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Abstract

The past two decades have brought a steady growth of pathway databases and pathway enrichment methods.

However, the advent of pathway data has not been accompanied by an improvement with regards to

interoperability across databases, thus, hampering the use of pathway knowledge from multiple databases for

pathway enrichment analyses. While integrative databases have attempted to address this issue by collating

pathway knowledge from multiple resources, these approaches do not account for redundant information across

them. On the other hand, the majority of studies that employ pathway enrichment analyses still rely upon a

single database, though the use of another resource could yield differing results, which is similarly the case

when different pathway enrichment methods are employed. These shortcomings call for approaches that

investigate the differences and agreements across databases and enrichment methods as their selection in the

experimental design of a pathway analysis can be a crucial first step in ensuring the results of such an analysis

are meaningful. Here we present DecoPath, a web application to assist in the interpretation of the results of

pathway enrichment analysis. DecoPath provides an ecosystem to run pathway enrichment analysis or directly

upload results and facilitate the interpretation of these results with custom visualizations that highlight the

consensus and/or discrepancies at the pathway- and gene-levels. DecoPath is available at

https://decopath.scai.fraunhofer.de and its source code and documentation can be found on GitHub at

https://github.com/DecoPath/DecoPath.
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1. Introduction

In recent years, high throughput (HT) technologies have given rise to a perpetual influx of -omics data, requiring

pragmatic approaches to sift out meaning. One of the most common applications of HT technologies is gene

expression profiling to simultaneously determine the expression patterns of thousands of genes at the

transcription level under certain conditions (Dillies et al., 2013). While a host of statistical techniques are

available to identify genes that differ in expression depending on a particular condition, gene set or pathway

enrichment analysis methods represent a major class of tools researchers employ to group lists of genes into

defined pathways and understand the functional roles of genes for any given set of conditions (Reimand et al.,

2019). To date, almost a hundred different pathway enrichment methods have been proposed, including the

popular over-representation analysis (ORA) and gene set enrichment analysis (GSEA) (Subramanian et al.,

2005). Though these methods may vary based on the overarching categories they fall into (e.g., topology vs.

non-topology-based) or the statistical techniques used, they have widely shown their ability to deconvolute

biological pathways dysregulated in a given state (Nguyen et al., 2019).

Numerous pathway databases have been developed which aim at representing biological pathways from

various vantage points (e.g., differing scopes, contexts, boundaries or pathway types). The existence of several

hundreds of these databases reflects the inherent complexity and variability of biological processes that occur in

living organisms. Further compounding this complexity is the fact that biological pathways housed in these

databases are human constructs, delimited based on abstract boundaries defined by a researcher or the consensus

of the community. This implies that a well-studied pathway could contain different biological entities depending

on the boundaries defined by the databases that store it. These differences across databases can manifest in

variability in the results of pathway enrichment analysis depending on both the method (Geistlinger et al., 2020;

Nguyen et al., 2019; Zyla et al., 2019; Mathur et al., 2018) as well as the pathway database employed (Mubeen

et al., 2019).

Recent approaches to pathway enrichment analysis have focused on the integration of multiple datasets

across different platforms to ensure a broader coverage of significantly enriched pathways (Griss et al., 2020;

Paczkowska et al., 2020; Zhou et al., 2019). Other techniques attempt to account for potential differences that

may arise in the results of pathway enrichment analysis by combining gene sets from several pathway databases.

For instance, Canzler and Hackermüller (2020) presented an approach that leverages GSEA to calculate a

combined enrichment score for multiple -omics layers using several databases. However, performing pathway

enrichment analysis using multiple databases to increase the number of pathways covered can only partially

address the challenges associated with variability in results. This is because such an approach falls short of

leveraging the substantial overlap of pathway knowledge across databases which could provide more

comprehensive results (Stobbe et al., 2011; Belenky et al., 2015; Domingo-Fernández et al., 2018).

