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The Riemann bilinear relations, also called the Riemann period relations, is a set of quadratic
relations for period matrices. The ones considered by Riemann are of two sorts: (a) periods of
holomorphic one-forms on a compact Riemann surface, and (b) periods of holomorphic one-forms
on an abelian variety.

§1. Period relations for abelian integrals of the first kind
The statements (1.2 a) and (1.2 b) in Theorem 1.2 are the Riemann bilinear relations for the period
integrals of differentials of the first kind on a a compact Riemann surface.

(1.1) Notation and terminology

• Let S be a compact connected Riemann surface of genus g≥ 1.

• Let ω1, . . . ,ωg be a C-basis of the space Γ(S,KS) of holomorphic differential one-forms on S.

• Let γ1, . . . ,γ2g be a Z-basis of the first Betti homology group H1(S,Z).

• Let J = J2g be the 2g × 2g matrix
(

0g Ig
−Ig 0g

)
, where Ig is the g× g identity matrix, and

0g = 0 · Ig.

• For any i, j with 1≤ i, j ≤ 2g, let ∆i j = γi _ γ j ∈ Z be the intersection product of γi with γ j.
Let ∆ = ∆(γ1, . . . ,γ2g) be the 2g×2g skew-symmetric matrix with entries ∆i j.

• γ1, . . . ,γ2g is said to be a canonical basis of H1(S,Z) if ∆(γ1, . . . ,γ2g) = J2g.

• It is well-known that H1(S,Z) admits a canonical basis. In other words there exists an element
C ∈ GL2g(Z) such that tC ·∆ ·C = J2g.

• The g× 2g matrix P = P(ω1, . . . ,ωg;γ1, . . . ,γ2g) whose (r, i)-th entry is
∫

γi

ωr for every

r = 1, . . . ,g and every i = 1, . . . ,2g is called the period matrix defined by the one-cycles
γ1, . . . ,γ2g and the holomorphic one-forms ω1, . . . ,ωg.
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(1.2) THEOREM. Let P = P(ω1, . . . ,ωg;γ1, . . . ,γ2g) be the period matrix for a a C-basis of the
space Γ(S,KS) of holomorphic one-forms on S and a Z-basis γ1, . . . ,γ2g of H1(S,Z). We have

(1.2 a) P ·∆(γ1, . . . ,γ2g)
−1 · tP = 0g

and

(1.2 b) −
√
−1 · P ·∆(γ1, . . . ,γ2g)

−1 · tP > 0g

in the sense that −
√
−1 · P ·∆(γ1, . . . ,γ2g)

−1 · tP is a g×g hermitian positive definite matrix.

Note that the validity of the statements (1.2) and (1.2) are independent of the choice of the Z-
basis γ1, . . . ,γ2g of H1(S,R): ∆(γ1, . . . ,γ2g)

−1 is the skew-symmetric real matrix
(

γ∨i _ γ∨j

)
1≤i, j≤2g

,

where the intersection pairing _ on H1(S,Z) has been R-linearly extended to H1(S,Z)⊗ZR, and
γ∨1 , . . . ,γ

∨
2g ∈ H1(S,Z)⊗ZR are characterized by γ∨k _ γ j = δk j for all j,k = 1, . . . ,2g.

(1.3) COROLLARY. Suppose that ∆(γ1, . . . ,γ2g) = J2g. Write the period matrix P in block form as
P = (P1 P2) , where P1 (respectively P2) is the g× g matrices whose entries are period integrals of
ω1, . . . ,ωg with respect to γ1, . . . ,γg (respectively γg+1, . . . ,γ2g).

(i) The g×g matrix P1 is non-singular i.e. det(P1) 6= 0.

(ii) Let Ω := P−1
1 ·P2. Then Ω is a symmetric g×g matrix and its imaginary part Im(Ω) of Ω is

positive definite.

