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1
Spatial Analysis of Extreme Rainfall
Values Based on Support Vector
Machines Optimized by Genetic
Algorithms: The Case of Alfeios
Basin, Greece

Paraskevas Tsangaratos1, Ioanna Ilia1, Ioannis Matiatos2
1LABORATORY OF ENGINEERING GEOLOGY � HYDROGEOLOGY, DEPARTMENT OF

GEOLOGICAL STUDIES, SCHOOL OF MINING AND METALLURGICAL ENGINEERING, NATIONAL
TECHNICAL UNIVERSITY OF ATHENS, ATHENS, GREECE 2FACULTY OF GEOLOGY AND

GEOENVIRONMENT, NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS,
PANEPISTIMIOUPOLI, GREECE

1.1 Introduction
The rainfall intensity�duration�frequency (IDF) curves are one of the most commonly used
investigational tools in water resources engineering (Alemaw & Chaoka, 2016; Fadhel, Rico-
Ramirez, & Han, 2017). The IDF curves provide essential information in planning, designing,
operating, and protecting water resource projects or engineering projects against floods
(Minh Nhat, Tachikawa, & Takara, 2006). In general, the IDF curve is a mathematical rela-
tionship between the rainfall intensity i, the duration d, and the return period T. Through
the use of IDF curves one can estimate the return period of an observed rainfall event or the
rainfall amount corresponding to a given return period for different aggregation times
(Koutsoyiannis, 2003; Koutsoyiannis, Kozonis, & Manetas, 1998). The IDF curve estimation
at gauged sites requires the analysis of precipitation extremes, which are reported as the
annual maximum precipitation amounts measured in time intervals of a predefined
duration.

However, due to the low density and sparse distribution of rain-gauged sites, problems
arose that have to do with the uncertainty and accuracy when trying to interpolate spatially
the estimated extreme values and providing a spatial distribution map (El-Sayed, 2011; Liew,
Raghavan, & Liong, 2014). Moreover, it has been stated that spatial variability of rainfall is
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sensitive to the location of the rain gauge from which rainfall data are collected (Bell et al.,
2002; Looper & Vieux, 2011). It is also well known that besides elevation, which is considered
to be a strong determinant of climate, rainfall may be influenced by the geo-environmental
settings of the surroundings, such as geographical location, slope, aspect or bearing of the
steepest slope, exposure, wind direction, proximity to the sea or other water bodies, and
proximity to the crest or ridge of a mountain range (Agnew & Palutikof, 2000; Al-Ahmadi &
Al-Ahmadi, 2013; Alijani, 2008; Buytaert, Celleri, Willems, Bievre, & Wyseure, 2006; Daly
et al., 1994; Ding et al., 2014; Eris & Agiralioglu, 2009; Wang et al., 2017; Yao, Yang, Mao,
Zhao, & Xu, 2016).

The common approach to spatial interpolation is the use of deterministic, geostatistical
methods and regression-based models (Begueria & Vicente-Serrano, 2006; Burrough &
McDonnell, 1998; Ly, Charles, & Degre, 2013; Naoum & Tsanis, 2004; Vicente-Serrano,
Lanjeri, & Lopez-Moreno, 2007). Several comparative studies concerning the interpolation of
extreme rainfall values can be found in the literature. Weisse and Bois (2002) applied geosta-
tistical methods and regression models to estimate extreme precipitation, concluding that
geostatistical methods performed better only when the rain-gauging network was dense
enough. Begueria and Vicente-Serrano (2006) mapped the hazard of extreme precipitation
by linking the theory of extreme values analysis and spatial interpolation techniques. The
authors applied geo-regression techniques, including location and other spatially indepen-
dent parameters as predictors and reported that they produced significant and well-fitted
models. Similarly, Ly et al. (2011), developed different algorithms of spatial interpolation for
daily rainfall and compared the outcomes of geostatistical and deterministic approaches. The
authors concluded that spatial interpolation with the geostatistical and inverse distance
weighting (IDW) algorithms outperformed considerably interpolation with the Thiessen poly-
gon method. Chen et al. (2017) analyzed and evaluated different methods of spatial rainfall
interpolation at annual, daily, and hourly time scales. A regression-based scheme was devel-
oped utilizing principal component regression with residual correction (PCRR) and was
compared with IDW and multilinear regression (MLR) interpolation methods. The authors
report that PCRR showed the lowest streamflow error and the highest correlation with
measured values at the daily time scale.

Recently, more advanced investigation techniques in spatial rainfall prediction and miss-
ing rainfall estimation have been applied, which are based on machine learning methods,
such as fuzzy and neuro-fuzzy logic, artificial neural networks (ANNs), support vector
machine (SVM), and genetic algorithms (GAs) (Bryan & Adams, 2002; Chang, Lo, & Yu,
2005; Gilardi & Bengio, 2000; Kajornrit, Wong, & Fung, 2014; Kajornrit, Wong, & Fung, 2016;
Kisi & Sanikhani, 2015; Paraskevas, Dimitrios, & Andreas, 2014). Chang et al. (2005)
proposed a method which combined the inverse distance method and fuzzy theory, in order
to interpolate precipitation in an area in northern Taiwan. GA was used to determine the
parameters of fuzzy membership functions, which represent the relationship between
the location without rainfall records and its surrounding rainfall gauges, with the objective of
the optimization process being minimizing the estimated error of precipitation. The results
confirmed that the method is flexible, performing much better than traditional methods,
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particularly when the differences between the elevations of the rainfall gauge in question
and the surrounding rainfall gauges are significant. Paraskevas et al. (2014) developed a mul-
tilayer feedforward back-propagation ANN in order to evaluate the spatial distribution of
mean annual precipitation in Achaia County, Peloponnesus, Greece. The ANN used as input
variables the latitude, longitude, and elevation of each observation station, and as a target
variable, the mean annual precipitation values. The authors reported that the performance
and the estimate of error results for the interpolating precipitation data had an
acceptable level of accuracy, suggesting that ANN could be appreciated as a spatial interpola-
tion method that improves the accuracy of analysis. Following a different approach, Kajornrit
et al. (2016) proposed a methodology to analyze monthly rainfall data in the northeast region
of Thailand and to establish an interpretable fuzzy model used as a spatial interpolation
method. The developed model, based on a dataset which comprised information on the lon-
gitude, latitude, and amount of monthly rainfall, integrates various soft computing techni-
ques including fuzzy system, ANN, and GA. According to the authors, the results
demonstrated that the established models could serve as an alternative technique to create
rainfall maps, are capable of providing reasonable interpolation accuracy as well as providing
satisfactory model interpretability, and overall could be useful in understanding the charac-
teristics of the spatial data.

In this context, to overcome the low density and sparse distribution, ancillary variables
were decided to be used and also the implementation of advanced spatial interpolation tech-
niques that could model more accurately the variations in precipitation over the area in
question. The novelty of the present study is the usage of an SVM optimized by GA, as a spa-
tial interpolation method. Following the proposed methodology, the spatial distribution of
daily extreme rainfall values was estimated and an accurate continuous surface was pro-
duced based on the estimation of the optimized SVM-GA model. Eleven topographic indices
were selected as independent variables, namely: longitude, latitude, elevation, minimum,
maximum and mean elevation within a 5-km radius around the rainfall gauge station, slope
angle, slope aspect, mean slope angle, mean slope aspect within a 5-km radius around the
rainfall gauge station, and distance from the coastline. The depended variable was the daily
extreme rainfall value for a 5-year return period. The 5-year return period was set as the
appropriate return period for flood management applications based on the assumption that
repeated extreme rainfall events within a short time period at a given location would alert
competent authorities to design appropriate infrastructure to mitigate potential damage
caused by those extreme rainfall events. According to Zahiri, Bamba, Famien, Koffi, and
Ochou (2016), the same event occurring once every 5 years would inflict more damage, while
an event with a 50-year return period is not of interest to many decision makers.

The main advantages of SVM, against conventional interpolation methods, is that SVMs
do not make any assumptions regarding the nature of data and can handle nonlinear rela-
tions between the input and outputs (Kajornrit et al., 2014, 2016; Kong & Tong, 2008;
Nourani et al., 2009). On the other hand, the usage of SVM requires tuning a set of para-
meters that mainly affect the ability of generalization (estimation of accuracy), such as the
cost (C), epsilon (ε), and kernel parameters, gamma (γ), while ideal for the tuning process
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are GA, due to their high global search ability (Chen et al., 2017). Several R packages
(“e1071,” “GA,” “caret,” “corrplot,” and “raster”) were implemented in R (R Core Team,
2017), whereas a geographic information system (GIS) (ArcGIS 10.3.1) was utilized to process
the spatial data. For the implementation of the developed methodology the Alfeios water
basin, Peloponnesus, Greece, was chosen as an appropriate test site.

1.2 The Study Area
The Alfeios water basin occupies an area of approximately 3810 km2 located in western
Peloponnese, Greece. The basin is bounded to the north by the mountainous range of
Erymanthos, east by the mountains of Artemisiou, south by the mountain of Lykaion, and
west by the Kyparissiakos Gulf (Fig. 1-1). The geomorphological relief of the basin is charac-
terized as mountainous and abrupt in area, with elevation higher than 600 m (52.5% of the
entire area), semimountainous and hilly in areas with elevation between 100 and 600 m
(36.9% of the entire area), and flat in the coastal zone (10.5% of the entire area). The maxi-
mum observed elevation is 2253 m and the mean elevation 648 m. The mean slope of the
basin is approximately 14 degrees.

FIGURE 1-1 The study area.
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Concerning the climatic conditions, the coastal and flat areas are characterized by a
marine Mediterranean climate, whereas the inland presents a continental and mountainous
type. In general, the area is characterized by mild winters and cool summers due to the
impact of the sea. The temperature rarely falls below zero in winter and only in the inland
exceeds 40�C during the summer. The relative humidity varies between 67.5% and 70%, with
December being the wettest month and July and August the driest. Rainfalls are abundant
from October to March, and rain heights are more than twice as high as those in the eastern
Peloponnese. The mean annual precipitation averages 1100 mm, whereas the mean annual
temperature is 19�C (MDDWPR, 1996).

1.3 Methodology and Data
The developed methodology could be separated into two phases: (1) the phase of processing
data and estimating the correlation coefficients and variable importance of the variables in
question and (2) the phase of constructing a continuous surface of extreme rainfall values.
Fig. 1-2 illustrates a flowchart of the developed methodology, and details of each phase are
presented in the following paragraphs.

FIGURE 1-2 Flowchart of the developed methodology.
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In the first phase, and based on the available intensity�duration�frequency (IDF) curves
concerning 38 rain gauge stations located within the research area, the daily extreme rainfall
value for a 5-year return period was estimated, which served as the depended variable
(Table 1-1). The IDF data were obtained from the Ministry of the Environment and Energy
(http://floods.ypeka.gr/).

Table 1-1 Daily Extreme Rainfall Values for a 5-Year Return Period

Name Longitude Latitude
Daily Extreme Rainfall Value for a
5-Year Return Period (mm)

Amigdalia 330744 4179447 100.3
Ano Karies 323112 4144856 122.1
Ano Loussoi 336479 4207266 88.0
Araxamites 344471 4145095 88.7
Axladini 303703 4177167 109.2
Basilakio 302189 4168750 120.8
Vitina 340055 4170528 97.5
Dafni(1) 347146 4136602 99.8
Dafni(2) 326083 4185713 95.3
Desino 323165 4199962 97.0
Zatouna 325475 4162010 109.3
Zoni 333349 4147469 95.4
Karatoula 339141 4147786 91.3
Karkalou 330947 4166888 94.0
Karitaina 326645 4150204 92.4
Kastellio 328420 4197095 106.7
Likouria(1) 342934 4192114 64.3
Likouria(2) 342603 4191582 87.3
Mallota 338998 4140389 98.6
Matesi 316394 4155585 53.0
Neoxori Mantineias 328795 4134800 105.8
Pagrataiika Kalivia 336414 4187688 76.3
Panagitsa 343176 4181659 74.8
Paparis 346307 4136551 102.6
Perdikoneri 323027 4178096 101.8
Peukai 295974 4171877 84.1
Piana(1) 344624 4159790 89.2
Piana(2) 344494 4159657 108.4
Planitero 338815 4199942 71.5
Potamia 335233 4129023 104.6
Pirgos 272878 4172841 93.4
Poino 348222 4160565 102.3
Strefio 284191 4170364 108.4
Tripotama 315242 4193875 87.3
Tropaia 320027 4177703 79.8
Tripith 304080 4160135 93.0
Tselepako 346648 4155044 94.9
Dam Ladona 321212 4180541 105.2

6 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES

http://floods.ypeka.gr/


The following step involved formulating the conceptual model on which the prediction of
the spatial patterns of extreme rainfall values for events with return periods of 5 years was
achieved. The model had as independent variables, the longitude, latitude, elevation, slope
angle and slope aspect of the rain gauges, the minimum, mean and maximum elevation,
mean slope angle, and mean slope aspect within a radius of 5 km around the stations, and
finally the distance of each station from the coastline. All variables were derived from a DEM
file (http://www.opendem.info/) with a grid size of 25 m3 25 m. Afterwards, each variable
was normalized using a max�min normalization procedure, so that all variables received
equal attention during the training process. The normalized values were limited between 0.1
and 0.9 (Wang & Huang, 2009). During this phase all variables were transformed to ASCII
files within the ArcGIS platform and the Conversion ToolBox, and the “raster” package
(Hijmans & van Etten, 2012) was used to transform ASCII files into a format that could be
further analyzed by R (Fig. 1-3).

Within this phase, the correlation coefficients and variable importance were estimated by
utilizing “corrplot” (Wei & Simko, 2017) and “caret” (Kuhn, 2008) packages. Highlighting the
most correlated variables and indicating the most important variables provides additional
information about the developed conceptual model.

Finally, during the processing data phase and based on spatial function embodied in the
Spatial Analyst Toolbox of ArcGIS 10.3.1, a grid value was extracted from each variable at
locations that correspond to the locations of rain gauges, and the database was randomly
separated into a training dataset for training the model and a validation dataset for evaluat-
ing the performance of the model. The training dataset included 70% of the total data,
whereas the remaining 30% was included in the validation dataset.

The second phase involved optimizing SVM with GA in order to create a continuous sur-
face that represented the spatial daily extreme rainfall distribution. Brief descriptions of the
two algorithms are presented in the following paragraphs.

SVM are nonparametric kernel-based methods which are mainly used in solving linear
and nonlinear classification and regression problems (Moguerza & Munoz, 2006; Vapnik,
1998). In order to separate data patterns, SVM applies an optimum linear hyperplane using
kernel functions to transform the original nonlinear data patterns into a format that is line-
arly separable in a high-dimensional feature space (Yan, Li, & Ma, 2008). SVM in R was first
introduced in the “e1071” package (Dimitriadou, Hornik, Leisch, Meyer, & Weingessel,
2005). The svm() function, which is used to train the SVM, provides a rigid interface to
libsvm along with visualization and parameter tuning methods (Karatzoglou, Meyer, &
Hornik, 2006). libsvm is an easy-to-use implementation which includes linear, polynomial,
RBF, and sigmoid kernels (Chang & Lin, 2001). The SVM for regression problems uses the
same principles as the SVM for classification, however the results are real numbers (Gunn,
2007; Vapnik, Golowich, & Smola, 1997). The main objective when applying SVM regression
is to minimize the error estimated by taking into account the predictive and actual values.
The generalization performance and efficiency of SVM for regression are influenced by the
kernel width γ (gamma), the ε (epsilon), and the regularization parameter C (cost) (Smola &
Schölkopf, 1998) thus, optimizing these parameters is a necessary process. Although the

Chapter 1 • Spatial Analysis of Extreme Rainfall Values 7

http://www.opendem.info/


FIGURE 1-3 The normalized independent variables: (A) longitude, (B) latitude, (C) elevation, (D) slope angle, (E)
slope aspect, (F) minimum elevation within a 5-km radius, (G) mean elevation within a 5-km radius, (H) maximum
elevation within a 5-km radius, (I) mean slope angle within a 5-km radius, (J) mean slope angle within a 5-km
radius, (K) distance from coastline.
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“e1071” provides a tuning process based on the grid-search method over supplied parameter
ranges (Dimitriadou et al., 2005), the overall number of evaluated models in grid-search can
become quite big.

FIGURE 1-3 (Continued).
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GA is one of the most well-known evolutionary algorithms that have been widely used in
optimization problems (Mitchell, 1996). Holland (1975) presented the GA as an abstraction
of biological evolution, which involves bio-inspired operators such as selection, crossover,
and mutation, and gave a theoretical framework for adaptation under the GA. The use of GA
in optimization problems is based on the presence of a population of “chromosomes,” which
are regarded as solutions to the optimization problem and are assessed through a cost func-
tion, the fitness function. In our case, a solution is expressed by the three SVM parameters
cost, epsilon, and gamma, with the real-valued parameters used to form a chromosome,
unlike traditional binary GAs which must be translated into binary codes.

GA in R was introduced by Scrucca (2013), who describes the “GA” package as a collec-
tion of general-purpose functions that provide a flexible set of tools for applying a wide range
of genetic algorithm methods. The main function in the package is called ga(), however the
most significant arguments have to do with the type of GA to be run, which depends on the
nature of the decision variables (binary, real-values, permutation) and the fitness function,
which takes as input a potential solution and returns a numerical value describing its
“fitness.”

The final step of the second phase was validating the predictive performance of the opti-
mized SVM model and comparing it with the performance of a MLR model. MLR is a statisti-
cal technique that consists of finding a linear relationship between a dependent (observed)
variable and more than one independent variables (Wilks, 1995). To validate the outcomes
of the optimized SVM and MLR, three statistical metrics, the RMSE (a quadratic scoring rule
that measures the average magnitude of error), the r square (R2) (a measure of how well the
outcomes are replicated by the model), and the mean squared error (MSE) (the average of
the squares of the errors measuring the quality of the model) were calculated (Willmott
et al., 1985).

1.4 Results
During the first phase, the correlation coefficients and variable importance of the 11 vari-
ables were estimated. Fig. 1-4A illustrates the correlations with P-value ,.01 which are con-
sidered as significant. As is expected, a significant highly correlation appears between the
elevation variable and the minimum (0.83), mean (0.91), and maximum elevation within a
5-km radius (0.76). Also, high correlations appears between longitude and the distance from
the coastline (0.76), elevation (0.71) and the minimum (0.78), mean (0.77) and maximum
elevation within a 5-km radius (0.76). The mean slope angle within a 5-km radius appears to
be significantly correlated with the maximum elevation within a 5-km radius (0.82) and the
mean elevation within a 5-km radius (0.74). Overall, the extreme rainfall values appear to be
more correlated with the mean slope aspect within a 5-km radius (20.48), the maximum
elevation within a 5-km radius (20.41), and the mean slope angle within a 5-km radius
(20.39). Concerning the process of ranking the importance of the variables used by the
extreme rainfall value model, the results of the nnet algorithm showed that the most
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important variable was longitude (12.83) followed by distance from the coastline (11.32),
mean slope aspect within a 5-km radius (10.72), and elevation (10.49) (Fig. 1-4B).

During the second phase, the tuning of the SVM structural parameters, cost, epsilon, and
gamma, was performed by utilizing “e1071” and “GA” R packages. According to the devel-
oped methodology, the fitness function that was used was the accuracy rate (RMSE value)
achieved by the SVM. The search domain for each parameter was set as follows: for the cost
variable 1024 to 10, for the epsilon variable 1022 to 2 and the gamma variable 1023 to 2,
whereas population size and the number of generations were set to 250 and 100, respec-
tively. Crossover was set to 0.80 and mutation was set to 0.10. The optimal values of cost,
epsilon, and gamma were estimated to be 3.39, 0.67, and 0.06, respectively.

Based on the optimal parameters, the extreme rainfall value map for the Alfeios basin
was constructed (Fig. 1-5). High values were identified in the western areas along the coast-
line in places reaching 132 mm/24 hours with a return period of 5 years. These areas are flat
with low elevation.

The implementation of the MLR model, based on the F-statistic value [F-statistic5 1.67
(P, .1)], indicated that we should clearly reject the null hypothesis that the used variables
have no effect on the extreme rainfall values. The results showed that the variables elevation
and slope aspect (with P5 .077 and P5 .090, respectively), had a significant effect on the
daily extreme rainfall values. Fig. 1-6 illustrates the spatial distribution of the daily extreme
rainfall values of a 5-year return period based on the MLR method. A significantly different
spatial pattern can be observed in comparison with the optimized SVM model.

FIGURE 1-4 (A) Correlation matrix. (B) Rank order of variable importance: v1, longitude; v2, latitude; v3, elevation;
v4, slope angle; v5, slope aspect; v6, minimum elevation within a 5-km radius; v7, mean elevation within a 5-km
radius; v8, maximum elevation within a 5-km radius; v9, mean slope angle within a 5-km radius; v10, mean slope
aspect within a 5-km radius; v11, distance from coastline.
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1.5 Performance Criteria
The comparison of the results obtained by the optimized SVM model with the results
obtained by the MLR model indicates the superiority of the optimized SVM model
(Table 1-2). Evaluating the learning ability, on the training samples, the optimized SVM
model achieved the highest r square value (0.74) indicating a good performance and a
greater ability to replicate the model than the MLR model. The RMSE value was estimated to
be 7.83 and MSE 61.38, both values lower than the values of MLR model (9.23 and 85.58,
respectively). The same pattern of accuracy was detected when validating the performance
based on the validation dataset. The r square value for the optimized SVM-GA model was
higher (0.63) than that obtained by the MLR model (0.31), whereas the RMSE value for the
optimized SVM-GA model was estimated to be 6.35 and MSE 40.31, also lower than those
obtained by the MLR model (8.69 and 75.57, respectively). Overall, the quality of the out-
comes produced by the SVM-GA model, expressed by the r square value, was higher than
those achieved by the MLR model. The SVM-GA model fits the training and validation data
well, since the differences between the observed values and the model’s predicted values are
small and unbiased.

FIGURE 1-5 The daily extreme rainfall values of a 5-year return period spatial distribution estimated by the
optimized SVM model.
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Concerning the time needed for data preparation and to complete the learning phase, both
models need approximately the same time. However, the MLR model needs less time to
produce a result, since it only requires assigning to each variable the calculated coefficients
and estimating the continuous surface through the usage of a single-line algebraic expression.
On the other hand, the optimized SVM-GA model requires more time to provide a result, since
the prediction phase involves transforming the outcome of the SVM-GA model into raster for-
mat, a time-consuming process. In the present study, the SVM-GA model produced a result in
less than 7 minutes, while the MLR model needed less than 2 minutes [using a desktop PC
with an Intel(R) Core (TM) i5-4460 CPU 3.20 GHz processor and 8.0GB RAM].