Furthermore, combining several databases can result in redundant pathways, an issue tackled by the SetRank

algorithm which discounts significant gene sets if their significance can be explained by their overlap with

another gene set (Simillion et al., 2017). Finally, a possible, natural solution to better connect and structure
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redundant information across databases lies in leveraging pathway ontologies (Petri et al., 2014) or pathway

mappings with database cross-references (Domingo-Fernández et al. 2018). By connecting related pathways

across databases, we can, in turn, investigate the consensus, or lack thereof, of the results of pathway enrichment

analysis between databases or methods as demonstrated by several recent benchmarks (Geistlinger et al., 2020;

Nguyen et al., 2019; Zyla et al., 2019; Mathur et al., 2018; Mubeen et al., 2019).

Here, we present DecoPath, a web application that provides a user-friendly and interactive application to

compare and interpret the results of pathway enrichment analysis yielded by different pathway databases. To

facilitate the comparison of results across databases, and bring to light possible contradictory results, we present

several interactive visualization tools designed to better interpret the results of pathway enrichment at both the

pathway and gene-level. While these visualizations can generally be used for any pathway enrichment method,

DecoPath also integrates standard pathway enrichment methods in its pipeline, thus, enabling users to conduct

an entire enrichment analysis on the web application (from data submission to interpretation). Finally, although

DecoPath provides four default databases, it also allows users to upload gene sets and mappings such that

analyses can be run on their independently curated gene sets.

2. Methods

2.1. Implementation
The server-side was implemented in the Python programming language using the Django framework

(https://www.djangoproject.com/). This framework operates using a Model-View-Controller (MVC) architecture

and was integrated with Celery (http://www.celeryproject.org) and RabbitMQ (https://www.rabbitmq.com) for

asynchronous task execution. The front-end of DecoPath comprises several interactive visualizations

implemented using a collection of powerful Javascript libraries, including jQuery (https://jquery.com), D3.js

(https://d3js.org/), and DataTables (https://datatables.net/). Furthermore, DecoPath relies on Bootstrap 4

(https://getbootstrap.com/) for the main design of the website. The web application is containerized using

Docker for reproducibility purposes and easy deployment.

2.2. Pathway resources
DecoPath enables users to compare the results of enrichment analysis yielded using various pathway databases.

As mentioned in the Introduction, pathways in different databases can substantially overlap, such that a pathway

in one database can have counterparts in several others. Leveraging equivalent pathway mappings across several

widely-used databases, DecoPath aims at highlighting the consensus, or lack thereof, of enrichment analysis

results for each equivalent pathway. Expanding upon our previous work (Domingo-Fernández et al., 2018), we

added novel equivalent pathway mappings as well as mappings for an additional database (i.e., PathBank

(Wishart et al., 2020)) (Supplementary Text). Thus, the released version of DecoPath provides users with the

following pathway databases: KEGG (Kanehisa et al., 2021), Reactome (Fabregat et al., 2018), WikiPathways

(Martens et al., 2021), and PathBank (Retrieved 03.08.2020). Additionally, a DecoPath-specific gene set
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database containing merged gene sets of equivalent pathways across the aforementioned databases is also

provided, as described in the following section.

2.3. Generating a pathway hierarchy

The consolidation of each of the pathway databases into a pathway meta-database was conducted in order to

generate a pathway hierarchy. In doing so, equivalent representations of pathways across KEGG, PathBank,

Reactome and WikiPathways were combined. The pathway hierarchy contains a total of 644 pathways from

these four databases and can be found at

https://github.com/ComPath/compath-resources/blob/master/mappings/decopath_ontology.xlsx (dated

01-13-2021). The hierarchy comprises seven major categories: metabolism, immune, signaling, communication

and transport, cell-death, disease, DNA repair and replication, and others. All pathways in the hierarchy retained

their original identifiers except equivalent pathways which were merged and given unique names and identifiers.

The pathway hierarchy is a directed acyclic graph with a maximum depth of 4, in which relation types between

pathways can be either is-part-of or equivalent-to relations. The curation process to generate the hierarchy is

described in the Supplementary Text.