(1.4) The basic idea for the proof of Theorem 1.2 is as follows. First one “cuts open” the Riemann
surface S along 2g oriented simple closed paths C1, . . . ,C2g in S with a common base point so that
the properties (a)–(d) below hold.

(a) For any pair i 6= j, Ci meets C j only at the base point.

(b) The image of C1, . . . ,C2g in H1(S,Z) is a canonical basis γ1, . . . ,γ2g of H1(S,Z).

(c) The “remaining part” Sr (C1∪·· ·∪C2g) is 2-cell S0.

(d) The boundary ∂S0 of S0 (in the sense of homotopy theory) consists of

C1,Cg+1,C−1
1 ,C−1

g+1,C2,Cg+2,C−1
2 ,C−1

g+2, . . . ,Cg,C2g,C−1
g ,C−1

2g

oriented cyclically.

For any non-zero holomorphic one-form ω on S, there exists a holomorphic function f on the simply
connected domain S0 such that d f = ω . Then for every holomorphic one-form η on S, we have∫

∂S0

f ·η =
∫

S0

d( f ·η) = 0

and also
−
√
−1 ·

∫
∂S0

f̄ ·ω =−
√
−1 ·

∫
S0

d f̄ ∧ f > 0,

by Green’s theorem. The bilinear relations (1.2) and (1.2) follow. Details of this are carried out in
[13, Ch. 3 §3], [3, pp. 231–232] and [8, pp. 139–141].
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As remarked by Siegel on page 113 of [13], these two bilinear relations were discovered and
proved by Riemann, using the argument sketched in the previous paragraph. It is remarkable that
Riemann’s original proof is still the optimal one 150 years later. The readers are encouraged to
consult Riemann’s famous memoir [9], especially §§20–21.

§2. Riemann bilinear relations for abelian functions
The Riemann bilinear relations provide a necessary and sufficient condition for a set of 2g R-linearly
independent vectors in Cg to be the periods of g holomorphic differentials on a g-dimensional
abelian variety.

(2.1) DEFINITION. (a) An abelian function on a complex vector space V is a meromorphic func-
tion f on V such that there exists a lattice Λ ⊂ V with the property that f (z+ ξ ) = f (ξ ) for all
z ∈V and all ξ ∈ Λ.1

(b) An abelian function f on a g-dimensional vector space V over C is non-degenerate if its period
group

Periods( f ) := {η ∈V | f (z+η) = f (z) ∀z ∈V }
is not a lattice in V . (Then Periods( f ) contains a positive dimensional R-vector subspace of V , and
in fact also a positive dimensional C-vector subspace of V .)

(2.2) DEFINITION. Let g≥ 1 be a positive integer.

(a) A g× 2g matrix P with entries in C is a Riemann matrix if there exists a skew symmetric
integral 2g×2g matrix E with det(E) 6= 0 satisfying the two conditions (2.2 a), (2.2 b) below.

(2.2 a) Q ·E−1 · tQ = 0g

and

(2.2 b)
√
−1 · Q ·E−1 · tQ > 0g.

Such an integral matrix E is called a principal part of P.

(b) The Siegel upper-half space Hg of genus g is the set of all symmetric g×g complex matrix

Ω such that (Ω, Ig) is a Riemann matrix with principal part
(

0g Ig
−Ig 0g

)
, or equivalently Ω is

symmetric and the imaginary part Im(Ω) of Ω is positive definite.2

(2.3) THEOREM. Let Q be a g×2g matrix with entries in Cg such that the subgroup Λ of Cg

generated by the 2g columns of Q is a lattice in Cg. There exists a non-degenerate abelian function
f on Cg whose period group is equal to Λ if and only if Q is a Riemann period matrix.

A proof of theorem 2.3 can be found in [6, Ch. 1] and also in [3, Ch.frm-e §6]. For a classical
treatment of theorem 2.3, chapter 5 §§ 9–11 of [14] is highly recommended.

1Recall that a lattice in a finite dimensional vector space V over C a discrete free abelian subgroup of V rank
2dimC(V ), equivalently V/Λ is a compact torus.

