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To explore the application value of MRI in the diagnosis of brain glioma (BG), in the study, a deep learning-based multimodal
feature fusion model was established, which was then applied in BG classification. 60 BG patients who came to our hospital for
treatment were selected as research subjects. (ey all accepted the MRI scan and the enhanced scan, and the MRI results were
compared with the pathological results. (e results showed that the sensitivity of the algorithm was above 90%, and the sensitivity
to diagnose grade IV glioma was as high as 98.28%; the specificity was above 78%, and the specificity to diagnose grade IV glioma
was as high as 95.85%; the detection accuracy was above 95%. (e relative fractional anisotropy (rFA) values of the tumor body
were smaller than those of peritumoral edema in both the high-grade group and low-grade group, and the difference was notable
(P< 0.05); the relative apparent diffusion coefficients (rADC) values of the peritumoral edema were greater than those of tumor
bodies of the same grade in both the high-grade group and the low-grade group, and the difference was notable (P< 0.05); notable
differences were noted in the rADC values of tumor bodies between the high-grade group and the low-grade group (P< 0.05) and
in the rADC values of the glioma peritumoral edema between the high-grade group and the low-grade group (P< 0.05). In
summary, MRI based on deep learning raises the sensitivity, specificity, and accuracy to diagnose BG and can more accurately
classify BG pathologically, providing reference for clinical treatment of BG.

1. Introduction

Tumor is a disease occurring in multiple sites, and the
intracranial tumor is a common disease in the nervous
system, which is very harmful to the human nervous
system [1]. (e intracranial tumor is generally divided
into two categories: primary and secondary intracranial
tumor. Brain glioma (BG) originates from glial cells and
is the most common brain tumor. It is characterized by
infiltrating growth, especially high-grade BG [2]. As a
result, it is difficult to distinguish it from normal brain
tissue, leading to a great risk for surgical resection.
Hence, the correct diagnosis and grading of BG before
surgery are of great significance for formulating the
clinical treatment plan [3, 4]. (e tumor grade refers to
the degree of malignancy [5]. BGs of grade I and II are of

low grade, and those of grades III and IV are of high grade
[6].

MRI technology and scanning sequences emerge in
endlessly, thanks to the advancement of medical technology
and testing equipment.(eMRI combines the advantages of
anatomy, function, and imaging. It is of great significance for
exploring the laws of tumors at the cellular or molecular level
and the research and development of drugs, as well as the
formation of modern medical modalities and the im-
provement of human health. (erefore, it is extensively used
clinically [7]. To facilitate doctors accurately removing brain
gliomas during surgery, imaging methods such as computed
tomography (CT), MRI, and positron emission computed
tomography (PET) are usually used to segment the glioma
area in clinical treatment. Because MRI demonstrates superb
capabilities in soft tissue detection and can provide rich
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physiological tissue information, it is usually used for pre-
operative diagnosis, intraoperative treatment, and postop-
erative examination of BG [8]. (e current single-modal
MRI technology has its limitations, because it cannot fully
display the structure and function of the tumor. (e deep
learning can automatically learn multilayer features, suitable
for auxiliary diagnosis of medical images [9]. In the study,
the multimodal MRI technology based on deep learning
theory was used to comprehensively display the structure,
function, and molecular information of BG, so as to provide
diagnostic evidence and reference for the pathological
classification of BG.

In summary, the BG patients were selected as the re-
search subjects, and their MRI images were optimized based
on deep learning, to evaluate the role of MRI images in
classifying BG.

2. Materials and Methods

2.1. Research Subjects and Grouping. 60 BG patients who
were admitted to hospital from July 20, 2019, to February
20, 2020, were selected as the research subjects. All
patients underwent MRI scan and enhanced scan before
surgery, the results of which were compared with
postoperative pathological results. According to the
pathological classification, they were divided into low-
grade BG group (low-grade group) and high-grade BG
group (high-grade group). (ere were 44 males and 16
females between 20 and 60 years of age, and the average
age was 55.82 ± 4.18 years. (e study has been approved
by medical ethics committee of Hunan Cancer Hospital,
and the patients and their families have been informed
and signed the consent form.