2.4. Pathway Enrichment Methods
DecoPath comprises two of the most widely used pathway enrichment methods (García-Campos et al., 2015;

Katri et al., 2010; Xie et al., 2021): Over Representation Analysis (ORA) and Gene Set Enrichment Analysis

(GSEA) (Subramanian et al., 2005). ORA aims at identifying pathways (i.e., gene sets) that are over-represented

within a list of genes of interest. A pathway is considered enriched (over-represented) if the p-value arising from

a one-sided Fisher's exact test (Fisher, 1992) is lower than a specified threshold, typically 0.05. As this test is

conducted for each pathway in the database, DecoPath’s implementation of ORA corrects the p-value by

applying multiple hypothesis testing correction with the Benjamini–Yekutieli method under dependency

(Benjamini and Yekutieli, 2001). The second method, GSEA, determines whether a pathway or a gene set

significantly differs between two groups. A pathway is considered significantly regulated in that condition if

genes of that pathway appear in the top or bottom ranking of a list of differentially expressed genes more than

expected by chance. DecoPath uses the GSEA implementation from gseapy

(https://gseapy.readthedocs.io/en/latest). Additionally, DecoPath enables conducting differential gene expression

(DGE) analysis between groups through DESeq2 (version 1.22.2). Apart from these methods, DecoPath also

provides the option to include additional pathway enrichment methods into the web application.

2.5. Installation
Although we provide a freely available instance of DecoPath at https://decopath.scai.fraunhofer.de/, in the case

of large datasets or cases where the compute capacity of the server may be insufficient depending on the type of

analysis, users can install and use DecoPath in their own system. We offer two options to install DecoPath

depending on the needs of the user. The first and easiest method for those unfamiliar with Django-based web

applications is to install Docker and deploy the Docker container which will install required components and run
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the web application. The second option is to directly deploy it following the instructions in the GitHub

repository (https://github.com/decopath/decopath).

2.6. Run time considerations
Computation time is dependent on the type of analysis, size of the datasets as well as the device specifications.

ORA can be run on a gene list on a timescale of seconds and requires the relatively lowest usage of memory. A

DGE analysis task has a timescale of several minutes, while GSEA on a typical expression dataset with two

experimental groups and four databases can also be done within minutes with a dual-core Intel Core i5 CPU and

16 GB RAM.

2.7. Case scenario
Using each of the available enrichment methods, we demonstrate a typical workflow in DecoPath with the The

Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset (Weinstein et al., 2013). Gene

expression data from this dataset was retrieved from the Genomic Data Commons (GDC; https://gdc.cancer.gov)

portal through the R/Bioconductor package, TCGAbiolinks (version 2.16.3; [43]) on 04-08-2020. To run GSEA,

we employed RNA-Seq expression data normalized using Fragments Per Kilobase of transcript per Million

mapped reads upper quartile (FPKM-UQ). DGE analysis using read counts from the TCGA-LIHC dataset

(retrieved from the GDC; https://gdc.cancer.gov) was performed between normal and tumor samples to derive a

gene list to conduct ORA. This final list of genes was restricted to genes that exhibited an adjusted p-value <

0.05. Specifications of the parameter settings for ORA and GSEA are listed in Supplementary Table 1.

3. Results
Here, we describe the DecoPath web application. A typical workflow of the web application involves the

submission of an experiment, generation of results, and the subsequent exploration and visualization of these

results (Figure 1). In the following, we provide a detailed description for each of the steps in the workflow.
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Figure 1. DecoPath workflow. Users can upload datasets to run pathway enrichment analysis or directly upload enrichment results from
their own experiments. Once results have been loaded, DecoPath offers users several visualizations designed to evaluate pathway consensus
at the database, hierarchy, and gene set level. Users can also opt to directly upload results generated from varying enrichment methods
across to visualize variations from these against a set of pathway databases.

