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ABSTRACT The study focuses on the strategic decisions including on the location and capacity of stations
and the fleet size for designing the one-way station-based carsharing systems. Under demand uncertainty,
we introduce a two-stage risk-averse stochastic model to maximize the mean return and minimize the
risk, where the conditional value-at-risk (CVaR) is specified as the risk measure. To solve the problem
efficiently, a branch-and-cut algorithm and a scenario decomposition algorithm are developed. We conduct
computational experiments based on historical use data and generate efficient frontiers so that the system
operator can make a trade-off between return and risk. We then utilize an evaluation method to analyze
the necessity of introducing risk. Finally, the efficiency of the proposed algorithms is elaborated through
comparative experiments. Both branch-and-cut algorithm and scenario decomposition algorithm can tackle
the small- and medium-scale problems well. For large-scale problems that cannot be solved by using an
optimization solver or the branch-and-cut algorithm, scenario decomposition method can provide favorable
solutions within a reasonable time.

INDEX TERMS Branch-and-cut, carsharing, risk, scenario decomposition, stochastic model, strategic
decisions.

I. INTRODUCTION

THE continuous increase in the number of private vehi-
cles in the past few decades has had serious negative

impacts, such as environmental pollution, time wastage, and
shortage of parking spaces. Although traditional multimodal
public transportation can satisfy most of the travel demand,
many users prefer private vehicles due to their greater conve-
nience, especially people who resides far away from public
transportation stations. However, the cost of owning a car
and parking difficulties bring their own challenges. Carshar-
ing is receiving increasing attention around the world as a
promising sustainable means of transportation that offers the
advantages of both private vehicles and public transportation
[1]. Such systems are also regarded as a potential solution to
the first- and last-mile problem.

Current carsharing systems can be mainly classified into
one-way and two-way types. In one-way systems, users can

pick up and return cars at different sites, while in two-way
systems, users should return rented cars to the site where
they were picked up. Compared with two-way systems, one-
way systems are more convenient for users, considering that
one-way trips usually occupy a large proportion of the total
trips [2], [3]. Furthermore, station-based and free-floating
systems can be distinguished in view of parking-spot re-
strictions. The former type forces people to park vehicles
at stations with limited parking spaces, whereas the latter
allows the users to park cars anywhere in an operation area.
In recent years, station-based carsharing systems equipped
with charging piles have become popular with the advent of
environmentally friendly electric vehicles (EVs).

Design and management of a carsharing system raises
several decision-making problems, ranging from strategic is-
sues (e.g., carsharing mode, location) to operational policies
(e.g., vehicle relocation, staff scheduling) [4], [5]. In this
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study, we focus on the strategic design of one-way station-
based carsharing systems from the vantage point of the
system operator. The most related research (e.g., [4], [6], [7])
copes with strategic problems based on the traditional risk-
neutral two-stage stochastic programming by considering the
expectation value as the preference criterion. However, the
resulting decisions may be poor under certain realizations
of random data. For non-repetitive decision-making prob-
lems, such as location planning and network design, a risk-
averse approach would provide more robust solutions [8].
Therefore, we analyze the downside risk, which refers to the
financial risk of the actual return being below the expected
return, in this study. With the objective of maximizing the
return and minimizing the risk, we propose a two-stage
risk-averse stochastic mixed integer nonlinear programming
(MINLP) model, where the conditional value-at-risk (CVaR)
is specified as the risk measure, to optimize strategic deci-
sions involving station locations, station capacities, and fleet
sizes for one-way station-based carsharing systems. With a
training and testing method, we also show the advantage
of the risk-averse model under stochastic demand. In order
to solve the two-stage stochastic MINLP model, two cus-
tomized methods are developed: a branch-and-cut algorithm
and a scenario decomposition algorithm. The model and
algorithms are verified on scenario demand data generated
from historical data of Ha:mo RIDE Toyota in Japan.

The remainder of the paper is as follows. Section II
presents an overview of previous related studies on carshar-
ing systems. Section III provides an elaborate model formu-
lation for making strategic decisions. Section IV is devoted
to the two algorithms for solving the problem. Subsequently,
we report computational results in Section V and conclude
this study in Section VI.

II. LITERATURE REVIEW
The problems affecting carsharing can be divided into strate-
gic, tactical, and operational dimensions. Generally, the
overall structure of a carsharing system is determined at
the strategic and tactical levels, which have a significant
impact on system performance. Operational problems are
usually handled to improve system management. Regarding
optimization problems at different levels, interested read-
ers can refer to [9] and [10] for a comprehensive review.
More recently, Illgen and Höck [5] presented a systematic
review centered around a key operational issue: the vehicle
relocation problem (VReP) in one-way carsharing systems
and introduced dependent-decision problems at other levels
associated with VReP. Over the past decade, VReP has
become the most commonly considered problem [11] – [18].
However, only a little literature has concentrated on strategic
decisions involving location problems, as revealed by Çalık
and Fortz [7].

The classic facility location problems (e.g., covering, me-
dian, center problems) have been researched for more than
half a century, and there are a large number of related studies.
Daskin [19] provided a thorough review in terms of models,

algorithms, and applications. Within the context of carshar-
ing, de Almeida Correia and Antunes [20] are pioneers who
first solved the station location problem in one-way sys-
tems. In their study, three mixed integer linear programming
(MILP) models were proposed and compared to determine
the optimal number, location, and size of stations with the
same objective that maximizes the profit. By modifying the
constraints, they incorporated different schemes (i.e., serve
some selected requests, serve all requests, and reject some re-
quests conditionally) into the models. The practicality of the
models was illustrated with a case study on Lisbon, Portugal.
Following this study, Jorge et al. [21] developed an agent-
based simulation model considering demand variability and
vehicle relocation policy. Experiments were conducted on the
Lisbon data to test the validity of the solution from the MILP
model proposed by de Almeida Correia and Antunes [20].
Similarly, de Almeida Correia et al. [3] evolved the MILP
formulation of de Almeida Correia and Antunes [20] to allow
users to pick up the sharing vehicles at an alternate station
other than the closest one. Later, Boyacı et al. [4] formulated
a multi-objective MILP model for planning one-way electric
carsharing systems considering vehicle relocation and EV
charging requirements. The objectives of the model are to
maximize the profit of the operator and the profit of the
users. Because of the large number of relocation variables,
the problem becomes intractable in real-world cases. The
relocation variables were therefore reduced by grouping the
demand and clustering the stations to form an aggregate
model. The proposed approach was validated with data from
Nice, France. Huang et al. [22] showed an MINLP model
to fathom the station location and capacity problem with a
nonlinear demand rate represented by the logit model. To
solve the MINLP model, a customized gradient algorithm
was proposed. The model and algorithm were applied to
Suzhou Industrial Park, Suzhou, China.