(e MRI diagnostic criteria strictly followed the 2015
edition of the Guidelines for the Diagnosis and Treatment of
Glioma of the Central Nervous System in China [10]. MRI
imaging features of low-grade BG are as follows: uniform
signal, long T1, and long T2. Enhanced scans showed that
there was no diffuse astrocytoma. When the signal was
uneven and locally accompanied by massive calcification, it
was considered oligodendrocytes cell tumor. Grade III gli-
oma is also called gradual glioma. Its MRI signal charac-
teristics were the same as low-grade glioma, but the
enhanced scan showed that there was enhancement. Grade
IV glioma exhibited irregular peripheral enhancement, ac-
companied by a large amount of central necrosis and ob-
vious brain edema outside the enhanced area. (e
enhancement scan of glioma sarcoma exhibited solid uneven
enhancement.

For glioma classification, according to the degree of
malignancy from low to high, it can be divided into grades
I∼IV, strictly referring to the 2007 edition of WHO glioma
pathological grading standards.

Inclusion criteria are as follows: (1) All cases accepted
MRI scan, diagnosed by clinical imaging physicians and
neurosurgeons strictly referring to MRI diagnostic criteria.
(2) (e patients were diagnosed as BG according to post-
operative pathological results. (3) (e patient had no history
of craniocerebral surgery and substantial brain injury. (4)

Patients had clear consciousness, were able to communicate
normally, and had no mental illness.

Exclusion criteria are as follows: (1) cases diagnosed as
having cerebral infarction by DWI or MRS, (2) cases with
severe communication disorder or mental illness, (3) cases
with intracranial hypertension and other characteristics of
intracranial lesions, and (4) patients with liver and kidney
dysfunction or allergy to contrast agents.

2.2. MRI Examination. After routine preparations, all pa-
tients were asked to lie on their backs, headfirst, with their
upper limbs placed on both sides of the body. Special ear-
plugs were inserted into the ear, and the patients were told
not to move [11]. (e equipment used was GE Signa HD
3.0 T magnetic resonance whole-body scanner (Schering,
Germany). After conventional axial, sagittal, and coronal
scans, axial and sagittal T1FLAIR scans were performed
again immediately after the contrast agent was injected. If
necessary, coronal enhancement scan was required. (e
enhanced scanning adopted MRI special high-pressure in-
jector. After the paramagnetic contrast agent was injected
into the anterior elbow vein at a dose of 0.1mmoL/kg body
weight, 15mL of normal saline was injected immediately, so
that the contrast agent can be fully distributed into the
patient’s body. (e thickness of scanning layer was about
5mm, the layer distance was 1.5mm, and the number of
layers was 20.

After reading the patient’s medical history and MRI
imaging results, two radiologists observed and analyzed the
patient’s images to determine the BG classification. Any
inconsistency was resolved through discussion. Based on
postoperative pathological diagnosis, the image features of
BG of different pathological grades were compared and
analyzed.

2.3. Pathological Examination. (e specimen was fixed in
10% neutral formalin, embedded in paraffin, and sliced
continuously in 4 μm thickness. After being stained using
HE staining, it was visualized and observed by the senior
physician according to the 2007 edition of the WHO In-
ternational Classification of Brain Tumors [12], with the
pathological grade and grouping determined: low-grade BG
group, mainly for patients with grade I and grade II BG, and
high-grade BG group, mainly for patients with grade III and
grade IV BG.

2.4. 1e Deep Learning Model Based on Multimodal Feature
Fusion. At present, convolutional neural networks are
widely used in the field of medical image diagnosis, with
good progress achieved. (e working mechanism of
convolutional neural network is to automatically extract
image features through convolution operation, with rich
semantic information and strong robustness [13]. Since
the deep learning model can obtain better results through
training labeled images, the second to fifth convolution
blocks of VGG16 [14] are directly applied in transfer
learning. (e feature map of the last layer of each
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convolution block is extracted and processed, which is
K(g), g � 1, 2, 3, 4, 5, respectively. After upsampling,
K(g) and K(g − 1) fuse the pixel using the result image
processed by 2∗3 convolution kernel, and then the 6∗6
convolution kernel is used again to correct the fused
image, which can eliminate the aliasing effect and obtain a
new feature map K(g − 1). (e pyramid fusion equation
is as follows:

K(g − 1) � R2×3(K(g − 1)),

K(g − 1) � R6×6(K(g) + K(g − 1)).
(1)