3.1. Submission form

Once a user has logged into DecoPath, on the Homepage, the input form allows them to upload their files and

select parameters to run different analyses or upload results from them (Figure 2). For users opting to run

analyses using DecoPath, the workflow depends on the analysis they select. Briefly, GSEA requires the

submission of expression datasets, such as from RNA-Seq, microarray, or ChIP-Seq data, accompanied by a

design matrix denoting the class labels (e.g., normal and tumor) for samples in the expression dataset. To run

ORA, users need only submit a list of genes of interest. For either method, users can select which of the four

pathway databases they would like to include in the analysis. By default, genesets from DecoPath which contain

merged equivalent pathways are also included in the analysis.

These pathway enrichment methods can also be supplemented by DGE analysis to generate visualizations

and identify genes that are differentially expressed according to a fold change cutoff. In order to run DGE
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analysis, un-normalized read counts in the form of a matrix of integer values is required, as is a design matrix,

analogous to the one required for GSEA. For each of these analyses, gene identifiers should be in the form of

HUGO Gene Nomenclature Committee (HGNC) symbols. Alternatively, users can opt to download gene set

files for pathway databases included in DecoPath, run GSEA, ORA and/or DGE analysis, and upload the results

of the analysis to the website. By directly uploading the results, users can also analyze the results of alternative

enrichment methods such as Signaling Pathway Impact Analysis (SPIA) (Tarca et al., 2008) and EnrichNet

(Glaab et al., 2012) using DecoPath. Detailed descriptions of the input files can be found in the User Guide and

FAQs sections on our website.

Figure 2. DecoPath homepage. Once a user has logged in, on the homepage, they are provided with the option to either run or submit the
results of a pathway analysis. If a user opts to submit the results of an analysis, they can upload their data, select the databases they wish to
include, choose the parameter settings for each experiment and optionally perform a concurrent DGE analysis. Once the form has been
submitted, users are directed to the Experiments page where they can find visualizations and functionalities to compare and explore the
consensus around different pathway databases.

3.2. Visualizations and analyses

Once users have submitted their query, they are directed to the Experiments page where they can view the status

as well as details of their experiments, and explore and visualize their results (Figure 3). To interpret the results

of enrichment analysis, we implemented multiple, customized tools intended to provide insights on the

consensus across databases, each of which we detail below.

7/14

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.22.445243doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.22.445243
http://creativecommons.org/licenses/by/4.0/


Figure 3. Experiments page. The Experiments page lists details of each of the experiments that were run or uploaded. The status of the
experiment is given in the “Status” column, indicating whether the experiment was successfully run, if it is pending or has failed. Through
this page, users can then navigate to each of the different visualizations to explore the results of their analysis.

3.2.1. Exploring the consensus across pathway databases

The first visualization summarizes the consensus results of pathway enrichment analysis on multiple databases.

For each pathway (row), the table shows the concordance across databases, reflected in terms of the significance

value, specifically for ORA, and both the significance value and directionality of the normalized enrichment

score (NES) for GSEA (Figure 4). Using this visualization, users can rapidly identify concordant and

contradictory pathways and directly compare their results.
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Figure 4. Consensus page. The Consensus page visualization shows the consensus of the results of enrichment analysis across databases at
the pathway level. In the case of GSEA, the table displays the NES for a given pathway across each database as well as the NES of the
merged gene sets of all equivalent pathways, the latter of which is indicated in the column “DecoPath”. Similarly, ORA results Equivalent
pathways mapped enrichment results for equivalent pathways to identify contradictions and discrepancies.