Table 1-2 Results of Analysis

Model

Training Dataset Validation Dataset

MAE RMSE R2 MAE RMSE R2

Multilinear regression 85.58 9.23 0.52 75.57 8.69 0.31
Optimized SVM 61.38 7.83 0.74 40.31 6.35 0.63

FIGURE 1-6 The daily extreme rainfall values of a 5-year return period spatial distribution estimated by the MLR
model.
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1.6 Discussion
Spatial interpolation of precipitation and extreme rainfall values is a highly challenging topic
of research which concerns geostatisticians, meteorologists, climatologists, and natural
hazards practitioners (Foresti, Pozdnoukhov, Tuia, & Kanevski, 2010). The identification of
the spatial and temporal variability of the extreme rainfalls and the estimation of the proba-
bility that rainfall exceeds a given amount is of crucial importance in water resource manage-
ment and especially in mitigation and prevention of floods (Jung, Shin, Ahn, & Heo, 2017;
Van Ootegem et al., 2016). This study provides a methodological approach which involves
identifying the spatial patterns of extreme rainfall values for events with a 5-year return
period by utilizing an SVM optimized by GA. SVM was selected on the bases that the avail-
able data are characterized by low spatial density and also showed a nonlinear interaction
between precipitation and topography, making the usage of nongeostatistical, geostatistical
methods, or spatial statistical methods less attractive, while GA was utilized to optimize the
three parameters cost, epsilon, and gamma, due to their high global search ability (Chen
et al., 2017).

According to the correlation analysis, besides the correlation between the elevation
variables, (minimum, mean, and maximum elevation within a 5-km radius), maximum
elevation, mean slope aspect, and mean slope angle within a 5-km radius appear to be corre-
lated with the daily extreme rainfall values for a 5-year return period. Such a correlation
could be attributed to the fact that these three topographic variables may influence the
microclimate of the area of question, the radiation, the precipitation, and temperature values
(Busing, White, & MacKende, 1992; Stage & Salas, 2007). Johansson and Chen (2003), who
investigated whether statistical relationships could be used to describe typical precipitation
patterns related to topography and wind, reported that the single most important variable
was the location of the rain gauge station with respect to a mountain range. This is in agree-
ment with the outcomes of our study, which indicates maximum elevation within a 5-km
radius around the rain gauge station as the most correlated variable. Also, similar findings
have been reported by Hill, Browning, and Bader (1981), who point out that the values of
topographic variables within a radius of a few kilometers around the rain gauge station, such
as mean elevation and mean slope, are more representative for precipitation amounts than
the actual station’s elevation.

Concerning the importance of the variables used by the extreme rainfall value model, the
present study is in agreement with previous studies, which report the significant importance
of elevation, slope, and distance from the coastline. According to Haiden and Pistotnik
(2009), for long accumulation periods such as monthly, annual, or interannual, elevation is
the main factor of the small-scale precipitation distribution. Similarly, Sanchez-Moreno,
Mannaerts, and Jetten (2013), who performed a multivariate linear regression analysis among
daily, monthly, and seasonal rainfall and elevation, slope gradient, aspect, and geographic
east and west coordinates as predictors in Santiago Island, Cape Verde, reported that eleva-
tion explains most of the variance in the rainfall. Variables such as slope, aspect, or coordi-
nates can explain more than 50% of the rainfall variance in cases where rainfall has a low

14 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



correlation with elevation. Griffiths and McSaveney (1983) have reported that the distance
from a moisture source is a significant parameter that influences the amount of precipitation.
Wilson (1997) reported that for given latitude and elevation, the farther a site is from the
coast, the larger the loss of marine moisture and, in general, the lower the average precipita-
tion. Similarly, Zhu and Huang (2007) defined the maximum elevation within a 3-km radius
of the site and the distance to Thousand-Islet Lake as important precipitation-influencing
factors, in order to estimate precipitation values.

The present study highlights the higher predictive performance of the SVM optimized by
GA against conventional MLR models and the construction of an accurate daily extreme
rainfall with a 5-year return period map. It reveals the existence of a complex and nonlinear
variation of daily extreme rainfall pattern within the research area, which justifies the usage
of SVM models. The outcomes are in agreement with previous reports that indicate the pres-
ence of a nonlinear relation between precipitation and elevation (Achite, Buttafuoco, Toubal,
& Lucà, 2017).

The generalization performance of SVM models depends on the metaparameters cost,
epsilon, and kernel parameters (Hannan, Wei, & Wenda, 2011; Wang, Yang, & Dai, 2009; Yan
et al., 2008). In general, the kernel parameter gamma is related to the local variability of the
data. Specifically, the more the data are locally variable, the smaller they should be. In our
case, the optimal gamma, was estimated to be 0.06, implying high variability among the
training data. The precision parameter epsilon should not reach the difference between
the highest and the smallest output values of the training set, in order to avoid misclassifying
the data points as acceptable mistakes (Gilardi & Bengio, 2000). The difference between the
highest and smallest output values of the training set after the normalization process was
estimated at less than 0.8, while the optimal value was found to be 0.67. Finally, the optimal
cost parameter, which is related to the confidence we have in our data, was estimated as hav-
ing a value of 3.38, suggesting a rather fair confidence (Jiang & Deng, 2014).

1.7 Conclusions
In the present study, a GA-optimized SVM model was used to calculate the spatial patterns
of extreme rainfall values for events with return periods of 5 years in Alfeios water basin,
Peloponnesus, Greece. “e1071” and “GA” R packages were implemented in order to optimize
the parameters cost, epsilon, and gamma used by the SVM model, whereas GIS was utilized
to process the spatial data and to create a continuous surface that represented the spatial
daily extreme rainfall distribution within the research area. As expected, elevation variables
were highly correlated, whereas the extreme rainfall values appear to be significantly corre-
lated with the mean slope aspect, the maximum elevation, and the mean slope angle within
a 5-km radius around the rain gauge stations. Longitude was identified as the most impor-
tant variable which influences the spatial distribution of extreme rainfall values followed by
the variable distance from the coastline, the mean slope aspect within a 5-km radius around
the rain gauge stations, and elevation.
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The outcomes of the study proved that GA is an excellent optimization method and also
highlighted the significant advantage of the optimized SVM-GA model against the MLR
model as a spatial interpolation tool. The accuracy of the optimized SVM-GA model could
be justified by the fact that in principle SVM neither requires specifying the function that has
to be modeled nor makes any underlying statistical assumptions about the data, as many
geostatistical and regression-based models do. It can be concluded that SVM optimized by
GA could be used as an alternative spatial interpolation method concerning the estimation
of spatial distribution of extreme rainfall values.
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2.1 Introduction
Satellite imagery and remote sensing data have been widely used in the last decades to iden-
tify land cover and land use types (Shamal & Weatherhead, 2014). Satellites are generally
able to provide useful spatial and temporal information from agricultural land in a low-cost,
quick, and easy way. The Landsat satellites (namely Landsat 1 to Landsat 8) are among the
most commonly used and reliable imagery tools that have provided one of the longest tem-
poral records of space-based surface observations in the decades since 1972.

Landsat imagery is available from six satellites in the Landsat series. It has been shown that
it could demonstrate the spatial and temporal variability of seasonal precipitation in semiarid
ecosystems (Birtwistle, Laituri, Bledsoe, & Friedman, 2016). For example, the Landsat 5 TM
(Thematic Mapper) is such an applicable satellite through its longevity, proper spatial and
temporal resolution, multispectral sensors, and availability to the public (Birtwistle et al.,
2016). Moreover, there are a number of studies that have demonstrated the data quality of the
Landsat satellites, for instance Landsat 8 and Landsat 5 TM, are sufficient for water-related
studies such as drought events (Dangwal, Patel, Kumari, & Saha, 2016; Ghaleb, Mario, &
Sandra, 2015; Khosravi, Haydari, Shekoohizadegan, & Zareie, 2017; Pahlevan et al., 2017).

Drought is one of the natural hazards, and yet it is difficult to present a universal definition
for this term (Lloyd-Hughes, 2014). Generally, Palmer (1965) defined drought as prolonged
and abnormal moisture deficiency. Drought and water scarcity are a widespread and serious
restriction for agricultural production in arid and semiarid areas (Ghaleb et al., 2015).
Hence, agricultural scientists and decision makers are involved in challenges to ensure
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sustainable agricultural productivity against population increase (Shahrokhnia & Sepaskhah,
2017a). Drought and water shortage are recognized to have significant impacts on spectral
properties of rainfed and irrigated crops. In contrast, the spectral properties are less affected
in humid climates because rainfed crops usually receive water from summer precipitation
(Shamal & Weatherhead, 2014).

There are several spectral vegetation indices (VIs) that are useful for providing more
information on land vegetation. The normalized difference vegetation index (NDVI) as the
differenced ratio of reflectance in the red and near-infrared wavelength (Tucker, 1979), is a
widely used index. The NDVI is a perfect indicator of growth status, spatial density distribu-
tion, and phenology of plants (Purevdorj, Tateishi, Ishiyama, & Honda, 1998). In addition,
NDVI data have proved to be a robust approach for estimating abiotic stress in field crops
such as wheat (Dangwal et al., 2016; Lopes & Reynolds, 2012). The close relationship
between NDVI and physiological characteristics of crops demonstrates that NDVI could
explain various factors such as moisture, nitrogen, and growth stage (Duan, Chapman, Guo,
& Zheng, 2017). However, NDVI has some limitations due to the interference of soil reflec-
tance at low canopy densities, and its insensitivity to changes in leaf chlorophyll content in
mature canopies (Thenkabail, Smith, & De Pauw, 2000).

The green normalized difference vegetation index (GNDVI) is proposed for assessing can-
opy variation in green crop biomass (Gitelson, Kaufman, & Merzlyak, 1996). Indeed, the
GNDVI is defined as a modified NDVI in which the green band is considered, instead of the
red band. The GNDVI could be attributed to crop senescence due to stress or maturity
(Gitelson et al., 1996). The GNDVI has indicated greater sensitivity to variations of leaf chlo-
rophyll content rather than other indices (Shanahan et al., 2001). Additionally, the GNDVI
was used to determine plant chlorophyll status (Daughtry, Walthall, Kim, De Colstoun, &
McMurtrey, 2000), which is strongly related to nitrogen status in wheat (Hinzman, Bauer, &
Daughtry, 1986), along with the other stress factors (Hunt et al., 2010). In some cases, the
GNDVI has been a better index than the NDVI for prediction of biomass and grain yield for
wheat (Pradhan, Bandyopadhyay, & Josh, 2012). In an investigation by Genc et al. (2013),
canopy reflectance was used in different spectral bands to determine water stress in sweet
corn. Based on these results, the GNDVI was the best index for determination of water stress.
Therefore, the GNDVI could be a proper indicator for mid to end stages of crop growth,
when the chlorophyll content of crops is high and detectable by remote sensing analysis.

Precipitation is a significant water resource for agricultural production in many areas,
particularly in arid and semiarid regions. Therefore, rainfall deficiency would likely result in
a low crop yield or its failure (Li, Gong, Gao, & Li, 2001). There are many studies that have
shown that the NDVI correlated strongly with rainfall amount in dryland regions (Du Plessis,
1999; Prince, Wessels, Tucker, & Nicholson, 2007). The spatial patterns of annually integrated
NDVI in Sahel and East Africa closely reflected the mean annual precipitation in the study of
Nicholson, Davenport, and Malo (1990). Furthermore, there was a linear relationship
between precipitation and the NDVI obtained by Nicholson and Farrar (1994) over a semi-
arid region for the cases where annual precipitation was lower than 500 mm. Similarly,
Wang, Rich, and Price (2003) studied the temporal responses of the NDVI to precipitation
and temperature in Kansas and found a strong relationship between precipitation and the
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NDVI for the appropriate spatial scale. Since annual rainfall amount and its distribution typi-
cally vary in arid regions, it has been shown that it would impose significant influences on
vegetation growth (Martiny, Camberlin, Richard, & Philippon, 2006; Miranda, Armas, Padilla,
& Pugnaire, 2011; Yan et al., 2017; Zhang, Brandt, Tong, Tian, & Fensholt, 2018).

The main purpose of this study was to investigate the relationships between some spec-
tral indices of vegetation and the rainfall characteristics (amount and distribution) using
practical and simple relationships, regardless of using any terrestrial data or complicated
methods. Furthermore, it was investigated how the effect of rainfall amount was different
from rainfall distribution on the spectral reflectance of vegetation. The effect of crop water
status on the spatial variations of VIs was also implicitly investigated under various rainfall
distributions. This approach would be applicable to simply predict farm status in drought-
prone areas and for making decisions for further farm management.

2.2 Materials and Methods
2.2.1 Study Area

This study was conducted over an agricultural area in the southwest of Iran, Fars Province.
The study area is semiarid and is located between 30�50 to 30�100N, and 52�300 to 52�400E,
and is about 1620 m above mean sea level (Fig. 2-1). The total area is about 72 km2, which

FIGURE 2-1 Location of the study area in the Fars Province, Iran.
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reaches irrigation canals to the south and west and is aligned with roads to the east and
north. When required, the farms of the studied region are irrigated by the Doroodzan dam
irrigation network. The study area is located within one of the leading regions of agricultural
production, particularly wheat, in Iran, though recently it has been confronted with drought
(Hayati & Karami, 2005). The Doroodzan dam irrigation network consists of a main canal
that supplies irrigation water for 14 downstream villages. There are three subsidiary canals,
including a left-side canal with 22 villages, central canal with nine villages, and a right-side
canal with 26 villages (Khalkheili & Zamani, 2009). The studied area is located within devel-
opmental area No. 1, which contains some villages by the main canal. The vegetation cover
of the studied area is nearly 80% cereal (wheat and barley), 18% rainfed and fallow land, and
2% alfalfa and other crops for the winter season (FRWA, 2012). The regional crop water
requirement is provided by precipitation in fall, winter, and partially in spring. Similar methods
for the delivery of water to farmers are considered through irrigation canals for the rest of
growing season in each year. The same agricultural and irrigation practices were conducted by
farmers during the 7 years of the study on wheat, which is the main crop in the area.

2.2.2 Data

The daily climatic parameters, including rainfall, temperature, relative humidity, wind veloc-
ity, and sunshine hours, were recorded at an agricultural weather station located near the
study area (Shahrokhnia & Sepaskhah, 2013). The total cumulative annual rainfall is shown
in Fig. 2-2, with a mean of 275 mm in the last 10 years. The total cumulative rainfall has
been obtained by daily summation of the precipitation that occurred from October 25 (nor-
mal planting time of cereals in the region) until the end of the growing season in June
(Fig. 2-2). The precipitation mostly occurred from November to April over the study area.
The rainfall distribution was remarkably different among the years of study (Fig. 2-2). For
instance, most of the rainfall in the year 2015�16 occurred before January; whereas, the rain-
fall in the next year (2016�17) was received in February and March of 2017. In addition,
rainfall events began in October of year 2008�09; while there was no significant rainfall event
before December of the previous year (2007�08). Moreover, the pattern and variations of
mean temperature were very similar in all years of the study (Fig. 2-2), particularly during
the vegetative growth in March to May, which indicates that temperature might not be an
influential factor for the VI variations, as reported earlier (Georganos, 2016; Leilei, Jianrong,
& Yang, 2014; Suzuki, Nomaki, & Yasunari, 2001; Wang et al., 2003). However, the mean
temperatures in December and January of years 2007�08, 2008�09, and 2013�14 were
about 4.3�C, which were lower than the other years of the study (7.2�C).

The main cover crop in the study area was wheat, which is sown in fall. Therefore, the
vegetation cover dominantly demonstrates its status after winter hibernation in March and
before crop senescence in June. Accordingly, satellite data collections were conducted on
clear days in March, April, and May in almost 2-weeks intervals. Landsat images were
acquired through the USGS website (http://earthexplorer.usgs.gov/). The images of Landsat
4�5 TM were used for the years 2008, 2009, and 2010 in all cases of March, April, and May.
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Since the images of Landsat 7 were stripped, the images in the years 2011, 2012, and 2013
were not processed. The gap-fill extensions did not apply in this study in order to avoid
probable errors in the data analyses. The images of Landsat 8 OLI/TIRS were used for the
same months in the years 2014, 2015, 2016, and 2017. Overall, 32 images were processed in
7 years (Table 2-1). Each Landsat image was initially preprocessed by ENVI 5.3 for radiomet-
ric calibration of reflectance. Afterward, the intended area was detached from each scene by
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FIGURE 2-2 Cumulative rainfall depths and variations of air temperature for the studied years. Data are the
monthly averages.
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ROI tool in ENVI 5.3 and further processes were applied to it. The detached scene included
nearly 80,000 pixels of 30 m 3 30 m. The spatial map of NDVI variations was prepared for
the end of April in each year by ENVI 5.3. The final adjustments and map productions were
done by ArcMap 10.2. The working steps are briefly illustrated in the flowchart in Fig. 2-3.

Table 2-1 Dates of the Landsat Images in Each Year for Analyzing the
Vegetation Indices

2008 2009 2010 2014 2015 2016 2017

April 29 March 22 February 14 March 20 March 7 March 25 March 12
May 6 April 7 March 18 April 21 April 17 April 10 March 28
May 22 April 23 April 10 May 7 April 24 April 26 April 13
June 7 May 18 April 26 May 23 May 10 May 12 April 29

May 28 May 26 May 15
May 31

FIGURE 2-3 The workflow of preparation of images and indices based on the Landsat images.
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It is noteworthy that, in addition to the ENVI 5.3 software that has been used in this
study, there are a collection of specific packages such as “RStoolbox,” “raster,” “landsat,” and
“LSRS” included in the free software R (R Core Team, 2018) to analyze the multispectral
remote sensing data, and the “hsdar” package intended for the hyperspectral data.

2.2.3 Vegetation Indices

The NDVI is probably the most frequently used vegetation index. The NDVI is associated
with the reflectance of photosynthetic tissues that is calculated for individual scenes by the
following equation (Myneni, Hall, Sellers, & Marshak, 1995):

NDVI5
NIR2RED

NIR1RED
(2-1)

where NIR demonstrates the reflectance of the near-infrared band (0.77�0.90 µm) and RED
is the reflectance of the red band (0.63�0.69 µm).

As was mentioned earlier, the GNDVI is attributed to the chlorophyll content of the crop
(Shanahan et al., 2001) and is determined by the following equation:

GNDVI5
NIR2GREEN

NIR1GREEN
(2-2)

where GREEN is the reflectance of the green band (0.52�0.60 µm).
The global environmental monitoring index (GEMI) has been proposed by Pinty and

Verstraete (1992). It is a nonlinear index to monitor global vegetation from satellites and var-
ies approximately between 0 and 1. The GEMI is a good predictor of fractional vegetation
cover (Leprieur, Verstraete, & Pinty, 1994) and has less sensitivity to undesirable atmospheric
perturbations compared with the NDVI; however, it may exhibit remarkable variations in soil
brightness (Leprieur, Kerr, & Pichon, 1996). The GEMI is defined by Eqs. (2-3) and (2-4),
where ρ1 and ρ2 are the measured reflectance in visible (0.45�0.69 µm) and near-infrared
(0.77�0.90 µm) spectral regions, respectively.

GEMI5 ηð12 0:25 ηÞ2 ρ1 2 0:125

12 ρ1
(2-3)

η5
2ðρ22 2 ρ1

2Þ1 1:5ρ2 1 0:5ρ1
ρ2 1 ρ1 1 0:5

(2-4)

The VIs were calculated for each scene, taken in different days (Table 2-1). The number
of analyzed images in each year was different from the other years, because the cloudy
scenes were ignored and not considered in the analyses. The weighing average of the pixel
values was considered as the mean VI value of each scene. In this regard, the sum of each
pixel DN (digital number) multiplied by the number of pixels with the same DN was divided
by the total pixels counts in the scene (N5 80,037). The obtained value was considered as
the mean VI value over the scene. Accordingly, the maximum obtained VI value among the
set of images in a year was recognized as the peak VI in each year.
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2.2.4 Rainfall Distribution Parameters

Monti and Venturi (2007) proposed a simple approach to derive the relationships between
rainfall properties and crop yield. Based on their methodology, the total cumulative rainfall
was calculated and plotted (Fig. 2-2). A straight line that connects the first and last points of
the cumulative rainfall values of each year is referred to as the “evenness line.” By definition,
the evenness line represents the most uniform rainfall course within the considered period,
and its slope (ER) indicates the mean daily rainfall during the period (Monti & Venturi,
2007). Therefore, a higher ER implies a higher mean daily rainfall in the growing season. The
unevenness index (UR) was defined to estimate the scattering of rainfall events around the
evenness line, which is related to the deviation of actual rainfall from the respective evenness
line. The UR is the index of uneven rainfall distribution and is defined by the sum of the
square of the distances of the actual cumulated rainfall points from the respective evenness
lines (Eq. (2-5)). A higher UR implies lower evenness (Monti & Venturi, 2007).

UR5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i51 ðyi2yeÞ2

n

s
(2-5)

where, ye is the cumulative rainfall value corresponding to the one lying on the evenness line
(yi), and n is the number of days during the considered period.

Moreover, Monti and Venturi (2007) defined the shape index, Ad, by subtracting the area
below the evenness line from the area below the cumulative line. Therefore, late rainfall
events would result in lower Ad than the early rainfall events.

2.3 Results and Discussion
2.3.1 Vegetation Indices

2.3.1.1 Normalized Difference Vegetation Index
The growing season in the region usually begins late October and would end by late June or
early July (Shahrokhnia & Sepaskhah, 2013). The NDVI variations were different over the
years in terms of the peak value and the time of peak occurrence based on the cumulative
growing degree days (GDD) (Fig. 2-4). Diurnal GDD was calculated by the difference in aver-
age air temperature and base temperature, which is assumed to be 4�C for wheat (Acevedo,
Silva, & Silva, 2002). The weighting average of the NDVI of all pixels in a scene (image) was
considered as the representative NDVI of the image, and the maximum value of the NDVI
between the various dates in a year was recognized as the peak value. The highest
NDVI values were observed in 2010 and 2014 as 0.53 and 0.55, respectively. On average, the
NDVI peaks occurred between 950 and 1150 GDD in both years, corresponding to mid-April
to mid-May.