K(3) in the last layer passes through the Batch Normal
(BN) layer, the adaptive maximum pooling layer, and the
fully connected layer in turn. (e BN layer can speed up
the convergence speed and improve classification effect of
the model. R(1) is set as the n-th dimension feature of K(3).
R(1) introduces the parameters L(1) and T(1) and uses the
indifference estimation to output the n-th dimension feature
as follows:

R
(1)

� L
(1)

P
− (1)

+ T
(1)

. (2)

When nonlinear factors are added to the ReLU layer, the
expression ability of the increased model will be weakened.
(e activation function of ReLU is as follows. Q(·) is the
expression ability of the nonlinear model, and x is the
maximum solution.

Q(x) � max 0, x{ }. (3)

(e main difference between the adaptive maximum
pooling layer and the standard Max Pooling is that the
former will control the output-size (Out) according to the
input-size (In), and stride and kernel size are expressed as
follows:

stride � floor
In
Out

􏼒 􏼓,

kernelsize � In − (Out − 1) × stride.

(4)

(e fully connected layer can be regarded as a full-scale
convolution of s × u, with s and u being the output size of the
previous layer. Finally, 1026-dimensional features extracted
by the convolutional neural network can be obtained.

k � k1, k2, k3Lk1026( 􏼁. (5)

(e functions of different modes have different char-
acteristics [15]. In the study, a deep learning model of
multimodal feature fusion is established.(emodel contains
less neurons versus the hidden planes and Sigmoid layers.
(e entire network is trained by maximizing the energy
proportion of the feature layer. (e Sigmoid layer can map
the feature interval after feature fusion. (e feature interval
is (0, 1), which is the prediction probability. (e feature
vector f� (1, 0), and the forward propagation equation is as
follows:

Vf � Wi + Ni( 􏼁cie + ℘e,

N � ℘ 􏽘

m

s�1
Wi + Ni( 􏼁℘ie + ce

⎛⎝ ⎞⎠,
(6)

where V(f) � (1/1 + e− i), Wi is the deviation of the visible
layer, ce is the deviation of the hidden layer, and ℘ie is the
hidden layer vector. To obtain the optimal fitting multi-
modal feature, the energy model is used to adjust the pa-
rameters, and the energy function is as follows:

K(1, 0|∇) � − 􏽘
i

e�1
WeNe − 􏽘

m

s�1
􏽘

e

i�1
Wi℘ieNi. (7)

In equation (9), ∇ � (Wi,℘ie, Ni), K(1, 0|∇) represents
the total energy of the module.

(e marginal probability distribution is defined as
follows:

g(1|∇) �
1

J(∇)
􏽘

e

O
− k(1,0|∇)

, (8)

g(0|∇) �
1

J(∇)
􏽘

i

o
− k(1,0|∇)

, (9)

where g(∇) � 􏽐ilO
− k(1,0|∇) is the optimized nonlinear

function expression.

∇il � argmax
∇

􏽘

o

i�1
lgg 1i|∇( 􏼁, (10)

where o is the number of samples. When ∇ reaches the
maximum, the energy of the hidden layer is the smallest.
When data is transmitted within the network, the direction
of the data flow is also the direction of energy dissipation.
After multiple iterations, the network energy is gradually
attenuated, and the network tends to be orderly or the
probability distribution tends to be concentrated.

2.5. Evaluation Indicators. Accuracy, sensitivity, and spec-
ificity were used to quantitatively evaluate the performance
of the model. (e main observation indicators of the lesion
image included the location of the lesion, the number of
lesions, the size of the lesion, the shape of the lesion, the
signal intensity, the edema around the tumor, and the degree
of enhancement [16]. After the original MRI image was
transmitted to the workstation, it was processed by the
Function tool (2) software to obtain the ADC map and FA
map, with the FA value and ADC value measured. Subse-
quently, the rFA and rADC values were obtained according
to the ratio of the tumor body part and the tumor edema
zone to the contralateral white matter area, respectively.

2.6. Statistical Methods. (e data was processed using
SPSS19.0 statistical software. (e measurement data were
expressed as mean± standard deviation (x ± s). (e com-
parison of themean between each group was performed by t-
test. (e count data were expressed by percentage (%), and
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the χ2 test was used. P< 0.05 was the threshold for
significance.