We conducted a case scenario to investigate the results for ORA and GSEA using four pathway databases

on the TCGA-LIHC dataset. Among the pathways enriched in ORA which could be found in more than one

pathway database, we found 88 concordant pathways (i.e., a given pathway was significantly enriched in the

gene list across all databases) and 41 contradictory ones (i.e, a given pathway was significantly enriched in some

databases but not in others). Similarly, the results of GSEA revealed 70 concordant and 45 contradictory

pathways. Among the contradictory pathways we observed in GSEA, the majority of contradictions pertained to

whether or not the pathway was significantly enriched, while 12 pathways also differed in the sign of the NES

(i.e., the same pathway was reported as enriched at the top of a ranked gene list for one database and at the

bottom for another). Additionally, 53 concordant pathways were common between the results of GSEA and

ORA, however, as expected, differences based on the pathway enrichment method were observed. Overall, the

results of the LIHC-TCGA dataset for both methods showed that approximately one-third of equivalent

pathways were contradictory across the two methods. Thus, the selection of databases, as well as the enrichment

method, are important aspects in the experimental design of pathway enrichment analysis. We have observed

that the use of one over another can yield discordant results, leading to different interpretations of results

depending on the database choice. In the following sections, we illustrate why these results may be discrepant

by analyzing the gene sets of a given pathway.

3.2.2. Visualizing consensus through the pathway hierarchy

In the second visualization, users can explore the results of their analysis within the context of a pathway

hierarchy (see Methods). This user-friendly and interactive visualization represents the different levels of the

pathway hierarchy as circles, each of which represent a child or a parent pathway. In the case of GSEA,

pathways that do not show statistically significant (adjusted p-value <0.05) differences between groups are

coloured gray, while statistically significant ones are coloured red or blue based on the sign of the NES, and

shaded by a gradient based on the magnitude of the NES. In the case of ORA, pathways are coloured gray if

they are not significant with an adjusted p-value < 0.05 and red otherwise. Additionally, the size of the gene sets

for each of the pathways is proportional to the size of the circles. Furthermore, interactive visualizations also

offer zoom and search functionalities to easily identify pathways of interest. In summary, with this tool, users

can not only explore the enrichment results through the entire pathway hierarchy, but also intuitively evaluate

equivalent pathways and the size of the pathways, both of which are known to affect results (Karp et al, 2021;

Mubeen et al, 2019).

Continuing the case scenario on the LIHC datasets, this visualization was used to identify major pathways

that were enriched in both ORA and GSEA (Figure 5). The organization of pathways into seven major

categories allows users to intuitively navigate through the hierarchy and identify pathway groups in which

several pathways are enriched. For instance, among all pathways pertaining to metabolism, we observed that
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lipid and purine metabolism pathways were significantly enriched in both GSEA and ORA, indicating that there

was a consensus across both methods and databases. Among other examples of consensus, we found cytokine

signaling within the immune system pathways as well as MAP kinase signaling within the signaling pathways

significantly enriched in all methods and databases. Finally, contrasting colours of this hierarchical view allow

for the rapid identification of contradictory pathways which can then be further analyzed at the gene-level, aided

by the following visualization.

Figure 5. Circle pack visualization of the pathway hierarchy using different pathway enrichment methods. The figure corresponds to
the interactive visualizations displaying the results of running ORA (a) and GSEA (b) on the LIHC dataset. In this visualization, results are
customized based on the pathway enrichment method. In the case of Functional Class Scoring (FCS) and Pathway Topology (PT) based
methods, the visualization highlights the direction of the dysregulation for each significantly dysregulated pathway as well as for the
adjusted p-value (b). On the other hand, for ORA, the visualization highlights pathways that are significantly enriched based on an adjusted
p-value (a).

3.2.3. Analyzing equivalent pathways at the gene level

The third visualization is an interactive Venn diagram that shows the overlap for equivalent pathways at the

gene-level. For any given pathway, different databases can disagree in how they define a particular pathway

boundary. This can mean that the gene sets of a pathway can differ from database to database. Hence, using

different pathway databases can lead to differing results, some of which may be more meaningful than others. In

this visualization, we provide a means to analyze exactly which genes may explicate the findings of the pathway

analysis. By clicking on the subsets of the Venn diagram, users can display the genes in each of the gene sets.