2Elements of Hg are also called “Riemann matrices” by some authors. We do not do so here.
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Recall that an abelian variety over C is a complex projective variety with a an algebraic group
law, or equivalently a compact complex torus which admits an holomorphic embedding to a complex
projective space. It is a basic fact that the existence of a non-degenerate abelian function on Cg with
respect to the lattice Q ·Z2g ⊂ Cg. So an equivalent statement of Theorem 2.3 is:

(2.3.1) THEOREM. A compact complex torus of the form Cg/(Q ·Z2g) for a g×2g complex matrix
Q is an abelian variety if and only if Q is a Riemann period matrix.

It is easy to see that g-dimensional compact complex tori vary in a g2-dimensional analytic
family. Theorem 2.3.1 says that g-dimensional abelian varieties vary in (countable union of) g(g+
1)/2-dimensional analytic families. More precisely all g-dimensional abelian varieties with a fixed
principal part E is parametrized by the Siegel upper-half space Hg.

(2.4) Historical Remarks. The statement of theorem 2.3 did not appear in Riemann’s published
papers, but Riemann’s was certainly aware of it. On page 75 of [14] Siegel wrote:

Riemann was the first to recognize that the period relations are necessary and sufficient
for the existence of non-degenerate abelian functions. However, his formulation was
incomplete and he did not supply a proof. Later, Weierstrass also failed to establish a
complete proof despite his many efforts in this direction. Complete proofs were finally
attained by Appell for the case g = 2 and by Poincaré for arbitrary g.

Krazer’s comments on page 120 of [5] are similar but more polite. He also said that Riemann
communicated his discovery to Hermite in 1860, citing (the German translation of) [4] One can
feel the excitement brought by Riemann’s letter3 in Hermite’s exposition of Riemann’s “extremely
remarkable discovery” of the symmetry conditions on a period lattice Λ ⊂ Cn, necessary for the
existence of (non-degenerate) abelian functions, see pages 148–150 of [4]. Reference for subsequent
works by Weierstrass, Hurwitz, Poincaré, Picard, Appell and Frobenius can be found on page 120
of [5].

(2.4.1) Let S be a Riemann surface, let ω1, . . . ,ωg be a C-basis of holomorphic differentials on S,
and let γ1, . . . ,γ2g be a Z-basis of the first homology group H1(S,Z). Theorem 1.2 says that the
P(ω1, . . . ,ωg;γ1, . . . ,γ2g) is a Riemann matrix with principle part −∆(γ1, . . . ,γ2g), and theorem 2.3
tells us that the quotient of Cg by the lattice P(ω1, . . . ,ωg;γ1, . . . ,γ2g) ·Z2g is an abelian variety.
This abelian variety is called the Jacobian variety Jac(S) of the Riemann surface S. Two lines of
investigation open up immediately.

A. Choose and fix a base point x0 on S. Considering abelian integrals from x0 to a variable point
x ∈ S, one get the a map

X ∈ x 7→


∫ x

x0
ω1

...∫ x
x0

ω1

 mod P(ω1, . . . ,ωg;γ1, . . . ,γ2g) ·Z2g ∈ Jac(S).

from S to Jac(S). Through this Abel-Jacobi one can analyze further geometric properties of
the Riemann surface S.

3This letter wasn’t mentioned in [4].
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B. As the Riemann surface S varies in its moduli space, so does the corresponding Jacobian vari-
ety Jac(S). A natural question is: which abelian varieties arise this way? Can we characterize
the Jacobian locus either analytically or algebraically, as a subvariety of the moduli space of
abelian varieties?

The best introduction to this circle of ideas is [7], which also contains a nice “guide to the literature
of references”. See also [2], [3, Ch. 2 §7] and [8, Ch. 2 §§2–3] for Jacobian varieties and the Abel-
Jacobi map. Further information can be found in survey articles in [1].
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