The annual rainfall and its distribution pattern were very similar in these 2 years (Fig. 2-2).
Indeed, the annual rainfall was 270 and 279 mm in 2010 and 2014, respectively. In
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FIGURE 2-4 Variations of the VIs (NDVI, GNDVI, GEMI) as a function of GDD. The VIs data are averaged over the
entire region in the spring of studied years.
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addition, the beginning of rainfall occurrence and its distribution over the growing season
were similar for both years. Consequently, the similar NDVI variations might be attributed to
the similarity of rainfall distribution in both years (regardless of any irrigation practice).
However, the lowest peak of NDVI was observed in 2008 as 0.36, which occurred between
1100 and 1450 GDD after mid-May. In a study in Spain, Marti, Bort, Slafer, and Araus (2007)
showed that the mean value of the NDVI was observed as 0.25 and 0.53 for rainfed and irri-
gated conditions, respectively. These findings are in line with the present study. They also
observed that the wheat NDVI at the onset of stem elongation was reasonably correlated
with biomass and yield, which is a complementary criterion for crop management practices.

The total annual rainfall in 2007�08 was 120 mm, which was the lowest rainfall depth
among the other years of study. The rainfall events began lately in December 2007 and ended
by February 2008 and the total amount of rainfall from February to the end of the season was
very low, at just 15 mm (Fig. 2-2). Comparing years 2007�08 and 2015�16 showed that
though the annual amount of rainfall in both years was very similar (Fig. 2-2), the rainfall
events that occurred before mid-January in 2016 resulted in a higher NDVI peak value than
that observed in 2008. Consequently, this may imply that fall precipitations in the initial stages
of the growing season may have significant effects on the NDVI peak value in mid-season.

Interestingly, in 2016�17, the NDVI showed two distinct peaks with values of 0.50 and 0.53,
which was a unique behavior among the other years. Indeed, among the study years, the max-
imum annual rainfall was observed in 2016�17, and is expected to have resulted in a large
NDVI peak. However, the NDVI variations were broken into two peaks, in which the first peak
was lower than the second. One reason and explanation could be due to the rainfall distribu-
tion in year 2016�17 in which precipitation was very low before February 2017 and most rain-
fall occurred in February and March of 2017. Therefore, adequate precipitation in February
and March lifted the NDVI and led to a second peak in 2017. Hence, rainfall distribution dur-
ing the growing season would play an important role in NDVI dynamics over time.

The peak NDVI was observed between 1000 and 1200 GDD in all of the study years
(Fig. 2-5). The relationship between NDVI variations and GDD could be explained by the
following polynomial equation:

NDVI52 4:33 1027 GDD2 1 0:0009 GDD
ðR2 5 0:45; n5 32; p, 0:0001Þ (2-6)

The peak of the NDVI in 2009 was observed at 850 GDD in mid-April, which occurred in
an earlier time than in the other years (Fig. 2-4). Accordingly, the earliest occurrence of rain-
fall in fall was also attributed to 2009 (Fig. 2-2) in comparison with the other years.
Nevertheless, the peak of the NDVI in the years 2008 and 2017 was observed at the end of
May (nearly 1400 GDD), which occurred much later than the other years. The late peak
occurrence completely matches with the time of rainfall beginning in both years (in
December of 2007 and 2016), which was very late. Consequently, the time of occurrence of
the peak value of the NDVI seemed to be in accordance with the time that fall precipitation
began. This issue could be modeled by a linear relationship (Fig. 2-6) in which the GDD
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FIGURE 2-5 Relationship between the NDVI and its corresponding GDD in different months during the studied
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corresponding to the peak of the NDVI (GDDNDVI-peak) is presented as the function of GDD
of the first fall precipitation (GDDfirst-rain) by the following equation:

GDDpeak 5 1:025 GDDfirst-rain 1 898:55
R2 5 0:26; n5 7; p5 0:25
� � (2-7)

The low R2 in this model may be due to limited data points (7 years) in the analysis.
Although Eq. (2-7) is not statistically significant, the upward trend of the regression line indi-
cated that the peak of the NDVI was associated with the delay in fall precipitations.

2.3.1.2 Spatial Variations of the Normalized Difference Vegetation Index
The spatial variation of the NDVI based on the pixel variations at the end of April for each
year is presented in Fig. 2-7. In general, the range of NDVI values is between 21 and 1, such
that low NDVI values (,0.1) are mostly observed in areas of rock and sand. Sparse and
dense vegetation usually have NDVI values in the range of 0.2�0.5 and 0.6�0.9, respectively
(USGS, 2015; Weng, Lu, & Schubring, 2004). The low amount of precipitation in 2007�08
resulted in weak vegetation in large areas with NDVI values between 0.1 and 0.2 (Fig. 2-7).
This implies a shortage of water, water (rainfall)-stressed rainfed crops, and disinclination of
farmers for agricultural practices in the region. However, the NDVIs in the years 2009�10
and 2013�14 showed improved crop conditions with larger areas of NDVI greater than 0.6
and smaller areas with weak or sparse vegetation.

Although the highest level of precipitation occurred in 2016�17, a moderate condition in
terms of NDVI was observed in this year, containing vast areas with an NDVI of 0.3�0.5 and
small areas with an NDVI lower than 0.2 (Fig. 2-7). Indeed, delayed precipitations in
2016�17 (Fig. 2-2), compared to those in 2009�10 and 2013�14, prevented NDVI values
reaching high values, and established vegetation cover as good as 2009�10 and 2013�14.
However, high rainfall level after February of 2017 (Fig. 2-2) inhibited weak crop establish-
ment and resulted in moderate vegetation cover in the area. It is shown that spatial varia-
tions of the NDVI could reflect the status of the area according to the rainfall distribution.

Fig. 2-7 also depicts the spatial distribution of the NDVI in the region which had decreased
mostly from the west and south of the study area to the northeast direction. In the case of
likely supplemental irrigation, the west and south of the region are provided by irrigation
canals; meanwhile the north and east of the region are only close to a local river that may be
confronted with limited flow due to low annual precipitation and may not be a reliable water
resource for neighboring fields. Therefore, the northeast of the region was most impacted by
the lack of water and drought stress compared to the other areas, which would be prone to
lower wheat production. This is definitely observed in years with low rainfall amount and late
precipitation (2007�08 and 2008�09), where the NDVI was also much weaker.

2.3.1.3 Green Normalized Difference Vegetation Index
The GNDVI variations showed almost a very trend to the NDVI (Fig. 2-4). It decreased in late
May as a result of crop senescence. Previous studies in this region have also reported that
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FIGURE 2-7 Spatial variations of the NDVI observed in late April in each study year.
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FIGURE 2-7 (Continued).
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the end-season stage and senescence of wheat occur in late May (Shahrokhnia & Sepaskhah,
2013). The highest peak of the GNDVI occurred in 2009�10 and 2013�14 (Fig. 2-4). Indeed, the
weighing average of the GNDVI of all pixels in an image was determined as the representative
GNDVI of the image and the maximum GNDVI value among the various dates in a year was rec-
ognized as the peak value. The peak values of the GNDVI reached 0.5 and a little higher in the
years 2013�14 and 2009�10 in which rainfall events began early in fall and uniformly continued
until April (Fig. 2-2). Conversely, the minimum peak of the GNDVI was observed in 2008, which
was followed by a low value of ER index (lower ER implies lower mean daily rainfall).

The GNVDI values did not exceed 0.37 in 2008, which implied crops had lower chloro-
phyll content and higher water stress than the other years, possibly due to late rainfall occur-
rence (Fig. 2-2). In this regard, the actual photochemical activity of chlorophyll is reduced
due to water deficit in plants (Pettigrew, 2004; Souza, Machado, Silva, Lagôa, & Silveira,
2004) and the reflectance may also be influenced under these conditions (Clay, Kim, Chang,
Clay, & Dalsted, 2006). A recent study has shown that the GNDVI was the most effective
index for determination of corn water stress (Genc et al., 2013).

While the GNDVI had a single peak in the years 2008�16, it revealed a double peak in
the year 2017 due to different rainfall distribution in the area, as was noted for the NDVI.
This analysis shows that the time of the GNDVI peak occurrence and the patterns of GNDVI
changes vary with rainfall distribution. Furthermore, chlorophyll content varies by time and
is dependent on rainfall amount and its distribution. Gitelson, Viña, Ciganda, Rundquist,
and Arkebauer (2005) reported that canopy chlorophyll content would vary widely during
the growing season, and therefore an adaptive remote sensing technique should be able to
widely monitor the dynamic range of chlorophyll content.

2.3.1.4 Global Environmental Monitoring Index
The GEMI variation was similar to the other two indices of NDVI and GNDVI in each year
(Fig. 2-4). The highest peak of the GEMI was observed in 2014 and 2017. Similar to the NDVI

FIGURE 2-7 (Continued).
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and GNDVI, the weighing average of all pixels in an image was calculated and the maximum
value between the different dates in a year was recognized as the peak GEMI value. The
peak value of the GEMI reached 0.69 in both 2014 and 2017, in which years most annual
rainfall occurred (Fig. 2-2). Conversely, the minimum values of the GEMI of 0.57 were
observed in 2008, under the lowest annual rainfall conditions. It averaged about 0.57 and did
not show any specific maximum peak during the growing season in 2008 (Fig. 2-4). Besides,
the GEMI is reasonably correlated with the NDVI and GNDVI by a linear equation (Fig. 2-8)
and can be used instead of these indices. A high determination coefficient of R25 0.90
clearly satisfies the hypothesis that the GEMI should be comparable to the NDVI (Pinty &
Verstraete, 1992).

GEMI5 0:60 NDVIð Þ1 0:36
R2 5 0:90; n5 30; p, 0:0001
� � (2-8)

GEMI5 0:79 GNDVIð Þ1 0:28
R2 5 0:92; n5 30; p, 0:0001
� � (2-9)

However, there are some reasons that GEMI might be more associated with crop cover
fractions than the widely used NDVI. It is observed that the slope of the fitted model of the
GEMI with the GNDVI (0.79) is higher than the one with the NDVI (0.60). The GEMI is
reported as a good predictor of vegetation cover (Leprieur et al., 1994) and is also sensitive
to soil reflectance and brightness (Leprieur et al., 1996). In addition, it is widely accepted
that the GNDVI is more correlated with the chlorophyll content than the NDVI. Therefore, a
better correlation of the GEMI with the GNDVI and their physical concepts, implies that the
GEMI would describe crop fraction and status better than the NDVI.
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FIGURE 2-8 Relationship between the GEMI and NDVI and GNDVI for study year. Data are averaged over the region.
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Moreover, when there is no crop cover fraction (i.e., NDVI5GNDVI5 0), the GEMI
equals to 0.36 and 0.28 in Eq. (2-8) (NDVI) and Eq. (2-9) (GNDVI), respectively. Indeed, in a
detailed study, Montandon and Small (2008) analyzed 2906 bare soil samples and reported
that unlike the general belief that the NVDI of bare soil should vary between 0 and 0.05, the
NDVI of these large samples was around 0.2 with a standard deviation of 0.1. Thus, it seems
that the GEMI relationship with the GNDVI resulted in a better match with the Montandon
and Small (2008) research than the GEMI and NDVI. Therefore, a higher intercept value in
the NDVI than the GNDVI under no cover is another indication of better match of the GEMI
with the GNDVI.

2.3.2 Spatial Normalized Differential Reflectance and Shortwave Crop
Reflectance Index

Water stress affects the vegetation and soil spectral signatures (Wang, Qu, Hao, & Zhu,
2008). Due to the absorption of the electromagnetic energy in the shortwave-infrared (SWIR)
region (Ji, Zhang, Wylie, & Rover, 2011), the reflectance reduces as water content increases
in leaves (Gao, 1996; Hunt & Rock, 1989). In addition, the effect of water absorption is strong
in a shortwave-infrared (SWIR) area (Jacques, Kergoat, Hiernaux, Mougin, & Defourny,
2014). Thus, SWIR could be sensitive to leaf water content and crop water status. The graph
of the spectral reflectance for the common electromagnetic bands has been recognized to be
advantageous for the study of crop water status.

Considering the spectral reflectance graphs in this study (data not shown), the most sig-
nificant differences of reflectance during the season were observed in the NIR band. On the
other hand, the analyses of reflectance histogram (reflectance vs. pixel count) in the different
dates during the studied years (Fig. 2-9), showed distinct variations for SWIR1 and SWIR2
bands in comparison to the other visible bands. In order to explicitly reveal these variations,
the new term of spatial normalized differential reflectance (SNDR) was defined as in
Eq. (2-10). The schematic presentation for calculating SNDR is illustrated in Fig. 2-10.

SNDR5

Pn
i50 ðri11 2 riÞU ðPxCi11 1PxCiÞ=2

� �� �
N

(2-10)

where r is the reflectance value, PxC is the pixel count, i is the sequence of each reflectance
and pixel count value in the reflectance histogram, N is the total number of pixels over the
processed image (N5 80,037), and n is the number of reflectance value and the correspond-
ing pixel count that is observed in the reflectance histogram (Fig. 2-10).

The SNDR was calculated for the individual bands in Landsat 8 for the years 2014�17
(Fig. 2-11). It is shown that the SNDRs calculated for SWIR bands (SWIR1 and SWIR2) were
significantly different from each other for various times of a year regardless of date order.
However, the SNDRs of blue, green, and red bands were close to each other for different
years, it was observed that the SWIR1 and SWIR2 bands had different behaviors during the
growing season compared to the other bands that might have arisen from the temporal and
spatial dynamics of crop water status. Therefore, the various reflectance values in the
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FIGURE 2-9 The reflectance histogram for different bands of the Landsat 8 on May of each study year.
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shortwave-infrared region might be attributed to the crop leaf water status as an indicator of
crop water stress level. Based on these arguments, the new crop water related index as
“shortwave crop reflectance index” (SCRI) is defined for an implicit description of the crop
water status as in Eq. (2-11):
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FIGURE 2-9 (Continued).
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FIGURE 2-10 Schematic description of the SNDR. The SNDR value presents the region below the curve.
See Eq. (2-10) for details of the SNDR computation.

Chapter 2 • Remotely Sensed Spatial and Temporal Variations of Vegetation Indices 39



2014

Landsat bands

C/A Blue Green Red NIR SWIR-1 SWIR-2

S
pa

tia
l n

or
m

al
iz

ed
 d

iff
er

en
tia

l r
ef

le
ct

an
ce

 (
S

N
D

R
)

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Mar 20
Apr 21
May 7
May 23

2015

Landsat bands

C/A Blue Green Red NIR SWIR-1 SWIR-2

S
pa

tia
l n

or
m

al
iz

ed
 d

iff
er

en
tia

l r
ef

le
ct

an
ce

 (
S

N
D

R
)

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Mar 7
Apr 17
Apr 24
May 10
May 26

2016

Landsat bands

C/A Blue Green Red NIR SWIR-1 SWIR-2

S
pa

tia
l n

or
m

al
iz

ed
 d

iff
er

en
tia

l r
ef

le
ct

an
ce

 (
S

N
D

R
)

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Mar 25 
Apr 10
Apr 26
May 12

FIGURE 2-11 The SNDR obtained using the reflectance histogram of Landsat 8 for different dates in a studied year
C/A, coastal/aerosol; SWIR, shortwave infrared.
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SCRI5
SWIR12 SWIR2

SWIR11 SWIR2
(2-11)

where SWIR1 is the measured reflectance of SWIR1 band (1.57�1.65 µm) and SWIR2 is the
measured reflectance of SWIR2 band (2.11�2.29 µm) of the Landsat 8 satellite.

Interestingly, SCRI revealed a good and significant linear correlation with the mean
NDVI, GNDVI, and GEMI of different days in the season as follows (Fig. 2-12):

NDVI5 2:75ðSCRIÞ1 0:08
R2 5 0:53; n5 19; p, 0:0001
� � (2-12)

GNDVI5 2:10 SCRIð Þ1 0:03
R2 5 0:49; n5 19; p, 0:0001
� � (2-13)

GEMI5 1:74 SCRIð Þ1 0:29
R2 5 0:52; n5 19; p, 0:0001
� � (2-14)

Indeed, these relationships may indicate crop and soil moisture conditions. The VIs
increased as the SCRI increased, which indicates higher VIs (i.e., improved canopy cover)
are associated with higher SCRI (Fig. 2-12). Higher slopes in Eqs. (2-12) and (2-13) implied
that the NDVI and GNDVI changed with higher rates by SCRI compared with GEMI. Overall,
based on the NDVI values in the studied years (Figs. 2-5 and 2-7), it might be proposed that
SCRI , 0.2 represents low canopy cover conditions, and SCRI $ 0.2 implies moderate or
high canopy cover conditions.

Since soil has the highest spectral reflectance in the SWIR1 band within the spectral range
of Landsat, thus a higher value of the SWIR1 band indicates lower greenness values of
uncovered soil, which makes it easier to discriminate bare soil pixels from the sparse crop
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FIGURE 2-11 (Continued).
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pixels (Li, Ti, Zhao, & Yan, 2016; Richards & Jia, 1999). Having this argument in mind,
SCRI5 0 means equal reflectance of SWIR1 and SWIR2, and the NDVI and GNDVI values
will be 0.08 and 0.03, respectively. Since the SWIR1 band is used for discriminating the mois-
ture content of soil and crop, and SWIR2 is used for improved moisture content of soil and
crop (Asner & Lobell, 2000; Lobell & Asner, 2002; USGS, 2018), it is concluded that the NDVI
of the bare soil in the region is 0.08 (Eq. (2-12)), which is a common value of bare soil; how-
ever, it is much lower than the reported average NDVI of bare soil of 0.2 derived from many
soil samples (Montandon & Small, 2008). However, in a study on soil moisture fluctuations
and drought indices, Zhang, Hong, Qin, and Zhu (2013) reported that SWIR1 and SWIR2
were attributed to the valley and peak of the water absorption curves, respectively; and
both were sensitive to soil moisture variations such that the smaller difference between
them (SWIR1�SWIR2) potentially indicated drier soil surface conditions (Du, Wang, Zhou,
& Wei, 2007; Lobell & Asner, 2002). It is likely that bare soil in the study area holds differ-
ent amounts of water in the topsoil layer that might be an indication of the effect of soil
texture differences in reflectance (Cierniewski & Courault, 1993; Lobell & Asner, 2002;
Zhang et al., 2013). Hyperspectral analyses on different soil textures and contrasting mois-
ture contents revealed that as soils become drier, the reflectance differences between
SWIR1 and SWIR2 bands decrease (Lobell & Asner, 2002). In general, the low spatial reso-
lution satellite images (such as MODIS) would have likely more frequent equal SWIR1 and
SWIR2 reflectance (i.e., SCRI5 0) than the higher spatial resolution satellite images (such
as Landsat) due to improved object discrimination in the high-resolution images. However,
this argument needs further detailed field investigation and analyses under diverse soil
moisture and vegetation conditions.
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FIGURE 2-12 Relationship between SCRI and different VIs (NDVI, GNDVI, GEMI) over the years of study. Data are
the average value over the region.
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2.3.3 Rainfall Properties Versus Normalized Difference Vegetation Index,
Green Normalized Difference Vegetation Index, Global Environmental
Monitoring Index, and Shortwave Crop Reflectance Index

2.3.3.1 Prespring Rainfall
Since irrigation practice is not common in fall and winter in the study area, rainfall events in
this period have significant impacts on crop growth and development. Therefore, the cumula-
tive depth of rainfall in fall and winter was compared with the peak values of VIs that were
observed in late April and early May when vegetative growth of crops was fully developed.
According to Fig. 2-13, prespring precipitation (RainP-S) showed a high correlation with the
peak value of NDVI, GNDVI, and GEMI as a polynomial relationship (Eqs. (2-15), (2-16),
(2-17)). Since the intercept of these equations was not statistically significant, it was not
included in the relationships. The NDVI�rainfall relationship has been reported to be expo-
nential (Hein & De Ridder, 2006; Omuto, Vargas, Alim, & Paron, 2010) or linear (Du Plessis,
1999; Prince et al., 2007; Wessels et al., 2007).

NDVI52 83 1026 RainP-Sð Þ2 1 0:0042 RainP-Sð Þ
R2 5 0:89; n5 7; p, 0:0001
� � (2-15)

GNDVI52 93 1026 RainP-Sð Þ2 1 0:0043 RainP-Sð Þ
R2 5 0:88; n5 7; p, 0:0001
� � (2-16)

GEMI52 23 1025 RainP-Sð Þ2 1 0:0064 RainP-Sð Þ
R2 5 0:78; n5 7; p, 0:0001
� � (2-17)
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FIGURE 2-13 Relationship between the total prespring rainfall (total rainfall from September 20 to March 20) and
different VIs (NDVI, GNDVI, GEMI, and SCRI) over the study years.
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In general, the peak values of VIs in the mid-season of late April and early May were
dominantly influenced by the amount of rainfall in fall and winter. This means that drought
and water stress at the initial stages of crop growth had a significant impact on crop canopy
development and greenness at the middle stage of crop growth in April and May. Moreover,
Fig. 2-13 shows that the VIs reached their peak values at the cumulative prespring precipita-
tion of ca. 230 mm. Therefore, it is expected to reach the highest VI when there is enough
precipitation of about 230 mm in fall and winter.

However, unlike the VIs, prespring precipitation had a weak and nonsignificant correlation
with the SCRI as shown in Eq. (2-18). This implies that the SCRI values of the middle growth
stages might not be attributed to prespring precipitation because the SCRI as an index of crop
water status is expected to be affected by recent and short-term precipitation or irrigation events.

SCRI5 83 1025 RainP-Sð Þ1 0:1804
R2 5 0:28; n5 7; p5 0:22
� � (2-18)

2.3.3.2 Cumulative Rainfall
The agricultural practices are similar in the study area in different years. In this condition,
the preceding rainfall events (including winter and spring precipitation) were effective on
vegetation variations (Fig. 2-13). The cumulative rainfall is calculated as the sum of daily pre-
cipitation from planting to the date of each satellite image capturing (Table 2-1). The results
showed that the cumulative rainfall did not correlate well with the VI values in March, April,
and May, but it showed an improved correlation with the VI values (Fig. 2-14) from April 20
to May 10 (Table 2-1) according to the following equations:
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FIGURE 2-14 Relationship between the cumulative rainfall and different VIs (NDVI, GNDVI, SCRI, and GEMI) in late
April and early May of the studied years.
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NDVI52 43 1026 Rainð Þ2 1 0:0026 Rainð Þ1 0:1421
R2 5 0:56; n5 11; p5 0:04
� � (2-19)

GNDVI52 43 1026 Rainð Þ2 1 0:0022 Rainð Þ1 0:1772
R2 5 0:53; n5 11; p5 0:05
� � (2-20)

GEMI52 23 1026 Rainð Þ2 1 0:0013 Rainð Þ1 0:4732
R2 5 0:61; n5 11; p5 0:02
� � (2-21)

where Rain is the cumulative rainfall from planting to the date of each satellite image
capturing (Table 2-1). It is noteworthy that the correlation of VIs with the cumulative
rainfall was weaker (Fig. 2-14) than those with the prespring rainfall (Fig. 2-13). This dif-
ference could be likely due to the important role of prespring precipitation in crop
development.