Additionally, some recent studies began to take the de-
mand uncertainty into account when making strategic deci-
sions, whereas the most of the earlier carsharing research
including demand uncertainty focused on dealing with VReP.
Brandstätter et al. [6] identified the optimal locations and the
number of required EVs for one-way station-based carshar-
ing systems by introducing a stochastic optimization model
whose objective is to maximize the expected profit. In that
model, the uncertain demand is represented by several sce-
narios. Due to the complexity of the problem, they proposed
a heuristic algorithm to obtain an approximate solution or to
provide an initial heuristic solution. Lu et al. [23] introduced
a stochastic model to optimize the profitability and quality
of service (QoS) considering uncertain one-way and two-
way rental demand for a hybrid reservation-based and free-
floating system. A desired QoS level was maintained by
minimizing the expected penalty of unserved customers in a
risk-neutral model. To solve the stochastic model, they devel-
oped branch-and-cut algorithm with mixed-integer rounding-
enhanced Benders cuts. They also made a brief remark on
a risk-averse model by penalizing the CVaR of unserved
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demand but did not give corresponding detailed experimental
results. Çalık and Fortz [7] modelled the location problem
as a two-stage stochastic MILP model and developed a Ben-
ders decomposition algorithm to solve it. As in Brandstätter
et al. [6], the objective function maximized the expected
profit. On the basis of a demand prediction model, many
demand scenarios were generated from Manhattan taxi trip
data and numerical experiments were conducted. The results
illustrated that the proposed algorithm could help reduce
computing time and obtain favorable solutions.

In conclusion, we can see that there has been little research
on determining simultaneously the location and capacity
of stations and the fleet size, while considering stochastic
demand. Some studies like [4], [6], [7] merely took part of
them into account and ingored the potential risk. Although
Lu et al. [23] briefly introduced a model that applied CVaR
to reduce the risk of unserved demand, rare carsharing studies
have considered the risk to avoid heavy losses. Thus, to
fill in the research gaps, this paper considers a new risk-
averse stochastic model to solve the joint design problem.
Moreover, with respect to the solution methods, Lu et al.
[23] solved a similar problem by an algorithm based on
Benders decomposition. Our study, however, develops two
other algorithms to handle the proposed model and compares
the computation efficiency with the algorithm illustrated by
Lu et al. [23].

III. STRATEGIC DECISION MODEL
A. ASSUMPTIONS
In this study, we determine the station locations, station
capacities, and fleet sizes to design one-way station-based
carsharing system with a risk-averse model. To formulate the
model, some underlying assumptions are as follows.
• The trip demand data are available or predictable in ad-

vance, including for different scenarios. Each scenario
represents one possible day with a set of estimated trips.
The probability is the same for each scenario. Each trip
is a tuple of four elements: origin, destination, departure
time, and arrival time. The price of each trip can be
computed on the basis of the information above.

• For the trip demand to be satisfied, there must be ve-
hicles available at the origin and parking spaces at the
destination.

• The working time of the carsharing system is divided
into equal time intervals (5 minutes), so we can gather
together the trips with the same departure or arrival time
interval. In this way, the problem size can be reduced.

• All stations have at least one parking space and have
individual maximal capacities that depend on the local
conditions. The station cost consists of land, construc-
tion, and charging-pile costs. The unit land costs vary
depending on the location, but the unit construction and
charging-pile costs are fixed.

• Considering the station and vehicle costs tend to be too
high to get a profitable system, the profit return in our
model only depends on the trip revenue and operating

cost. Alternatively, the station and vehicle costs are
restricted by a budget constraint. Çalık and Fortz [7]
addressed a similar issue by introducing a cost factor to
forcibly reduce the cost. This implies the operator must
study the pricing policy and other income resources
comprehensively, but this issue is out of the scope of
this paper.

• The state of charge (SoC) of the EV’s battery is ignored
in this study. In the case of Ha:mo RIDE Toyota, the
vehicles are mostly used for short trips, and a previous
study [24] showed that no vehicle ever became unavail-
able in the system because of a low SoC. Therefore,
the proposed model is more suitable for short-range
carsharing systems to counter the last-mile problem.

• The system operator does not take into account opera-
tional activities (e.g., relocation, staff allocation, or staff
scheduling) when making strategic decisions.

B. NOTATION
Before providing the detailed model formulation, we should
explain the notation used in the model.

1) Sets and indices
• s ∈ S: scenarios
• i ∈ Is: trips in scenario s
• t ∈ T : time intervals
• j ∈ J : potential location sites

2) Parameters
• starti, endi ∈ T : start- and end-intervals of trip i
• origini, desti ∈ J : origin and destination of trip i
• P si : charging price for trip i in scenario s
• C1: operating cost per parking space per scenario
• C2: operating cost per vehicle per scenario
• Hj : cost for setting a parking space at site j, including

land, construction, and charging-pile costs
• F : cost of purchasing a vehicle
• B: available budget
• Mj : maximum number of parking spaces that can be set

at site j
• λ: weight value, ranging from 0 to 1
• β: confidence level

3) Variables
• α ∈ R: auxiliary variable for obtaining minimum β-

CVaR
• pj ∈ Z+: number of parking spaces at site j
• v ∈ Z+: number of vehicles in the system
• nsj,t ∈ Z+: number of vehicles at site j at the beginning

of time interval t in scenario s
• zsi ∈ {0, 1}: binary variable, if trip i in scenario s is

served, the value is 1; otherwise 0

C. MATHEMATICAL FORMULATION
In this part, we present the two-stage risk-averse stochastic
MINLP model in the deterministic equivalent form. The first-

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3084287, IEEE Access

Zhang et al.: Optimizing the strategic decisions for one-way station-based carsharing systems: A mean-CVaR approach

stage constraints (1b) and (1c) are given by using variables α,
v and pj , that is, first-stage decision variables. The second-
stage decision variables zsi and nsj,t, associated with scenario
s, are restricted by the second-stage constraints (1d)–(1g).

min
λ

|S|
∑
s∈S

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v


+ (1− λ)

(
α+

1

(1− β)|S|
×

∑
s∈S

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v − α


+


(1a)

subject to:∑
j∈J

Hjpj + Fv ≤ B (1b)

pj ≤Mj ,∀j ∈ J (1c)

nsj,t+1 = nsj,t −
∑

i:orgini=j
starti=t

zsi +
∑

i:desti=j
endi=t

zsi ,

∀s ∈ S, j ∈ J, t ∈ T\ {tlast} (1d)

nsj,t ≥
∑

i:orgini=j
starti=t

zsi ,∀s ∈ S, j ∈ J, t ∈ T (1e)

pj − nsj,t ≥
∑

i:desti=j
endi=t

zsi ,∀s ∈ S, j ∈ J, t ∈ T (1f)

∑
j∈J

nsj,1 = v,∀s ∈ S (1g)

α ∈ R (1h)
pj ∈ Z+,∀j ∈ J (1i)
v ∈ Z+ (1j)
zsi ∈ {0, 1},∀s ∈ S, i ∈ Is (1k)
nsj,t ∈ Z+,∀s ∈ S, j ∈ J, t ∈ T (1l)

