some 

f the limitations. 

As far as we are aware, this paper represents the first contribu- 

ion that adapts the SVM technique, from a methodological point 

f view, for estimating production functions following the usual 

xioms in production theory. The previous contributions that con- 

idered these two types of worlds, SVM and production frontiers, 

id not redefine SVM but combined it with the calculation of the 

tandard DEA model at some stage. This means that the final effi- 

iency estimations generated by these approaches inherit the same 

verfitting problems of traditional DEA. Examples of that are Song 

nd Zhang [54] , where, in a first stage, DEA is used to evaluate the

fficiency scores of a set of oil refining enterprises (DMUs), and, 

n a second stage, traditional SVM for regression is applied on a 

atabase consisting of all inputs and outputs as predictors and the 

EA efficiency score as response variable; Yeh et al. [58] , where 

he objective is predicting business failure (the response variable) 

sing the DEA efficiency score and other information as predictive 

ariables; Poitier and Cho [49] use standard SVM for regression to 

redict the DEA score of best and worst DMUs in the data sam- 

le and aggregate all the information through an average function; 

ao et al. [33] use a similar methodology to that introduced by 

ong and Zhang [54] in a multiclass classification problem, where 

ach class is associated with a certain level of technical efficiency 

estimated again by applying standard DEA); another similar pa- 

er is Farahmand et al. [26] , which applies an analogous method- 

logy to that of Song and Zhang [54] ; or, finally, Chen et al. [17] ,

here in a first stage, within the ambit of the satisficing Data En- 

elopment Analysis model, the probabilities of achieving a minimal 

erformance threshold are computed, and in a second subsequent 

tage, SVM regression is applied to discriminate between high/low 

fficiency groups within each performance threshold. 

The paper is organized as follows. Section 2 is devoted to briefly 

ntroducing the backgrounds. In Section 3 , we extend Support Vec- 

or Machines to the context of estimating production functions, 

eveloping a new technique called Support Vector Frontiers (SVF). 

erformance of SVF is investigated through several experiments us- 

ng synthetic data in Section 4 . Finally, Section 5 concludes. 

. Background: Support Vector Regression (SVR) 

The construction of machines capable of learning from experi- 

nce has long attracted the attention of researchers. In this line, 

achine learning (ML) is the study of computer algorithms that 

mprove automatically through experience. ML algorithms build a 

odel based on sample data (training data) for making predictions 

r decisions without being explicitly programmed to do so. There 

re different types of learning within ML. On the one hand, un- 

er supervised learning, the training data are input/output pairs, 

ith the objective of determining the functional relationship that 

inks the output with the inputs. A learning problem with a binary 

utput is referred to as a classification problem, while for a real- 

alued output, the problem becomes known as a regression prob- 

em. On the other hand, under unsupervised learning, there are no 

utput values and the learning task is to gain some understanding 

f the process that generated the data (density estimation, cluster- 

ng, and so on). In this paper, we focus on supervised learning and 

he regression problem due to the nature of our response variable 

the output produced by a firm) (see [ 19 , 42 ]). 

Support Vector Machines [ 55 , 56 ] is one of the recognized ma- 

hine learning techniques. From a theoretical viewpoint, SVM is 
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Fig. 1. Example of the standard SVR. 
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 constructive learning procedure grounded on statistical learning 

heory and the principle of structural risk minimization. It aims 

o minimize the bound on the generalization error instead of ex- 

lusively minimizing the empirical error such as the mean square 

rror over the data set [ 55 , 56 ]. This results in good generalization

apability: SVM tends to perform well when applied to data out- 

ide the training set. Because SVM is suitable for dealing with a 

imited number of samples, regardless of the dimension of the ex- 

mples (the number of feature variables), it has been widely used 

n machine learning, data mining, pattern recognition, function ap- 

roximation, regression, etc. 

Support Vector Regression (SVR) is a particular model in the 

amily of Support Vector Machines. As the rest of the regression 

rocedures, SVR tries to construct a function that predicts the be- 

avior of the response variable that is involved in the study, receiv- 

ng, in this case, the main benefits of machine learning. Standard 

upport Vector Regression is constructed through a set of tech- 

iques whose aim is to predict the value of a response variable 

 ∈ R given a vector of covariables x ∈ R 

m + . In this way, SVR sets

 function 

ˆ f : R 

m + → R such that ˆ f (x ) = ˆ y , where ̂  y constitutes the

rediction of the response variable. Under SVR, the predictor ˆ f is 

efined as ˆ f (x ) = w 

∗φ(x ) + b ∗, where w 

∗ ∈ R 

q and b ∗ ∈ R are opti-

al solutions of model (1), φ(·) is a transformation function of the 

ovariable space and the values of C ∈ R + and ε ∈ R + are obtained

y a cross-validation process. 

Min 

,b, ξ ′ 
i ,ξi 

1 
2 
‖ w‖ 

2 + C 
∑ n 

i =1 

(
ξ ′ 

i + ξi 

)
y i − ( wφ( x i ) + b ) ≤ ε + ξ ′ 

i , i = 1 , . . . , n ( 1 . 1 ) 
( wφ( x i ) + b ) − y i ≤ ε + ξi , i = 1 , . . . , n ( 1 . 2 ) 

ξ ′ 
i , ξi ≥ 0 , i = 1 , . . . , n ( 1 . 3 ) 

(1) 

Note that ˆ f (x ) = w 

∗φ(x ) + b ∗ has the structure of a hyperplane

n the transformed space ( φ(x ) , y ) . The SVR generates an estimator 
ˆ f (x ) of the response variable for vector x as well as lower and up-

er ‘correcting’ surfaces, defined as ˆ f (x ) − ε and 

ˆ f (x ) + ε, where ε
s a certain margin that endows the estimator linked to SVR with 

obustness (see Fig. 1 ). Additionally, observations below the sur- 

ace ˆ f (x ) − ε have an associated (empirical) error of ξi > 0 (with 

′ 
i 

= 0 ), while observations above the surface ˆ f (x ) + ε present an 

empirical) error of ξ ′ 
i 

> 0 (with ξi = 0 ). Observations between the 

urfaces ˆ f (x ) − ε and 

ˆ f (x ) + ε have an error of zero (with ξi = ξ ′ 
i 

=

4 
 ). Regarding the objective function in (1), it represents the com- 

ination of regression and regularization that SVR involves, mixing 

he empirical error term 

n ∑ 

i =1 

( ξ ′ 
i + ξi ) and the regularization term 

 w‖ through a weight C, which balances the two components [57] . 

oreover, although hyperplanes have linear shapes, SVR is able to 

ield estimation functions that are not necessarily linear in the 

riginal ( x , y ) space (see Fig. 1 ). It is due to the function φ, which

s a transformation of the covariable space, φ : R 

m + → Z. It is impor-

ant to remark that Z = φ( R 

m + ) , known as feature space, can have

ifferent dimensions, including infinite. This transformation is the 

ause of the different nonlinear approaches in R 

m + , while the esti- 

ation function generates a linear hyperplane in Z. 

Sometimes, in the literature, it is easier or advisable to work 

ith the dual model of program (1) and kernel functions, defined 

s K( x , x ′ ) = φ(x ) φ( x ′ ) . However, in this paper, the primal model

nd the transformation function φ(·) will be enough for the devel- 

pment of the new approach. 

Both the transformation function and the kernel function de- 

end on several hyperparameters, say τ , which must be deter- 

ined together with C and ε by cross-validation. Cross-validation 

s a standard technique in machine learning and statistics for 

djusting hyperparameters of models. In V -fold cross-validation, 

he learning sample � is randomly divided into �1 , ..., �V dis- 

oint subsamples with the same sample size or as close as pos- 

ible. Typical values for V are 5 or 10. Let the v -th learning sub-

ample be �(v ) = � − �v and let �i = � − �v (i ) , where �v (i ) is 

he subsample such that i ∈ �v (i ) . For each v = 1 , ..., V , an indi-

idual model is built by applying the algorithm to the training 

ata �(v ) . This model is then evaluated by means of a cost func- 

ion using the test data in �v . In particular, given a set of hy-

erparameters ( C, ε, τ ) , the gener alization error is determined as 

1 
n 

n ∑ 

i =1 

( y i − ˆ f �i 
( x i ;C, ε, τ ) ) 

2 
, where ˆ f �i 

( x i ;C, ε, τ ) is the SVR estima- 

or evaluated at x i when the learning data �i and the hyperpa- 

ameters ( C, ε, τ ) have been considered. To choose the best com- 

ination of hyperparameters using cross-validation, we compute 

he generalization error for different values of hyperparameters 

 C, ε, τ ) . Finally, one selects the combination ( C ∗, ε ∗, τ ∗) with the 

owest generalization error and uses it for training a SVR model on 

he complete data set �. 
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3 s 

Us). DMU i consumes x i = ( x (1) 
i 

, ..., x (m ) 
i 

) ∈ R 

m + amounts of inputs for the 

p ative efficiency of each DMU in the sample is assessed with reference 

t  the set of technically feasible combinations of ( x , y ) . It is defined in 

g

T (2) 

as free disposability of inputs and outputs, meaning that if ( x , y ) ∈ T , 

t is also assumed (see, e.g., [27] ) 3 . 

uction function. Accordingly, m input variables are used to produce a 

u

T (3) 

 that the production function f is supposed to be monotone non- 

d ur attention on the estimation of technical efficiency in the contexts of 

p

, a certain part of the boundary of T is of interest. Specifically, we are 

r : y = f (x ) } . In this way, technical inefficiency is defined as the distance 

f nical efficiency score is determined by the ratio y ′ / f ( x ′ ) . 
 envelopment techniques for estimating the efficient frontier of T : FDH 

a and relies only on the free disposability (monotonicity) assumption and 

t or requires stronger assumptions, such as convexity of the set T . The 

c ways valid [34] . The production possibility set might admit increasing 

r graphically cannot be modelled by convexity), or there might be lumpy 

g ce, the FDH can yield a more general and flexible estimator than DEA 

(

hodological adaptation of the standard SVR for the estimation of pro- 

d e new approach will allow the determination of production functions, 

s en approach that does not assume any particular random distribution 

o imator. At a second stage, the convexification of this step function will 

a n function. These shapes are shared with the estimators derived from 

F lem of overfitting, the new method will try to overcome this drawback 

t we will show how the standard SVR model must be modified in order 

t in production theory (see, for example, [27] ): 

nnot produce anything. Axiom A2 means that if a firm consumes more 

r le A3 is associated with the convexity of the production possibility set 

T

rd SVR model step by step in this section. It means that we will incor- 

p hroughout the text. Additionally, we will show the existing relationship 

b . In fact, it is one of our objectives to show under which hypothesis 

t reinterpreted as SVM models. Finally, we will introduce a new robust 

d iency, as a natural application of the notion of margin in SVM to the 

e

3

 model to estimate enveloping structures of the data. Additionally, we 

w

uction, we know that our target function to be estimated, f , and the 

r e following relationship with respect to each learning example i , i = 

1 r to meet the same condition and add it to the constraints of the SVR 

m w type of restriction directly implies the satisfaction of the constraint 

(  x i ) + b ) ≤ 0 and, additionally, we have that ε + ξ ′ 
i 

≥ 0 , for all i = 1 , ..., n . 