Thus, users can pinpoint the specific genes of the pathway that might contribute to the contradictions observed

in the results of the enrichment analysis. If fold changes have additionally been uploaded of differentially

expressed genes or DGE analysis has been performed, users can also view the distribution of fold changes of

genes in the dataset in an accompanying histogram.
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To demonstrate this visualization, we explored both a pathway showing concordant results (i.e., DNA

replication pathway) and another showing contradictory results (Pyruvate metabolism) from the results of

pathway enrichment on the TCGA-LIHC dataset. In the case of the DNA replication pathway, the results

showed that the KEGG, Reactome, and WikiPathways equivalent representations consistently reported NES

over 2.0, suggesting that the pathway is regulated in the liver cancer dataset. We then explored the overlap of the

gene sets of the DNA replication pathway from the three databases, observing that the log2 fold change values

for the vast majority of genes in the pathway were positive. As GSEA finds the pathways which are nearest to

the top (or bottom) of the ranked list of differentially expressed genes, this can account for the observance of the

high NES (Figure 6, left). Similarly, we explored a pathway (i.e., pyruvate metabolism), which had

contradictory results in KEGG, Reactome, and PathBank. In this case, these pathway databases disagreed in the

direction of regulation of the NES; while the NES of pyruvate metabolism was positive in KEGG and PathBank,

the sign of the NES was negative in Reactome. The consensus between KEGG and PathBank is not surprising as

the gene sets of the pathway largely overlap (see Figure 6, right), while only 13 of the 31 genes in the

Reactome pathway overlap with the other two gene sets. By plotting the distribution of the other 18 genes that

are uniquely present in the Reactome pathway, we found that these genes were largely over-expressed,

explaining the observed differences in the NES between them. Thus, this example illustrates how this tool can

be used to assist in the interpretation of the discrepant results of pathway enrichment analysis.

Figure 6. Overlap of gene sets for a given pathway. Venn diagram of the overlap of gene sets for the DNA replication (left) and pyruvate

metabolism (right) pathways across multiple databases is shown. By running DGE analysis, users can also view a histogram of the

distribution of log2 fold changes for differentially expressed genes in their dataset to identify which genes are leading to either consistent or

contradictory results of their pathway analysis.

4. Discussion
While the popularity of pathway enrichment analysis for the interpretation of -omics data has grown over the

past two decades and led to the development of over a hundred different methods, recent benchmarks have
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shown that the selected method can influence results (Geistlinger et al., 2020; Nguyen et al., 2019; Zyla et al.,

2019; Mathur et al., 2018; Xie et al., 2021). Furthermore, the majority of pathway enrichment analyses tend to

be conducted on a single pathway database, the choice of which can also impact results of an analysis (Mubeen

et al., 2019). To date, there have been no tools that allow to directly compare and evaluate the results yielded

using different databases or enrichment methods. To address this issue, we have presented DecoPath, the first

web application designed to assist in the interpretation of the results of pathway enrichment methods. DecoPath

provides users with a broad range of built-in tools and visualization to conduct enrichment analyses and guide

them in the interpretation of the results using multiple pathway databases.

Nonetheless, the presented web application is not without its limitations. Firstly, while multiple enrichment

methods exist, DecoPath only enables running two of the most popular pathway enrichment analyses. Similarly,

DecoPath exclusively contains four pathway databases given the substantial curation effort required to map and

harmonize pathway databases. To address these limitations, we enable users to directly upload results from other

enrichment methods or pathway mappings from additional databases. Another limitation is the computational

power of the server required to run experiments on datasets with a large sample size, or depending on the type of

analysis conducted, may not be enough. However, since the source code of the web application is available and

DecoPath can be containerized in Docker, users can deploy the web application as per their needs to run more

computationally demanding analyses.

In the future, we plan to map and integrate additional databases into DecoPath, as well as more enrichment

methods. Furthermore, we would like to develop a more advanced version of the consensus algorithm while

taking into account variables such as gene set size and the magnitude of the enrichment score and/or p-value.

Finally, we hope that our curation effort lays the groundwork for a future overarching pathway ontology with

cross-references to databases that could be leveraged and extended by the pathway community.
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