The objective function (1a) minimizes the weighted sum
of the measures of profitability (expected loss, i.e., the op-
posite of the expected return) and risk (CVaR). Note that
[x]+ = max{x, 0}, for x ∈ R. The loss function in each
scenario is equal to the operating costs of the built parking
spaces and purchased vehicles (C1

∑
j∈J pj +C2v) reduced

by the revenue of served trips (
∑
i∈Is P

s
i z

s
i ). In Appendix

A, we present a detailed explanation of the objective func-
tion. Constraint (1b) states the costs for setting up parking
spaces and purchasing cars are within the available budget.
Constraints (1c) show the maximal capacity restriction at
each potential location site. In addition, there are additional
constraints depending on the scenario. Constraints (1d) are
for vehicle flow conservation at each station for each time
interval. The departure time and arrival time of each trip are
known parameters in the model, so no additional constraints
are required to represent the travel time. Constraints (1e) en-
sure there are enough vehicles for trips served at each station
and each time interval. Constraints (1f) restrict the number

of vehicles arriving at a station to the number of available
parking spaces at that station during each time interval, and
at the same time, ensure there are enough parking spaces
for the vehicles at site j. Constraints (1g) indicate that the
total number of vehicles in the system is always equal to
the number of purchased vehicles. Constraints (1h)–(1l) are
variable restrictions.

IV. SOLUTION METHODS
Due to plenty of variables and constraints, the strategic
decision problem becomes more difficult when the number
of scenarios increases. To deal with the problem efficiently,
we present two solution methods including the branch-and-
cut algorithm and scenario decomposition algorithm in this
section. The former algorithm mainly focuses on the nonlin-
ear CVaR function, while the latter one pays attention to the
special block-angular structure of the stochastic problem.

A. BRANCH-AND-CUT ALGORITHM
Takano et al. [25] proposed two cutting-plane algorithms to
handle the CVaR function in a portfolio optimization problem
with a nonconvex transaction cost. Here, we present a similar
algorithm based on the same idea, that is, repeatedly solving
the relaxed problems and gradually approximating the CVaR
function with a portion of cutting-plane representation.

To formulate the algorithm, we equivalently rewrite the
primal problem by introducing the auxiliary variable u.

min
λ

|S|
∑
s∈S

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v


+ (1− λ)u

(2a)

subject to:

u ≥ α+
1

(1− β)|S|
×

∑
s∈S

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v − α


+

(2b)

u ∈ R (2c)
(1b)–(1l)

According to the proof in [26], the CVaR constraint (2b) is
equivalent to the following cutting-plane representation.

u ≥ α+
1

(1− β)|S|
×

∑
s∈H

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v − α

 ,

∀H ⊆ S

(3)

Representation (3) obviously contains a series of linear
constraints, and the number of constraints is the number
of subsets of the scenario set S, i.e., 2|S|. Since many of
the constraints may be redundant, we can simply append
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the necessary constraints to the relaxed problem iteratively,
instead of using all of them directly. The initial relaxed
problem of formulation (2) is arrived at by replacing the
CVaR constraint (2b) with constraint (4),

u ≥ Umin. (4)

where Umin is a sufficiently small constant to prevent the
problem from being unbounded. Accordingly, the feasible
region of the initial relaxed problem can be defined by

Ω := {(α, v,p, z,n) : (1b)–(1l), (2c), (4)} , (5)

where p, z, and n are the sets of variables pj , zsi , and nsj,t,
respectively.

Different from the cutting-plane algorithms in [25], we
will not pursue an optimal solution at each iteration, be-
cause it takes too much time to execute the branch-and-
bound algorithm completely when solving the relaxed MILP
problem at each iteration. Instead, we add chosen constraints
dynamically to the problem during the branch-and-bound
procedure, which is known as lazy constraint callback. This
callback function is available in optimization software (e.g.,
Gurobi, CPLEX) and may help to reduce the computing time.
With the function, we develop a branch-and-cut algorithm
here. The algorithm starts by using the branch-and-bound
algorithm to solve the relaxed problem. If a better feasible
solution (α̂, v̂, û, p̂, ẑ, n̂) in Ω is found, it checks whether the
corresponding MIP Gap is within tolerance. The MIP Gap is
a relative gap between the upper and lower objective bounds
in the branch-and-bound algorithm, which can be obtained
directly with optimization software. As long as the MIP
Gap is unqualified, the callback procedure will be activated.
When the feasible solution violates the CVaR constraint (2b),
cutting planes are generated to separate it from the feasible
set. The cut is expressed as:

u ≥ α+
1

(1− β)|S|
×

∑
s∈Ĥ

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v − α

 ,

(6)

where Ĥ := {s ∈ S : −
∑
i∈Is P

s
i ẑ

s
i +C1

∑
j∈J p̂j +C2v̂−

α > 0}.
Algorithm 1 is a description of our method.
We also prove the convergence of the branch-and-cut algo-

rithm.

Theorem 1. For any ε ≥ 0, the branch-and-cut algorithm
has the finite convergence property.

Proof. Suppose that Algorithm 1 does not converge in a
finite number of iterations. Then MIP Gap > ε holds for any
sufficiently large number of iterations k such that k > 2|S|.
Let us suppose that MIP Gap > ε holds at iteration k > 2|S|.
Since the integer variables are bounded in our model, at
Step 2 of iteration k, we can find either a feasible solution
(α̂, v̂, û, p̂, ẑ, n̂) ∈ Ω that violates the CVaR constraint (2b)

Algorithm 1 Branch-and-cut Algorithm for Solving Problem
(2)
Step 1: (Initialization) Let tolerance ε ≥ 0 for optimality.

Define initial feasible region Ω as (5)
Step 2: (Branch and bound) Start (or continue) branch-and-

bound algorithm to solve the relaxed problem:

min{ λ
|S|
∑
s∈S

(−
∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v)

+ (1− λ)u : (α, v, u,p, z,n) ∈ Ω}.

Step 3: (Termination criterion) Once a better feasible solu-
tion (α̂, v̂, û, p̂, ẑ, n̂) in Ω is found, return the solution
and current MIP Gap. If MIP Gap ≤ ε, stop the algo-
rithm; otherwise go to Step 4.

Step 4: (Callback procedure) If the solution (α̂, v̂, û, p̂, ẑ, n̂)
violates the CVaR constraint (2b), generate the cutting
plane with (6) to update the feasible region:

Ω← Ω ∩ {(α, v, u,p, z,n) : (6)},

and go to Step 2 to continue branch-and-bound algo-
rithm.

or an optimal solution of the current model, within a finite
number of branch-and-bound iterations. Suppose that we
obtain a feasible solution (α̂, v̂, û, p̂, ẑ, n̂) ∈ Ω violating
the CVaR constraint at iteration k. Since we have assumed
k > 2|S|, this solution satisfies all k − 1 ≥ 2|S| inequalities
generated before iteration k. Note that the same cutting plane
will never be appended twice and the number of cutting
planes that can be generated is at most 2|S|. Thus, the current
feasible solution should satisfy all possible cutting planes,
which contradicts the assumption that the solution violates
the CVaR constraint. On the other hand, if we obtain an
optimal solution of the current model, optimality implies
that the current MIP Gap ≤ ε at iteration k, which is a
contradiction to the assumption that MIP Gap> ε holds.