C  optimization model if the conditions y i ≤ wφ( x i ) + b, i = 1 , ..., n , are 

i = 1 , ..., n , can also be deleted 

4 . Moreover, a simple manner of satisfying 

e

w

d

. Support Vector Regression for estimating production function

Let us consider the observation of n Decision Making Units (DM

roduction of y i = ( y (1) 
i 

, ..., y (s ) 
i 

) ∈ R 

s + amounts of outputs 2 . The rel

o the so-called production possibility set or technology, which is

eneral terms as: 

 = 

{
( x , y ) ∈ R 

m + s 
+ : x can produce y 

}
Certain assumptions are made or maintained on this set, such 

hen ( x ′ , y ′ ) ∈ T , as long as x ′ ≥ x and y ′ ≤ y. Often convexity of T 

When s = 1 , this context is restricted to the key notion of prod

nivariate output. In this way, the technology is defined as 

 = 

{
( x , y ) ∈ R 

m +1 
+ : y ≤ f ( x ) 

}
In this context, the property of monotonicity is translated so

ecreasing: if x ≤ x ′ , then f (x ) ≤ f ( x ′ ) . Hereinafter, we will focus o

roduction functions. 

As far as the measurement of technical efficiency is the concern

eferring to the efficient frontier of T , defined as ∂(T ) := { ( x , y ) ∈ T 

rom an interior point to this boundary. If ( x ′ , y ′ ) ∈ T , then its tech

Nowadays, there are two main non-parametric methods based on

nd DEA. The FDH estimator was introduced by Deprins et al. [22] 

he minimal extrapolation principle. In contrast, the DEA estimat

onvexity assumption is widely used in economics, but it is not al

eturns to scale (i.e. output increases faster than the inputs, which 

oods (i.e. fractional values of inputs or outputs do not exist). Hen

see [4] ). 

In this section, we introduce a new technique based on a met

uction functions, which we call Support Vector Frontiers (SVF). Th

atisfying the usual axioms of microeconomics, through a data-driv

n the data and generates, at a first stage, a step function as an est

llow us to provide a piece-wise linear estimator of the productio

DH and DEA techniques. However, while the latter suffer the prob

hrough minimizing the structural risk as SVR does. To start with, 

o estimate enveloping surfaces, satisfying certain classical axioms 

(A1) if x = 0 m 

, then f (x ) = 0 ; 

(A2) if x ≤ x ′ , then f (x ) ≤ f ( x ′ ) ; 
(A3) f is a concave function. 

Axiom A1 means that if a firm does not consume any input, it ca

esources, then, it is always possible to produce more output; whi

 . 

In order to be clear in our exposition, we will adapt the standa

orate the satisfaction of each production axiom A1-A3 gradually t

etween FDH and DEA and the new machine learning framework

hese two standard techniques in efficiency measurement may be 

efinition of technical efficiency, called ε-insensitive technical effic

fficiency measurement field. 

.1. The estimation of enveloping surfaces 

In this subsection, we will show how to adapt the standard SVR

ill adjust trivially the model to meet A1. 

Through the Data Generating Process mentioned in the Introd

esponse variable (the output in our production context) have th

 , ..., n : y i ≤ f ( x i ) . Therefore, it seems natural to force the estimato

odel (1): y i ≤ ˆ f ( x i ) = wφ( x i ) + b, i = 1 , ..., n. Nevertheless, this ne

1.1), y i − ( wφ( x i ) + b ) ≤ ε + ξ ′ 
i 
, since y i ≤ wφ( x i ) + b ⇔ y i − ( wφ(

onsequently, constraint type (1.1) can be removed from the new

ncorporated. And, for the same reason, the decision variables ξ ′ 
i 
, i 
2 We use bold for denoting vectors, and non-bold for scalars. The different components of a vector are denoted by a superscript and parenthesis. 
3 Let z = ( z (1) , ..., z (m ) ) and q = ( q (1) , ..., q (m ) ) . Hereinafter, z ≤ q means z ( j) ≤ q ( j) for all j = 1 , ..., m . 
4 In the new approach, as happens with the standard SVR, the upper and lower bounds work together to minimize errors related to the production function to be 

stimated, which lies somewhere between these upper and lower limits. In this framework, the region delimited by the upper and lower bounds could be related, in some 

ay, to an order-m or order- α frontier or to a quantile regression (see, for example, [4] ). In the latter cases, because of the nature of the approaches, the frontier estimators 

o not envelop all the data points, and so they may be seen as more robust to extreme values than the standard FDH and DEA estimators. 

5 
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Fig. 2. Example of a grid. 

a as φ( 0 m 

) = 0 q . It guarantees that ˆ f ( 0 m 

) = wφ( 0 m 

) + b = 0 . In this way, 

a

M

(4) 

4) is the adaptation of the standard SVR model (1) for enveloping the 

o

at standard efficiency measurement approaches like FDH and DEA re- 

s s and DEA resorts to the convexification of the FDH step function to 

g his respect, standard SVM is flexible, allowing to use several complex 

t kernels, among others), we will focus on a step function as the trans- 

f e standard approaches for measuring technical efficiency and the SVR 

m st in this paper to apply a transformation function in such a way that 

o sformed into a concave function by convexification. To do that, we will 

b nstructed from a finite number of knots by Vapnik [ [56] , p. 464]. 

tablishing the transformation function φSV F (·) that will be used in this 

p fined as T j = { t ( j) 
l j 

: l j = 1 , ..., k j } satisfying 0 < t 
( j) 
1 

< t 
( j) 
2 

< ... < t 
( j) 
k j 

with 

t t C l 1 ... l m = { x ∈ R 

m + : t 
( j) 
l j 

≤ x ( j) < t 
( j) 
l j +1 

, j = 1 , ...m } , l 1 ∈ { 1 , ..., k 1 } , ..., l m 

∈ 

{ ach subset C l 1 ... l m is called a cell of the grid G . See Fig. 2 , where an 

e  grid G , a l 1 ... l m 
= ( t (1) 

l 1 
, . . . , t (m ) 

l m 
) and b l 1 ... l m = ( t (1) 

l 1 +1 
, . . . , t (m ) 

l m +1 
) are the 

l pectively. Hence, each cell can be equivalently rewritten as C l 1 ... l m = 

{ tor x ∈ R 

m + , we need to identify the cell where it is located. The follow- 

i icate with a value of one if x ∈ C l 1 ... l m : x → L l 1 ... l m (x ) = 

m ∏ 

j=1 

B ( x ( j) − t 
( j) 
l j 

) , 

w

B  . . . , m. (5) 

 C s 1 ... s m with s j ≤ l j , j = 1 , ..., m , are also activated, i.e., if L l 1 ... l m (x ) = 1 , 

t cells are cells dominated by C l 1 ... l m . Fig. 2 shows how the activation of 

c

ction φG 
SV F 

, which will be used in our approach, as the mapping of the 

s

(
 k m (x ) , . . . , L k 1 k 2 ... k m (x ) 

) (6) 
xiom A1 consists of forcing the term b to be directly zero as long 

t this point, the adapted SVR model would be as follows: 

in 

w,ξi 

1 
2 
‖ w‖ 

2 + C 
∑ n 

i =1 ξi 

y i − wφ( x i ) ≤ 0 , i = 1 , . . . , n ( 4 . 1 ) 
wφ( x i ) − y i ≤ ε + ξi , i = 1 , . . . , n ( 4 . 2 ) 

ξi ≥ 0 , i = 1 , . . . , n ( 4 . 3 ) 

Models (1) and (4) are not mathematically equivalent. Model (

bservations from above, thanks to constraint (4.1). 

Regarding the shape of the estimator, it is worth mentioning th

ort to certain particular types of surfaces. FDH uses step function

et a concave estimator of the production function. Although, in t

ransformation families of functions (polynomial, radial, Laplacian 

ormation function φ(·) , seeking to establish a bridge between th

ethod. In this way, and by analogy with FDH and DEA, we sugge

ur estimator is a step function, which could be subsequently tran

ase our approach on the spline approximation of the estimator co

Next, we introduce the necessary definitions and notation for es

aper. For each input dimension j, j = 1 , ..., m , the set of knots is de

 

( j) 
l j 

∈ R , l j = 1 , ..., k j . The disjoint subsets C 1 ... 1 , ..., C k 1 ... k m such tha

 1 , ..., k m 

} , with t 
( j) 
k j +1 

:= ∞ , ∀ j = 1 , ..., m , define a grid G on R 

m + . E

xample of grid and its cells are shown. For each cell C l 1 ... l m of a

ower extreme knot-point and the upper extreme knot-point, res

 x ∈ R 

m + : a 
( j) 
l 1 ... l m 

≤ x ( j) < b 
( j) 
l 1 ... l m 

, j = 1 , ...m } . Now, given an input vec

ng binary ‘activation’ function defined for each cell C l 1 ... l m will ind

here 

 

(
x ( j) − t ( j) 

l j 

)
= 

{ 

1 , i f x ( j) − t ( j) 
l j 

≥ 0 

0 , i f x ( j) − t ( j) 
l j 

< 0 

, ∀ l j = 1 , . . . , k j , ∀ j = 1 ,

Note also that when a cell C l 1 ... l m is activated, then all the cells

hen L s 1 ... s m (x ) = 1 , ∀ s j ≤ l j , j = 1 , ..., m . We will say that all these 

ells in a grid of R 

m + for two input dimensions works. 

In this context, given a grid G, we define the transformation fun

pace R 

m + given by 

x → φG 
SV F (x ) = 

L 11 ... 11 (x ) , L 11 ... 12 (x ) , . . . , L 11 ... 1 k m (x ) , L 11 ... 21 (x ) , L 11 ... 22 (x ) , . . . , L 11 ... 2
6 
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f ones and zeros generated from the k 1 · k 2 · . . . · k m 

activation functions 

o the vector φG 
SV F 

(x ) value one for the cell where x is located and all 

i adapted SVR model for estimating production functions would be as 

f

M

(7) 

t ˆ f ( 0 m 

) = 0 since φG 
SV F 

( 0 m 

) = 0 q , with q = k 1 · k 2 · . . . · k m 

. It guarantees 

t  have that ˆ f (x ) = wφG 
SV F 

(x ) = 

∑ 

s 1 =1 ,..., l 1 

. 

. 

. 
s m =1 ,..., l m 

w s 1 ... s m . 

of the vector of parameters w coincides with the total number of cells 

o  be written as follows. 

w w k 1 k 2 ... k m 

)
(8) 

r of the components is the same as that followed by the vector φG 
SV F 

(x ) 

i trized grid: A grid G in which is assigned a parameter w l 1 ... l m 
∈ R for 

e with parameters w. 

odel (7) is a step function and, additionally, any step function f (x ) 

d  ) = wφG 
SV F 

(x ) for a certain parametric vector w. Nevertheless, we first 

n  the notion of a recoverable function through a parametrized grid: A 

f t ∀ x ∈ C l 1 ... l m , ∀ l 1 = 1 , ..., k 1 , …, ∀ l m 

= 1 , ..., k m 

. The value of the function 

nction f : R 

m + → R is a recoverable function through a parameterized 

g  

∑ 

s 1 =1 ,..., l 1 

. 

. 

. 
s m =1 ,..., l m 

w s 1 ... s m , with x ∈ C l 1 ... l m . 

... s m is constant for each x ∈ C l 1 ... l m . Consequently, the estimator derived 

f roved that, given a step function f (x ) defined on a grid G, there will 

a sed as f (x ) = wφG 
SV F 

(x ) = 

∑ 

s 1 =1 ,..., l 1 

. 