According to a local study by Shahrokhnia and Sepaskhah (2013), plants are generally
in the best condition of growth in April and May in terms of canopy development and
green leaves. Meanwhile, the results of the current study show that VIs in April and May
were attributed to the previous rainfall events and their distribution in the growing sea-
son (Fig. 2-14). Fig. 2-13 also indicates that the prespring rainfall events (i.e., without
any irrigation events) had an important role in the development of plant organs and pro-
duction. Therefore, lack of precipitation in the initial growth stage would lead to weak
canopy development and low VIs in the middle and end stages of growth. This means
that a low amount of precipitation in fall and winter may result in weak VIs for crops in
spring.

Fig. 2-14 and Eq. (2-21) reveal that the GEMI showed a better relationship with the cumu-
lative rainfall (R25 0.61) than the NDVI and GNDVI. It is reported that the GEMI would be
affected by bare soil brightness and color (Bannari, Morin, Bonn, & Huete, 1995; Plummer,
North, & Briggs, 1994). In addition, the GEMI reduces the atmospheric effects and is useful
for dense canopy and covered soil conditions. This reveals that among the VIs, the GEMI
indicates a better correlation with cumulative rainfall and crop vegetation status in the
growth period from April 20 to May 10.

The SCRI in mid-April to mid-May of the studied years was correlated to the cumulative
rainfall by a polynomial relationship (Fig. 2-14) as in Eq. (2-22):

SCRI52 13 1026 Rainð Þ2 1 0:0005 Rainð Þ1 0:1419
R2 5 0:56; n5 11; p5 0:04
� � (2-22)

It is obvious that, unlike prespring rainfall, the SCRI showed a close relationship with
cumulative rainfall (R25 0.56), which is also stronger than the NDVI and GNDVI. This may
be a result of the fact that the shortwave-infrared region and SCRI are more dependent on
crop water status and more susceptible to recent rainfall events that are included in the
cumulative rainfall. This could be another reason for the good performance of the SCRI as a
crop water status index.
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2.3.3.3 Rainfall Distribution
Rainfall is an important predictor of the spatial distribution of vegetation in many environ-
ments, particularly in transitional zones, such as arid and semiarid environments (Zhao,
Gao, Wang, Liu, & Li, 2015). Several studies have shown that the amount of rainfall and its
temporal and spatial distribution are correlated with annual productivity patterns (e.g.,
Chamaille-Jammes, Fritz, & Murindagomo, 2006). However, these studies have mainly
focused on the relationship between the NDVI variations/anomalies and the spatial and tem-
poral rainfall amount distribution (Chamaille-Jammes et al., 2006; Iwasaki, 2006; Leilei et al.,
2014; Suzuki et al., 2001). It should be noted that spatial and temporal relationships between
the NDVI and rainfall depend on land cover, soil type, vegetation composition and structure,
microclimatic conditions, and human impact (Foody, 2003; Georganos, 2016; Li, Tao, &
Dawson, 2002; Propastin, 2009; Richard & Poccard, 1998), which in this study mainly
depends on land cover as the other factors do not vary considerably in the study area.

To quantitatively investigate the rainfall distribution on the VI variations, the rainfall dis-
tribution indices were calculated for each year based on the proposed methodology of Monti
and Venturi (2007) (Table 2-2). They suggested an integrated application of ER, UR, and Ad

for improving the analysis of yearly rainfall data. These indices aim to give a quicker and
more objective comparison of rainfall distribution among years. Generally, the two indices of
UR and Ad indicate a higher variation than ER, revealing that the rainfall distribution is more
variable than the amount of rainfall. This means that the different years, with similar
amounts of rainfall (similar ER), are probably very different in rainfall distribution (different
UR and Ad) (Monti & Venturi, 2007). However, a low UR means a very even rainfall distribu-
tion, while a low Ad implies a regular shape, which does not necessarily entail a uniform
rainfall distribution.

Various combinations of rainfall indices (ER, UR, and Ad) were applied and tested to
investigate the quantitative relationships between the rainfall distribution indices and the VIs
(Fig. 2-15). The analyses resulted in simple and practical equations (Eqs. (2-23)�(2-24)) that
relate the rainfall distribution properties to the VIs. Finally, the VIs could be predicted based
on the formulation of rainfall indices as the newly defined rainfall shape index (RSI):

Table 2-2 Parameters of the Rainfall Distribution Index by Monti and Venturi (2007)

Years ER UR R1 R2 Ad UR/ER Rain (mm)

2007�08 0.94 10.52 124 3 3149 11.2 120
2008�09 1.41 9.96 51 116 21266 7.0 238
2009�10 1.51 15.55 155 22 5765 10.3 270
2013�14 1.84 10.26 64 85 21220 5.6 279
2014�15 1.21 7.13 127 63 1929 5.9 231
2015�16 0.84 8.22 138 37 3682 9.7 149
2016�17 2.06 24.02 60 122 25373 11.6 374
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RSI5
Ad

UR=ER
� �2 (2-23)

VI5 a ðRSIÞ2 1 b ðRSIÞ1 c (2-24)

where VI is the vegetation index (NDVI, GNDVI, GEMI), and a, b, and c are the empirical con-
stants. The fitted constants are summarized in Table 2-3. Thus, the VIs could be presented by
the RSI parameter, which is an indication of the time and amount of rainfall events.

It is observed that the NDVI, GNDVI, and GEMI have very good correlations with the RSI
through polynomial relationships (Fig. 2-15). The R2 of the relationships for NDVI, GNDVI,
and GEMI were 0.66, 0.61, and 0.71, respectively. However, the SCRI revealed a lower
correlation with RSI (R25 0.46). As noted earlier, this may indicate that the SCRI is more
sensitive to short-term and recent precipitation, while RSI is obtained from long-term precip-
itation indices.

Table 2-3 The Empirical Coefficients of Eq. (2-24) Obtained by
Regression Analyses

a b c

NDVI 8.0 3 1025 2 0.0010 0.359
GNDVI 6.0 3 1025 2 0.0008 0.367
GEMI 4.0 3 1025 2 0.0007 0.589
SCRI 6.0 3 1025 2 0.0001 0.186

RSI = Ad/(UR/ER)^2
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FIGURE 2-15 Relationship between the newly defined RSI and different VIs (NDVI, GNDVI, GEMI, and SCRI) for the
study years. The VI data are the peak values in each study year over the region.
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Fig. 2-15 shows that the RSI values ranged between 240 and 60. The negative values of
RSI imply that rainfall occurrence was relatively delayed in the growing season due to nega-
tive Ad. Generally, early rainfall events result in much higher Ad than late events (Monti &
Venturi, 2007). In addition, the inflection points of the VI polynomials are observed at ca.
RSI5 0. This implies that the lowest possible VI (e.g., NDVI) happens when RSI approaches
0. The newly proposed Eqs. (2-23) and (2-24) could serve as a decision tool for planning and
managing the croplands if specific NDVIs or the other VIs are favored. Lack of rainfall could
be compensated for by supplementary irrigation if a specific NDVI is expected based on RSI
adjustment (Eq. (2-24)).

2.4 Conclusion
The relationship between spectral VIs (NDVI, GNDVI, GEMI) and rainfall distribution indices
has provided promising results for cropland monitoring under water shortage conditions. VIs
during April and May could dominantly correlate with the amount of precipitation in fall and
winter, regardless of precipitation in spring. Furthermore, rainfall distribution during the
growing period has a direct influence on variations in the peak value of the VIs and the time
of peak occurrence. The NDVI, GNDVI, and GEMI showed good relationships with the
time and amount of rainfall events using a newly defined RSI. The RSI is an indication of the
time and amount of rainfall events.

Since shortwave-infrared (SWIR1 and SWIR2) bands in Landsat images are sensitive to
crop water status, the newly defined SCRI parameter is introduced to monitor the water sta-
tus of crops. The SCRI was more sensitive to the short-time precipitation events rather than
the long-term ones. However, this approach needs to be tested and validated by actual ter-
restrial data in different climates. The spatial and temporal map of NDVI variations proved
to be a useful tool for studying the effects of rainfall distribution on canopy development in
the region.
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3.1 Introduction
Landslides are geomorphological processes that contribute to the natural evolution of moun-
tainous landscapes. However, as the human population grows, such physiographic contexts
are increasingly occupied, thus exposing our society to significant economic (Winter et al.,
2016) and life (Kennedy, Petley, Williams, & Murray, 2015) losses. To assess and better man-
age the risk of landslide occurrences, scientists have implemented predictive models since
the early 1990s (see, e.g., Carrara et al., 1991), primarily aiming at recognizing where new
mass movements might occur in the future. Identifying potentially unstable terrains is vital
for decision makers, for it enables authorities to better implement land use planning pro-
grams, as well as risk management procedures (Oliveira, Zêzere, Guillard-Gonçalves, Garcia,
& Pereira, 2017). However, more detailed information can complement and even improve
landslide risk assessment. For example, knowing how many (in addition to where) landslides
might occur in a given area is crucial to quantifying risks, but the scientific community has
barely investigated this key aspect.

Over the last two decades, to estimate where future landslides may occur, researchers
have predominantly used statistical methods, especially presence/absence regression models
(Atkinson & Massari, 1998; Greco, Sorriso-Valvo, & Catalano, 2007; Pourghasemi & Rossi,
2017). Such models assume that landslides occur in a fixed area according to the Bernoulli
distribution. This distribution describes the probabilities of a binary outcome, namely, if
landslides are present or absent in a given mapping unit (Carrara, Cardinali, Guzzetti, &
Reichenbach, 1995), which may be a single pixel, a slope unit, or an administrative unit
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(Erener & Düzgün, 2012; Van Den Eeckhaut, Reichenbach, Guzzetti, Rossi, & Poesen, 2009).
However, when the study region is partitioned into such mapping units, further information
may be obtained using landslide count per unit area. Therefore, the binary 0/1 paradigm can
be shifted to the more informative count paradigm described by non-negative integer values
0, 1, 2, . . ., and often be modeled through the Poisson distribution in statistics (see
Section 3.3.2). Such a framework based on landslide counts aims to estimate the
landslide intensity (Lombardo, Opitz, & Huser, 2018), rather than solely estimate the land-
slide susceptibility. Susceptibility loosely describes the odds of observing at least one land-
slide in a given mapping unit (Petschko, Brenning, Bell, Goetz, & Glade, 2014), thus
neglecting the actual number of such events.

In this chapter, we follow the statistical analysis of Lombardo, Opitz, and Huser (2018),
apart from some minor model modifications explained below, and put strong emphasis on
its practical implementation and computing. Our approach digresses significantly from the
current landslides literature; in order to model landslide counts, we use a suitable Cox point
process model, which provides a probabilistic framework to describe spatial point patterns
(here, landslide locations) over continuous space. This doubly stochastic model may be used
to account for linear and/or nonlinear effects of covariates, as well as for unobserved
spatially correlated components (e.g., the landslide trigger), directly embedded into the land-
slide intensity. Including a spatial effect is particularly important when the intensity of the
trigger, which might be a heavy storm or an earthquake (Lee, 2014), is unobserved and
strongly heterogeneous over space, such that it dominates the other fixed morphometric or
thematic covariate effects. In this case, the spatial effect aids in explaining a large part of the
spatial variation in the landslide scenario, especially for regions of very low and very high
trigger activity, and decoupling the effects into observed covariates and the unobserved
trigger is crucial to achieving the best predictive performance. When the rain gauge or seis-
mic network is poor, we suggest using the estimated spatial random effect to uncover the
trigger distribution over space, which may then be used subsequently to simulate potential
future landslide scenarios. Moreover, unlike traditional regression-based approaches, which
rely on a fixed and subjective partition of the study region into mapping units, the proposed
point process-based framework provides a continuous space description of the landslide
intensity, which can then be used to consistently derive the distribution of landslide counts
for any subarea of interest, without refitting the model. In other words, this global continu-
ous space representation of the data ensures validity and self-consistency of results for
distinct subareas.

In the geomorphological literature, so far, landslide predictive models have been mostly
implemented from a frequentist perspective, rather than from Bayesian approaches (see,
e.g., Das, Stein, Kerle, & Dadhwal, 2012). However, the doubly stochastic point process
model proposed by Lombardo, Opitz, and Huser (2018) described above is most conve-
niently embedded into a Bayesian framework, in which suitable prior distributions must be
defined for all model components and hyperparameters, allowing for expert knowledge to be
incorporated. Such complex Bayesian models may be fitted by computer-intensive simula-
tions based on Markov chain Monte Carlo methods, or alternatively, by the integrated nested
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Laplace approximation (INLA) of posterior distributions (Bakka et al., 2018; Illian, Sørbye, &
Rue, 2012; Lindgren & Rue, 2015; Opitz, 2017; Rue, Martino, & Chopin, 2009; Rue et al.,
2017; Simpson, Illian, Lindgren, Sørbye, & Rue, 2016), which is much faster, exceedingly
accurate, and bypasses convergence assessment issues.

While Lombardo, Opitz, and Huser (2018) provide more details on the statistical theory,
especially on model building and the estimation method, this chapter, written as a tutorial,
intends to serve as a practical guide for the geomorphological community to build and fit
complex Cox point process models by using INLA, a library conveniently implemented
within the R package R-INLA (Bakka et al., 2018). Similarly to Lombardo, Opitz, and Huser
(2018), we illustrate the proposed methodology and its implementation by analyzing the
multiple occurrence regional landslide event (MORLE, Crozier, 2005) that took place on
October 1, 2009, in Messina, Italy, as a result of an extreme storm (Bout, Lombardo, van
Westen, & Jetten, 2018; Cama, Lombardo, Conoscenti, Agnesi, & Rotigliano, 2015). To illus-
trate our method, all morphometric covariates are here treated linearly, except the Aspect,
which is assumed to be nonlinear and cyclic. A different, more complex, point process model
that comprises additional nonlinear effects is fitted to the same landslide inventory in
Lombardo, Opitz, and Huser (2018), although the predictive performance of the simpler
model presented below is close to optimal.

This chapter is organized as follows. In Section 3.2, we introduce the dataset and avail-
able covariates, and we further detail how to compute slope units in GIS. In Section 3.3, we
then explain step by step how to prepare and format the dataset to be used by R-INLA, and
we illustrate how to estimate the Cox point process model, including several fixed effects and
a latent spatial random effects (used to capture the signal of unobserved covariates, such as
the trigger) defined over slope units. In Section 3.4 we describe how to: (1) extract the
results, (2) calculate the landslide intensity at pixel, slope unit, and catchment resolutions,
(3) derive the equivalent landslide susceptibility, (4) perform a cross-validation study, and
finally (5) calculate goodness-of-fit and predictive metrics, such as the receiver operating
characteristic (ROC) curve and the area under the curve (AUC). The results (reported in
Section 3.4) are then discussed in Section 3.5. We conclude the chapter in Section 3.6 with
some perspectives on future research.

For reproducibility purposes, our code is made entirely available online at https://github.
com/ThomasOpitz/landslides-point-process, hoping that this will trigger further research
based on different landslide inventories and different contexts.

3.2 Dataset Description and Preparation
3.2.1 Multiple Occurrence Regional Landslide Event, Messina, 2009

On October 1, 2009, a total number of 4879 landslides of debris flow and debris avalanche
types (Hungr, Leroueil, & Picarelli, 2014) were triggered when an unprecedentedly powerful
storm (Cama, Lombardo, Conoscenti, & Rotigliano, 2017) hit the area around the city of
Messina, Italy. During the propagation phase, most of the avalanches also evolved into debris
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flows due to the high water content, incurring 37 deaths and approximately 500 million
Euros of damage to infrastructure. The area affected by the storm (see Fig. 3-1) represents
the northeasternmost sector of the island of Sicily. In this region, crystalline basement rocks
(see Fig. 1 of Di Stefano et al., 2015) made of heavily weathered, medium- to high-grade
metamorphic successions (Lombardo, Fubelli, Amato, & Bonasera, 2016) outcrop together
with organic, silty loamy, and loamy sandy soils (Schillaci, Acutis, et al., 2017; Schillaci,
Lombardo, et al., 2017; Lombardo, Saia, et al., 2018).

To build a statistical model of such a disaster, the dataset must be constructed and pre-
pared via three major steps:

1. Creating a point database of landslide triggering locations (usually called “LIPs” for “landslide
identification points”). This is common practice in the geomorphological literature, and two
approaches are mostly used: the first uses the highest position along a polygon-shaped
landslide scar (Cama et al., 2017; Lombardo, Cama, Märker, & Rotigliano, 2014); the second
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uses the centroid of the landslide scar (Dou et al., 2015; Hussin et al., 2016). In this work, we
have opted for the first approach because in the case of shallow landslides, this approach
appears to be the most reasonable to approximate the locations where the initial failure took
place. Additionally, this method has already produced reliable results in the same area
(e.g., Cama et al., 2015).

2. Choosing a set of predictors to explain the landslide distribution. Similarly to the previous
step, we selected the same covariates that appeared in other papers treating this event
(see, e.g., Cama, Conoscenti, Lombardo, & Rotigliano, 2016, for more details). These
covariates are either continuous (see Fig. 3-2) or categorical (see Fig. 3-3). Although the
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FIGURE 3-2 Continuous covariates selected for this work. The color scale for Aspect is periodic.
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aspect is a continuous covariate, we discretize it into 16 equidistant classes and treat it in
our analysis as a cyclic categorical covariate with neighboring class dependence; see
Sections 3.3.1 and 3.3.2 for more details on the model and its implementation.

3. Selecting the mapping units to define the statistical model and to present the final results.
In the present work, the data, all covariates, and our point process model are defined at
the pixel resolution (approximately half a million 225 m2 pixels). The latent spatial effect,
used to explain spatial correlation among nearby locations, is defined over a (coarser)
slope unit partition (approximately 4000). This modeling approach allows us to exploit
the fine-scale resolution of the data and to precisely describe the results, while
significantly speeding up computations. To illustrate this, we present the results at the
pixel, slope unit, and catchment levels, though it would be possible to provide results for
any other mapping unit without refitting the model. Details on how to generate slope
units in GIS are given in Section 3.2.2.

3.2.2 Computing Slope Units in GIS

Slope units correspond to physiographic features that partition any landscape into half sub-
catchments. Therefore, they can be computed at different scales, which makes the process
subjective and time-consuming. Most of these issues have been recently resolved, as illustrated
in Alvioli et al. (2016), where the authors propose an efficient automatic method to compute
slope units in GIS. The authors describe a code called r.slopeunits (see http://geomorphology.
irpi.cnr.it/tools/slope-units), and implemented it in GRASS GIS. The script r.slopeunits requires
only a digital elevation model (DEM) as input. Thus, after a few parameters that control the
desired output resolution are set, slope units can be automatically and objectively generated.

We report below the GRASS GIS syntax to run r.slopeunits in Ubuntu. Here, we assume
that the DEM is saved in GeoTIFF format and named as Elevation.tif. We fix the initial
flow accumulation to 150,000 m2, the reduction factor to 2, the minimum slope unit area to
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10,000 m2, the minimum circular variance of terrain aspect within slope units to 0.25, the
threshold area under which the smallest slope units are removed to 2000 m2, and finally the
maximum number of iterations for recursively subdividing slope-units to 10. For more details
on the exact meaning and effect of these parameters, see Alvioli et al. (2016) and the refer-
ences therein. After opening the terminal and running GRASS GIS, we load the DEM of the
study area, and we run the following command:

./r.slopeunits demmap5Elevation slumap5SUraster slumapclean5SUclean
reductionfactor52 maxiteration510 thresh5150000 circularvariance50.25
cleansize52000 areamin510000 �0

The output from r.slopeunits, here called SUraster, is a raster data file. To convert it
into a vectorial format, we run the following command:

r.to.vect input5SUraster output5SUvector type5area

We then save it as a shapefile called SU.shp in what follows. The next section describes
how to build and fit a meaningful point process model for our landslide inventory using R

and the library R-INLA (Martins, Simpson, Lindgren, & Rue, 2013), and how to extract the
results, in order to create spatial prediction maps of landslide intensities.

3.3 Point Process Modeling and Estimation Using R-INLA
3.3.1 Preprocessing

Before proceeding with the model construction and estimation, we need to load and prepare
the data in R to be used subsequently by R-INLA.

We start by opening an R terminal and importing the slope unit delineation previously
calculated into R, thanks to the maptools package (Bivand & Lewin-Koh, 2017):

. library(maptools)

. SU5readShapeSpatial(“SU.shp”)

Then, we compute the adjacency graph structure (Carnia, Suyudi, Aisah, & Supriatna,
2017) determining the neighborhood relationships of slope units, which can be achieved
using the spdep package (Bivand & Piras, 2015):

. library(spdep)

. nb2INLA(“adjgraph.txt”,poly2nb(SU,queen5F,row.names5SU$ID))

where the ID column corresponds to the numbered vector of slope unit IDs. This prepara-
tory procedure is needed for R-INLA in order to implement spatial dependency across slope
units using a simple conditional autoregressive (CAR) model (Besag, 1975). Alternatively, it
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would also be possible to capture spatial correlation through a different model based on sto-
chastic partial differential equations (SPDEs; Lindgren, Rue, & Lindström, 2011), but infer-
ence then becomes more complicated. For illustration purposes, we choose here the CAR
model, although it would be interesting in future research to assess the effect that the choice
between the SPDE or CAR model has on the results, and in particular on the overall predic-
tive performance.