B. SCENARIO DECOMPOSITION ALGORITHM

In addition to the cutting-plane representation, we can also
transform the nonlinear CVaR function into a linear one
based on the lifting representation [25], [27]. Again, the
primal problem is equivalently written in the lifting repre-
sentation as follows.

min
λ

|S|
∑
s∈S

−∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v


+ (1− λ)

(
α+

1

(1− β)|S|
∑
s∈S

ws

) (7a)
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subject to:

ws ≥ −
∑
i∈Is

P si z
s
i + C1

∑
j∈J

pj + C2v − α (7b)

ws ∈ R+ (7c)
(1b)–(1l)

where ws, s ∈ S are the auxiliary decision variables. Hence,
our formulation becomes a typical two-stage MILP model,
which exhibits a block-angular structure and can be exploited
in a decomposition fashion. One possible way of solution
is to employ the scenario decomposition method, which is
based on the Lagrangian decomposition method [28]. Carøe
and Schultz [29] first applied scenario decomposition to
stochastic integer programming so that the primal problem
can be split into more manageable scenario subproblems. The
main strategy behind this approach is to create copies of the
first-stage variables.

To facilitate subsequent interpretation, we present problem
(7) in the following compact notation.

Z = min
x,y

cTx+
1

|S|
∑
s∈S

(qs)
T
ys (8a)

subject to:

Ax ≤ b (8b)
Tx+Wys ≤ hs,∀s ∈ S (8c)
x ∈ X (8d)
ys ∈ Y,∀s ∈ S (8e)

where c, b, qs, s ∈ S, and hs, s ∈ S are the known vectors;
A, T , and W are the known matrices; x and ys, s ∈ S
are the first-stage and second-stage decision variable vectors,
respectively; and y = (y1,y2, · · · ,y|S|). In our context, it is
easy to transform the objective function (7a) to (8a). The set
of constraints (8b) is used to represent constraints (1b) and
(1c), while the set of constraints (8c) represents constraints
(1d)–(1g) and (7b). Finally, the set X represents constraints
(1h)–(1j), while the set Y denotes constraints (1k), (1l), and
(7c).

By replicating the first-stage variables, we can consider the
following equivalent formulation.

Z = min
x,y

1

|S|
∑
s∈S

(
cTxs + (qs)

T
ys
)

(9a)

subject to:

Axs ≤ b,∀s ∈ S (9b)
Txs +Wys ≤ hs,∀s ∈ S (9c)
xs − x̄ = 0,∀s ∈ S (9d)
xs ∈ X ,∀s ∈ S (9e)
ys ∈ Y,∀s ∈ S (9f)
x̄ ∈ Rn (9g)

where x = (x1,x2, · · · ,x|S|).

Equations (9d) are known as the nonanticipativity con-
straints. These constraints can be represented in various
forms [30], [31]. By dualizing the nonanticipativity con-
straints (9d), one may obtain the Lagrangian relaxation of
problem (10).

ZLR(µ) = min
x,y,x̄

1

|S|
∑
s∈S

(
cTxs + (qs)

T
ys
)

+
∑
s∈S

(µs)
T

(xs − x̄)
(10)

subject to: (9b), (9c), and (9e)–(9g).
Since x̄ is unconstrained, we bound the Lagrangian

with the condition
∑
s∈S µ

s = 0 and remove the term∑
s∈S(µs)Tx̄ in the Lagrangian function, which makes

problem (10) separable. It is known that, for any given
µ = (µ1,µ2, · · · ,µ|S|), the Lagrangian relaxation (10)
provides a valid lower bound on the problem (9) [32], i.e.,
ZLR(µ) ≤ Z. To achieve such a bound, we can solve
problem (10) by dividing it into many simpler subproblems.
Note that ZLR(µ) =

∑
s∈S Z

s
LR(µs), where ZsLR(µs) is the

objective value of the following subproblem.

ZsLR(µs) = min
x,y

1

|S|
(
cTxs + (qs)Tys

)
+ (µs)

T
xs (11)

subject to: (9b), (9c), and (9e)–(9g), for a given s in S.
To find the best lower bound, we define the Lagrangian

dual problem.

ZLD = max
µ

1

|S|
∑
s∈S

ZsLR (12a)

subject to: ∑
s∈S

µs = 0 (12b)

µs ∈ Rn,∀s ∈ S (12c)

This dual problem (12) is a concave, nonsmooth opti-
mization problem, which is commonly solved using methods
based on subgradients or cutting planes [31]. In this study, a
cutting-plane method is used to handle the dual problem. Al-
gorithm 2 is a stabilized cutting-plane approach with a trust
region [33], [34]. Hiriart-Urrut and Lemaréchal [33] proved
the convergence of this approach. In this algorithm, the mas-
ter problem and local problem, respectively, yield an upper
bound (ZCP ) and lower bound (ZLR(µ) =

∑
s∈S Z

s
LR(µs))

of ZLD. By iterating the upper and lower bounds in turn, the
algorithm terminates when the relative gap between them is
less than a given optimality tolerance.

Algorithm 2 solves the Lagrangian dual problem (12)
and derives the lower bound of the primal problem (8).
Next, we will introduce a simple heuristic to determine the
upper bound. The upper bound can be calculated by sub-
stituting the feasible first-stage solutions xs into the primal
problem (8). In this study, we estimated the feasible first-
stage candidates by using the average value of the scenario
solution xs, s ∈ S and some rounding heuristic to satisfy the
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Algorithm 2 Trust-region Cutting-plane Algorithm for Solv-
ing Lagrangian Dual Problem (12)
Step 1: (Initialization) Set the tolerance ε ≥ 0, iteration

count k = 1, initial stability center µ̄s = µsk = 0,
s ∈ S, ascent coefficient ω ∈ (0, 1), and initial trust-
region τk ≥ 0, solve subproblem (11) for all s in S, and
save ZsLR (µsk) and xsk.

Step 2: (Master problem) Solve the following problem

ZkCP = max
θ,µ

∑
s∈S

θs

subject to:

θs ≤ ZsLR (µsk′) + (xsk′)
T

(µs − µsk′) ,
∀s ∈ S, k′ ∈ {1, 2, · · · , k}

|µs − µ̄s| ≤ τk,∀s ∈ S∑
s∈S

µs = 0

µs ∈ Rn,∀s ∈ S
θs ∈ R,∀s ∈ S

to obtain
(
ZkCP ,µ

s
k+1

)
, and compute

δk := ZkCP −
∑
s∈S

ZsLR (µ̄s) .