. 

. 
s m =1 ,..., l m 

w s 1 ... s m . 

P tion through the parameterized grid G for a certain unique parametric 

v

P

d in this paper, at least, with respect to any step function that can be 

d tion will be the key for showing that the step function associated with 

t new approach, as long as we resort to a specific ‘empirical’ grid. 

 generate step functions enveloping the data cloud from above and 

s  estimates, which are not valid when the objective is to determine a 

(  the estimator is not assured, which contradicts axiom A3. We will try 

t  

3 tion 

 functions in microeconomics. Consequently, in this section, we try to 

e  with the satisfaction of these two properties. Accordingly, the first part 

o for assuring a monotonic non-decreasing step function as an estimator 

f show how to trivially determine concave functions as estimators of the 

p viously defined step function. 

al estimator derived from SVF meets monotonicity for any recoverable 

f a technical lemma. 

L . Then, h j ≤ l j , ∀ j = 1 , . . . , m . 

P

For each input vector x ∈ R 

+ 
m 

, φG 
SV F 

(x ) corresponds to a vector o

n grid G . Following our previous discussion, the components of 

ts corresponding dominated cells. In this way, at this point, the 

ollows: 

in 

w,ξi 

1 
2 
‖ w‖ 

2 + C 
∑ n 

i =1 ξi ( 7 . 0 ) 

y i − wφG 
SVF ( x i ) ≤ 0 , i = 1 , . . . , n ( 7 . 1 ) 

wφG 
SVF ( x i ) − y i ≤ ε + ξi , i = 1 , . . . , n ( 7 . 2 ) 

ξi ≥ 0 , i = 1 , . . . , n ( 7 . 3 ) 

The estimator linked to (7) would be ˆ f (x ) = wφG 
SV F 

(x ) . Note tha

he satisfaction of axiom A1. Moreover, by (6), if x ∈ C l 1 ... l m , then we

Additionally, it is worth noting that the number of components 

f the corresponding grid G. Explicitly, the parametric vector w can

 = 

(
w 11 ... 11 , w 11 ... 12 , . . . , w 11 ... 1 k m , w 11 ... 21 , w 11 ... 22 , . . . , w 11 ... 2 k m , . . . , 

Each component of w is linked to a cell on the grid and the orde

n (6). This relationship allows introducing the notion of a parame

ach cell C l 1 ... l m , l j = 1 , . . . , k j , j = 1 , . . . , m , is a parameterized grid 

Next, we are going to show that the estimator derived from m

efined on a grid G may be equivalently rewritten in the way f (x

eed to introduce the definition of a step function on a grid and

unction f : R 

m + → R is a step function on a grid G if f (x ) is constan

f for any x ∈ C l 1 ... l m will be denoted as f ( C l 1 ... l m ) . Additionally, a fu

rid G with parameters w if and only if ∀ x ∈ R 

m + f (x ) = wφG 
SV F 

(x ) =

Given a grid G, it is clear that ˆ f (x ) = wφG 
SV F 

(x ) = 

∑ 

s 1 =1 ,..., l 1 

. 

. 

. 
s m =1 ,..., l m 

w s 1 

rom (7) is a step function defined on G. Additionally, it can be p

lways be parameters w such that f (x ) may be equivalently expres

roposition 1. Any step function on a grid G is a recoverable func

ector w. 

roof. See Appendix. �

This result shows the flexibility of the transformation suggeste

efined on a grid in the input space. Later in the text, this proposi

he FDH technique is always a feasible step function linked to the 

At this point, the estimator derived from model (7) is able to

atisfying axiom A1. However, the model can yield non-monotonic

production) function meeting axiom A2. Additionally, concavity of

o overcome these drawbacks of the technique in the next section.

.2. The axioms of monotonicity and concavity of the production func

Monotonicity and concavity are two basic axioms of production

ndow the estimator derived from the new approach based on SVR

f this subsection is devoted to defining the necessary conditions 

rom the SVF approach. In the final part of this subsection, we will 

roduction functions by directly applying convexification of the pre

We start by establishing the conditions that assure that the fin

unction defined on a parametric grid G. To do that, we first need 

emma 1. Let G a grid and let x ∈ C h 1 ... h m and z ∈ C l 1 ... l m with x ≤ z

roof. See Appendix. �
7 
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 following notation: W l 1 ... l m 
:= 

∑ 

s 1 =1 ,..., l 1 

. 

. . 
s m =1 ,..., l m 

w s 1 ... s m . 

T arameterized grid G . Then, f is a monotonic non-decreasing function if 

a ..., k j . 

P

er of constraints than in Theorem 1 . This statement is formally estab- 

l

P l j , ∀ j = 1 , ..., m, with h j , l j = 1 , ..., k j is equivalent to the system of in- 

e . . , m . 

P

tonicity for step functions defined on a parametrized grid, we are able 

t  technique for estimating production functions, the so-called Support 

V

M ( 9 . 0 ) 

s ( 9 . 1 ) 
( 9 . 2 ) 

. . , m ( 9 . 3 ) 

( 9 . 4 ) 

(9) 

el (7) with the new set of constraints (9.3) for ensuring monotonicity. 

R e final model (9), the L1 norm is chosen. Although the Euclidean norm 

i sibilities exist in the literature (see, for example, [12] ). In particular, in 

t s is comparing the new approach with standard FDH and DEA, which 

a orm L1, and given that wφG 
SV F 

( x i ) = 

∑ 

s 1 =1 ,..., l 1 

. 

. 

. 
s m =1 ,..., l m 

w s 1 ... s m with x i ∈ C l 1 ... l m , 

m  

∗, ξ ∗
1 , ..., ξ

∗
n ) , the estimator of the production frontier linked to SVF is 

d
 

if x ∈ C l 1 ... l m . By the previous discussion, f SV F (x ) is a step monotonic 

n to additionally achieve a concave function, which in production theory 

i  the estimator f SV F (x ) . A similar strategy is followed to get a convex 

p estimated by FDH. To do that, in the case of SVF, we must identify a 

c  grid generates one of these points: one with input vector a l 1 ... l m 
, the 

l imation of the response variable for a l 1 ... l m 
, i.e., f SV F ( a l 1 ... l m 

) . Given the 

s , a convex production possibility set can be determined by applying a 

D

 ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l 1 ... l m a 
( j) 
l 1 ... l m 

, ∀ j, 
∑ 

l 1 =1 ,..., k 1 

. . . 
l m =1 ,..., k m 

λl 1 ... l m = 1 , λl 1 ... l m ≥ 0 , ∀ l 1 , . . . , ∀ l m 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

, 
(10) 

w ontiers’. 

tion function from a learning sample with an input and an output. The 

s erived from the solution of model (9). It is a monotonic non-decreasing 

f consider the principle of minimal extrapolation and, consequently, the 

S  certain contact points. On the one hand, the hyperparameter C in the 

o alidation process as in the standard SVM - is the value that helps to 

l  C give more importance to the observations and are associated with 

a d, the hyperparameter ε, which will be also fitted by cross-validation, 
Before showing the result on monotonicity, let us introduce the

heorem 1. Let f : R 

m + → R + a recoverable function through the p

nd only if W l 1 ... l m 
≥ W h 1 ... h m 

, ∀ h j ≤ l j , ∀ j = 1 , ..., m, with h j , l j = 1 , 

roof. See Appendix. �

It is possible to state a similar result but using a smaller numb

ished in Proposition 2 . 

roposition 2. The system of inequalities W h 1 ... h m 
≤ W l 1 ... l m 

, ∀ h j ≤
qualities W l 1 l 2 ... s j ... l m 

≤ W l 1 l 2 ... l m 
, ∀ s j = l j − 1 , ∀ l j = 1 , ..., k j , ∀ j = 1 , . 

roof. See Appendix. �

Once we have identified the conditions that characterize mono

o introduce the final optimization model corresponding to the new

ector Frontiers (SVF): 

in 

w, ξi 

‖ 

w ‖ 1 + C 
n ∑ 

i =1 

ξi 

.t. y i − wφG 
SV F ( x i ) ≤ 0 , i = 1 , . . . , n 

wφG 
SV F ( x i ) − y i ≤ ε + ξi , i = 1 , . . . , n 

W l 1 l 2 ... s j ... l m 
≤ W l 1 l 2 ... l m , ∀ l 1 , ..., l m 

, ∀ s j = l j − 1 , ∀ j = 1 , . 

ξi ≥ 0 , i = 1 , . . . , n 

The constraints (9.1)-(9.4) correspond to the restrictions of mod

egarding the objective function, (9.0) coincides with (7.0) but, in th

s the most usual metric when standard SVM is utilized, other pos

his paper, we consider the norm L1 because one of our objective

re based on linear programming. Note that, by assuming the n

odel (9) is a linear program. Given an optimal solution of (9), ( w

efined as f SV F (x ) = w 

∗φG 
SV F 

(x ) , which is equal to 
∑ 

s 1 =1 ,..., l 1 

. 

. 

. 
s m =1 ,..., l m 

w 

∗
s 1 ... s m

on-decreasing function that envelops the learning data. In order 

s translated to convex technologies, it is enough to convexificate

roduction possibility set in DEA from a step production frontier 

ertain set of extreme points. In particular, each cell C l 1 ... l m in the

ower extreme knot-point of cell C l 1 ... l m , and output equals the est

et of ‘virtual’ input-output points { ( a l 1 ... l m 
, f SV F ( a l 1 ... l m 

) ) } l 1 =1 ,..., k 1 

. . 

. 
l m =1 ,..., k m 

EA-type estimation: 

ˆ T CSV F =
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( x , y ) ∈ R 

m +1 
+ : y ≤ ∑ 

l 1 =1 ,..., k 1 

. . . 
l m =1 ,..., k m 

λl 1 ... l m f SV F 

(
a l 1 ... l m 

)
, x ( j) ≥ ∑ 

l 1 =1 ,..., k 1 

. . . 
l m =1 ,..., k m 

λ

here the acronym CSVF denotes ‘Convexificated Support Vector Fr

Fig. 3 a shows a graphical example of an estimation of a produc

olid line shows the step function linked to the estimator directly d

unction that envelops the data. In contrast to FDH, SVF does not 

VF estimator can be located strictly above the FDH estimator with

bjective function of model (9) - which will be fitted by a cross-v

ocate the frontier more or less above the data. Greater values for

n estimated frontier located closer to the data. On the other han
8 
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Fig. 3. Example of an estimation of SVF (a) and CSVF (b). 

a lysis. The upper and lower ‘correcting’ surfaces, defined as f SV F (x ) + ε
a  dashed lines. Observations between the upper and lower correcting 

s  show the convexification of the SVF estimator. Fig. 3 b shows a concave 

e this frontier defines a convex set. Furthermore, Fig. 3 b also shows the 

u is determined in a natural way by convexification from f SV F (x ) + ε and 

w and more robust notion of technical efficiency in production theory. 

W f ε-insensitive technical efficiency is introduced. 