We then load the landslide inventory and the covariates into R. The data file
called datamatrix.txt is assumed to contain a large data matrix, where the columns
contain the x- and y-coordinates of each pixel, the landslide count for each pixel, a vari-
able SU.ID identifying the slope unit that contains each pixel, and the covariate values for
each pixel. We read this file in R as a data frame, making sure that missing values are
encoded as NAs such that we can remove records with missing covariate values from the
dataset, and we then rescale each continuous covariate (except the aspect treated as cate-
gorical) by subtracting the mean and dividing by the standard deviation; this helps to sta-
bilize the estimation procedure and to easily compare the importance of continuous
covariate effects. We run the following code:

. dataDF5read.delim(“datamatrix.txt”,header5T)

. dataDF[dataDF55 29999 | dataDF55 299999]5NA

. dataDF5na.omit(dataDF)

. data_scaled5dataDF

. vars2scale5c(“Elevation”,“Dist2Fault”,“NDVI”,“Plan_Cur”,“Prof_Cur”, “Slope”,
“SPI”,“TWI”)

. data_scaled[,vars2scale]5apply(data_scaled[,vars2scale],2,scale)

We then extract the landslide counts into a vector y.count, and to avoid numerical
instabilities we calculate the area of each pixel, which is used to fix the areal unit of the
Poisson regression model to 1 m2 by including a fixed multiplicative offset in the model
(called offset below). We also use another constant (called avg.global), equal to the average
number of landslides per square meter, which helps in stabilizing the estimation of the inter-
cept by concentrating its prior distribution relatively close to this value:

. y.count5data_scaled$count

. n.pixels5nrow(data_scaled)

. area.pixel5rep(15^2,n.pixels)

. offset5area.pixel

. n.landslides5sum(y.count)

. avg.global5n.landslides/(n.pixels*area.pixel)

Next, we prepare the covariate matrix to be used by R-INLA, adding the intercept (a col-
umn of ones), and merging minor lithology classes into one single class:

. covar.inla5data_scaled[,c(“Aspect”, “Elevation”,“Dist2Fault”,
“Lithology”,“Landuse”, “Landform”,“NDVI”,“Plan_Cur”,“Prof_Cur”,“Slope”, “SPI”,
“TWI”,“SU.ID”)]
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. covar.inla5cbind(intercept51,covar.inla)

. doReplace5covar.inla$Lithology %in% c(8,14,15,16,17,18,20,21,22,23,24,29)

. covar.inla$Lithology[doReplace]50

The 12 lithotypes merged into a single class outcrop in the area for few hundred squared
meters and do not contain any landslide. Thus, their separate inclusion in the model would
be meaningless and could lead to high uncertainty, which may complicate the estimation of
the model and its interpretation. However, to continuously represent the whole study region
without missing values in the covariates, we have to include them, and we opted for a single
class as a good compromise. Ultimately, we convert the aspect into a categorical covariate
with 16 equidistant classes, by cutting the interval [0, 360) degrees into 16 segments of length
22.5 degrees:

. covar.inla$Aspect5cut(covar.inla$Aspect,labels5F,breaks5seq(0,360,length517))

The function inla.group within the INLA package may also be useful to split a continuous
covariate into a fixed number of distinct classes. This covariate transformation is useful to
treat the aspect nonlinearly, with one distinct effect per class. It would be possible to con-
sider more classes for a finer representation of the aspect variable, but we have found that
our choice of 16 classes provides a good compromise between modeling accuracy and
computational convenience. Moreover, while categorical variables such as the land use or
lithology have typically unrelated classes, the effects of a categorical variable with an intrinsic
class ordering (such as the aspect) can be assumed to have a specific correlation structure;
this provides smoother results and makes estimation easier by borrowing strength across
neighboring classes, as explained in Section 3.3.2.

3.3.2 Fitting a Cox Point Process Model Using R-INLA

Loosely speaking, a Poisson point process model assumes that for any area NðAÞ, the num-
ber NðAÞ of events (in our case, landslides) occurring in A follows the Poisson distribution
with mean ΛðAÞ5 ÐAλðsÞds, where λ(s) denotes the landslide intensity at location s.
Mathematically, prfNðAÞ5 kg5 expf2ΛðAÞgΛðAÞk=k!, k5 0, 1, . . .. Intuitively, λ(s) can be
interpreted as the (rescaled) expected number of events occurring in an infinitesimal region
around s; in other words, λ(s) reflects the “density” of landslides: the larger the intensity λ(s),
the more likely events are to occur in a small neighborhood of s. The log-Gaussian Cox point
process model that we fit here further assumes that the log intensity log{λ(s)} is random and
is driven by a Gaussian process, whose mean and covariance structures are determined by
covariates and latent random effects. Precise mathematical details about this modeling
framework may be found in Lombardo, Opitz, and Huser (2018).

We now explain how to implement and estimate such a complex point process model
using R-INLA, containing fixed covariate effects, one cyclic nonlinear effect (the aspect), and
one latent random field defined over slope units capturing the spatial dependence structure
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(due in our case to the intense precipitation trigger). A slightly more complicated model with
additional nonlinear covariates is considered in Lombardo, Opitz, and Huser (2018).

Before fitting the model, we need to load the INLA library (see http://www.r-inla.org/
download for the latest version), and to define the formula characterizing the linear predic-
tor, embedded into the landslide log intensity log{λ(s)}. This can be achieved by additively
combining the different model components in a simple way, as follows:

. library(INLA)

. form5yB211intercept1Elevation1Dist2Fault1NDVI1Plan_Cur1Prof_Cur
1Slope1SPI1TWI1

f(Aspect,model5“rw1”,cyclic5T,constr5T,
hyper5list(theta5list(initial5log(25),fixed5T)))1

f(Landuse,model5“iid”,hyper5list(prec5list(initial5log(100),
fixed5T)),constr5T)1

f(Landform,model5“iid”,hyper5list(prec5list(initial5log(100),
fixed5T)),constr5T)1

f(Lithology,model5“iid”,hyper5list(prec5list(initial5log(100),
fixed5T)),constr5T)1

f(SU.ID,model5“besag”,graph5“adjgraph.txt”,
hyper5list(theta5list(initial5log(1),fixed5F,prior5“loggamma”,
param5c(0.25,0.25))))

In the code above, all continuous covariates (except the aspect) appear on the first line
and are simply treated as linear fixed effects. However, the aspect, which takes values in
[0, 360) degrees, is treated as an ordered, cyclic, categorical variable. We assume that the
dependence structure of the random effects for its 16 classes (i.e., [0.0, 22.5) degrees, [22.5,
45.0) degrees, . . ., [337.5, 360.0) degrees) is driven a priori by a Gaussian random walk of first
order with fixed precision parameter τAsp 5 25. Mathematically, if xi denotes the effect for
the ith class, one has

xi11 2 xiBNð0; τ21
AspÞ; i5 1; . . .; 17;

where x17 � x1 by convention, and where the effects are constrained to sum to zero for
identifiability. This model induces correlation among nearby classes, while maintaining high
flexibility. Large values of τAsp imply strong interclass correlation, and vice versa. The purely
categorical, unstructured, variables (land use, landform, and lithology) are modeled as inde-
pendent Gaussian random effects, with fixed precision parameter τCat 5 100, and also con-
strained to sum to zero. Finally, the spatial random effect is assumed to be driven a priori by
a zero-mean Gaussian conditional autoregressive (CAR) model (Besag, 1975) defined over
slope units, with precision τCAR . 0 to be estimated. If zi denotes the effect for the ith slope
unit, N(i) indicates the collection of its neighbors, and z2i is a vector containing all such
effects except for zi itself, then one has
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In other words, the (conditional) mean effect for the ith slope unit corresponds to the
average of its neighbors, which induces spatial correlation. The closer two slope units are to
each other (with respect to the graph distance), the stronger the correlation of their corre-
sponding effects. Furthermore, larger values of τCAR imply stronger correlation, and vice ver-
sa. Thus, the estimated value of τCAR is crucial, as it controls the smoothness of the
estimated latent spatial effect, and this needs to be validated with care. In the linear predic-
tor formula above, we further specify that τCAR has a gamma prior with rate and shape para-
meters both equal to 0.25, leading to a moderately informative prior distribution with a
mean value of 1 and a variance value of 4. In practice, we must very carefully assess the sen-
sitivity of the results with respect to hyperparameters (i.e., the precision parameter values,
and the parameters of all prior distributions).

After having constructed the model formula, we create a data stack required by R-INLA:

. stack5inla.stack(data5list(y5y.count,e5offset),A5list(1),effects5list
(covar.inla))

We can finally fit the desired Cox point process model using INLA by calling the function
inla as follows:

. fit5inla(form,family5“poisson”,data5inla.stack.data(stack), control.fixed5

list(prec52,prec.intercept51,mean.intercept5log(avg.global)), E5

inla.stack.data(stack)$e,num.threads52, control.predictor5list(compute5TRUE))

The family is defined to be “poisson”, as our Cox point process model is effectively
discretized in practice and fitted similarly to a classical Bayesian Poisson regression. The
argument control.fixed defines the prior distribution assumed for the intercept and
fixed effects; here, the intercept has a Gaussian prior with mean set to the average num-
ber of observed landslides per pixel (taking into account the multiplicative offset) and
unit precision, while fixed effects have a zero-mean Gaussian prior with precision 2. The
argument num.threads52 specifies that two threads are used for parallel computation. As
INLA is memory-intensive, it is recommended not to exploit too many threads simulta-
neously. Due to the complexity of the model involving approximately 5000 latent
Gaussian variables (one for each slope unit), and the large dimension of the data with
around 500,000 pixels, memory requirements may exceed the capacities of standard
desktop computers. The total computing time to fit our model on a machine with at least
64 GB of available memory was approximately 15 hours. Choosing a simpler model struc-
ture (e.g., without spatial effect), fixing (and not estimating) hyperparameters such as the
precision of the spatial effect, or using faster but less accurate approximation techniques,
to be specified in the argument control.inla of the call to inla, can considerably speed
up the fitting procedure.
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3.4 Results
3.4.1 Estimated Fixed and Random Effects

In this section, we show how to extract results from the inla output in order to produce sci-
entific plots and maps. The function inla returns an object (here called fit) of class “inla”,
which is an R list containing rich information about the estimated model. The usual summary
command has been adapted for inla results and gives an overview of the results:

. summary(fit)

More specifically, we can extract the estimated linear (or fixed) effects by using the follow-
ing command:

. fit$summary.fixed

The summary.fixed object contains information on the posterior distribution for each lin-
ear covariate effect in terms of its (1) mean, (2) standard deviation, (3) 2.5% quantile, (4)
median, (5) 97.5% quantile, and (6) mode. Table 3-1 reports, for each linear covariate
included in our model, the posterior mean and associated 95% pointwise credible interval
(CI) defined as the interval between the 2.5% and the 97.5% posterior percentiles. When the
CI excludes zero (i.e., when the 2.5% and 97.5% percentiles have the same sign), the corre-
sponding covariate effect is deemed to be significant at the 95% level. From Table 3-1, the
model intercept, planar and profile curvatures, and the slope steepness appear to be signifi-
cant, while the normalized difference vegetation index (NDVI) misses significance by a small
margin.

We can also extract the effect of categorical covariates, which are here encoded as ran-
dom effects in R-INLA with one random variable per category. Purely categorical covariates
(land form, land use, and lithology) assume stochastic independence between classes, while

Table 3-1 Summary of Linear Covariate Effects

Covariate Posterior Mean 95% CI Significant

Intercept 2 12.6 [2 12.7, 212.4] Yes
Elevation 0.01 [2 0.15, 0.18] No
Distance to fault lines 2 0.05 [2 0.13, 0.03] No
Norm. diff. vegetation index (NDVI) 0.04 [2 0.01, 0.09] No
Planar curvature 0.17 [0.14, 0.19] Yes
Profile curvature 2 0.12 [2 0.16, 20.09] Yes
Slope 0.73 [0.67, 0.78] Yes
Stream power index 0.02 [2 0.04, 0.08] No
Topographic wetness index 0.01 [2 0.07, 0.10] No
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structured or ordinal categorical covariates (here, the aspect) assume that nearby classes are
dependent; recall Section 3.3.2. Similarly to the inla results for continuous variables with lin-
ear coefficients (fixed effects), the fitted object contains information about the posterior distri-
butions of random effects. The only difference is that this is repeated for each class of these
categorical covariates. To access these results, the following commands can be used:

. fit$summary.random$Aspect

. fit$summary.random$Landform

. fit$summary.random$Landuse

. fit$summary.random$Lithology

However, depending on the number of classes used to describe categorical covariates,
these summary.random objects may involve a considerable amount of data, which may be
difficult to navigate through and to understand. To better interpret the results, it is con-
venient to represent the estimated random effects using graphical diagnostics and
maps. For example, the posterior mean and 95% CI for the aspect (modeled here as a
categorical variable with 16 correlated classes) may be elegantly displayed using the
following R code:

. aspect5fit$summary.random$Aspect

. ylim5range(aspect[,c(“mean”,“0.025quant”,“0.975quant”)])

. xvals5(c(21:16)10.5)/16*360; yidx5c(16,1:16,1)

. plot(xvals,aspect$mean[yidx],type5“l”,lwd53,xlab5“Aspect [Deg]”, ylab5“Linear
predictor”,ylim5ylim,xaxp5c(0,360,9))

. lines(xvals,aspect$“0.025quant”[yidx],lwd53,col5“blue”)

. lines(xvals,aspect$“0.975quant”[yidx],lwd53,col5“blue”)

. abline(h50,lty52,lwd53,col5“gray50”)

The left panel of Fig. 3-4 reports the results, and shows that the aspect has a highly non-
linear and strongly significant effect overall. Moreover, the a priori correlation structure
between nearby classes, assumed in our model for the aspect, is clearly visible in this figure,
which reveals a smooth estimated pattern across classes.

Similarly, we can plot the purely categorical covariates with independent effects. For
example, we can use the following code to display the estimated effects for the land use,
assuming that the R object LUnames contains the names for each land use class:

. landuse5fit$summary.random$Landuse

. ylim5range(landuse[,c(“mean”,“0.025quant”,“0.975quant”)])

. plot(1:13,landuse$mean,xlab5“CORINE Land Use”,ylab5“Linear predictor”, lwd52,
ylim5ylim1c(0,0.1),pch519,xaxt5“n”)

. axis(1,at51:13,labels51:13)

. points(1:13,landuse$“0.025quant”,lwd52,col5“blue”,pch519)

. points(1:13,landuse$“0.975quant”,lwd52,col5“blue”,pch519)

. segments(1:13,landuse$“0.025quant”,1:13,landuse$“0.975quant”,lwd52)

. abline(h50,lty52,lwd53,col5“gray50”)
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. text(1:1320.3,y5landuse$mean,LUnames,srt590)

The right panel of Fig. 3-4 displays the results. The main difference between the left and
right panels resides in the way results are presented: In contrast to the land use, we show the
estimated aspect effect by using a continuous line, rather than disconnected points and inter-
vals, to stress that neighboring classes are linked together and assumed to be dependent.

Fig. 3-4 is useful to display the estimated covariate effects and their uncertainty in terms of
posterior means and credible intervals; however, the spatial component is lost. A way to
account for this is to show the posterior means on a map. This can be accomplished using the
join by attribute table function available in any GIS platform. The two targets of the join

function should correspond to the shapefile of the given categorical covariate and the posterior
means extracted from the fitted R-INLA object, using a common ID field. Fig. 3-5 shows the
results using a suitable color scale that discriminates positive from negative effects, therefore
clearly highlighting spatial regions that contribute to slope instability.

Ultimately, the analysis of estimated fixed and random effects can be completed by check-
ing the latent spatial effect described in Section 3.3.2, capturing the unobserved precipitation
trigger. The estimate of the precision hyperparameter τCAR equals 0.22 with fairly narrow cred-
ible interval [0.20, 0.22], as can be seem from the information returned by the command

. fit$summary.hyperpar

This hints at a moderately strong spatial dependence, which expresses that we have a rel-
atively smooth transition between neighboring slope units in general, although relatively
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FIGURE 3-4 Left: Estimated cyclic aspect effect, represented using its posterior mean (black curve) and associated
95% pointwise CI (blue curves). Right: Estimated land use categorical effects, represented using the posterior
means (black dots) and 95% CI for each class (vertical segments). Horizontal dashed lines at zero separates positive
from negative effects.

68 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



large discrepancies between nearby slope units are still possible. We can use the following
command to extract the posterior mean (i.e., the fitted values) of the latent spatial effect for
each slope unit:

. fit$summary.random$SU.ID$mean

The above command returns a vector of estimated slope unit effects ordered by slope
unit ID. Similarly to categorical covariates, it is convenient to visualize the estimated spatial
effect on a map using GIS: we need to join the vector to the attribute table of the slope
units polygonal shapefile and then map it. The top left panel of Fig. 3-6 displays the results
using a symmetric color scale; it reveals a negative trend from the coastline to the catchment
ridges and a strong positive contribution to landslide occurrence in the central area. Thanks
to the spatial correlation across slope units, the estimated latent spatial effect varies smoothly
over space.
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FIGURE 3-5 Posterior means of estimated categorical covariate effects. The chosen color scale is symmetric about
zero, which therefore clearly discriminates positive effects contributing to slope instability (red) from negative
effects (blue).
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To visualize the uncertainty surrounding the latent spatial effect, we can compute a 95%
pointwise CI by extracting the 2.5% and 97.% posterior percentiles for each slope unit using
the commands:

. fit$summary.random$SU.ID$“0.025quant”

. fit$summary.random$SU.ID$“0.975quant”

The latent spatial effect is deemed to be significant at a specific location if the credible
interval for the corresponding slope unit does not include zero. The top middle and right
panels of Fig. 3-6 display the results. Although some regions with few landslide events or at
the boundary of the study region have quite wide pointwise credible intervals, the latent
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FIGURE 3-6 Top: Estimated latent spatial effect (A) with the size of a corresponding 95% pointwise credible
interval (B), and the indicator whether the spatial effect is significantly positive, negative or nonsignificant in
specific slope units (C). Bottom: Estimated landslide (integrated) intensity shown at the pixel (D), slope unit (E) and
catchment (F) resolutions.
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spatial effect appears overall to be highly significant as a whole, and thus important to cap-
ture the unobserved trigger.

3.4.2 Estimated Landslide Intensity at Various Spatial Resolutions

As mentioned in Section 3.3.2, we interpret the point process intensity λ(s) as the “density”
of landslides around a specific spatial location s. The integrated intensity ΛðAÞ5 ÐAλðsÞds cor-
responds to the number of landslides expected to occur in a given mapping unit A. Unlike
classical landslide susceptibility approaches based on Bernoulli regression models, whose fits
strongly rely on a predefined and fixed choice of mapping units, the intensity function is con-
tinuously defined over space, and can therefore be used directly to deduce the integrated
intensity over any areal unit of interest without refitting the model. Thus, we can consistently
describe aggregated landslide counts at various spatial resolutions. In practice, the intensity
λ(s) is estimated at the highest pixel resolution, and the integrated intensity for a region A
can be calculated by summing up the intensities of all pixels contained in A. Thus, from the
estimated pixel intensity bλðsÞ, we can therefore immediately derive the estimated slope unit
intensity (i.e., sum of all pixel intensities within slope units) and the estimated catchment
intensity (i.e., sum of all pixel intensities within catchments). Specifically, if A denotes a spe-
cific slope unit or catchment, we compute bΛðAÞ5PsiAA

bλðsiÞ.
We now describe how to practically extract and compute pixel, slope unit, and catchment

intensities using R and GIS. From the R-INLA output, fitted values for pixels can be easily
accessed through the corresponding summary table. However, recall that in Section 3.3.1 we
rescaled the area to establish a resolution-independent spatial unit of 1 m2 in the point pro-
cess model. Hence, such fitted values need first to be back-transformed to the actual map-
ping scale. Once the intensities have been properly corrected to pixel-based values, we can
assign the corresponding spatial coordinates and generate intensity maps. The pixel intensity
postprocessing is summarized below, assuming that the R object xy.map is a matrix with two
columns containing the position of each pixel centroid:

. pixel.intensity5fit$summary.fitted.values$mean*area.pixel

. intensity.map5cbind(xy.map,pixel.intensity)

Once pixel intensities are computed, we can import the intensity.map object as a raster
in GIS and plot the corresponding intensity map. This is a basic operation in any GIS platform.
For instance, in SAGA GIS (Conrad et al., 2015), it can be achieved using the Import Grid from XYZ

tool available under /Geoprocessing/File/Grid/Import/ setting the appropriate Cell size, here
equal to 15 m. The bottom left panel of Fig. 3-6 shows the estimated pixel intensity. Then,
once the pixel intensity is loaded, we can scale it up to other mapping units by summing
all values in a given polygonal partition. This operation can be done in SAGA GIS using
the Grid Statistics for Polygon tool under /Geoprocessing/Shapes/Grid/Grid Values/ selecting
the SUM option. The bottom middle and right panels of Fig. 3-6 display the intensity maps at the
slope unit and catchment resolutions, respectively. As expected, the intensity increases for
coarser resolutions, and the pixel intensities reveal the finest details.
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3.4.3 Model Checking and Goodness-of-Fit Assessment

To assess the model performance, we should always consider several diagnostics. Some of
these are already standard in the geomorphological literature. We here list and describe four
possible diagnostics related to (1) the observed and predicted landslide counts (using the
intensities), (2) the derived binary presence�absence data (using the probabilities of observ-
ing at least one versus no event within specific mapping units), (3) the smoothness of the
estimated latent spatial effect, and (4) the model sensitivity to prior distributions.

Our landslide inventory contains a total number of 4879 occurrences. Therefore, as the
integrated landslide intensity ΛðAÞ for a spatial unit A represents the expected number of
events occurring in A, the total estimated intensity for the entire study area should match
approximately the observed total landslide count. By summing up all estimated pixel intensi-
ties, we obtain here a total intensity of 5138, which suggests that the fit is fairly good overall
(taking the uncertainty into account), although this number overestimates by 5.3% the
observed count. We can also perform such a comparison between observed and estimated
landslide counts for any other choice of spatial units, and Fig. 3-7 displays the results for
slope units and catchments. Intuitively, the model should be better calibrated at coarser
resolutions, and this is what we see here: on the catchment scale, the intensities estimated
by our point process model are almost identical to the observed landslide counts for all
catchments, while on the slope unit scale (with smaller counts), there is slightly more vari-
ability. Nevertheless, both at the slope unit and catchment scales, the model goodness-of-fit
is excellent overall. Moreover, the counts are mostly contained in a 95% CI calculated from
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FIGURE 3-7 Comparison of observed and predicted landslide counts at the slope unit and catchment scales. Red
lines correspond to a perfect match, whereas the gray lines correspond to the 95% CI obtained using the
theoretical quantiles of a Poisson distribution for each landslide count (i.e., ignoring posterior uncertainty in the
Cox point process model of Section 3.3.2).
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the theoretical quantiles of the Poisson distribution (ignoring posterior uncertainty), which
shows that the model appropriately captures the variability of landslide counts across space.
These outstanding results for our fitted model may raise legitimate concerns about potential
overfitting issues and poor predictive performances. However, as described further in
Section 3.4.4, our cross-validation study reveals that the out-of-sample predictive perfor-
mance of our model is still very good, thus removing any doubts about overfitting.