Step 3: (Termination criterion) If

δk
1 +

∑
s∈S Z

s
LR (µ̄s)

≤ ε,

stop the algorithm, otherwise go to Step 4.
Step 4: (Local problem) For all s in S, solve |S| sub-

problems (11) to obtain the next points xsk+1 and
ZsLR(µsk+1).

Step 5: (Center update) If∑
s∈S

ZsLR
(
µsk+1

)
≥
∑
s∈S

ZsLR (µ̄s) + ωδk,

update stability center µ̄s = µsk+1,∀s ∈ S, otherwise
leave the center unchanged.

Step 6: (Trust region update) Compute the ratio

ρ :=

∑
s∈S Z

s
LR(µsk+1)−

∑
s∈S Z

s
LR(µ̄s)

δk
.

If ρ = 1, then τk+1 = 1.5τk and if ρ < 0, then τk+1 =
0.8τk.

Step 7: (Iteration update) Set k = k+ 1, go back to Step 2 .

integrality restriction (x = round(
∑
s∈S x

s/|S|)). When the
first-stage variables are known, the primal problem can also
be decomposed into |S| subproblems to compute the upper
bound of the primal problem (8).

Algorithm 3 shows the whole scenario decomposition
method combining Algorithm 2 and the method of comput-
ing the upper bound. In detail, it only adds the upper bound
update (Algorithm 3 Step 3) and a new termination criterion

Algorithm 3 Scenario Decomposition Method for Solving
Primal Problem (8)
Step 1: (Initialization) Set the tolerance εCP ≥ 0, εDG ≥ 0

iteration count k = 1, initial stability center µ̄s = µsk =
0, s ∈ S, an ascent coefficient ω ∈ (0, 1), and initial
trust-region τk ≥ 0. Set upper bound UB = +∞, lower
bound LB = −∞

Step 2: (Lower bound update) solve subproblem (11) for all
s in S to obtain ZsLR (µsk) and xsk; clearly, ZLR(µk) =∑
s∈S Z

s
LR(µs). If ZLR(µk) > LB, then LB =

ZLR(µk).
Step 3: (Upper bound update) Generate the first-stage vari-

able with x̂k = xsk/|S|. For integer variables, x̂k =
roundxsk/|S|). Then, fix x = x̂k in primal problem (8)
to compute the optimal Z. If Z < UB, then UB = Z.

Step 4: (Termination criterion) If UB − LB ≤ εDG, stop
the algorithm; otherwise go to Step 5.

Step 5: (Cut generation) Execute Algorithm 2 Step 2 to
obtain

(
ZkCP ,µ

s
k+1, δk

)
Step 6: (Termination criterion) If

δk
1 +

∑
s∈S Z

s
LR (µ̄s)

≤ εCP ,

stop the algorithm, otherwise go to Step 7.
Step 7: (Center and trust region update) Perform Steps 1–3

again to obtain ZsLR (µsk), xsk, LB, and UB, then update
the stability center and trust region with Step 5 and 6 of
Algorithm 2.

Step 8: (Iteration update) Set k = k + 1, go back to Step 5.

(Algorithm 3 Step 4) between Steps 1 and 2 of Algorithm
2.

Because of the block structure, the scenario decomposition
method can split up the primal problem (8) into |S| scenario
subproblems. In addition, these scenarios can be grouped
together into larger blocks to help reduce the gap [29] while
maintaining the block structure; thereby, we will rewrite
problem (9) into problem (13).

Z = min
x,y

1

|L|
∑
l∈L

cTxl +
1

|S|
∑
l∈L

∑
s∈Sl

(qs)Tys (13a)

subject to:

Axl ≤ b,∀l ∈ L (13b)

Txl +Wys ≤ hs,∀l ∈ L, s ∈ Sl (13c)

xl − x̄ = 0,∀l ∈ L (13d)

xl ∈ X ,∀l ∈ L (13e)
ys ∈ Y,∀l ∈ L, s ∈ Sl (13f)
x̄ ∈ Rn (13g)

where L is the set of blocks and l ∈ L, Sl is the set of
scenarios in block l. |L| is chosen to be a suitable divisor
of |S|. Similarly, we can solve problem (13) by the scenario
decomposition method. According to our preliminary experi-
ments, instead of formulating subproblems for each scenario,
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we can split the scenarios into several large blocks in the
order of the scenario, which leads to a better solution.

V. COMPUTATIONAL EXPERIMENTS
We conducted experiments based on historical data of the
Ha:mo RIDE carsharing system in Toyota city, Japan col-
lected from April 1st, 2016 to March 31st, 2017. Ha:mo
RIDE is a station-based one-way system. Considering the
accessibility of data, we utilized the data from the existing
carsharing system directly to generate scenario demand data
and assumed the sites of the current stations to be potential
location sites. Note that the formulation proposed in Section
III is not affected by these treatments or by the other methods
used to obtain the demand data and potential locations (e.g.,
[4], [7]). The model was implemented using Gurobi Opti-
mizer 9.0 in the Python environment on an Intel i7-8700 CPU
with 12 cores and 16GB of RAM.

A. PARAMETER SETTINGS
There were 55 stations with different capacities in the Ha:mo
RIDE system. As mentioned above, the sites of these stations
were assumed to be the potential location sites and the current
station capacities were regarded as maximum numbers of
parking spaces that can be set. The operating time of the
system was from 6:00 to 24:00, which in the experiments
was divided into multiple 5-minute intervals.

An important part of the parameters in the proposed model
is the scenario demand data. Instead of predicting the poten-
tial demand with forecast methods like regression prediction,
we generated the demand by using a Poisson distribution due
to the limited data, which is the same as [17]. The average
origin-destination (OD) matrices for the same hours were
calculated from the historical data for different days. The
number of OD trips per hour was then evenly distributed
over the time intervals, which determines the parameter in the
Poisson distribution. In such a way, we generated a random
number of possible trips departing from each station for each
time interval. Furthermore, the arrival time was determined
by adding the trip duration to the departure time. The trip
duration for each OD pair varied every hour, which was
obtained from the Google Maps Distance Matrix API. We
based the trip price on the trip duration: a fare of ¥200
for up to 10 minutes and ¥20 per minute after that. Using
this procedure, we repeatedly generated different scenario
demands.

The remaining parameters are mostly related to the costs.
Besides the station cost, other costs are constant ones, in-
cluding the station and vehicle operating costs and the cost
of purchasing vehicles. Because the station cost involves the
land cost, which varies according to the local conditions, we
collected the land cost data for Toyota City from the National
Land Price Map, Japan [35]. The constant parameters are
summarized in Table 1. Note that some parameters have been
modified to ensure the system can make a profit.

TABLE 1. Values of constant parameters used in the model.