D if and only if f SV F ( x i ) − ε ≤ y i ≤ f SV F ( x i ) + ε. 

t units include the traditional technically efficient DMUs, i.e., those lo- 

c s, the model does not discriminate, regarding the degree of technical 

e e upper and lower correcting surfaces. For the SVF approach, all are 

e  belongs to the learning sample, we have that it is ε-insensitive techni- 

c V F ( x i ) . This is not the case for units that do not belong to the learning 

s gical changes over time can lead to units belonging to a certain period 

t vious or subsequent period of time. 

odel (9) needs the prior determination of certain parameters. Both C 

a ot the only parameters to be determined. As in the standard SVM, the 

t  on another set of parameters. Within our context, the SVF transforma- 

t for each input dimension considered in the problem. In this paper, we 

a their identification could turn out to be a computationally hard task if 

t to be determined by cross-validation will be d, the number of cells to 

b bserve a maximum and minimum value in each input variable, making 

i ame width. This process will be illustrated in Section 4 . 

3 r frontiers 

are well-known non-parametric approaches to technical efficiency anal- 

y atively interpreted as Support Vector Regression subject to shape con- 

s rfaces of the learning sample. This reinterpretation reveals the nature 

o ular, we prove that these two standard techniques are always feasible 

s  optimal in the simplest case of working with only one input and one 

o

since it does not rely on restrictive hypothesis on the Data Gen- 

e techniques, which are clearly data-driven approaches. In particular, 

D  of observations (DMUs) to estimate T , defined as follows: ˆ T = 

s

llows a certain degree of robustness to be considered in the ana

nd f SV F (x ) − ε, respectively, are also illustrated in the figure by

urfaces have an empirical error of zero. Additionally, in Fig. 3 b, we

stimated production function, which implies that the area below 

pper and lower correcting surfaces for the convex setting, which 

f SV F (x ) − ε in Fig. 3 a, respectively. 

Fig. 3 and the notion of margin ε in standard SVM inspire a ne

e are referring to Definition 1 , where, in particular, the concept o

efinition 1. The DMU ( x i , y i ) is ε-insensitive technically efficient 

Note that, of course, the set of ε-insensitive technically efficien

ated onto the (estimated) production frontier f SV F . In rough term

fficiency, among the units located between the estimator and th

qually technically efficient. 5 Additionally, for any DMU ( x i , y i ) that

ally efficient if and only if f SV F ( x i ) − ε ≤ y i ≤ f SV F ( x i ) , since y i ≤ f S
ample. For instance, in the case of intertemporal analysis, technolo

hat may be located outside the technology corresponding to a pre

Finally, to finish this subsection, it is worth mentioning that m

nd ε were previously mentioned in the text. However, these are n

ransformation function (or, instead, the associated kernel) depends

ion function φG 
SV F 

is linked to the determination of a set of knots 

pply a simplified search method to determine these points since 

heir number and position are let free. Instead, the key parameter 

e defined for each input dimension. In an empirical context, we o

t possible to calculate the range and split it into d cells with the s

.3. Free disposal hull and data envelopment analysis as support vecto

Free Disposal Hull (FDH) and Data Envelopment Analysis (DEA) 

sis. In this subsection, we show that FDH and DEA may be altern

traints (monotonicity and concavity) that generates enveloping su

f FDH and DEA as part of machine learning techniques. In partic

olutions of the Support Vector Frontiers optimization model, being

utput. 

The non-parametric model as FDH is particularly appealing 

rating Process, a feature shared with usual machine learning 

eprins et al. [22] proposed the Free Disposal Hull of the set
 F DH 

5 The ε-insensitive technical efficiency is somehow related to the notion of efficiency of some DEA models that deal with the concepts of imprecision and uncertainty, 

uch as fuzzy DEA [30] or Chance Constrained DEA [46] , to name just a few. 

9 



D. Valero-Carreras, J. Aparicio and N.M. Guerrero Omega 104 (2021) 102490 

{ se, the production function would be estimated by f F DH (x ) = max 
i : x ≥x i 

{ y i } , 
w t relies on few assumptions, but, by construction, it suffers overfitting 

d he non-decreasing step function to be as close as possible to the data 

c

ditionally assumes convexity. This means that if ( x , y ) and ( x ′ , y ′ ) be- 

l er et al. [9] proposed the DEA estimator of the production possibility 

s
 

 

λi x 
( j) 
i 

, ∀ j, 
n ∑ 

i =1 

λi = 1 , λi ≥ 0 , ∀ i } . In a single output context, the DEA es- 

t veloping the data from above. Convexity of the production possibility 

s cation of the FDH estimator yields the DEA estimator [20] . DEA suffers 

t polation principle compels the determination of a ‘perfect’ description 

o  the smallest convex set that contains the data cloud and satisfies free 

d

chieving similar results with respect to DEA by direct convexification. 

W the FDH technique is always feasible in the SVF model (9), when a 

s rring to the ‘empirical’ grid, which uses the observations as knots for 

e bsection. Before, let us introduce new notation. Let { ( x i , y i ) } n i =1 
be a 

l  set of elements { ̃  x 
( j) 
l j 

} n ( j) 

l j =1 
, for each j = 1 , . . . , m , is the set of ordered 

v ach dimension. Consequently, n ( j) ≤ n and ˜ x 
( j) 
1 

< . . . < ˜ x 
( j) 

n ( j) 
. In this way, 

t  of knots T E 
j 

= { ̃ x 
( j) 
l j 

, l j = 1 , ..., n ( j) + 1 } , j = 1 , . . . , m , with ˜ x 
( j) 

n ( j) +1 
:= ∞ , 

∀  C E 
l 1 ... l m 

and the extreme knot-points for each one as a E 
l 1 ... l m 

and b E 
l 1 ... l m 

. 

A t of dominated observations. Additionally, given an input vector x ∈ R 

m + , 
t  x i ≤ x } . 

DH is a step function defined on the empirical grid G 

E . This result is 

k F model. In order to prove that, we first need to state some previous 

t

L
 

. 

P

C
 

} ⊂ X . 

P

L
 

. 

P

C

P

P

P

e FDH technique is a step function defined on the empirical grid. Note 

t lways generates step functions. However, we also need to prove that it 

i rid with the empirical one. 

T p function defined on the grid G 

E . In particular, f F DH (x ) = f F DH ( a 

E 
l 1 ... l m 

) , 

∀
P

r w 

F DH such that the estimator associated with the FDH technique can 

b
 DH is a recoverable function through the parameterized grid G 

E with 

p  

ξ ..., n, (11) 

t f model (9). Expression (11) may be equivalently written in a compact 

w

T (9). 

P

 ( x , y ) ∈ R 

m + s 
+ : y ≤ y i , x ≥ x i , i = 1 , ..., n } . In the univariate output ca

hich is a step function. The FDH technique is engaging because i

ue to the minimal extrapolation principle. This principle forces t

loud, whereas it envelops all the observations from above. 

In contrast to Free Disposal Hull, Data Envelopment Analysis ad

ong to T , then λ( x , y ) + ( 1 − λ)( x ′ , y ′ ) ∈ T , for all λ ∈ [ 0 , 1 ] . Bank

et T as follows: ˆ T DEA = { ( x , y ) ∈ R 

m + s 
+ : y (r) ≤

n ∑ 

i =1 

λi y 
(r) 
i 

, ∀ r, x ( j) ≥
n ∑

i =1

imator of a production function is a piece-wise linear function en

et implies concavity of the production function. Also, the convexifi

he same problem of overfitting as FDH. Again, the minimal extra

f the observed sample at a frontier level. It is done by calculating

isposability (monotonicity). 

Throughout this section, we will focus our attention on FDH, a

e start by showing that the step function yielded by applying 

pecific grid based on the observations is considered. We are refe

ach input dimension and will be formally introduced in this su

earning sample with x i ∈ R 

m + and y i ∈ R + , ∀ i = 1 , . . . , n . Then, the

alues of the observations once repetitions have been removed in e

he empirical grid G 

E is the grid defined from the following sets

 j = 1 , . . . , m . The cells in the empirical grid will be denoted by

nother necessary definition is one that introduces the notion of se

he set of dominated observations is defined as X = { i ∈ { 1 , . . . , n } :
Next, we are going to prove that the estimator generated by F

ey for proving that the FDH estimator is always feasible of the SV

echnical results. 

emma 2. Let i ∈ { 1 , . . . , n } and x i ≤ a 

E 
l 1 ... l m 

. Then, x i ≤ x , ∀ x ∈ C E 
l 1 ... l m

roof. See Appendix. �

orollary 1. Let x ∈ C E 
l 1 ... l m 

. Then A 

E 
l 1 ... l m 

:= { i ∈ { 1 , . . . , n } : x i ≤ a 

E 
l 1 ... l m

roof. The result is a direct consequence of Lemma 2 . �

emma 3. Let i ∈ { 1 , . . . , n } and x ∈ C E 
l 1 ... l m 

. If x i ≤ x , then x i ≤ a 

E 
l 1 ... l m

roof. See Appendix. �

orollary 2. Let x ∈ C E 
l 1 ... l m 

. Then X ⊂ A 

E 
l 1 ... l m 

. 

roof. The result is a direct consequence of Lemma 3 . �

roposition 3. Let x ∈ C E 
l 1 ... l m 

. Then X = A 

E 
l 1 ... l m 

. 

roof. This result is a consequence of Corollaries 1 and 2. �

The next theorem proves that the estimator associated with th

hat it is well-known in the literature that the FDH methodology a

s a step function defined on a grid. In this case, we identify such g

heorem 2. The estimator yielded from the FDH technique is a ste

 x ∈ C E 
l 1 ... l m 

. 

roof. See Appendix. �

By Theorem 2 and Proposition 1 , we know that there is a vecto

e equivalently expressed as f F DH (x ) = w 

F DH φG E 

SV F 
(x ) . Moreover, f F

arameters w 

F DH . Additionally, if we define the empirical errors as

F DH 
i := 

{
( f F DH ( x ) − ε ) − y i , if ( f F DH ( x ) − ε ) − y i ≥ 0 

0 , if ( f F DH ( x ) − ε ) − y i < 0 

, ∀ i = 1 , 

hen we can state that FDH always generates a feasible solution o

ay as ξ F DH 
i 

= max { ( f F DH (x ) − ε ) − y i , 0 } . 
heorem 3. ( w 

F DH , ξ F DH 
1 

, ..., ξ F DH 
n ) is a feasible solution of model 

roof. See Appendix. �
10 
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Table 1 

Description of the three scenarios. 

Scenario Inputs Functional form 

(I) x 1 y = 3 + x 1 
0.5 -u 

(II) x 1 ,x 2 y = 3 + x 1 
0.2 + x 2 

0.3 -u 

(III) x 1 ,x 2, x 3 y = 3 + x 1 
0.05 + x 2 

0.15 + x 3 
0.3 -u 

chnique can be always recovered from the new approach, the so-called 

S oduction function is always considered by model (9), given any param- 

e e FDH step function was optimal. This is not always true. Nevertheless, 

w plest framework, i.e. when the number of inputs equals one, the FDH 

e is considered. It will be Theorem 4 . Before proving it, we will establish 

a

L lution of model (9) when the empirical grid is considered. Then, 

w

P

T al solution of model (9). 