Secondly, we can also compare the observed and estimated presence�absence probabili-
ties, in order to check the performance of the fitted model, as is usually performed in land-
slide susceptibility studies. The aim of this comparison is to verify whether the model
appropriately distinguishes stable from unstable terrain conditions. After transforming the
count data to binary data representing absences (i.e., all mapping units with no landslide) or
presences (i.e., all mapping units with at least one landslide), such a comparison may be
achieved with standard metrics used in the geomorphology literature, such as the receiver
operating characteristic (ROC) curve and the area under the curve (AUC). Thanks to the
assumed Poisson distribution of counts, the probability that at least one landslide occurs in
region A can be obtained as 12 expf2 bΛðAÞg, where bΛðAÞ denotes the estimated (integrated)
intensity; at the finest pixel level, we should use the estimated intensity bλðsÞ, which matchesbΛðAÞ. Thus, by using the library pROC (Robin et al., 2011), we can use the following R code to
compute the ROC and AUC at the pixel level:

. library(pROC)

. y.presence.absence5y.count

. y.presence.absence[y.count.0]51

. pixel.probability51-exp(-pixel.intensity)

. pixel.ROC5roc(y.presence.absenceBpixel.probability)

. pixel.AUC5as.numeric(pixel.ROC$auc)

Similar commands can be used for other mapping units. Table 3-2 reports the AUC
values obtained at the pixel, slope unit, and catchment scales. The results are outstanding:
the AUC reaches 0.932, 0.975, and 0.981 at the pixel, slope unit, and catchment levels,
respectively, which is unprecedented in the geomorphology literature, and confirms that
the model calibration is better at coarser resolutions. As further explained in Section 3.4.4,
the out-of-sample predictive performance is also excellent. We explain such good results
by the inclusion of the latent spatial effect, which accounts for the intense precipitation trig-
ger that is mostly unexplained by all morphometric or thematic covariates.

Table 3-2 Model Predictive Performance in Terms of AUC at the Pixel,
Slope Unit, and Catchment Scales

Procedure Pixel Slope Unit Catchment

Model fit 0.932 0.975 0.981
Cross-validation 0.894 0.927 0.968
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Thirdly, we should investigate the spatial smoothness of the estimated latent spatial effect,
to check that the latter has been properly estimated using INLA and to assess its usefulness in
representing the data variability over space. As a rule of thumb, the latent spatial effect should
show a relatively smooth transition from one slope unit to another. In cases where the overall
pattern appears very scattered or even completely random, there are three possibilities: either
(1) the parameterization of the spatial model component can be improved, (2) the spatial
information is already carried in the model through some of the other covariates, or (3) the
spatial field is absent in the first place, that is, it is useless to represent the spatial variability of
landslide counts. In view of these considerations, we recommend careful assessment of the
final estimated spatial pattern to avoid misinterpretation of the physical process behind the
latent spatial effect. In our analysis of the Messina disaster, the top left panel of Fig. 3-6 shows
that the estimated latent spatial effect varies quite smoothly over space and thus, being signifi-
cant overall, it plays a crucial role in the fitted model.

Finally, checking the model sensitivity to the choice of prior distributions is also a manda-
tory requirement for constructing a reliable Bayesian model. The formulation of a Bayesian
model requires specifying the form of prior probability distributions for model components
such as fixed and random effects, and for hyperparameters such as the precision parameters
in our model (governing the strength of dependence between neighboring slope units or
ordinal covariate categories). The Bayesian paradigm allows us to tailor prior distributions
for including expert knowledge or empirical knowledge from the data. In R-INLA, a wide
range of Gaussian prior model types are proposed for modeling random effects, while the
available prior choices for hyperparameters depend on the nature of the parameter. In gen-
eral, the choice of the final priors should produce good results. However, good models
should also be stable. If slight changes to the priors produce strong variations in the final
model output or meaningless results, we may suspect instabilities arising from inappropriate
model building or convergence problems with the optimization procedures. In particular,
using prior models with a relatively large number of components, together with very uninfor-
mative priors, may lead to a failure of optimization procedures, and to unstable estimation
results. We suggest running several tests based on different choices of priors and hyperpara-
meters, before concluding that a given model is final.

3.4.4 Cross-Validation Study and Out-of-Sample Predictive Skill

Out-of-sample validation (or cross-validation) is a procedure, whereby information con-
tained in the original data matrix is hidden during the fitting step and subsequently exploited
to estimate the predictive power of a given model. Typically, many predictive methods in R

implement a predict function to perform such validations based on a fitted model object. In
contrast, estimation and out-of-sample prediction in the Bayesian framework of INLA can be
achieved in a single step by simply assigning NAs to the response variable for rows of the
data matrix that will be used for cross-validation, without further modifying the structure of
the code. The output contained in the fitted object includes the fitted values for both
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observed responses and for artificially missing response values. In our case, we propose to
perform K-fold cross-validation as described by Petschko et al. (2014). Specifically, we parti-
tion the data matrix (from the file datamatrix.txt) into K subsections, each containing
approximately the same amount of rows chosen at random. We then change the landslide
counts for a given subsection to NA values, and finally refit the model (hence, simultaneously
predicting the NAs), making sure the fitted R objects are stored each time. From these K fitted
objects, we can then reconstruct the out-of-sample predictions for the full dataset by joining
together the predictions of missing counts for each of the K subsections. In many geomor-
phological papers (e.g., Castro Camilo, Lombardo, Mai, Dou, & Huser, 2017), the number of
subsections K is assumed to be large, and the final susceptibility map over the given map-
ping units is displayed as the mean probability value across replicates. In this chapter, we
apply a slight modification to this framework: we here choose K 5 4 and randomly select
one fourth of the slope units for each subsection, where each slope unit is constrained to be
drawn exactly once. This K-fold cross-validation procedure is outlined in pseudo-code in
Algorithm 1.

Input: Response vector y.count; preprocessed covariate table covar.inla; INLA formula
form; number of cross-validation fits K; other parameters.

Output: Predicted landslide pixel intensities pred.intensity.

partSU5sample(. . .) #Randomly partition slope units into K subsections
partition5partSU[covar.inla$SU.ID] #Corresponding partition for pixels
fits5list() #List to store all cross-validation fits
pred.intensity5c() #Vector to store all predicted pixel intensities
for i51 to K do

sec.i5which(partition55i) #Pixel indices for i-th subsection
y.count.i5y.count #Clone response vector
y.count.i[sec.i]5NA #Hide i-th subsection for fitting
stack.i5inla.stack(y.count.i,covar.inla,. . .)#Create new data stack
fit.i5inla(form,stack.i,. . .)#Perform i-th INLA fit
fits[[i]]5fit.i #Store i-th cross-validation fit
#We now extract predicted pixel intensities for the i-th subsection:
pred.intensity[sec.i]5fit.i$summary.fitted.values$mean[sec.i]*area.pixel

end
return Predicted pixel intensities pred.intensity.
(Note that predicted intensities at the slope unit and catchment scales can be easily

obtained from pred.intensity by summing up predicted pixel intensities within specific map-
ping units).

ALGORITHM 1 K-fold cross-validation procedure using R-INLA described in pseudo-code.
Some function arguments are purposely missing or simplified for presentation clarity.

Fig. 3-7 compares the predicted intensities (i.e., expected counts) obtained from the
cross-validation procedure to the observed counts, at the slope unit and catchment scales.
As expected, the within-sample predictive performance has a better score than its out-of-
sample counterpart, but overall there is a fairly good agreement between observed and
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predicted quantities in both cases, especially at the catchment scale. Table 3-2 reports the
AUC values based on presence�absence probabilities predicted by the cross-validation pro-
cedure. The AUC reaches 0.894, 0.927, and 0.968 at the pixel, slope unit, and catchment
levels, respectively. Although these values are lower than those obtained for the model fit
based on the full dataset, the results confirm that our model has an outstanding predictive
performance at all resolutions, and that it does not overfit the data.

3.5 Discussion
We implemented our method by modeling a disastrous MORLE exclusively made of shallow
flow-like landslides. We assessed the performance in terms of fitted and predicted intensities.
In agreement with the current susceptibility literature, we also repeated the same procedure
with respect to probabilities of presence/absence. Fig. 3-7 demonstrates a remarkable agree-
ment between observed and estimated landslide counts. Specifically, the fitted intensities
almost perfectly describe the original data, whilst the cross-validation results show a greater
uncertainty and tend to slightly overestimate counts, especially for greater values. If we take
the slope unit partition as an example, we can interpret this as a minor issue from a practical
standpoint, for the following reasons: (1) mapping units that exhibit widespread instabilities
should always undergo remediation procedures and (2) the commonly applied criterion is to
consider worst-case scenarios for safety reasons, which may yet occur under more extreme
future climatic conditions. However, when considering the more common susceptibility con-
cept, our model produces AUC values (see Table 3-2) of which even the minimum 0.894 cor-
responds to an outstanding predictive power according to the scale of Hosmer and
Lemeshow (2000). Moreover, we here investigate the intensity in addition to the susceptibil-
ity, and a comparable performance is rare in the susceptibility literature. This can primarily
be explained through the inclusion of the latent spatial effect in the model.

Very often, sparse rain gauge networks hinder the direct inclusion of the precipitation as
a covariate, although the rainfall discharge is the actual cause of landslides. Here, we specu-
late that the latent spatial effect enables us to account for the lack of this information.
Aronica, Brigandí, and Morey (2012) have already attempted to reconstruct the spatiotempo-
ral evolution of the storm in Messina. However, due to the presence of only two weather
stations inside the affected area (Fiumedinisi and Briga, see Fig. 3-1), the authors were only
able to recognize an approximative regional pattern, in which the cloudburst is shown to
travel northeastwards. Our approach inverts this perspective. Since we do not have any reli-
able data on the trigger at a sufficiently fine resolution, we seek to reveal the residual depen-
dency in the landslide pattern, leading to a spatially structured predictor component in the
spatial distribution of the MORLE, which can be interpreted as a proxy for the precipitation
trigger. The term “residual” refers to the remaining spatial component after having removed
the one carried by the observed covariates. The latent spatial effect extracted from the data is
shown in the top left panel of Fig. 3-6. A northeastwards trend emerges, starting from a
southern average zone, followed by a central sector characterized by the maximum positive
latent effect and a third northernmost area where the latent effect is minimal. Our
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interpretation of this pattern is that the atmospheric disturbance: (1) has entered the south-
ernmost sector of the study area, (2) has released the majority of the rain over the center,
and (3) has gently dissipated towards the north. This pattern clearly reappears in the inten-
sity maps shown in the bottom row of Fig. 3-6, where, regardless of the mapping unit, the
central sector is exposed to a greater number of debris flows. If we assume that the latent
spatial effect does carry the information of the trigger, the dominant effect shown in the
intensity maps makes sense. Intuitively, a greater rainfall amount in a given area leads to a
greater number of debris flow activations. In other words, the effect of the trigger tends to
become dominant when compared to the other predisposing factors. Nevertheless, investi-
gating the covariate effects is crucial for risk management purposes because it represents the
only component of the model that local authorities can modify to stabilize a given slope.

Among the fixed covariate effects, the planar and profile curvatures, as well as the slope
steepness, are significant in our model. The positive posterior mean (0.17) of the planar
curvature indicates a tendency of sidewardly convex morphologies to give rise to a greater
number of landslides, whereas the negative posterior mean (20.12) of the profile curvature
increases the estimated intensities for upwardly convex morphologies. These relations show
good agreement with those empirically postulated by Ohlmacher (2007) in the context of
flow-like landslides. Moreover, preceding studies in the same area have statistically con-
firmed correlations of similar order (e.g., Lombardo, Cama, Conoscenti, Märker, &
Rotigliano, 2015). Convex planar and profile curvatures control runoff divergence and accel-
eration, respectively. We interpret such effects in terms of soil cover availability (planar) and
mobilization (profile).

Slope steepness is widely known to be a key predisposing factor for shallow landslides
(e.g., Donnarumma, Revellino, Grelle, & Guadagno, 2013). Here, we normalized all covari-
ates to have zero mean and unit variance. Therefore, a posterior mean equal to 0.73 marks a
greater influence of the slope on landslides compared to that of the two curvatures.

For visualization convenience, we displayed the landform classes and outcropping
lithologies (random effects) on a map (see Fig. 3-5), whereas for the aspect and land use we
provided both their numerical and geographical representation. The aspect contributes to
increasing the landslide intensity between ESE and WNW directions with a clear SSW peak
(see Fig. 3-4). Moreover, the mapped effect of the aspect in Fig. 3-5 quite consistently
marks that for every major catchment in the area the right bank of the streams is quite
stable. Conversely, the left bank directly faced the approaching storm and was directly
exposed to the incoming rainfall discharge. Therefore, the model tends to estimate a
greater number of landslides for west-facing slopes. These results agree well with other
studies of the same MORLE. For instance, Trigila, Iadanza, Esposito, and Scarascia-
Mugnozza (2015) report a positive effect on landslide susceptibilities for west-, southwest-,
and south-facing slopes.

In analogy, we report the land use effect using two different plots. The static information
provided in Fig. 3-4 highlights the positive significance of sclerophyllous vegetation and
moors and heathland, and the decreasing impact on intensity carried by continuous urban
fabric and mixed groves. These relations are consistent with those revealed by other research
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in the area (Lombardo, Bachofer, Cama, Märker, & Rotigliano, 2016; Reichenbach, Mondini,
& Rossi, 2014) and more generally in southern Italy (Pisano, Zumpano, Malek, Rosskopf, &
Parise, 2017). Scherophyllous vegetation and moors and heatland are typically sparse green
areas in the Mediterranean region, thus offering a greater exposure to raindrops and subse-
quent material mobilization. Conversely, urban fabric includes concreted areas, which con-
tribute to complete surface runoff, whereas mixed groves are more densely packed, shielding
the soils from the rain. Overall, mapping the posterior means of each land use class does not
show a clear match with respect to the intensities shown in Fig. 3-6, which suggests that the
land use plays a relatively minor role in the overall model.

Ultimately, we decided to graphically interpret lithological and landform influences. For
the lithology, Fig. 3-5 shows a clear positive relation to the number of debris flows from the
southernmost to the central region where FDNb or phyllites to meta-arenites (see Fig. 3-3)
outcrop. Moreover, a strong negative contribution is marked for bb (see Fig. 3-3) or recent
alluvial deposits. Very similar results were obtained by De Guidi & Scudero (2013) (see
Table 3-1); in that study, the authors report (for a subset of the debris flow scenario we con-
sider in this study) that 42.9% of landslides were triggered in phyllites, and no landslides
occurred in the alluvium. From an interpretative standpoint, phyllites have a foliated struc-
ture which may be responsible for the initial failure along fine-grained mica flakes acting as
sliding planes. As regards alluvial deposits, those can be found along the main streams and
parallel to the coastline. In both cases the slope steepness is not sufficient to promote land-
slide activations. Moreover, landform effects are shown in Fig. 3-5, where the main stream
channels stand out with negative posterior mean values, whereas interfluves and especially
LFC9 or midslope ridges (see Fig. 3-3) increase the estimated number of debris flows.

The interpretation of the results so far has aimed at checking similarities with other
researches carried out for the same MORLE. However, some differences arise since, in most of
the cases, the disaster has been solely analyzed within the epicentral (e.g., Rossi &
Reichenbach, 2016) or marginal (e.g., Zini et al., 2015) area of our study region. One study has
modeled the whole scenario (Lombardo, Opitz, and Huser, 2018); it describes our statistical
approach of investigating intensities rather than susceptibility for the first time. We here pro-
vide a comparison with respect to the model Mod3 presented in Lombardo, Opitz, and Huser
(2018). The current results show a reduced number of significant linear covariates, whereas
Lombardo, Opitz, and Huser (2018) report elevation, distance to fault lines, and NDVI as sig-
nificant. We interpret this difference to be due to the latent spatial effect, which may have par-
tially carried some of the spatial effect of these covariates. Indeed, the elevation map (see
Fig. 3-2) and the latent spatial effect (see Fig. 3-6) show some similarities, which provides
some support for the usual approach of considering elevation as a rough proxy for the precipi-
tation pattern. As regards the final intensity maps, the results from the two models appear to
be quite similar. This consideration may justify the general approach in the geomorphological
literature (taking aside a few examples such as in Conoscenti et al., 2016), where predictors
are used as linear covariates rather than nonlinear. Nonetheless, a clear benefit of the latent
spatial effect is that it may always integrate certain covariate effects not captured by the other
model components, at least if such effects are relatively smooth in space.
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3.6 Conclusion
This chapter complements the methodological paper of Lombardo, Opitz, and Huser (2018):
we here provide a hands-on tutorial explaining how to practically implement a model for
multiple landslide events, by adopting a drastically different approach from the one that the
geomorphological community has pursued in the last three decades. We switch from the
landslide susceptibility framework to a landslide intensity framework, which provides infor-
mation on the number of landslide events in given mapping units, additionally to where they
are located. Our proposed approach is based on a continuous-space Bayesian log-Gaussian
Cox point process model, which can be discretized and fitted similarly to a Bayesian Poisson
regression model. Using such a model, the landslide intensity is easily scalable from pixels to
slope units, catchments, or any other mapping units of interest, without refitting a different
model. We can indeed exploit the Poisson additivity by calculating sums of intensities over
subareas as a consistent approach to this problem. By contrast, in classical susceptibility
modeling approaches, a separate model must be built for each choice of mapping unit under
consideration. Therefore, the aggregation of presence�absence probabilities, as well as the
representation of covariate distributions from higher to lower spatial resolutions, are much
more intricate and subjective.

Furthermore, we introduce the use of a latent spatial effect as a proxy for the spatial pat-
tern of the trigger, here represented by an intense storm. This spatially correlated model
component, which we define on the slope unit level to speed up computations, is able to
capture the unobserved covariates that are smoothly varying over space. Therefore, its inclu-
sion in the model usually yields an important improvement in terms of predictive perfor-
mance. This approach might be adapted to earthquake-induced landslides, which is part of
our ongoing applied research activities. The estimation of the latent spatial effect is made
possible thanks to the R-INLA library, which represents the core R package that we use. Using
the few code snippets presented above, it is possible to analyze the data and reproduce the
results presented in this chapter.

The complexity of our model, however, comes with a heavy computational burden, which
may prevent its application to large study areas consisting of an excessively high number of
pixels and slope units. So far, analyzing data comprised of a few million pixels with a few
thousand slope units is feasible. However, treating a greater number of fine-resolution map-
ping units may be cumbersome, even when using high-performance computers.

In future research, we envision performing sensitivity studies specifically over final
predictive maps. We can achieve this by keeping the estimated covariate effects constant
while simulating new, yet unobserved, spatial patterns according to either the posterior dis-
tribution of the latent spatial effect, or fully artificial scenarios for the spatial distribution of
the trigger. This would allow us to investigate a range of possible scenarios for producing a
collection of intensity or susceptibility maps.
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4.1 Introduction
Well-designed decision support systems (DSSs) can provide valuable support to solve ill-
structured and highly complex decision problems. In a general term, a DSS is a computer-
based system for gathering, processing, and integrating database management systems
with analytical and operational research models, graphic display, tabular reporting capabil-
ities, and the expert knowledge of decision makers to assist in solving specific problems
(Vacik & Lexer, 2001). Over the past two decades, Spatial DSS (SDSS) using the Geographic
Information System (GIS) has evolved into a field of research, development and practice
that is made up of many different approaches, including intelligent SDSS, planning support
systems (Accastello, Brun, & Borgogno-Mondino, 2017; Ezzati, Najafi, & Bettinger, 2016;
Geertman & Stillwell, 2012; Malczewski & Rinner, 2016), collaborative GIS (Balram &
Dragićević, 2005), group SDSS (Jankowski & Nyerges, 2001), participatory GIS (Craig,
Harris, & Weiner, 2002), and spatial multiagent system (Parker, Manson, Janssen,
Hoffmann, & Deadman, 2003). A SDSS typically allows the analysis of complex decision
problem that has already been illustrated within a GIS system for a given purpose. Such a
system can technically generate “feasible solutions” through considering a large amount
of information, however, does not necessarily generate “optimal solutions” by itself
(Boroushaki & Malczewski, 2008; Reynolds & Hessburg, 2014). Depending on the consid-
erations, the core structure of each DSS is compromised of four components: (1) analysis
of decision-maker, (2) designing an appropriate hierarchical structure, (3) identify decision
elements (e.g., criteria/subcriteria/factors and decision alternatives), and (4) interpret the
results of decision-making.
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4.1.1 Multicriteria Decision Elements

4.1.1.1 Decision-Maker Analysis
Decisions regarding management plans are usually made in natural resource management
organizations by a team of people with various backgrounds, who are responsible for
making practical and efficient decisions. The decision-maker can be an individual (e.g., a
manager of a forest district), or a group of individuals (e.g., stakeholders or people belong-
ing to a forest community). The aim of the decision-maker(s) analysis is to identify all
relevant stakeholders to determine the extent of their participation. A stakeholder is
someone who is affected by or can affect the situation in some way; that is, the
stakeholders have vested interests in the decision problem. The analysis of stakeholders is
critical at the beginning of a multicriteria decision process. Ignoring this step means that
the solution found through the decision-making process might not be a promising solution
to address a real-world problem and that may not be accepted as a participatory process
(Nordström, Eriksson, & Öhman, 2010).

4.1.1.2 Hierarchical Structure
Prior to implement any application of decision support tool, the decision-maker has to struc-
ture the decision problem by identifying the decision’s problem goal and corresponding
elements such as criteria/subcriteria and factors. In a spatial multicriteria DSS context, an
objective can be defined as a statement that a user wants to achieve. Typically, a generic
hierarchical structure consists of four levels including: goal or overall utility function, criteria,
subcriteria, and decision alternatives (Nordström et al., 2010). The top level of the hierarchi-
cal structure is often devoted to the overall goal of a decision problem. The goal may be
defined in terms of more specific elements, which are defined at lower levels towards to the
hierarchy beneath (Vacik & Lexer, 2001). The hierarchy, then, descends from the general
level to more specific levels until either subcriteria/or attributes levels are reached or quanti-
fiable indices of the extent to which associated objectives are realized (Saaty, 1980). Decision
alternatives are always positioned beneath the hierarchy that is somehow linked to higher
levels.