3. Results

3.1. 1e General Information. (e 60 BG patients included
were 44 males and 16 females (Figure 1). 23 cases were in the
low-grade BG group, 13 were males, and 10 were females,
with an average age of 54.16± 3.45 years. 37 cases were in the
high-grade BG group, and there were 20 males and 17 fe-
males, with an average age of 53.45± 4.18 years (Figure 2).
(ere was no notable difference in general information
between the two groups of patients (P> 0.05), and they were
comparable between groups.

3.2. 1e Pathological Results. According to the WHO in-
ternational classification and grading standards, all patients
were divided into high-grade BG group and low-grade BG
group. Pathological examination showed that there were 23
cases in low-grade BG group: 6 cases of grade I astrocytoma
and 17 cases of secondary cell tumor. (ere were 37 cases in
high-grade BG group: 7 cases of grade III anaplastic oli-
godendroglioma, 10 cases of grade III anaplastic astrocy-
toma, and 20 cases of grade IV glioblastoma (Figure 3).

3.3. Diagnosis of BG Based on Deep Learning Algorithms.
According to Figure 4, it was evident that, after fusion with
traditional features and deep learning features, MRI has seen
improvement in various indicators to a certain extent. (e
sensitivity of the algorithm was above 90%, and the sensi-
tivity to diagnose grade IV glioma was as high as 98.28%; the
specificity was above 78%, and the specificity to diagnose
grade IV glioma was as high as 95.85%; the detection ac-
curacy was above 95%. (is showed that MRI based on the
deep learning had relatively good performance in detecting
BG, and it can be used for clinical diagnosis of BG, assisting
physicians in diagnosing high-risk patients.

3.4. MRI Image Analysis. Figure 5 was an MRI image
showing intracranial abscess foci and tumor necrosis. Ob-
viously, the number of cells and high viscosity in the abscess
focus restricted the diffusion and movement of water
molecules.

Figure 6 was theMRI image of a female with BG, aged 44.
It was evident that the decrease in the extracellular space and
the increase in the ratio of nucleus to cytoplasm led to
diffusion limitation of water molecule of high-grade tumor.
Correspondingly, the ADC value was negatively correlated
with tumor grade, and tumors of a lower grade often had
higher ADC values.

Figure 7 was the MRI image of a male with BG, aged 45.
It was evident that the rCBV in the high-grade group was
higher compared to that in the low-grade group.

3.5.Comparisonof rFA. It was evident from Figure 8 that the
rFA values of tumor bodies in the high-grade and low-grade

groups were 0.3192 and 0.3771, respectively, both smaller
than the rFA values of peritumoral edema (P< 0.05).

3.6. Comparison of rADC. Figure 9 shows the rADC values
between the high-grade group and the low-grade group. (e
rADC values of the peritumoral edema in the high-grade
group and the low-grade group were 1.482 and 2.082, re-
spectively, both greater than the rADC values of tumor
bodies of the same grade (P< 0.05). (e rADC values of the
tumor bodies in the high-grade group and the low-grade
group were 1.853 and 1.352, respectively (P< 0.05). Notable
differences were noted in the rADC values of the peritu-
moral edema between the high-grade and low-grade groups
(P< 0.05).

4. Discussion

BG is a common intracranial tumor. To formulate the best
treatment plan and evaluate the prognosis, it is necessary to
accurately classify the BG. Pathological biopsy is a common
method used to classify BG, but it is sometimes not accurate
enough, because BG can be heterogeneous, and the same
tumor may have pathological features of two or more grades

27%

Women
Men

73%

27%

Figure 1: (e ratio of males to females.

Women Men Age
0

20

40

60

80
�

e n
um

er
ic

al

Low-level group
Advanced group

Figure 2: (e general information.
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at the same time. MRI technology assists in the preoperative
grading of glioma, which is of great significance for for-
mulating the proper diagnosis and treatment plan of BG. In
the study, a deep learning-based multimodal feature fusion
model was established, which was then applied in BG
classification. (e results found that, after combination with
traditional features and deep learning features, the MRI has
seen improvement in various indicators to a certain extent.
(e sensitivity of the modified algorithm was above 90%,
and the sensitivity to diagnose grade IV glioma was as high
as 98.28%. (e specificity was above 78%, and the specificity
to diagnose grade IV glioma was as high as 95.85%. (e
accuracy was above 95%. (is illustrated that the MRI based
on the deep learning model had relatively good performance
in detecting BG, and it can be used for clinical diagnosis of
BG, assisting physicians in diagnosing high-risk patients.
(e research results were similar to those of Kocher et al.
(2020) [17], and both show that the optimized deep learning
algorithm applied to MRI image diagnosis can improve the
sensitivity and accuracy of diagnosis.