P

rk, i.e., when the number of inputs is arbitrary. Considering the empir- 

i ing learning sample: ( x A 1 , x 
A 
2 , y 

A ) = ( 1 , 4 , 2 ) , ( x B 1 , x 
B 
2 , y 

B ) = ( 2 , 2 , 1 ) and 

(

EA can be derived from the FDH step function by applying this same 

t e estimation of convex production technologies. In this way, the tradi- 

t  the possible solutions associated with the Convexified Support Vector 

F ne output, the DEA estimation is obtained from the optimal solution of 

t he SVF step function, regardless of the values of the hyperparameters C

a

4

arison of methods: FDH vs SVF and DEA vs CSVF. To do that, we present 

a nvironments. Their descriptions appear in Table 1 . 

s, widely known in the economic literature. Scenario I represents a 

s es. For all of them, we tested with data set sizes of 20, 30, 40, 50, 60, 

7 i [1,10], independently for each input and observation. Then, the efficient 

o  0 , 0 . 4 ) | was subtracted to obtain the data used for the analysis. We ran 

5 t size to investigate the relative performance of the methods. Addition- 

a the best model must be selected through the determination of the best 

c ross-validation process based on five folds. In our framework, the hy- 

p idth to be defined for each input dimension. In practice, it is necessary 

t rameters, since the computational cost of testing the infinite combina- 

t xed the following values for each hyperparameter: C ∈ { 0 . 1 , 0 . 5 , 1 , 2 , 5 } , 
ε t integer), with t = 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 . These values generate a to- 

t he SVF problem. Additionally, performance of each method is evaluated 

b as. The MSE statistic is defined as 
50 ∑ 

t=1 

n ∑ 

i =1 

( f ( x t 
i 
) − ˆ f ( x t 

i 
) ) 

2 
/ 50 n , whereas 

t

of the best hyperparameters in our simulations. All of them were esti- 

m mputational issues, we fixed the hyperparameter in d = 20 . Regarding 

t ith an input (scenario I), because the cross-validated generalization er- 

r r C was relevant for scenarios with more inputs, as II and III. Something 

s rio I with small sample sizes (20 and 30 observations). Regarding the 

h  of cells), and, consequently, the number of decision variables and con- 

s e number of observations, the larger the value of the hyperparameter 

d

died: FDH, SVF, DEA and CSVF based on MSE. The first two columns 

i how the mean and the standard deviation (in brackets) of the methods 

c ls in which the SVF improves or equals the MSE of the FDH and the 

p er. The last two columns are like the previous ones but compare CSVF 

v y the increase in dimensionality, from one to several inputs, since the 
Accordingly, the step function generated by the standard FDH te

upport Vector Frontiers technique. The classical FDH estimated pr

ters C and ε, as a possible SVF estimator. Another thing is that th

e are able to prove that, for any parameters C and ε, in the sim

stimator is always optimal of model (9) when the empirical grid 

 useful lemma. 

emma 4. Let m = 1 and let ( w 

′ , ξ ′ 
1 , ..., ξ

′ 
n ) be a feasible so

 

′ φG E 

SV F 
( max 

1 ≤i ≤n 
{ x i } ) ≥ max { y 1 , ..., y n } . 

roof. See Appendix. �

heorem 4. Let m = 1 . Then, ( w 

F DH , ξ F DH 
1 , . . . , ξ F DH 

n ) ≥ 0 is an optim

roof. See Appendix. �

However, Theorem 4 cannot be extended to the general framewo

cal grid, a possible counterexample would be related to the follow

 x C 
1 
, x C 

2 
, y C ) = ( 3 , 1 , 3 ) . 

By convexification, and taking into account that the standard D

echnique, all the previous results may be trivially extended to th

ional DEA estimation of the production function is always one of

rontiers technique. Additionally, in the context of one input and o

he Support Vector Frontiers after applying the convexification of t

nd ε. 

. Experiments using synthetic data 

This section describes simulation results that serve for the comp

 comparison of all these methods in three alternative simulated e

These three scenarios exemplify several Cobb-Douglas function

ingle-input case and scenarios II and III represent multi-input cas

0, 80, 90 and 100. The input data were randomly sampled from Un

utput level was calculated and a random inefficiency term u ∼ | N(

0 trials ( t = 1 , ..., 50 ) for each combination of scenario and data se

lly, and due to the nature of SVF, as happens with SVM and SVR, 

ombination of hyperparameters. This was carried out through a c

erparameters are C, ε and d, the number of cells with the same w

o state a finite number of possible combinations of these hyperpa

ions of hyperparameters would be unmanageable. Arbitrarily, we fi

 ∈ { 0 , 0 . 001 , 0 . 01 , 0 . 1 , 0 . 2 } and d = 0 . 1 · t · n (rounded to the neares

al quantity of 250 different combinations of hyperparameters for t

y two standard criteria: the mean squared error (MSE) and the bi

he bias is calculated as 
50 ∑ 

t=1 

n ∑ 

i =1 

| f ( x t 
i 
) − ˆ f ( x t 

i 
) | / 50 n . 

Table 2 reports the mean and standard deviation (in brackets) 

ated by cross-validation except for scenario III, where, due to co

he results, the hyperparameter C was indifferent for the scenario w

or was always the same. However, the value of the hyperparamete

imilar happened with the value of the hyperparameter ε in scena

yperparameter d, it determines the size of the grid G (the number

traints in model (9). The observed trend shows that the greater th

. 

Table 3 describes the performance of the different methods stu

ndicate the scenario and the sample size. The next four columns s

onsidered. The following two columns report the fraction of tria

ercentage of improvement of this method with respect to the oth

ersus DEA. Regarding the results, all the methods were affected b
11 
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Table 2 

The best SVF hyperparameters. 

Hyperparameter 

Scenario Number of obs. C ε d 

MEAN (STD) MEAN (STD) MIN MAX MEAN (STD) MIN MAX 

20 indifferent 0.001 0.001 14.2(4.005) 6 20 

30 0.001 0.001 23.16(5.751) 9 30 

40 0.037(0.077) 0 0.2 31.68(6.944) 12 40 

50 0.079(0.095) 0 0.2 41.8(8.003) 25 50 

I 60 indifferent 0.088(0.089) 0 0.2 49.08(9.207) 24 60 

70 0.094(0.121) 0 0.3 60.9(9.083) 35 70 

80 0.061(0.087) 0 0.2 72.32(8.698) 48 80 

90 0.033(0.068) 0 0.2 76.86(12.226) 45 90 

100 0.016(0.047) 0 0.2 89.8(12.204) 60 100 

20 1.804(1.924) 0.047(0.073) 0 0.2 11.52(5.339) 4 20 

30 3.064(1.941) 0.025(0.045) 0 0.2 16.92(7.756) 6 30 

40 3.332(1.811) 0.009(0.024) 0 0.1 25.28(9.23) 8 40 

50 3.66(1.695) 0.022(0.049) 0 0.2 24.6(12.529) 5 50 

II 60 3.15(1.785) 0.012(0.033) 0 0.2 38.04(16.603) 12 60 

70 2.98(1.635) 0.006(0.02) 0 0.1 48.72(17.26) 14 70 

80 3.96(1.551) 0.002(0.004) 0 0.01 49.76(23.214) 16 80 

90 3.38(1.589) 0.011(0.027) 0 0.1 62.82(22.082) 18 90 

100 3.46(1.717) 0.011(0.034) 0 0.2 63.2(25.67) 10 100 

20 1.9(1.897) 0.054(0.08) 0 0.2 

30 1.964(1.755) 0.019(0.041) 0 0.2 

40 1.978(1.799) 0.023(0.044) 0 0.2 

50 2.364(1.841) 0.028(0.058) 0 0.2 

III 60 2.216(1.836) 0.011(0.027) 0 0.1 20(0) 

70 1.996(1.697) 0.014(0.032) 0 0.1 

80 2.104(1.664) 0.012(0.027) 0 0.1 

90 2.572(1.773) 0.023(0.053) 0 0.2 

100 3.25(1.882) 0.025(0.045) 0 0.2 

Fig. 4. Graphical illustrations of SVF vs FDH and CSVF vs DEA in a simulated dataset. 

M rovement of the SVF in relation to the FDH was quite substantial, giving 

b  14.3% to 34.4% on average. As for the comparison between CSVF and 

D vious comparison between SVF and FDH, with improvements ranging 

f uperiority of SVF and CSVF compared to traditional approaches is high 

e

 The structure of Table 4 is like that of Table 3 . Regarding the bias, SVF 

o t, with a reduction ranging from 8% to 19.9%. As for the convex tech- 

n ements from 27.3% to 56.1%. For CSVF, the percentage of improvement 

i  MSE, the dominance of the new approaches compared to traditional 

o

f one of our simulations. 

n (SVR), which combines the minimization of the empirical er- 

r nimization of the structural error comes from a complex the- 

o of the so-called PAC (probably approximately correct) learning 

( unction will most likely have a low generalization error (i.e., 

a come values for previously unseen data ). Consequently, Support Vec- 

t enerating Process is like by avoiding making a simple ‘description’ of 

t DH and DEA, which are exclusively based on the minimization of the 

e onally, the experiments using synthetic data showed how the produc- 
SE increases as the number of inputs increases. Likewise, the imp

etter results in all the simulations. The improvements ranged from

EA, the percentages of enhancement were higher than in the pre

rom 38.7% to 78.4% on average. One significant result is that the s

ven under contexts with a small number of observations. 

Table 4 shows the results based on the bias instead of the MSE.

utperforms FDH for all the computational experiences carried ou

ologies, CSVF works better than the traditional DEA, with improv

ncreases as the number of inputs augments. As in the case of the

nes is clear, even under frameworks based on few observations. 

Finally, Fig. 4 a and 4 b show a graphical example of the result o

The new approach is based on Support Vector Regressio

or with the minimization of the structural error. The mi

ry, where the focus is the determination of a bound 

see, for example, [19] ). The goal is that the estimated f

 measure of how accurately an approach is able to estimate out

or Frontiers (SVF), based upon SVR, learn what the hidden Data G

he data sample at a frontier level, something that happens with F

mpirical error due to the minimal extrapolation principle. Additi
12 
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Table 3 

Relative performance of estimation methods based on the MSE performance criteria. 