Parameters Value
Operating cost per parking space per scenario (C1) ¥100
Operating cost per vehicle per scenario(C2) ¥200
Cost for purchasing a vehicle (F ) ¥879000
Available budget (B) ¥200 million
Number of scenarios (|S|) 1000

B. OPTIMIZATION RESULTS
With the given parameters, we solved the strategic decision
model directly with Gurobi and generated efficient frontiers
for the 90%, 95%, and 99% confidence levels by using differ-
ent weight values , as shown in Fig. 1. This figure also shows
optimal results including the total number of parking spaces,
the number of vehicles used, and the demand satisfaction
rate for different weight values. From the efficient frontiers,
it is obvious that high returns are accompanied by high
risks. To achieve higher returns, the main approach appears
to be increasing the number of parking spaces or vehicles,
which improves the satisfied demand ratio. By considering
different confidence levels, we found that a higher confidence
level quantifies more serious risk and reduces the return to
a certain degree. Furthermore, it seems sufficient to set 86
parking spaces and purchase 34 vehicles in the carsharing
system, since more parking spaces or vehicles increase risk,
not return.

Fig. 2 illustrates the optimal location and capacity of
stations for different values of λ, given β = 95%. The size
of the circle represents the number of parking spaces. The
individual figures show the optimal number of stations, num-
ber of parking spaces, and required fleet size in the system
at the upper right corner. Generally, stations equipped with
more parking spaces are mainly located at the spots with
high demand, such as at Toyota factories and railway stations.
However, these hot spots are easily affected by the weight
values; that is, the number of parking spaces will increase
when more attention is paid to the return. In comparison, the
solutions seem more robust for some small stations. There
are 13 common small stations, marked in red circles, where
the location and capacity of stations are the same.

C. OUT-OF-SAMPLE PERFORMANCE OF THE
RISK-AVERSE MODEL
As mentioned above, most of the previous studies maximized
the expectation value of returns in the optimization model
without any consideration of risk. In this subsection, we
develop an evaluation method that is similar to the training
and testing method used in the field of machine learning to
verify whether introducing risk has benefits, i.e., whether
the strategic decisions from risk-averse model are better.
As can be seen in Fig. 3, the proposed evaluation process
consists of two important parts. In the first part (training
part), we set different weight values in the strategic model to
optimize the corresponding strategic decisions. In the second
part (testing part), we render these decisions as additional
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(a)

(b)

(c)

FIGURE 1. Efficient frontiers of mean return and CVaR: (a) β = 90%; (b)
β = 95%; (c) β = 99%.

constraints in the strategic model and meanwhile input test
demand data into the model. After optimizing other variables
according to the determined variables associated with the
strategic decisions, the mean returns in the objective function
are compared to further inspect the strategic decisions.

To examine the impact of introducing the risk term on the
strategic decisions, the weight values (λ) used to generate the

TABLE 2. Mean return on test data for different λ when β = 90%.

Test data λ = 0
0 < λ < 1

λ = 10.001 0.1 0.3 0.5 0.7 0.9 0.999
1 5335 9506 9830 10628 11485 11920 11990 12022 12022
2 4140 8593 8853 9511 10135 10388 10397 10340 10340
3 3980 8296 8514 9033 9566 9790 9734 9708 9708
4 3190 7956 8210 8681 9122 9217 9154 9138 9138
5 3191 7530 7759 8236 8524 8567 8490 8350 8350
6 3065 6845 7011 7331 7394 7328 7142 7019 7019
7 3139 6692 6794 7038 7155 6944 6720 6583 6583
8 3589 6396 6494 6670 6684 6476 6238 6078 6078
9 2659 5399 5460 5532 5178 4709 4403 4207 4207

10 2792 4411 4461 4359 3815 3161 2764 2459 2459
Average 3508 7162 7339 7702 7906 7850 7703 7590 7590

TABLE 3. Mean return on test data for different λ when β = 95%.

Test data λ = 0
0 < λ < 1

λ = 10.001 0.1 0.3 0.5 0.7 0.9 0.999
1 3881 8762 9200 10310 11088 11920 11990 12022 12022
2 2889 7887 8336 9303 9890 10388 10397 10340 10340
3 3604 7632 8048 8795 9322 9790 9734 9708 9708
4 2655 7365 7735 8509 8938 9217 9154 9138 9138
5 2759 6871 7313 8026 8408 8567 8490 8350 8350
6 2790 6272 6646 7213 7377 7328 7142 7019 7019
7 2727 6172 6531 6971 7079 6944 6720 6583 6583
8 2805 5913 6241 6630 6660 6476 6238 6078 6078
9 2598 5071 5321 5537 5376 4709 4403 4207 4207

10 2215 4163 4375 4374 4063 3161 2764 2459 2459
Average 2892 6611 6975 7567 7820 7850 7703 7590 7590

efficient frontier are divided into three categories: i) λ = 0,
i.e., only risk is considered; ii) 0 < λ < 1, i.e., both
return and risk are considered; iii) λ = 1, i.e., only return is
considered. Given different confidence levels β, the strategic
decisions with respect to different λ will be evaluated by
the indicator, mean return, on diverse test demand data. We
generated 10 sets of test demand data that followed a Poisson
distribution. The test results for β = 90%, 95%, and 99% are
reported in Tables 2, 3, and 4, respectively.

For each set of test data, the maximal return is marked in
bold. In Table 2, it is interesting that, for most of the test data,
the maximal returns are obtained when 0 < λ < 1 rather than
λ = 1. Similar observations apply to Tables 3 and 4. Strategic
decisions based on a single criterion are more likely to cause
poor performance under demand uncertainty, which indicates
the necessity of introducing the risk term. Weighting the
return against risk, the carsharing system operator may earn
higher returns in the future. In addition, we also find that
appropriate attention should be paid to risk (i.e., choosing
a suitably smaller λ) if the demand data results in lower
returns. Take test data 1 and 10 in Table 2 as examples. The
maximal returns are obtained when λ = 0.1 for test data 10
and λ = 0.999 or 1 for test data 1, and it can be seen that the
return from test data 10 is lower than the return from test data
1.

D. COMPARISON OF PROPOSED SOLUTION METHODS
To assess the efficiency of our algorithms, we conducted
computational experiments comparing the two proposed al-
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(a) (b) (c)

FIGURE 2. Optimal station locations and capacities for β = 95%: (a) λ = 0; (b) λ = 0.5; (c) λ = 1.

FIGURE 3. Scheme to evaluate the model with risk term.

TABLE 4. Mean return on test data for different λ when β = 99%.