4.1.1.3 Decision Elements
CRITERIA AND SUBCRITERIA
Decision alternatives are generally evaluated on the basis of a set of criteria/subcriteria and
factors. Both individual criterion and a set of criteria should possess some properties to
adequately represent the multicriteria nature of the decision situation (Keeney, 1992). Each
criterion must be comprehensive and measurable. A criterion can be spatially explicit or
implicit (Chakhar & Mousseau, 2008; Malczewski & Rinner, 2016). Spatially explicit criteria
involve spatial characteristics of the decision alternatives, such as stand adjacency, spatial
wildlife habitat, etc. (Bettinger, Johnson, & Johnson, 2003; Kangas, Kangas, & Laukkanen,
2006). Alternatively, many decision problems involve criteria that are spatially implicit. This
means that spatial data are needed to compute the level of achievement of that criterion.
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DECISION ALTERNATIVES
Decision alternatives can be defined as a surrogate method that a decision-maker must
choose. For instance, a geographic decision alternative consists of at least two elements: type
of action (what to do?) and its location (where to do?). The spatial components of a decision
alternative can be specified explicitly or implicitly (Malczewski, 2006). Examples of explicitly
spatial alternatives in forest management include: suitable locations for logistics infrastruc-
tures (Contreras, Parrott, & Chung, 2016; Epstein, Morales, Serón, & Weintraub, 1999;
Ghajar, Najafi, Ali Torabi, Khamehchiyan, & Boston, 2012), alternative locations for planta-
tion (Kowero & Dykstra, 1988), harvest activities (Ezzati et al., 2016; Ismail, 2009; Weintraub,
Church, Murray, & Guignard, 2000), and wood supplier selections (Vinodh, Ramiya, &
Gautham, 2011). The method for defining spatial alternatives depends on GIS data models.
In the case of raster models, a decision alternative is often defined as a single raster of
specified size or a group of rasters. For vector analysis, a decision alternative can be defined
by a single object (e.g., point, line, or polygon) representing a geographic entity such
as a segment of road network or a length of skid-trail route or combination of objects
(e.g., geodatabase compromise of road segments, wood-yard terminals, and camping sites
for harvest teams).

4.1.1.4 Interpretation Findings
When a decision-making problem is solved, one may need to interpret the results in a way
that can be effectively understandable for everyone. A GIS is unique in its ability and is one
of the core technologies that can often be used to interpret and display the results of
decision making process to address spatial or even aspatial questions such as: “Where is it?
What is it? Why is it there?” (Wing & Bettinger, 2008), and also do further manipulation of
the obtained results, such as selecting an area of land to designate as a critical wildlife
habitat, as a potential area to determine a feasible zone or net production zone of a forest, or
to evaluate landscape under alternative management policies (Wing & Bettinger, 2008).
Obviously, emerging this system to natural resource management allows the manager to
consider the impacts of different policies or actions in a more efficient manner, usually
saving time and money.

In light of the different multicriteria decision analysis (MCDA) methods and possible
applications to support decision-making analysis in natural resources management, a few
key questions that may need to be answered before developing any decision-making system:

• “What goal(s) or objective(s) drives the development of a practical plan in natural
resource management?”

• “Which method is efficient for handling and analyzing larger datasets both qualitative/
subjective and quantitative/objective information in natural resource management?”

• “To a certain extent which method can guarantee a feasible solution or an optimal
solution?”

• “Does the proposed decision tool needs to be supplied by spatial information?” if so,
“how would be the relation between the spatial information and the DSS?”
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4.1.2 Classification of Spatial Decision Support System

Similar to SDSS, the fundamental motivation for integrating GIS and MCDA stems from the
need to make GIS capabilities more relevant for decision making and planning (Sugumaran
& DeGroote, 2010). A spatial analysis consists of a set of techniques and models that are
explicitly concerned with spatial patterns and processes (Malczewski, 2006). In other words,
choosing the timing and placement of activities is the main task of SDSSs in forest resource
planning. The main function of MCDA in supporting spatial decision-making is to help deci-
sion makers in developing a constructive and creative approach to the problem at hand,
rather than supporting them in identifying the “optimal” solution.

There are three distinct approaches to deal with spatial MCDA: (1) conventional MCDA,
(2) spatially explicit MCDA, and (3) spatial multiobjective (multicriteria) optimization.
The first group uses a spatial/or subjective MCDA for solving a spatial problem whilst the
remaining two MCDA types are methods specifically designed for tackling spatial problems
either in a subjective or objective way. A number of methods have been adapted for the use
of conventional MCDA in a GIS environment. A spatial MCDA typically pays no attention to
the fundamental properties of geographical data; that is, spatial heterogeneity and spatial
dependency. In this approach, a decision-maker often collects all data needed, analyzes all
possible scenarios to reach a consensus constructive and creative solution based on limited
(or no) data, and eventually few (or no) alternatives are assessed. These methods may
involve decisions that are easily resolved by means of MCDA. These methods are able to
generate a feasible solution without having potential to generate an optimal solution. The
second and third approaches are the opposite side of the first method, and have been
specifically designed for modeling spatial systems in order to solve a problem while consid-
ering the cost of the management approach and undoubtedly finding the “optimal solution”
to well-defined spatial decision/management problems (Huang, Yao, & Raguraman, 2006),
such as a land-use allocation model (Mosadeghi, Warnken, Tomlinson, & Mirfenderesk,
2015) and a logistics planning model (Rix, Rousseau, & Pesant, 2015).

The spatial solutions to the decision/management problems can be represented on a
map showing a spatial representation and coordination. In such a system, decisions are
often made based on enough information, which sometimes may be (or not) involved with
spatial constraints for feeding the model or visualizing the results. The third class of
decision-making alternative (i.e., the integrated model) is often used (but rarely recog-
nized) in analyzing large-scale forestry applications. Two variants of this approach have
been scrutinized in forest management sciences. One set of this method uses MCDA
combined with spatial analysis, the other one uses exact numerical methods (i.e., optimiza-
tion techniques) combined with subjective information along with the spatial analysis.
These methods are recognized as the most efficient decision-making process in natural
resource management (Grebner, Bettinger, & Siry, 2012). With this model, decisions are
based on the best available information that can be collected during a limited time period,
thus planners recognize the uncertainties and shortcomings of the databases and models.
In this approach, subjective information is often assessed using no or seminumerical
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methods, it sometimes provides inputs for further processes using numerical approaches.
Spatial data-mining methods, using raster/feature or advanced data processes such as
remote sensing analysis, might be utilized to process or visualize the results to obtain or
select the best possible alternative solution.

From the perspective of decision analysis, it is useful to classify the current spatial model-
ing approaches into two categories: statistical modeling schemes and mathematical modeling
approaches. Although spatial analysis is viewed as being deeply rooted in statistics, a consid-
erable portion of spatial analysis techniques and models is derived from operations research
and management science (Ghosh & Rushton, 1987; Malczewski & Rinner, 2016).

There are two main thrusts in mathematical modeling within the GIS environments: sim-
ulation and optimization (e.g., Malczewski, 1999; Tong & Murray, 2012). In a very broad
sense, spatial simulations are methods for performing experiments through mimicking a real
world spatial system (Langlois, 2013). A simulation model either reproduces a process or
generates a sample of many possible outcomes. Components of a system being simulated
are mathematically defined and related to each other in a series of functional relationships.
The model may solve on a rolling horizons scheme, using different parameters settings and
different decision variables every time. As those values are changed, a range of solutions is
obtained for the problem and the “optimal” solution can be chosen from that range. Spatial
optimization models seek to find the best (optimal) solution to a well-defined spatial deci-
sion or management problem (Tong & Murray, 2012). The distinguishing characteristic of
spatial optimization is that the decision/management alternatives (or decision variables)
have a geographic (spatial) meaning. Common to all optimization models is a quantity(s) to
be minimized or maximized. The quantity is often termed to as the objective or criterion
function. In addition, optimization problems typically have a set of constraints imposed on
the decision variables. The solution to an optimization problem determines the values of
decision variables subject to a set of relevant constraints.

4.1.2.1 Geostatistical Analysis With R packages
The development of specialized tools for spatial data analysis has seen rapid growth since
the 1980s. It has also been considered as a major impediment to the adoption and the use of
spatial statistics by GIS researchers. Initially, attention has tended to focus on conceptual
issues, such as how to integrate spatial statistical methods and a GIS environment, and
which techniques would be most fruitfully included in such a framework. Today, the situa-
tion is quite different, and a fairly substantial collection of spatial data analysis software is
steadily available, ranging from niche programs, customized scripts, and extensions for
commercial statistical and GIS packages to a burgeoning open-source effort using software
environments such as R and Python (Anselin, Syabri, & Kho, 2006). The R system is highly
efficient and it has a range of bespoke packages that provides additional functionality
for handling spatial data and statistical computing so-called spatiotemporal geostatistical
modeling, and performing complex spatial analysis operations. In addition, R is also a social
movement, with many participants on a continuum from users just beginning to analyze
data to developers contributing packages to the Comprehensive R Archive Network (CRAN)

Chapter 4 • Geospatial Multicriteria Decision Analysis 89



for others to download and employ. For a number of decades, R has had an increasing
number of contributed packages for handling and analyzing spatial data such as “geoR,”
“grid,” “sp,” “gstat,” “lattice,” “MASS,” etc. For example, package “gstat” is an R package
used in conjunction with package “sp,” which provides basic functionality for a wide range
of univariable and multivariable geostatistical modeling, sequential prediction and smooth
simulation functions through variogram modeling, etc. (Pebesma, 2004).

4.1.2.2 Forest Management Hierarchy
Forest management decisions are different in practice according to the ownership level, the
rotational time horizon, and uncertainty in the decision environment between countries.
Hence, these decisions can be addressed in three distinguished levels of planning
(Rönnqvist, 2003), both spatial and time: (1) strategic design; (2) tactical planning; and (3)
operational control.

STRATEGIC PLANNING
Strategic planning processes are the role of top management, and often concentrate on long-
term achievements in order to maximize sustained and preferably constant harvest volumes.
Such a plan is often performed periodically, for example, every 10 years, usually spanning
50�100 years into the future. The degree of uncertainty is relatively high in this level.
Traditionally, strategic planning in the forestry sector concentrates on the interaction
between management decisions and the timber sustainability or economic viability; however,
a number of ecological and social concerns such as wildlife habitat, carbon sequestered, may
now be incorporated into a strategic plan, despite spatial aspects of management plans that
are generally being ignored at this level (Bouchard, D’Amours, Rönnqvist, Azouzi, & Gunn,
2017). Among the most widely used strategic forest planning models; linear programming
models and simulation techniques have been in use for at least two decades. The linear
programming model has been used mainly to allocate land and resources to the various
broad-scale concerns of a landowner. The simulation model has been used mainly as a way
to evaluate the long-term productivity of forests, with a focus on forest growth dynamics
(Bouchard et al., 2017). The most common objectives used during strategic planning include
the maximization of net present value, net revenue, and wood flow of timber harvests, or
sometimes the minimization of habitat and other ecological values degradation. There are
several packages in use for strategic planning purposes, provided that the size of problem
does not become too large, such as FORPLAN in the United States (Kent, Bare, Field, &
Bradley, 1991), MELA in Finland (Siitonen, Härkönen, Kilpeläinen, & Salminen, 1999),
SNAPII in the United States (Sessions & Sessions, 1991), and Heureka system in Sweden
(Lämås & Eriksson, 2003).

TACTICAL PLANNING
Tactical forest plans take into account the spatial relationships between management
activities, and cover periods of time ranging from 1 year to perhaps 30 years. Tactical plans
provide feedback to the strategic design process. These are plans that use stand-based geog-
raphy and fine-scale growth and yield information to characterize the spatial and temporal
distribution of forest conditions and proposed management activities. Tactical planning
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involves plans for making the most effective use of the resources available. This plan suggests
where and when management treatments should take place. In addition, spatial analysis of
the impact of activities is incorporated into the decision. Constraints typically involve the
green-up and adjacency rules, location-allocation decisions, roads and transportation infra-
structure, design of wood processing yards, the location and timing of habitat development,
and the decisions on equipment/crews to use/assign, are often being considered in this level
of planning (Bettinger et al., 2003; Bredström, Jönsson, & Rönnqvist, 2010; Contreras et al.,
2016). There are several packages in use by several forest companies for tactical planning
purposes such as OPTICORT in Chile (Epstein et al., 1999), and FlowOpt in Sweden.

Following D’Amours, Ouhimmou, Audy, and Feng (2016), tactical planning has extended
over recent years to include “cross chain coordination,” providing new capabilities to
the enterprise through collaboration with other value chains. This concept explains why
this level of decision-making within the proposed framework is referred to the integrative
planning level, aiming to integrate both vertically and horizontally value chains of forest
companies. Under the tactical planning category, there are two different perspectives that a
plan can be projected in forest industry and wood supply chain management, accordingly.
This is called (1) vertical planning strategies (i.e., collaborative efforts between the different
levels of decision-making in the proposed framework), and (2) horizontal planning strategies
(synergism between different organizations and companies in value chains network)
(Rönnqvist, 2003; Troncoso, D’Amours, Flisberg, Rönnqvist, & Weintraub, 2015). In a vertical
planning strategy, the planning expectations of the forest operations and industry activities
are accomplished in a sequential way. When a forest company is integrated vertically, it can
manage and plan its overall value chain network in one direction. In this approach, the forest
is planned first with the objective of maximizing the expected net present value of timber,
and the industry is planned subsequently, with the objective of maximizing the actualized
profits constrained by the availability of the logs. The first part often satisfies a set of
harvest volume restrictions, for example, nondeclining yield constraints and limits between
consecutive years with a planning horizon of at least one period to five 5-year periods. The
horizontal planning strategies include some business units or forest companies that can
join to share equipment and resources in order to improve the overall performance in a
collaborative way (Frisk, Göthe-Lundgren, Jörnsten, & Rönnqvist, 2010). More details of this
approach can be found in Audy, D’Amours, and Rönnqvist (2012).

OPERATIONAL PLANNING
Operational planning involves determining the specific directions of management actions
and allocation of resources that are needed to achieve higher-level goals. As with tactical
planning, operational planning includes spatially explicit information. However, tactical plans
do not lead directly to actual harvesting activities being implemented; in fact, this level of
planning involves detailed short-term decisions of what, when, where, how much, and by
whom. Off-road and on-road logistics decision, log bucking, scheduling, harvesting (includ-
ing assortments to be produced), and inventory control constraints are often acknowledged
in an operational planning process. The emphasis here is usually on plans of actions that
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cover less than a year. In this level of planning the timing of activities is important, even
though the degree of uncertainty is relatively low (D’Amours et al., 2016). Linear program-
ming and dynamic programming models have been already shown to be useful at this level;
however, heuristic techniques are more of interest to solve large-sized of these problems in a
short amount of time. Systems used at several forest companies in Chile and Brazil such as
ASICAM (Weintraub, Epstein, Morales, Seron, & Traverso, 1996), LOGPLAN II in Canada
(Newham, 1991), and FuelOpt in Sweden.

The strategic plans at upper-level decisions always frame lower-level decisions once they
are made. However, the lower-level decision processes always feedback updates and critical
information that can trigger a review of upper-level decisions.

4.1.3 A Perspective of Forest Resource Management in Iran

4.1.3.1 General Information
At very first view many people think that Iran is a dry country covered with deserts
and sand dunes. Some others are informed about the mountains and thier high alpine
meadows, semi-arid steppes, rangelands, rivers and springs. But when one may describe
the country and its rich vegetation they recognize that there is more in Iran than they
already have thought about. The lack of information about Iran and its vegetation moti-
vated the author to write some lines to describe these heritages from the past and
share them with readers around the world. Given the enormous variability in topographical
conditions of the landscape in west and central Asia, a wide range of climatic conditions
can be found in the region. Precipitation intensity generally decreases from north to
south and from west to east (Sagheb-Talebi, Pourhashemi, & Sajedi, 2014). In contrast, the
climate in central Asia is highly continental, with variable temperature conditions in every
season than is the case at the same latitudes in the east of Europe. Almost 54% of the land
area is covered with steep-slope terrains. Generally, annual precipitation in the lowlands
and foothills ranges between 80 and 500 mm, while mountain areas receive more rainfall,
up to about 1000 mm per year mostly in form of snowfall. The countries of west and central
Asia are home to diverse ecological characteristics caused by varying topographical and
climatic features. The UNESCO in (1976) registared the Arasbaran forests in the north of
Iran as biosphere reserves to serve as a factor stabilizing and developing a balanced
relationship between people and nature under the Man and Biosphere Program (MBP).
Surprisingly, there are no precise long-range information about forest vegetation and forest
resource management activities, despite the long cultural history of Iran. Considering
the old history of civilization in Iran, it can be concluded that a large proportion of natural
forests in Iran has been destroyed by human interference. Modern scientific forest
resource management and forest planning activities are very young. The Hyrcanian forests
are considered as the most important refuge and relic forests in west Eurasia, and one of
the important vegetation junctions to present a rich and diverse biodiversity. Here, decid-
uous broadleaf forests are the natural vegetation of temperate oceanic-suboceanic regions
in west Eurasia. One hundred and thirty woody (tree and shrub) species are recorded in
the Hyrcanian forests vegetation checklist (Djazirei, 1962).
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4.1.3.2 The Role of Decision Support Systems in Iranian Forestry
DSSs and the development of spatial analysis have been developed for forest management
problems since the 1960s. In fact, the first works on this subject were published in the early
1990s (e.g., Kangas, 1994). However, the SDSS systems have started to have some impact
over the last decade in Iran. This delay can be associated with the lack of awareness of the
value of the modelisation based on SDSS by forest planners and decision makers, and the
lack of widespread knowledge of modeling techniques. These systems have recently gained
steadily increasing attention in Iranian forest resources management (see Ezzati et al.,
2016; Ghajar & Najafi, 2012; Jaafari, Najafi, & Melón, 2015; Mohammadi Samani, Hosseiny,
& Najafi, 2010; Naghadehi, Mikaeil, & Ataei, 2009).

To this end, a sizable research has been conducted to identify logistics possibilities,
resource management (e.g., finding the locations of wood-yard terminals, or the assignment
of available machinery) in forestry, with a major focus on economic analysis (see Babapour,
Naghdi, Ghajar, & Mortazavi, 2018; Ezzati, Najafi, Yaghini, Hashemi, & Bettinger, 2015;
Ghaffariyan, Naghdi, Ghajar, & Nikooy, 2013; Limaei, Kouhi, & Sharaji, 2014; Najafi &
Richards, 2013; Najafi, Sobhani, Saeed, Makhdom, & Mohajer, 2008), while inadequate atten-
tion typically is paid to the consideration of environmental concerns and terrain conditions
of large management areas correspond to these objectives from the perspective of Iranian
forest resource management (see Hayati, Majnounian, Abdi, Sessions, & Makhdoum, 2013;
Mohammadi et al., 2010). In response to this scientific research gap, this study is concerned
with an applied SDSS method for a typical forest planning problem from the perspective of
Iranian forestry for a planning horizon of one decade.

4.2 Planning Problems
The planning of harvesting operations for mountainous conditions is complicated and
challenging, because operations need to simultaneously overcome the complexity of
terrain, while maintaining ecological values and considering environmental and economic
limitations (Ezzati et al., 2016; Jaafari et al., 2015; Stückelberger, Heinimann, & Chung, 2007).
Thus, within the context of existing best management practices, planning needs to
address the management solutions to mitigate the expected adverse impacts of management
activities in sensitive mountain ecosystems by involving diverse stakeholders and the public
in the decision-making process.

A promising approach to achieve this objective is through zoning of the landscape,
whereby similar management units with identical objectives are grouped into unique
management units (Boyland, 2003). This approach appears to provide an efficient planning
paradigm that can achieve a high level of satisfaction, particularly when meeting diverse
objectives is of concern. The advantage of this approach is that the planning process
becomes transparent and understandable.

Technical challenges of mountain forest harvest planning are not only limited to the
identification of feasible harvest zones, but also concern the assignment of efficient harvest-
ing systems (Kühmaier & Stampfer, 2010) and the placement of wood-yard terminals
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(Contreras et al., 2016). In the mountainous forests of Iran, these management activities are
often conducted using manual approaches where the expert forest engineers often
make decisions. Such expertise is always sufficient for generating feasible small-scale spatial
planning decisions that rely on topographic maps for selecting feasible management alterna-
tives; forest engineers more readily fail to make the best decisions when multiple and
competing decision criteria are involved in larger-scale planning efforts. This failure can lead
to excessive site damage and adverse economic consequences if planners are not sufficiently
familiar with the conditions of the management area.

The generic description of logistics decisions in these forests can be briefly given as
follows. The harvest decisions (i.e., location and timing for harvesting stands within a
compartment), and corresponding logistics decisions (i.e., road decision, maintenance,
upgrading, location of concentration yards, etc.) are often planned for a period of 10 years,
mainly based on an existing long-term (30 years) horizon. The complete plan consists of
two subplans: one for harvesting operations and the other for logistics activities (e.g., which
section(s) of road should be constructed or receive the necessary repair actions during a
given planning period, usually within a horizon of 10 years). Obviously, the economic bene-
fits often derive from such a plan without considering the information regarding the terrain
conditional and ecological concerns. To this day, there is no simulation or optimization tool
for the evaluation of terrain conditions before implementing an operational plan for harvest-
ing operation in these forests.

This chapter attempts to address a spatial MCDA to evaluate existing terrain conditions of
a large management area to find so-called net harvestable zones in which harvest operations
can be conducted, assess which portions of terrain can be harvested by different harvesting
systems, and locate wood-yard terminals for ground-based harvesting systems. This method
of analysis is particularly appropriate for conditions where a large amount of available infor-
mation is being assessed in a subjective manner, relying mostly on qualitative criteria when
the criterion and/or factor does not have a quantitative value or no scientifically accepted
approach for quantification exists for deriving a value other than through expert opinion
(e.g., Malczewski, 1999; Nordström et al., 2010). This method provides users with a struc-
tured approach to incorporate both scientific data and subjective expert opinions into a rep-
licable process (Coulter, Coakley, & Sessions, 2006; Nordström et al., 2010).