Mean squared error 

Scenario Number of obs. Fraction of trials Improvement (%) Fraction of trials Improvement (%) 

FDH SVF DEA CSVF SVF < = FDH SVF vs FDH CSVF < = DEA CSVF vs DEA 

20 0.06(0.026) 0.046(0.024) 0.021(0.017) 0.012(0.011) 1 23.126(18.476) 0.96 39.28(29.892) 

30 0.048(0.016) 0.038(0.014) 0.017(0.011) 0.01(0.008) 1 20.47(13.607) 0.98 39.604(27.292) 

40 0.036(0.01) 0.029(0.009) 0.01(0.007) 0.006(0.006) 1 18(9.163) 0.98 41.54(22.823) 

50 0.033(0.011) 0.026(0.01) 0.008(0.006) 0.004(0.005) 1 19.686(13.358) 1 49.347(24.152) 

I 60 0.027(0.008) 0.022(0.008) 0.007(0.006) 0.004(0.004) 1 18.776(10.464) 1 47.294(20.497) 

70 0.026(0.008) 0.021(0.007) 0.007(0.005) 0.003(0.004) 1 20.539(10.891) 1 52.575(21.751) 

80 0.022(0.007) 0.018(0.006) 0.005(0.004) 0.003(0.002) 1 17.649(10.122) 1 48.986(23.684) 

90 0.02(0.005) 0.017(0.005) 0.004(0.003) 0.002(0.002) 1 14.712(8.33) 1 40.99(17.318) 

100 0.018(0.005) 0.015(0.004) 0.004(0.003) 0.002(0.002) 1 15.18(9.632) 1 38.709(22.785) 

20 0.093(0.031) 0.062(0.029) 0.048(0.023) 0.019(0.012) 1 32.906(21.515) 0.96 57.68(24.558) 

30 0.088(0.03) 0.065(0.027) 0.039(0.02) 0.014(0.01) 1 25.792(15.893) 0.98 62.702(21.254) 

40 0.074(0.021) 0.058(0.021) 0.031(0.013) 0.011(0.008) 1 21.86(16.536) 1 64.682(19.001) 

50 0.067(0.015) 0.052(0.016) 0.022(0.009) 0.009(0.009) 1 23.709(13.996) 0.96 55.665(45.693) 

II 60 0.064(0.015) 0.05(0.015) 0.021(0.01) 0.008(0.007) 1 21.534(13.903) 0.98 61.858(24.149) 

70 0.06(0.012) 0.05(0.013) 0.02(0.007) 0.008(0.007) 1 17.301(13.545) 0.98 58.134(21.477) 

80 0.055(0.01) 0.046(0.01) 0.017(0.007) 0.006(0.003) 1 15.941(11.554) 0.98 63.6(16.983) 

90 0.051(0.011) 0.044(0.011) 0.016(0.007) 0.007(0.005) 1 14.314(11.453) 0.98 60.297(19.467) 

100 0.047(0.008) 0.04(0.01) 0.014(0.005) 0.005(0.003) 1 15.497(12.1) 0.98 62.138(18.285) 

20 0.125(0.046) 0.085(0.034) 0.078(0.036) 0.029(0.019) 1 30.401(20.041) 1 62.182(19.52) 

30 0.11(0.03) 0.075(0.028) 0.062(0.03) 0.019(0.013) 1 31.182(19.658) 0.98 66.747(18.605) 

40 0.106(0.032) 0.073(0.03) 0.054(0.02) 0.015(0.01) 1 31.681(18.429) 0.98 70.078(20.382) 

50 0.093(0.021) 0.063(0.018) 0.042(0.015) 0.011(0.006) 1 31.281(17.332) 1 73.877(15.085) 

III 60 0.094(0.018) 0.063(0.017) 0.042(0.014) 0.011(0.006) 1 32.396(14.453) 1 73.107(12.174) 

70 0.092(0.019) 0.061(0.018) 0.04(0.015) 0.01(0.007) 1 33.688(15.497) 1 74.851(14.008) 

80 0.082(0.017) 0.054(0.018) 0.034(0.011) 0.007(0.003) 1 34.423(15.374) 1 78.375(12.496) 

90 0.08(0.015) 0.053(0.015) 0.03(0.009) 0.009(0.013) 1 33.81(15.881) 0.96 66.782(53.812) 

100 0.079(0.013) 0.056(0.013) 0.03(0.009) 0.007(0.007) 1 29.867(11.365) 0.96 74.618(22.103) 

1
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Table 4 

Relative performance of estimation methods based on the bias performance criteria. 

Bias 

Scenario Number of obs. Fraction of trials Improvement (%) Fraction of trials Improvement (%) 

FDH_ABS SVF_ABS DEA_ABS CSVF_ABS SVF_ABS < = FDH_ABS SVF_ABS vs FDH_ABS CSVF_ABS < = DEA_ABS CSVF_ABS vs DEA_ABS 

20 0.198(0.05) 0.17(0.05) 0.104(0.042) 0.074(0.034) 1 14.211(10.371) 0.9 27.252(24.578) 

30 0.18(0.034) 0.156(0.034) 0.089(0.029) 0.06(0.023) 1 13.383(7.095) 0.96 30.993(18.712) 

40 0.155(0.024) 0.137(0.026) 0.066(0.022) 0.045(0.021) 1 12.288(6.549) 1 33.668(15.439) 

50 0.15(0.023) 0.132(0.024) 0.06(0.016) 0.04(0.016) 1 11.767(7.046) 0.98 35.347(16.288) 

I 60 0.134(0.018) 0.119(0.02) 0.053(0.016) 0.035(0.014) 1 11.152(5.373) 1 36.312(11.539) 

70 0.131(0.019) 0.116(0.02) 0.049(0.015) 0.032(0.015) 1 11.157(4.782) 1 37.062(13.023) 

80 0.123(0.02) 0.111(0.019) 0.046(0.015) 0.031(0.013) 1 9.347(3.65) 1 33.281(11.379) 

90 0.116(0.013) 0.106(0.014) 0.039(0.01) 0.027(0.009) 1 9.009(3.961) 1 31.853(10.586) 

100 0.11(0.015) 0.101(0.015) 0.038(0.011) 0.027(0.01) 1 8.722(3.565) 0.98 30.588(11.75) 

20 0.249(0.045) 0.2(0.05) 0.17(0.042) 0.101(0.032) 1 19.867(13.551) 0.96 39.658(18.271) 

30 0.246(0.044) 0.212(0.046) 0.151(0.038) 0.082(0.031) 1 14.097(9.055) 0.98 44.811(18.545) 

40 0.223(0.035) 0.197(0.04) 0.132(0.029) 0.07(0.026) 1 12.283(8.81) 1 46.997(15.129) 

50 0.218(0.026) 0.189(0.032) 0.114(0.021) 0.063(0.027) 1 13.594(8.496) 0.96 43.884(22.736) 

II 60 0.207(0.025) 0.183(0.028) 0.104(0.02) 0.057(0.022) 1 11.829(7.956) 0.98 45.423(17.326) 

70 0.205(0.022) 0.187(0.023) 0.1(0.013) 0.061(0.021) 1 8.593(6.036) 0.98 39.713(18.1) 

80 0.193(0.017) 0.177(0.018) 0.091(0.013) 0.05(0.014) 1 8.19(5.649) 0.96 44.273(14.527) 

90 0.187(0.02) 0.173(0.022) 0.087(0.017) 0.05(0.017) 1 7.24(5.748) 0.98 42.471(15.682) 

100 0.182(0.017) 0.168(0.021) 0.081(0.013) 0.046(0.013) 1 8.035(6.362) 0.96 43.309(16.463) 

20 0.283(0.049) 0.234(0.048) 0.214(0.045) 0.117(0.036) 1 16.94(12.771) 0.98 44.533(15.679) 

30 0.271(0.038) 0.224(0.045) 0.19(0.042) 0.098(0.032) 1 17.024(12.169) 0.98 47.769(15.344) 

40 0.264(0.039) 0.22(0.046) 0.173(0.034) 0.085(0.026) 1 17.113(10.631) 0.96 50.106(16.306) 

50 0.25(0.03) 0.206(0.03) 0.153(0.027) 0.072(0.023) 1 17.063(9.746) 1 52.36(15.557) 

III 60 0.25(0.027) 0.207(0.031) 0.15(0.024) 0.07(0.02) 1 17.391(8.809) 1 52.876(11.499) 

70 0.248(0.023) 0.204(0.031) 0.144(0.023) 0.069(0.022) 1 17.825(9.214) 0.96 52.017(16.303) 

80 0.235(0.026) 0.192(0.032) 0.134(0.021) 0.058(0.015) 1 18.561(8.696) 1 56.066(12.685) 

90 0.231(0.021) 0.189(0.027) 0.124(0.017) 0.064(0.035) 1 18.151(9.2) 0.94 47.215(31.566) 

100 0.232(0.019) 0.195(0.022) 0.124(0.016) 0.058(0.024) 1 15.712(6.472) 0.96 53.283(18.828) 

1
4
 



D. Valero-Carreras, J. Aparicio and N.M. Guerrero Omega 104 (2021) 102490 

t than FDH and DEA, which somehow represent overfitted models. The 

e tiers, thereby avoiding in some respects the overfitting problem. 

s some limitations. We focused our attention exclusively on the quality 

o g the production frontier, using the traditional bias and MSE measures. 

H at apply FDH or DEA estimate pointwise efficiency through many dif- 

f nction, weighted additive measures, …). This is clearly an extension of 

S ss of the efficiency scores, preservation of the ranking of units, stability 

a tical viewpoints. 

5

rontier analysis and Support Vector Machines (SVM). So far, these two 

fi points. However, they present certain points in common and the new 

t ig data and machine learning strongly encourages efficiency analysis 

r cent papers by [35] and [59] ). In our case, this has meant introducing 

a rt Vector Regression, generating the so-called Support Vector Frontiers 

( d to shape constraints and adapted in such a way that the estimator 

s one of the key shape constraints. It is related to the classical axiom of 

f croeconomics. In a first stage and motivated by the Free Disposal Hull 

( ce was introduced that allowed determining monotonic non-decreasing 

s d stage, by convexification, we were able to yield concave predictors, 

w  Data Envelopment Analysis (DEA). This resulted in the introduction of 

t ntrast to standard SVM, SVF and CSVF are able to estimate production 

f s in the data instead of mean trends and to guarantee the satisfaction 

o

 in the literature for measuring technical efficiency. In this paper, we 

a ed as feasible estimators of the introduced adaptation of the Support 

V cing one output by consuming only one input, FDH and DEA are also 

o reveals the nature of FDH and DEA as part of existing machine learning 

t

c approaches for determining technical efficiency and Support Vector 

F oblem inherited from the axiom of minimal extrapolation assumed in 

t s not assume this axiom, which endows SVF with more flexibility thus 

a  and DEA estimators following a cross-validation process. Overall, the 

i g and integrating machine learning techniques to the efficiency analysis 

w igated in this paper through several experiments using synthetic data. 

O  respectively, with respect to several traditional error measures like the 

m served that the determined improvements ranged from 14.3% to 78.4% 

i % to 56.1%. 

acks in comparison with FDH and DEA. As for the extra returns, the 

a s of this machine learning technique to the efficiency measurement 

w ive technical efficiency, which incorporates the notion of margin to the 

d new technique takes up more computing time in comparison with FDH 

a ust be determined is a Linear Program; the high number of constraints 

a  the cross-validation process, need more computational time than the 

t  fact that there are several user-defined parameters to be tuned; that 

t t the determination of the “knots” and dimension of the cells may be 

p

oned in this paper, it is worth stating that the new approach is clearly 

m ditional FDH and DEA, based on simple Linear Programming. Support 

V h cross-validation and a lot of computing and storage capacity. Conse- 

q tion of the extreme behavior of a particular set of units, determining a 

‘ e the most suitable techniques. However, sometimes the evaluation of 

t  for the researchers. For example, it is usual to resort to random sam- 

p r International Student Assessment) for evaluating the performance of 

e tion of the level of technical efficiency of each anonymous school, but 

e ed with each country in the OECD (The Organisation for Economic Co- 

o  machine learning techniques, such as Support Vector Frontiers, which 

i e actual Data Generating Process. Even in the case of being interested 

i ight show interest in finding out, for example, whether the units iden- 

t also out-of-sample efficient or not. Again, in this situation, techniques 

a help. Additionally, the use of SVF should always be accompanied by a 

p  and DEA would be, in this case, suitable tools to be applied. 

nteresting avenues for further research with Support Vector Frontiers. 