(e ADC value reflects the average value of the dif-
fusion of water molecules in the body in all directions. It
is used to express the speed and range of the diffusion
movement of water molecules in the patient’s body. If the

diffusion of water molecules is more obvious, the ADC
value is higher. (e tumor cell infiltration and edema,
resulting from canceration, will change the diffusion
ability of water molecule in the local brain tissue, leading
to changes in ADC values. In the experiment, the rADC
values of the peritumoral edema zone of the high-grade
group and the low-grade group were both greater than
that of the tumor of the same grade, and the difference
was notable (P< 0.05). A notable difference was noted in
the rADC value between the high-grade group and the
low-grade group (P< 0.05) and the rADC value of the
glioma peritumoral edema zone between the high-grade
group and the low-grade group (P< 0.05). (is was in line
with the conclusion of Volovitz et al. that the rADC value
of the tumor area and the contralateral normal white
matter area showed a negative correlation with the tumor
grade. (is is due to the infiltration and growth of gli-
omas. Because the pathological grade, tumor size, loca-
tion, and cell composition are different, the infiltration of
tumor cells to surrounding fibers is also distinct. Notable
differences were noted between the rFA values of tumor
bodies with the rFA values of peritumoral edema zones in
both the high-grade and low-grade groups (P< 0.05). (e
FA value can be used to distinguish normal tissue from
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(a) (b) (c)

(d) (e) (f )

Figure 5: An MRI image of intracranial abscess foci accompanied by tumor necrosis. (e abscess focus of the left occipital lobe showed
circular T1 enhanced signals (a), DWI high signal (b), and ADC low signal (c). (e glioblastoma in the left insular lobe showed irregular T1
circular enhancement (d), low DWI signal (e), and high ADC signal (f ).

(a) (b)

Figure 6: Continued.
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tumor enhancement areas, necrotic cystic areas, and
peritumoral edema zones. Nalawade et al. (2019) [18]
believed that FA values can distinguish high-grade and
low-grade gliomas, and they were instrumental in

classification of BG. In this study, the rFA values of the
tumor body were notably different from those of peri-
tumoral edema zone in both the high-grade group and the
low-grade group, indicating that the rFA value can be

(c) (d)

Figure 6: An MRI image of a female with BG. Low-grade astrocytoma of the left temporal lobe showed uneven enhancement for T1WI (a),
low signal for DWI (b), and high signal for ADC (c). (e glioblastoma on the left insular lobe showed uneven enhancement for T1WI (d).

(a) (b) (c)

(d) (e) (f)

Figure 7: AnMRI image of a male with BG. FLAIR sequence of patients with grade III anaplastic astrocytoma (a) indicated a hyperintensity
focus in the left frontal lobe and a hypointensity for TIWI enhancement (b). (ere was no enhancement due to the integrity of the blood
brain barrier. (e CBV value on the left side of the rCBV was 5.7 times higher than that of the contralateral frontal lobe, indicating that the
tumor tissue had a higher capillary density (c); in patients with grade II fibrous astrocytoma, a hyperintensity focus was observed in the right
frontal lobe for T2WI (d). Similarly, there was no obvious enhancement for the focus (e), and there was no obvious increase in focal rCBV
(f).
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used to distinguish the tumor body from the peritumoral
edema zone. However, the sample size is small, which
may reduce the power of the results in the study.

5. Conclusion

In the study, a deep learning-based multimodal feature
fusion model was established, which was then applied in BG
classification. It was found that MRI based on deep learning
evidently improved the classification results of glial tumors,
showing increased sensitivity, specificity, and accuracy.
However, some limitations should be noted. (e sample size
is small, which will reduce the power of the study. In the
follow-up, an expanded sample size is necessary to
strengthen the findings of the study. MRI based on deep
learning raises the sensitivity, specificity, and accuracy to
diagnose BG and can more accurately classify BG patho-
logically, providing reference for clinical treatment of BG.
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