Test data λ = 0
0 < λ < 1

λ = 10.001 0.1 0.3 0.5 0.7 0.9 0.999
1 1757 6254 7755 9391 10289 11849 11990 12022 12022
2 1937 5702 7041 8519 9206 10330 10397 10340 10340
3 2844 5569 6919 8166 8806 9766 9734 9708 9708
4 1747 5372 6656 7875 8438 9220 9154 9138 9138
5 1754 5065 6144 7476 7985 8542 8490 8350 8350
6 1033 4716 5716 6791 7218 7334 7142 7019 7019
7 388 4660 5574 6537 6962 7010 6720 6583 6583
8 1738 4441 5341 6242 6589 6474 6238 6078 6078
9 1036 3892 4547 5345 5457 4776 4403 4207 4207
10 1612 3343 3785 4384 4309 3263 2764 2459 2459

Average 1585 4901 5948 7073 7526 7856 7703 7590 7590

gorithms with direct usage of the Gurobi optimization solver
and Benders decomposition-based algorithm used in [23].
For each parameter set (λ, β, and |S|), we designed three
experiments by generating different trip demands in each sce-
nario, and we evaluated the average performance of these ex-
periments. We set the weight parameter, λ ∈ {0.1, 0.5, 0.9},
the confidence level parameter, β ∈ {90%, 95%, 99%}, and
the number of scenarios, |S| ∈ {200, 1000, 2000}. When

using Gurobi directly and employing the branch-and-bound
algorithm, both optimality tolerances take the default value,
ε = 10−4. In the scenario decomposition algorithm, the
optimality tolerances εCP and εDG are 10−4 and 300, respec-
tively. For all methods, the time limits are set to be 7200s.

In Tables 5, 6, and 7, “Direct” means direct usage of
Gurobi, “B&C” is the branch-and-cut algorithm, “SD” repre-
sents the scenario decomposition method, and “BD” means
the Benders decomposition-based algorithm introduced in
[23]. On large-scale problems, the algorithms usually ter-
minated because they ran out of memory. Accordingly,
“OM(*)” means that the algorithm experienced a memory
shortage, where “*” is the number of memory shortages out
of three. Similarly, “OT(*)” depicts the computation was
terminated due to time limit, where “*” is the number out
of three. Moreover, “Gap (%)” is the relative optimality gap.

Tables 5, 6, and 7 illustrate the results of solving the
problems with different numbers of scenarios, mainly includ-
ing the gaps and time. As can be seen in Tables 5 and 6,
both direct method and B&C algorithm can provide optimal
values with gaps being less than 10−4. For some problems
with 200 scenarios, the B&C algorithm takes a little more
time than the direct approach. However, when the number of
scenarios is 1000, the B&C algorithm shows more favorable
results; its computing time was reduced by 51% on average in
comparison with Gurobi. Turning now to the SD algorithm,
we see that the algorithm is faster than both the direct
approach and the B&C algorithm and the resulting optimality
gaps are mostly within 3%. Although the SD algorithm can
provide tight lower bounds with the trust-region cutting-
plane method, a simple heuristic to estimate the upper bounds
sometimes may cause weak solutions and large gaps (e.g.,
λ = 0.1, β = 99%), which can be further improved. In
comparison, BD performs worse than all other methods. For
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TABLE 5. Results of solving problem with 200 scenarios.

λ β
Gap (%) Time (s)

Direct B&C SD BD Direct B&C SD BD

0.1
90%

≤ 0.01

5.33

> 100

58.0 64.7 33.2

OT(3)

95% 12.35 46.3 71.2 40.3
99% 24.62 150.0 231.0 88.7

0.5
90% 1.73 59.1 50.8 33.3
95% 2.60 68.5 50.8 29.6
99% 3.28 82.5 86.5 36.9

0.9
90% 0.35 64.8 37.1 23.4
95% 0.46 57.3 43.2 23.5
99% 0.81 47.5 50.9 21.0

TABLE 6. Results of solving problem with 1000 scenarios.

λ β
Gap (%) Time (s)

Direct B&C SD BD Direct B&C SD BD

0.1
90%

≤ 0.01

1.08

>100

3587.3 2312.3 1132.0

OT(3)

95% 2.48 4035.3 2884.4 1025.0
99% 17.16 4137.8 2966.4 1430.4

0.5
90% 0.29 5202.5 2057.7 1147.6
95% 0.97 3595.5 1597.8 1063.3
99% 2.91 3232.4 1958.3 1059.4

0.9
90% 0.06 3044.1 907.5 949.5
95% 0.06 3582.9 1003.1 878.4
99% 0.22 3299.2 1144.2 867.1

all problems with 200 scenarios or 1000 scenarios, we did not
obtain good solutions within the specified time by using the
BD algorithm. With the increase of the number of iterations,
the master problem in the BD algorithm becomes a larger
MILP gradually and most of the time is spent on solving the
master problem. However, in the SD algorithm, we substitute
a heuristic solution (average value) into the prime problem to
get the solution without solving such an MILP. In short, both
B&C algorithm and SD algorithm are effective when solving
the problem with fewer scenarios, and one can choose the
B&C algorithm and SD algorithm according to the need for
a smaller gap or for higher speed .

Now, let us look at Table 7, which indicates the advantage
and efficiency of the SD algorithm for solving large-scale
problem. The core of the B&C algorithm is replacing the
CVaR constraint with the cutting-plane representation, so
a problem remains is that the other linear constraints still
depend on the number of scenarios, i.e., a much greater
number of scenarios may result in difficulty finding a good
solution. The table indicates that the direct approach and
B&C algorithm could not solve the problems with 2000
scenarios and all experiments terminated due to memory
shortage. BD method could not find a feasible solution for our
model within the given time. Nevertheless, the SD algorithm
can compensate for hardware defects by consuming more
(but still tolerable) computation time and obtain favorable
solutions. Even for the problems with λ = 0.1 and β = 99%,
the gap presents a downward trend compared with the values
in Tables 5 and 6. These illustrate the superiority of SD on
large-scale problems.

TABLE 7. Results of solving problem with 2000 scenarios.

λ β
Gap (%) Time (s)

Direct B&C SD BD Direct B&C SD BD

0.1
90%

-

1.94

- OM(3)

1804.6

OT(3)

95% 5.57 OT(3)
99% 13.96 4216.5

0.5
90% 0.60 1924.4
95% 1.14 2243.5
99% 4.52 OT(3)

0.9
90% 0.20 3739.5
95% 0.21 2957.9
99% 0.45 6666.1

VI. CONCLUSION
We proposed a two-stage stochastic risk-averse MINLP
model to optimize the strategic decisions in one-way station-
based carsharing systems operating under demand uncer-
tainty. In the model, the optimal location, capacity of stations,
and fleet size can be determined at the same time. In addition
to the expected return that is a common optimization objec-
tive, the risk measure CVaR is incorporated into the model
so that the operator can examine the trade-off between return
and risk. Since we aimed to solve the problem efficiently, we
developed two methods, a branch-and-cut algorithm and a
scenario decomposition algorithm, by converting the primal
problem into two different equivalent problems.