T he context of producing multiple outputs. In this respect, Vazquez and 

W method, which is a multi-output version of Kriging that exploits the 
ion frontier estimated by SVF is closer to the theoretical frontier 

stimated SVF frontier deviates from FDH and DEA production fron

Finally, we want to point out that our simulation study present

f the frontier estimators with the objective of correctly identifyin

owever, many interesting questions remain open. Most studies th

erent technical efficiency measures (radial, directional distance fu

VF to be carried out in the future. Additionally, studying robustne

nd other issues could also be of interest from theoretical and prac

. Conclusions and future work 

In this paper, we built a new bridge between non-parametric f

elds have been growing in parallel with few significant contact 

endency in economics, engineering and operations research on b

esearchers to join the data analytics field (see, for example, the re

 new approach to estimate production frontiers by adapting Suppo

SVF). Specifically, standard Support Vector Regression is subjecte

urface envelops all the observations from above. Monotonicity is 

ree disposability, which any production function must meet in mi

FDH) technique, a specific transformation function of the input spa

tep functions as estimator of the production functions. In a secon

hich are directly linked to convex production possibility sets and

he so-called Convexificated Support Vector Frontiers (CSVF). In co

unctions since they have been defined to capture maximum trend

f monotonicity and concavity. 

Both FDH and DEA are well-known non-parametric approaches

lso showed that these two standard methods could be interpret

ector Regression technique. Under the simplest context of produ

ptimal solutions of Support Vector Frontiers. This reinterpretation 

echniques. 

Despite the similarities between the traditional non-parametri

rontiers, FDH and DEA suffer from a problem of overfitting, a pr

he classical literature [ 1 , 9 , 28 ]. In contrast, the new technique doe

llowing to locate the estimated production frontier above the FDH

ntroduction of SVF in the literature opens up new ways for adaptin

orld. Furthermore, performance of the new approach was invest

ur results indicated that SVF and CSVF outperform FDH and DEA,

ean squared error (MSE) and the bias. Regarding the MSE, we ob

n our simulations. As for the bias, the enhancement ranged from 8

The new technique presents both extra advantages and drawb

daptation of the standard SVR allowed translating certain notion

orld. In particular, we introduced the robust concept of ε-insensit

efinition of performance efficiency. Regarding the drawbacks, the 

nd DEA. Although the optimization program linked to SVF that m

ssociated with the satisfaction of monotonicity and, additionally,

raditional FDH and DEA techniques. Other drawbacks include the

here is a combinatorial nature to the size of the model; and tha

roblematic, to name just a few. 

Regarding the implementation in practice of the methods menti

ore intensive with respect to the computational burden than tra

ector Frontiers depend on several parameters to be tuned throug

uently, if the objective of the researcher is exclusively the descrip

relative’ to the sample efficiency score, then both FDH and DEA ar

he particular set of units in the sample is not the main objective

les of schools from international tests such as PISA (Programme fo

ducational systems. In this case, the interest is not the determina

stimating the underlying educational production function associat

peration and Development). This is when it makes sense to apply

mplements the notion of out-of-sample estimation, focusing on th

n the evaluation of a particular sample of units, the researchers m

ified as technically efficient at a relative to the sample level are 

s the new approach introduced in this paper might be of some 

reliminary descriptive analysis of the data at a frontier level. FDH

We finish this section by mentioning several lines that state i

he first one is the possibility of extending the new technique to t

alter [57] extended SVR by considering the so-called Cokriging 
15 
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c uts (see also the survey by [13] ). Moreover, in the same line, the new 

m r in the general multiple output context. While Briec et al. [14] have 

d d FDH-based cost frontiers, Balaguer-Coll et al. [8] and Narbón-Perpiñá

e nitely make a difference from an empirical point of view. Additionally, 

w zation program, in the line of FDH and DEA. However, it is possible to 

u y of the SVM estimator (see, for example, [12] ). Nowadays, large sample 

p ature (see, for example, [53] ). Support Vector Machines are known to 

b ertain hypotheses defined on the used loss function and kernel (see, 

f d by the SVF model, where some new constraints are incorporated to 

t rstanding on whether the same results become true or not. Another 

p  Returns to Scale and other types of returns to scale. Finally, an evident 

r ch to real databases in different empirical contexts, thus checking the 

v
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P  a grid G . Then, we have that f (x ) = f ( C l 1 ... l m ) ∀ x ∈ C l 1 ... l m , ∀ l 1 = 

1 llowing system has a solution or not. 

(12) 

ations corresponding to l 1 = l 2 = ... = l m −1 = 1 and l m 

= 1 , ..., k m 

are, in 

m

⎛
⎜⎜⎝
︸

(13) 

w e determinant of a triangular matrix is the product of the elements 

o = l m −2 = 1 , l m −1 = 1 , ..., k m −1 and l m 

= 1 , ..., k m 

, we have the following 
orrelations due to the proximity in the space of factors and outp

ethodology could also be applied for estimating the cost frontie

eveloped the theoretical case for distinguishing between DEA- an

t al. [ 43 , 44 ] have convincingly shown that these distinctions defi

e resorted in this paper to the L1-norm to define a linear optimi

se other norms to improve the results associated with the accurac

roperties of FDH and DEA estimators are well-known in the liter

e consistent and robust for classification and regression under c

or example, [18] ). Consequently, in the new framework introduce

he standard SVR model, it is necessary to gain an in-depth unde

ossibility is to extend the new approach for dealing with Constant

esearch line to be followed is the application of the new approa

alidity of the technique in practice. 
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ppendix 

roof of Proposition 1. . Let f : R 

m + → R a step function on

 , ..., k 1 , ..., ∀ l m 

= 1 , ..., k m 

. Now, we need to find out whether the fo

∑ 

s 1 =1 ,..., l 1 

. . . 
s m =1 ,..., l m 

w s 1 ... s m = f 
(
C l 1 ... l m 

)
, l 1 = 1 , ..., k 1 , ..., l m 

= 1 , ..., k m 

The expression in (12) represents k 1 · ... · k m 

equations. The equ

atrix format, as follows. 

 

 

 

 

1 0 0 

1 1 0 

. . . 
. . . 

. . . 

1 1 . . . 1 

⎞ 

⎟ ⎟ ⎠ 

 ︷︷ ︸ 
A 1 ... 1 l m 

⎛ 

⎜ ⎜ ⎝ 

w 1 ... 11 

w 1 ... 12 

. . . 
w 1 ... 1 k m 

⎞ 

⎟ ⎟ ⎠ 

︸ ︷︷ ︸ 
˜ W 1 ... 1 l m 

= 

⎛ 

⎜ ⎜ ⎝ 

f ( C 1 ... 11 ) 
f ( C 1 ... 12 ) 

. . . 

f 
(
C 1 ... 1 k m 

)
⎞ 

⎟ ⎟ ⎠ 

︸ ︷︷ ︸ 
F ( C 1 ... 1 l m ) 

, 

ith | A 1 ... 1 l m | = 1 because A 1 ... 1 l m is a lower triangular matrix (th

f its diagonal). Regarding the system of equations for l 1 = l 2 = ... 
16 
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f⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

w 1 ... 11 

w 1 ... 12 

. . . 
w 1 ... 1 k m 

w 1 ... 21 

w 1 ... 22 

. . . 
w 1 ... 2 k m 

. . . 
w 1 ... k m −1 1 

w 1 ... k m −1 2 

. . . 
w 1 ... k m −1 k m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

︸ ︷︷ ︸ 
˜ W 1 ... 1 l m −1 l m 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

f ( C 1 ... 11 ) 
f ( C 1 ... 12 ) 

. . . 

f 
(
C 1 ... 1 k m 

)
f ( C 1 ... 21 ) 
f ( C 1 ... 22 ) 

. . . 

f 
(
C 1 ... 2 k m 

)
. . . 

f 
(
C 1 ... k m −1 1 

)
f 
(
C 1 ... k m −1 2 

)
. . . 

f 
(
C 1 ... k m −1 k m 

)

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

︸ ︷︷ ︸ 
F 

(
C 1 ... 1 l m −1 l m 

)

, 

w
 

is a lower triangular matrix by blocks, and the determinant of those 

k e blocks of its diagonal. Sequentially, we can write all k 1 · ... · k m −1 · k m 

e
 

· ˜ W l 1 ... l m −1 l m 
= F ( C l 1 ... l m −1 l m 

) with | A l 1 ... l m −1 l m 
| = 

∏ 

s 1 =1 ,..., k 1 

| A s 1 l 2 ... l m −1 l m 
| = 1 

b t | A l 1 ... l m −1 l m 
| = 1 � = 0 , we have that A l 1 ... l m −1 l m 

is invertible. Hence, the 

s  solution). �

P s suppose that ∃ j ′ ∈ { 1 , . . . , m } with h j ′ > l j ′ . By the definition of cell 

i
) 
1 
. But note that if h j ′ > l j ′ , by the definition of knot in a grid G, then 

t t 
( j ′ ) 
l 
j ′ +1 

, which is a contradiction with the hypothesis x ≤ z. �

P unction through the parameterized grid G , we start by prov- 

i  ∀ h 1 ≤ l 1 , . . . , ∀ h m 

≤ k m 

implies f is a monotonic non-decreasing 

f  to prove that f (x ) ≤ f (z) . By Lemma 1 , we have that h j ≤
l able function through the parameterized grid G with parame- 

t  C h 1 ... h m and f (z) = 

∑ 

s 1 =1 ,..., l 1 

. 

. . 
s m =1 ,..., l m 

w s 1 ... s m = W l 1 ... l m 
for z ∈ C l 1 ... l m . Finally, 

 . . , ∀ h m 

≤ k m 

implies that f (x ) ≤ f (z) . (ii) Let f be a monotonic non- 

d  1 = 1 , . . . , k 1 , . . . , ∀ l m 

= 1 , . . . , k m 

, ∀ h 1 ≤ l 1 , . . . , ∀ h m 

≤ k m 

. Let consider, 

w  1 , . . . , m . Let prove that a h 1 ... h m ≤ a l 1 ... l m . Suppose that ∃ j ′ ∈ { 1 , . . . , m } 
s e have that t 

( j ′ ) 
h 

j ′ 
= a 

( j ′ ) 
h 1 ... h m 

≤ x ( j ′ ) ∀ x ∈ C h 1 ... h m and t 
( j ′ ) 
l 
j ′ 

= a 
( j ′ ) 
l 1 ... l m 

≤ z ( j ′ ) 

∀ possible if h j ′ > l j ′ , which is a contradiction with the fact that h j ≤
l Moreover, a h 1 ... h m ∈ C h 1 ... h m , a l 1 ... l m ∈ C l 1 ... l m and f is a recoverable func- 

t means that f ( a h 1 ... h m ) = W h 1 ... h m 
and f ( a l 1 ... l m ) = W l 1 ... l m 

. Finally, since f

i n conclude that f ( a h 1 ... h m ) ≤ f ( a l 1 ... l m ) , that is, W h 1 ... h m 
≤ W l 1 ... l m 

. �

P , m, with h j , l j = 1 , ..., k j , trivially implies that W l 1 l 2 ... s j ... l m 
≤ W l 1 l 2 ... l m 

∀ ... l m ≤ W l 1 l 2 ... l m 
, ∀ s j = l j − 1 , ∀ l j = 1 , ..., k j , ∀ j = 1 , . . . , m . Let then h j , l j ∈ 

{ e that W l 1 l 2 . ... l m 
≥ W l 1 −1 l 2 ... l m 

≥ W l 1 −2 l 2 ... l m 
≥ ... ≥ W h 1 l 2 ... l m 

≥ W h 1 l 2 −1 ... l m ≥
W  �

P  { x ∈ R 

m + : a 

E 
l 1 ... l m 

≤ x < b E 
l 1 ... l m 

} . By hypothesis, we have that x i ≤ a 

E 
l 1 ... l m 

. 

T

P et us assume that it is not true that x i ≤ a 

E 
l 1 ... l m 

. Then ∃ j ′ ∈ { 1 , . . . , m } 
s

.. l m 
≤ x < b E 

l ... l m 
} , we have that a 

E( j ′ ) 
l ... l m 

< x 
( j ′ ) 
i 

≤ x ( j 
′ ) < b 

E( j ′ ) 
l ... l m 

. Therefore, 
ormat: 
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

 ︷︷ 
A 1 ... 1 l m −1 l m 

ith | A 1 ... 1 l m −1 l m 
| = 

∏ 

s m −1 =1 ,..., k m −1 

| A 1 ... 1 s m −1 l m 
| = 1 because A 1 ... 1 l m −1 l m

ind of matrices is equal to the product of the determinants of th

quations of the system given in (12) in matrix format as A l 1 ... l m −1 l m

ecause A l 1 ... l m −1 l m 
is a lower triangular matrix by blocks. Given tha

ystem given in (12) is compatible and determined (it has a unique

roof of Lemma 1. Let x ∈ C h 1 ... h m and z ∈ C l 1 ... l m with x ≤ z. Let u

n grid a G, we have that t 
( j ′ ) 
h 

j ′ 
≤ x ( j ′ ) < t 

( j ′ ) 
h 

j ′ +1 
and t 

( j ′ ) 
l 
j ′ 

≤ z ( j ′ ) < t 
( j ′ 
l 
j ′ +

 

( j ′ ) 
h 

j ′ 
≥ t 

( j ′ ) 
l 
j ′ +1 

. Therefore, x ( j ′ ) ≥ t 
( j ′ ) 
l 
j ′ +1 

. Hence, x ( j ′ ) > z ( j ′ ) since z ( j ′ ) < 

roof of Theorem 1. (i) For f : R 

m + → R + , a recoverable f

ng that W l 1 ... l m 
≥ W h 1 ... h m 

, ∀ l 1 = 1 , . . . , k 1 , . . . , ∀ l m 

= 1 , . . . , k m 

,

unction. Let x ∈ C h 1 ... h m and z ∈ C l 1 ... l m with x ≤ z. We need

 j , ∀ j = 1 , . . . , m . Additionally, by hypothesis, f is a recover

ers w. In this way, f (x ) = 

∑ 

s 1 =1 ,..., h 1 

. 

. . 
s m =1 ,..., h m 

w s 1 ... s m = W h 1 ... h m 
for x ∈

W l 1 ... l m 
≥ W h 1 ... h m 

, ∀ l 1 = 1 , . . . , k 1 , . . . , ∀ l m 

= 1 , . . . , k m 

, ∀ h 1 ≤ l 1 , .

ecreasing function. We have to prove that W l 1 ... l m 
≥ W h 1 ... h m 

, ∀ l

ithout loss of generality, l 1 . . . l m 

and h 1 . . . h m 

with h j ≤ l j , ∀ j =
uch that a 

( j ′ ) 
h 1 ... h m 

> a 
( j ′ ) 
l 1 ... l m 

. By the definition of cell in a grid, w

 z ∈ C l 1 ... l m . Therefore, t 
( j ′ ) 
h 

j ′ 
> t 

( j ′ ) 
l 
j ′ 

. But the last inequality is only 

 j , ∀ j = 1 , . . . , m . Then, a h 1 ... h m ≤ a l 1 ... l m with h j ≤ l j , ∀ j = 1 , . . . , m . 

ion through the parameterized grid G with parameters w, which 

s a monotonic non-decreasing function and a h 1 ... h m ≤ a l 1 ... l m , we ca

roof of Proposition 2. (i) W h 1 ... h m 
≤ W l 1 ... l m 

, ∀ h j ≤ l j , ∀ j = 1 , ...

 s j = l j − 1 , ∀ l j ≤ k j , ∀ j = 1 , . . . , m . (ii) Let us assume that W l 1 l 2 ... s j 

 1 , . . . , k j } , ∀ j = 1 , . . . , m with h j ≤ l j , ∀ j = 1 , . . . , m . Then, we hav

 h 1 l 2 −2 ... l m ≥ ... ≥ W h 1 h 2 ... l m 
≥ W h 1 h 2 ... l m −1 

≥ W h 1 h 2 ... l m −2 
≥ ... ≥ W h 1 ... h m 

.

roof of Lemma 2. Let x ∈ C E 
l 1 ... l m 

. Then a 

E 
l 1 ... l m 

≤ x because C E 
l 1 ... l m 

=
herefore, x i ≤ a 

E 
l 1 ... l m 

≤ x . �

roof of Lemma 3. Let x ∈ C E 
l 1 ... l m 

and x i ≤ x for an i ∈ { 1 , . . . , n } . L

uch that x 
( j ′ ) 
i 

> a 
E( j ′ ) 
l ... l m 

. By the definition of C E 
l ... l m 

= { x ∈ R 

m + : a 

E 
l .
1 1 1 1 1 1 
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t f values { ̃  x 
( j ′ ) 
l 
j ′ 

} n ( j ′ ) 
l 
j ′ =1 

such that ˜ x 
( j ′ ) 
l 
j ′ 

< x 
( j ′ ) 
i 

< ˜ x 
( j ′ ) 
l 
j ′ +1 

, with ˜ x 
( j ′ ) 
l 
j ′ 

= a 
E( j ′ ) 
l 1 ... l m 

and 

x  

( j ′ ) 
i 

∈ { ̃  x 
( j ′ ) 
l 
j ′ 

} n ( j ′ ) 
l 
j ′ =1 

. Consequently, x i ≤ a 

E 
l 1 ... l m 

. �

P  i } = max 
i ∈ A E 

l 1 ... l m 

{ y i } = max 
i/ x i ≤a E 

l 1 ... l m 

{ y i } = f F DH ( a 

E 
l 1 ... l m 

) , where the third equality 

i e FDH function and the other equalities by definition. �

P se w 

F DH φG E 

SV F 
(x ) = f F DH (x ) is an enveloping function of the data. Con- 

s al errors ξ F DH 
i 

, ∀ i = 1 , ..., n . Additionally, f F DH is a recoverable function 

t given that it is well-known that f F DH is a monotonic non-decreasing 

f e satisfied by the vector of parameters w 

F DH . �

P  . Then, by (9.1), w 

′ φG E 

SV F 
( x i ′ ) ≥ y i ′ . By (9.3), h (x ) := w 

′ φG E 

SV F 
(x ) is a mono- 

t G E 

SV F 
( max 

1 ≤i ≤n 
{ x i } ) ≥ w 

′ φG E 

SV F 
( x i ′ ) ≥ y i ′ = max { y 1 , ..., y n } . �

P f model (9). By (9.3), w 

′ 
1 

≤ w 

′ 
1 

+ w 

′ 
2 
, w 

′ 
1 

+ w 

′ 
2 

≤ w 

′ 
1 

+ w 

′ 
2 

+ w 

′ 
3 
, …, w 

′ 
1 

+ 

w 0 , l 1 = 2 , ..., n (1) . Let i ′ , i ′′ = 1 , ..., n be such that x i ′ = min 

1 ≤i ≤n 
{ x i } and x i ′′ = 

1
0 . Regarding the objective function in (9), ‖ w 

′ ‖ 1 + C 
n ∑ 

i =1 

ξ ′ 
i = w 

′ 
1 + ... + 

w wn that f F DH ( x i ′′ ) = max { y 1 , ..., y n } . Then, w 

F DH φG E 

SV F 
( x i ′′ ) = f F DH ( x i ′′ ) = 

m G E 

SV F 
( x i ′′ ) can take for any feasible solution ( w 

′ , ξ ′ 
1 , ..., ξ

′ 
n ) of (9). More- 

o
 

F 
( x i ) − ε ) − y i , 0 } because we are minimizing (9.0), which includes the 

t t, by the principle of minimal extrapolation, f F DH ( x i ) = w 

F DH φG E 

SV F 
( x i ) ≤

w  − y i ≤ ( w 

′ φG E 

SV F 
( x i ) − ε ) − y i , ∀ i = 1 , ..., n . These last inequalities imply 

t
 

) . Consequently, w 

F DH φG E 

SV F 
( x i ′′ ) + C 

n ∑ 

i =1 

ξ F DH 
i 

≤ w 

′ φG E 

SV F 
( x i ′′ ) + C 

n ∑ 

i =1 

ξ ′ 
i for 

a H , ..., ξ F DH 
n ) is an optimal solution of model (9). �
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here exist ˜ x 
( j ′ ) 
l 
j ′ 

and ˜ x 
( j ′ ) 
l 
j ′ +1 

, successive elements in the ordered set o

˜  
( j ′ ) 
l 
j ′ +1 

= b 
E( j ′ ) 
l 1 ... l m 

. However, this is a contradiction with the fact that x

roof of Theorem 2. If x ∈ C E 
l 1 ... l m 

, then f F DH (x ) = max 
i : x ≥x i 

{ y i } = max 
i ∈ X 

{ y
s true by Proposition 3 , the last equality by the monotonicity of th

roof of Theorem 3. Conditions (9.1) are trivially satisfied becau

traints (9.2) and (9.4) hold thanks to the definition of the empiric

hrough the parameterized grid G 

E with parameters w 

F DH . Then, 

unction, invoking Theorem 1 and Proposition 2 , conditions (9.3) ar

roof of Lemma 4. Let i ′ = 1 , ..., n be such that y i ′ = max { y 1 , ..., y n }
onic non-decreasing function. Therefore, max 

1 ≤i ≤n 
{ x i } ≥ x i ′ implies w 

′ φ

roof of Theorem 4. Let ( w 

′ , ξ ′ 
1 , ..., ξ

′ 
n ) be any feasible solution o

 

′ 
2 + w 

′ 
3 + ... + w 

′ 
n (1) −1 

≤ w 

′ 
1 + w 

′ 
2 + w 

′ 
3 + ... + w 

′ 
n (1) . Therefore, w 

′ 
l 1 

≥

max 
 ≤i ≤n 

{ x i } . By (9.1), w 

′ φG E 

SV F 
( x i ′ ) ≥ y i ′′ , which is equivalent to w 

′ 
1 ≥ y i ′ ≥

 

′ 
n (1) + C 

n ∑ 

i =1 

ξ ′ 
i = w 

′ φG E 

SV F 
( x i ′′ ) + C 

n ∑ 

i =1 

ξ ′ 
i . Additionally, it is well-kno

ax { y 1 , ..., y n } , which is, by Lemma 4 , the minimum value that w 

′ φ
ver, given any feasible solution ( w 

′ , ξ ′ 
1 , ..., ξ

′ 
n ) , ξ

′ 
i 

= max { ( w 

′ φG E

SV 

erm C 
n ∑ 

i =1 

ξ ′ 
i , and also thanks to constraints (9.2). Finally, note tha

 

′ φG E 

SV F 
( x i ) , ∀ i = 1 , ..., n , which is equivalent to ( w 

F DH φG E 

SV F 
( x i ) − ε )

hat ξ F DH 
i 

≤ ξ ′ 
i 
, i = 1 , ..., n , for any feasible solution ( w 

′ , ξ ′ 
1 , ..., ξ

′ 
n

ny feasible solution ( w 

′ , ξ ′ 
1 , ..., ξ

′ 
n ) , which means that ( w 

F DH , ξ F D
1 
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