Using the historical demand data, we generated scenario
demands that followed a Poisson distribution and conducted
computational experiments. By solving the problems with
different weight values, we obtained efficient frontiers, which
revealed a positive correlation between return and CVaR.
From the efficient frontiers, we found that building more
parking spaces or preparing more vehicles can improve the
return and the satisfied demand ratio, but that they cause
more risk. The stations equipped with more parking spaces
are suggested to be set at the spots with high demand, such
as at Toyota factories and railway stations. Additionally, we
evaluated the advantages of the proposed model with the risk
term. The results show that it is better to consider both the
return and risk in the objective function so that the strategic
decisions may lead to a higher return. When comparing the
solution methods, the algorithm developed by Lu et al. [23]
has unsatisfactory performance on our model. By contrast,
both branch-and-cut and scenario decomposition algorithms
are effective at solving small- and medium-scale problems.
More importantly, the scenario decomposition can deal with
large-scale problems that cannot be solved by the direct
approach or by the branch-and-cut algorithm.

An interesting challenge would be to develop more com-
plicated variations of our model with constraints such as en-
ergy consumption, vehicle relocations, or relays, which will
relax our assumptions and make the model more realistic.
In particular, given the current scale of the proposed model,
relaxation tricks might be needed to handle these constraints.
On the other hand, from a computational perspective, we
can improve the heuristic method for determining upper
bounds in scenario decomposition to make the algorithm
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more sophisticated.
.
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APPENDIX A GENERAL MEAN-CVAR MODEL
Conditional value-at-risk (CVaR) was first proposed by
Rockafellar and Uryasev [27] as a downside risk measure to
quantify tail losses. In comparison with the traditional risk
measure value-at-risk (VaR), CVaR has more attractive math-
ematical properties (e.g., subadditivity, convexity; see [36]).
More importantly, CVaR can illustrate the losses exceeding
VaR, but VaR does not control such losses.
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Let L(x,y) denote the loss function with respect to a de-
cision vector x ∈ X ⊂ Rn and uncertain vector y ∈ Rm and
p(y) denotes the probability density function associated with
y. For a fixed decision vector x, the cumulative distribution
function of the loss can be written as:

ψ(x, α) =

∫
L(x,y)≤α

p(y) dy. (14)

Given a confidence level β, the β-VaR associated with the
decision vector x is as follows:

VaRβ(x) = min{α ∈ R : ψ(x, α) ≥ β}. (15)

Three values of β are commonly considered: 90%, 95%,
and 99%. The β-CVaR associated with the decision vector x
is defined as:

CVaRβ(x) =
1

1− β

∫
L(x,y)≥VaRβ(x)

L(x,y)p(y)dy,

(16)
which is the conditional expectation of the loss that is beyond
VaRβ . It is difficult to deal with (16) directly, so Rockafellar
and Uryasev [27] developed a simpler auxiliary function:

Fβ(x, α) = α+
1

1− β

∫
y∈Rm

[L(x,y)−α]+p(y)dy (17)

where [x]+ = max {x, 0} for x ∈ R, and proved

CVaRβ(x) = min
α∈R
Fβ(x, α). (18)

For practical applications, we often consider the following
scenario-based approximation, i.e., (19), with a number of
scenarios in the name of ys for s in the scenario set S to
avoid numerical difficulties caused by the integration in (17).

Fβ(x, α) ≈ α+
1

(1− β)|S|
∑
s∈S

[L (x,ys)− α]+ (19)

The system operators usually try to minimize the risk while
maximizing the return (or minimizing the loss). In this case,
we can consider the mean-CVaR model, taking both return
and risk into account. Krokhmal et al. [37] illustrated three
equivalent formulations of the mean-CVaR model. A typical
one among them is

min
x,α
{λE[L(x,y)] + (1− λ)Fβ(x, α)} , (20)

where λ is the weight value, ranging from 0 to 1, and E[·] is
the expectation function. Considering discrete scenarios with
the same probability, we can reformulate problem (20) in an
approximate form:

min
x,α

{
λ

|S|
∑
s∈S
L (x,ys) +

(1− λ)

(
α+

1

(1− β)|S|
∑
s∈S

[L (x,ys)− α]+

)}
.

(21)

KAI ZHANG was born in Jingjiang, Jiangsu,
China in 1994. He received the B.S. degree in
transportation engineering from Yangzhou Uni-
versity, Yangzhou, China, in 2016, the M.S. de-
gree in traffic information engineering & control
from Nanjing University of Science & Technol-
ogy, Nanjing, China, in 2019, and the M.S. degree
in system management engineering from Fukuoka
Institute of Technology, Fukuoka, Japan, in 2019.
He is currently pursuing the Ph.D. degree in policy

and planning sciences at University of Tsukuba, Ibaraki, Japan.
Since 2019, he has been a Research Assistant with University of Tsukuba.

His research interest includes mathematical optimization and its application
to transportation systems.

YUICHI TAKANO received his B.S. degree in
policy and planning sciences in 2005, M.S. de-
gree in engineering in 2007, and Ph.D. degree in
engineering in 2010, all from the University of
Tsukuba, Ibaraki, Japan.

From 2010 to 2014, he was an Assistant Pro-
fessor with the Department of Industrial Engineer-
ing and Management, Tokyo Institute of Technol-
ogy, Tokyo, Japan. In 2014, he joined the School
of Network and Information, Senshu University,

Kanagawa, Japan, as a Lecturer, and in 2016 became an Associate Professor.
Since 2018, he has been an Associate Professor with the Faculty of Engineer-
ing, Information and Systems, University of Tsukuba. His primary research
interests are mathematical optimization and its application to financial
engineering and machine learning.

YUZHU WANG was born in Yichang, Hubei,
China in 1994. He received the B.S. degree
in mathematics and applied mathematics from
Harbin Institute of Technology, Weihai, China, in
2016. He recived the M.S. degree in policy and
planning sciences from University of Tsukuba,
Ibaraki, Japan, in 2019. He is currently studying
for the Ph.D. degree in policy and planning sci-
ences at University of Tsukuba, Ibaraki, Japan.

He has been a Research Assistant at University
of Tsukuba since 2019. He is currently interested in conic optimization prob-
lems, approximations of the semidefinite cone and algorithms for solving
large-scale semidefinite optimization problems.

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3084287, IEEE Access

Zhang et al.: Optimizing the strategic decisions for one-way station-based carsharing systems: A mean-CVaR approach

AKIKO YOSHISE was born in Machida, Tokyo,
Japan in 1962. She received her B.S., M.S., and
Ph.D. degrees, all in engineering, from Tokyo In-
stitute of Technology in 1985, 1987, and 1990.

Since 2007, she has been a Professor with the
Faculty of Engineering, Information and Systems,
University of Tsukuba, Ibaraki, Japan, and is cur-
rently an Executive Officer of the university. She
played a part in developing theoretical foundations
of the primal-dual interior-point algorithm for lin-

ear programming and complementarity problems. Her research interests
include mathematical optimization, especially conic optimization, and its
applications in service science. She is an Editor of the journals Numerical
Algorithms, Japan Journal of Industrial and Applied Mathematics, and
Pacific Journal of Optimization.

Professor Yoshise was a recipient of the INFORMS Computing Society
Prize in 1992 and the Frederick W. Lanchester Prize in 1993.

14 VOLUME 4, 2016