To do so, an integrated DSS was developed that, firstly, uses the ability of a multicri-
teria decision system, in the context of an Analytical Network Process (ANP), to estimate
the relative importance weights of different criteria/subcriteria/factors, and secondly,
uses the spatial-based analysis capabilities of GIS and R packages “gstat” to interpolate
the biometric information and combine spatial input maps of criteria/subcriteria/factors
subject to the main goal. This spatial DSS was specifically applied to a real case study to
evaluate existing terrain conditions to (1) find feasible and spatially contiguous harvest
zones within a large landscape for harvesting operation in line with sustainable continu-
ous cover forest management, (2) find suitable sites as wood-yard terminal locations,
and (3) assign different ground-based skidding systems to the harvestable zones, for
short-term operational planning purposes.
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4.3 Methods
4.3.1 Multicriteria Decision Analysis

Firstly, the participatory process is described to specify the MCDA elements (i.e., criteria/
subcriteria/attributes); secondly, the spatial modeling analysis is explained to formulate the
geospatial multicriteria decision policy to evaluate terrain conditions from the harvesting oper-
ation points of view at a landscape level in a subjective manner. The workflow of the research
is outlined in Fig. 4-1. The MCDA process was initiated with the following steps: (1) analysis of
the decision-maker, (2) design of the planning problem in an analytical network structure, and
(3) elicitation of preferences to determine the relative importance weights of factors.

FIGURE 4-1 Research workflow: (i) MCDA, (ii) spatial analysis.
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The objective of the decision-maker analysis is to identify all relevant stakeholders
(Nordström et al., 2010) and to determine the extent of their participation in defining the most
relevant criteria that must be included in the feasibility evaluation of the overall objective. In
this study, the decision-maker committee was represented by a panel of forest engineering
experts, both academic researchers and field loggers, who are directly involved in the moun-
tain forest harvest planning effort. Following that, the planning problem was designed in the
context of a generic ANP, without expecting BOCR subnet by itself, which hierarchically
decomposed the planning problem to its most distinctive elements (Malczewski, 1999).
Therefore, the planning problem designed as a tree that constituted three levels below the
overall goal. For the first level, three strategic criteria were developed; for the second level, 15
clusters were delineated; and for the third level, a list of 35 elements together with inner-
dependency and outer-dependency relationships (i.e., how criteria and elements are related to
each other at each level and each branch of the hierarchy) were assumed (Fig. 4-2). Elements
in clusters are factors that comprehensively describe each strategic criterion and also the over-
all goal. As part of the model quantification in the ANP model, the decision-maker committee
was demanded to evaluate the importance or value of each criterion/element by utilizing a
pairwise comparisons procedure with a nine-point scale (Saaty, 1980).

FIGURE 4-2 The ANP hierarchy along with assuming inner- and outer-dependency relationships.
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4.3.2 Geostatistical Analysis

The geostatistical analysis corresponds to the current research was conducted using the gstat
package (Pebesma & Wesseling, 1998; “gstat” home page: http://www.gstat.org/), and gnu-
plot graphics program used for visualization of the results of variogram modelings. The
required information includes geospatial data and biological parameters were obtained
through several field inventories. Biological data were also collected with an evenly inventory
network distributing circular sample plots representing available harvest volumes over the
entire area of interest. An example of this network is illustrated in Fig. 4-3. In each sample
plot, diameter at breast height, tree height, tree species, slope gradients, and geographic
coordination were registered. To cover the biological data throughout the entire region, the
kriging interpolation model was used through the variograms (represents the semivariances
a long distance). The output of this process is a continuous raster-based map with 20 m 3

20 m resolution pixel size that represents condition of the forest in terms of timber volume
availability. This map was further used as input for spatial modeling that will be detailed in
the next section. Since, semivariances are represented as point clouds in the variogram, it is
necessary to model these points with simple models to describe the variation with distance.
To do so, different variogram models such as (i) pure nugget—in which variance is indepen-
dent of distance, (ii) spherical—in which variance has a nugget value-variance inherent to
each measure and also a still-distance from which model variance behaves as a pure nugget,
(iii) Gaussian, (iv) exponential were tested (Antonanzas-Torres, 2014). In this case, the
advanced parameter values of the models were set as follows: lag size was initially set to the
default output cell size, nugget was set to 500, major range was set to 600, and partial sill

FIGURE 4-3 A systematic inventory network used to collect biological information through field inventories.

Chapter 4 • Geospatial Multicriteria Decision Analysis 97

http://www.gstat.org/


was also set to 60 for different semivariogram models. All variogram models were defined in
the R script within to select the best possible semivariograms that can fit the data with least
possible squares regression automatically. These statistical analyses were computed in
RStudio and the results therefore transferred into GIS for further geo-visualization and clus-
tering of identical pixels.

4.3.3 Spatial Modeling Procedure

A crucial part of the geospatial MCDA is to generate spatial-based maps of attendant factors.
The rasterized timber volume map was generated through the geospatial analysis as
explained earlier. The same processes were perused for generating rasterized maps of all
other attendant criteria/subcriteria/factors with an identical pixel resolution. It should be
noted that some aggregations and data assimilation was conducted to reduce the size of
problem and obtain homogeneous pixels for a particular zone. Next, this spatial information
is weighted using the overall importance weights vector that were computed through the
MCDA (i.e., combining individual weights of pairwise evaluations using additive functions as
the final outcome of the ANP). This process was carried out using the weighted linear combi-
nation (WLC) function in GIS. The required geospatial data were collected either from previ-
ous research projects or generated from a digital elevation model with a 20 m 3 20 m pixel
resolution.

Finally, to interpret the results more easily, the index values of the suitability maps were
standardized based on pixel congestion (or sets of neighbor pixels) as follows:

sz 5
Xg
i51

ðLsiÞz=nz ð4:1Þ

where sz is the suitability index for a given zone after reclassification, z represents a feasible
zone, Lsi is the local suitability for pixel i from a group (g) of pixels belonging to the particu-
lar zone z, and nz refers to the number of pixels in each zone. The rasterized maps of atten-
dant criteria were combined with a fuzzy logic method that allows more flexible
combinations of weighted maps. This integration has been conducted using the maximum
operator function of fuzzy mathematics. In the classical set theory, an object is a member of
a set if it has a membership value of 1 or is not a member if it has a membership value of 0,
while the idea of fuzzy logic allows to consider the spatial objects on a map as the members
of a set (Pourghasemi, Pradhan, Gokceoglu, & Moezzi, 2012). The idea of using a fuzzy
approach for determination of harvest feasibility is based on the information of pixels that
can be numeric and range from 0 (i.e., not suitable or not productive) to 1 (i.e., suitable or
productive). Since the standardized suitability map is a continuous raster that varies on a
scale range between 0 and 1, the map contains a large amount of information about the suit-
ability of every pixel. The triangular membership function (TFN) applies to choose the values
of a pixel to represent the degree of membership with respect to the same attribute of
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interest (Eastman, 2001). However, there is no practical constraint on the choice of values.
A wide variety of techniques exist for the development of the model elements (criteria/sub
criteria and factors) weight. The value between 0 and 1 describes the fuzzy membership
functions. For inference in a rule-based fuzzy model, the fuzzy propositions need to be
represented by an implication function. In addition to the input sets, the outputs of each
parameter were also classified in terms of feasibility class. The degrees of memberships in
the fuzzy set representations were obtained from the normalized results of frequency ratios.
After combining all spatial maps of attendant criteria, a grid-based analysis was performed in
the GIS environment. A pixel value classification was conducted, whereby the suitability
value was assigned to one of the four categories (1�4, or excellent to low) that were derived
from natural breaks in the GIS. Category 1 is assigned to the most suitable and/or feasible
zone for harvesting operations, while the infeasible or most sensitive zone is assigned to cat-
egory 4. A higher value implies greater accessibility and/or suitability of the zone for harvest-
ing operations, thus zones with higher sz values indicate preferred zones for harvesting
operations.

A map of net harvestable zones is generated through combining six of 15 attendant crite-
ria, with the highest overall weights with respect to the MCDA (Table 4-1). After determining
the feasibility of the area for timber harvest based on the net harvestable zones map, it is
needed to search the region to which part of the harvestable area can have different harvest-
ing systems assigned, and which is the most suitable location for installing or proposing the
potential wood-yard terminals. These spatial questions are addressed by developing a geos-
patial multicriteria decision system without taking any monetary values into consideration
(Ezzati et al., 2016). Harvesting systems differ in their maneuverability and/or productivity
rate under given terrain conditions (Ghajar et al., 2010) as well as in their potential for caus-
ing adverse soil and site disturbances. Assigning the most appropriate harvesting system to
each management zone was investigated by combining four of the most frequently cited fac-
tors (see Table 4-3) that influence machine productivity and maneuverability. Furthermore,
suitable wood terminal locations were identified by involving a set of four criteria that take
both terrain and environmental impacts into consideration. The entire process was

Table 4-1 Attendant Criteria Used as Input Parameters for Generating the Spatial
Suitability Maps

Map (Output) Parameters (Inputs)

Net harvestable zones Side slope, lithology formation, landslide risk, stand volume, distance from fault features,
distance from riparian zones

Assignment of harvest
system

Side slope, soil erodibility index, surface roughness index, stand volume

Suitable wood-yard
terminals

Side slope, landslide risk, distance from riparian zones, soil erodibility index
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performed in MATLAB version 7.12., and the results of spatial modeling were then exported
into the GIS for subsequent visualization.

To identify the most feasible location of wood-yard terminals, different spatial scenario
analyses (i.e., tradeoff and risk) were conducted using common Multi Criteria Evaluation
(MCE) methods called Weighted Linear Combination (WLC) and Ordered Weighted Average
(OWA) in a GIS environment. These scenarios can take into account the risk associated with
the decisions and degree of tradeoff associated with the variables in their computations. The
WLC module requires a user to specify the number of criteria (both constraints and factors)
and the weights to be applied to that factors. All factors must be standardized to the byte
level range of 0�255. The output is a suitability map that is masked by the specified
constraints.

In practice, the implementation of OWA is not unlike the WLC. The methodology is
almost the same as that of the WLC, with the exception that a second set of weights is
required. This vector of the weights controls the manner in which the weighted factors are
aggregated. A set of order weights that has been used to implement different scenarios in
OWA is given in Table 4-2.

Table 4-2 Vector of the Order Weights Used to Implement Different Scenarios in the
OWA Method

Ordered
Weights

Scenario

Low
Risk�Full
Tradeoff

Risk
Averse
(AND)

Low Risk�Low
Tradeoff (mid AND)

High Risk�Low
Tradeoff (midOR)

Risk-
Tradeoff
(AVG)

Risk
Taking
(OR)

1 0.0.66 1.00 0.50 0.0001 0.00 0.00
2 0.0.66 0.00 0.25 0.00015 0.00 0.00
3 0.0.66 0.00 0.125 0.00035 0.00 0.00
4 0.0.66 0.00 0.50 0.0005 0.00 0.00
5 0.0.66 0.00 0.35 0.001 0.00 0.00
6 0.0.66 0.00 0.15 0.0015 0.00 0.00
7 0.0.66 0.00 0.01 0.0035 0.00 0.00
8 0.0.66 0.00 0.005 0.005 1.00 0.00
9 0.0.66 0.00 0.035 0.01 0.00 0.00
10 0.0.66 0.00 0.0015 0.015 0.00 0.00
11 0.0.66 0.00 0.0005 0.035 0.00 0.00
12 0.0.66 0.00 0.00035 0.05 0.00 0.00
13 0.0.66 0.00 0.00015 0.125 0.00 0.00
14 0.0.66 0.00 0.00005 0.25 0.00 0.00
15 0.0.66 0.00 0.000035 0.5 0.00 1.00
ANDness 0.50 1.00 0.92 0.07 0.50 0.00
ORness 0.50 0.00 0.80 0.93 0.50 1.00
Tradoff 0.62 0.00 0.35 0.46 0.00 0.00
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Identified locations suggested by the geospatial analysis were evaluated and ranked
using a compromised programming approach (called VIKOR) that is an efficient and
acceptable method for conflict resolution. For a more detailed description of VIKOR, readers
are referred to the excellent work of Zamani-Sabzi, King, Gard, and Abudu (2016).

4.3.4 Model Application

To demonstrate the described methodology, it was applied to a forested mountainous
landscape that covers an area of approximately 52 km2 in the north of Iran. The area is
situated in a rough topography (between 36�290N and 36�330N latitude and 51�400E and
51�460E longitude) and covered with mixed hardwood stands that are typically managed
under an uneven-aged silvicultural system. Elevation ranges from 175 to 2200 m above
sea level. Harvesting operations are typically performed with two systems involve in ground-
based skidding operations: a semimechanized system that uses rubber-tired skidders (i.e.,
Timberjack & HSM904) or a steel-tracked skidder (i.e., Zetor), and a traditional system that
uses a horse(s). Both the rubber-tired and steel-tracked systems are outfitted to transport
round woods in a cut-to-length system over a gentle- or medium-sloped terrain (up to 10% for
HSM, up to 20% for Timberjack, and maximum 35% for Zetor). Due to the higher speed of the
rubber-tired systems, they are commonly used for long skidding distances (400�900 m),
whereas the steel-tracked system is preferred for shorter skidding distances (below 300 m) and
for transporting larger payloads in difficult terrains because of lower maneuverability and being
higher operating costs (Ghajar et al., 2010). The animal system is more versatile in steep-slope
terrain (35% slope or greater) for transporting small-sized timbers where ground-based
machines can no longer work effectively.

4.4 Results
4.4.1 The Current Conditions of the Terrain

During the design phase, a three-level structure of the decision hierarchy below the overall
goal was developed and used the outcomes of the pairwise preferences as attribute weights
for each strategic criterion (Table 4-3). The overall goal of the decision-making problem was
positioned at the top level of hierarchy, while the lowest level was composed of all possible
alternatives (pixel or a set of pixels). Between these extremes the decision criteria, subcriter-
ia, and factors were placed. The results show that among the assumed strategic criteria, ter-
rain conditions were the most important criterion (0.590), whereas environmental factors
(0.157) were considered as less important elements with respect to the overall objective. In
general, the slope of the terrain (side slope) was recognized as the most important element,
as with several clusters. Similar steps were followed to obtain importance weights for all
attendant elements subject to dependency relationships. The overall weights resulting from
completing all pairwise evaluations, shown for the three suitability maps in Table 4-4, were
incorporated into the attendant spatial layers by transferring them into each pixel attribute to
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Table 4-3 A Hierarchical Flow of the Proposed Decision Support System (ANP) to Determine Net Harvest Zones

Strategic Criteria (the
First Level)

Elements in Cluster (E)
(the Third Level)

Clusters (C) (the
Second Level)

Elements in Cluster (E)
(the Third Level)

Strategic Criteria
(the First Level)

Clusters (C) (the
Second Level)

Environmental factors
[0.157]

Terrain conditions [0.590] Stand structure
attributes [0.250]

E-C1. distance from
riparian zones [0.140]

T-C1. hillside aspect
[0.164]

S-C1. canopy cover
[0.238]

E-C2. Landslide risk
[0.527]

L-E1a. canopy cover
[0.140]

T-C2. elevation gradient
[0.053]

S-C2. Stand
composition [0.625]

Stc-E1. elevation
gradient [0.340]

L-E2a. stand composition
[0.052]

T-C3. distance from fault
feature [0.187]

Stc-E2. Side slope
[0.660]

L-E3a. stand volume
[0.333]

T-C4. Rockiness mass
[0.137]

R.E1.elevation gradient
[0.20]

S-C3. stand volume
[0.137]

L-E4b. lithology formation
[0.104]

R.E2. lithology formation
[0.80]

L-E5b. rockiness mass
[0.170]

T-C5. Slope failure event
[0.084]

Sf-E1. distance from fault
feature [0.391]

L-E6b. hillside aspect
[0.136]

L-E7b. distance from fault
feature [0.120]

L-E8b. slope failure event
[0.144]

L-E9b.elevation a.s.l
[0.0.45]

L-E10b.hillside slope
[0.236]

Sf-E2. rockiness mass
[0.138]

E-C3. Soil erosion index
[0.330]

Se-E1a. canopy cover
[0.20]

Sf-E3. lithology formation
[0.276]

Se-E2a. stand composition
[0.80]

Sf-E4. Side slope [0.195]

Se-E3b. elevation gradient
[0.134]

T-C6. lithology formation
[0.233]

Se-E4b. soil texture [0.289] T-C7. Side slope [0.0435]
Se-E5b. side slope [0.369] T-C8. Soil texture [0.066]



St-E1.slope failure event
[0.196]

Se-E6b. topographic
wetness index [0.072]

St-E2. topographic
wetness index [0.311]

St-E3. Side slope [0.493]
Se-E7b. hillside aspect

[0.136]
T-C9.Topographic

wetness index [0.131]
Tw-E1a. canopy cover

[0.250]
Tw-E2a. stand composition

[0.750]
Tw-E3 b. hillside aspect

[0.250]
Tw-E4b. elevation gradient

[0.095]
Tw-E5b. side slope [0.655]

Note: The first or sometimes the second letter of a word marks with a line underneath as a directive sign for dividing element(s) from current level into the next level. The planning
problem is hierarchically structured below the overall goal, where the goal is divided up into strategic criteria (the first level), clusters (the second level), and sometimes a group of
elements within a cluster (the third level). The highest weight is shown in bold.



form spatial suitability maps (Fig. 4-4A, B). The numerical descriptions of the suitability
maps are summarized in Table 4-6. Based on the net harvestable zone’s map, about 51% of
the project area was assigned to the first two categories (i.e., categories 1 and 2) (Table 4-5)
and deemed as the most feasible zones for conducting harvest operations, with the majority
of the area assigned to category B (1476 ha). About 23% of the area seems to be poorly suited
for harvesting operations (i.e., category 4 (112 ha); Fig. 4-4A). Rubber-tired skidders were
allocated to only about 72% of the harvestable zones where the slope of the terrain is less
than or equal to the maximum allowable value for safe skidding operations (i.e., below 20%)
(Table 4-5). The timberjack system, the preferred harvesting system where the slope of the
terrain ranges from 21% to 35%, was the most feasible option for 55% of the total area. The
animal system was the preferred option on 32% of the total area characterized by steep
slopes where the slope of terrain is more than 36% (Fig. 4-4B). Among all spatial scenarios
examined, only “AND” (risk averse) model was able to identify noncontinuous regions

Table 4-4 Overall Importance Weight Vectors for Generating Spatial Feasibility Maps

Criteria Global Weight

Net Harvestable Zones Map
Topographic wetness index 0.0129
Hillside aspect 0.0154
Soil erodibility index 0.0170
Soil texture 0.0222
Canopy cover 0.0251
Elevation gradient 0.0294
Slope failure event 0.0310
Stand composition 0.0342
Rockiness mass 0.0344
Dis. from riparian zone 0.0405
Dis. from fault feature 0.0519
Stand volume 0.0524
Landslide risk 0.0643
Lithology formation 0.0771
Side slope 0.1002

Suitable Wood-Yard Terminals Map

Soil erodibility index 0.140
Dis. from riparian zone 0.112
Landslide risk 0.180
Side slope 0.640

Assignment of Harvest Systems Map

Stand volume 0.13
Surface roughness index 0.18
Soil erodibility index 0.22
Side slope 0.47

The highest weight value is shown in bold.
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FIGURE 4-4 Spatial feasibility map of the region that represents net harvestable zones (A) and feasible locations for
each harvesting system (B).
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(Fig. 4-5F) that can potentially be considered as a wood-yard terminals for subsequent plan-
ning periods (Fig. 4-5A�F). The location of wood-yard terminals was illustrated based on
pixel congestions with more or less identical values that can be used as input for further
environmental feasibility and perhaps economic tradeoff. This method suggested sites that
are environmentally feasible with average area ranges from 0.61 to 41.00 ha. The sites with
an area of more than 5.00 ha were nominated as feasible locations for wood-yard terminal.
Of these, 33 locations were suggested as suitable sites to collect timbers during timber har-
vest operations (Fig. 4-6). These sites, further, were evaluated using a set of technical criteria
from different perspectives of harvesting, logistics characteristics, and environmental points
of view and, eventually, they were ranked according to the compromise programming via
VIKUR technique. The results are given in Table 4-6. The sites label 18, 29, 30, 1, and 14 has
higher weight (1.00 and higher than 1) rather than the other, which represents the lowest rel-
ative distances from the ideal location and perhaps the best feasible site for wood-yard term-
inals, while a large number of sites were classified in order of rank 12 and 13. It should note
that, the verification of these results would be necessary for the subsequent planning opera-
tions, and the integration of this system with the traditional optimization models would be
interesting avenues for further research in this vein.

4.5 Discussion
In this study, an integrated decision support tool was developed combined with geospatial
analysis to identify feasible zones within a large landscape for timber harvesting operations.
It could find suitable sites as a wood-yard terminals, and assign different ground-based skid-
ding systems to different harvestable zones, allowing forest planners to dissect and solve
complex management problems at the operational level. The presented approach enables an
analysis of existing landscape conditions to develop feasible planning solutions using a set of
transparent procedures that incorporate and analyze quantitative/objective, as well as quali-
tative/subjective, information simultaneously. The method was based on a pixel aggregation

Table 4-5 Numerical Results of the Generated Suitability Maps

Spatial Suitability Map Category of
Feasibility Class

Number of
Pixels in the Domain

Frequency Ratio
of Pixel (%)

Area
(ha)

Net harvestable zones 1 26,463 21.22 1057.84
2 36,918 29.60 1476.06
3 33,602 26.94 1341.89
4 27,742 22.24 111.48

Assignment of harvest
system

Chainsaw-HSM 17,332 13.72 689.49
Chainsaw-timberjack 54,170 42.87 2172.02
Chainsaw-zetor 14,125 11.18 558.61
Chainsaw-animal system 40,736 32.24 1632.94
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FIGURE 4-5 Feasibility maps of the region that suggest suitable sites for wood-yard terminals through
implementing different spatial scenarios: (A) average risk-full tradeoff; (B) risk-taking scenario (OR); (C) risk-
tradeoff scenario (AVG); (D) high-risk�low-tradeoff scenario (midOR); (E) low-risk�low-tradeoff scenario (midAND);
(F) low-risk�no-tradeoff scenario (midAND).
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FIGURE 4-5 (Continued).
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FIGURE 4-5 (Continued).
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strategy and provided a consistent approach to identify a set of key criteria and indicators
that were environmentally, ecologically, and technically feasible to generate “sub-optimal
solutions” for the most important decisions that must be made in an operational planning of
timber harvesting. The model identified about 51% of the project area as feasible zones for
timber harvest operations that were characterized by gentle slopes (i.e., below 20%), high

FIGURE 4-6 Potential locations of the wood-yard terminal.

Table 4-6 Final Ranking of Wood-Yard Terminals Using Compromise Programming
Approach

Rank Terminal Label Q-index Rank Terminal Label Q-index

1 18 1.04 10 28, 2 0.92
2 29 1.03 11 22 0.90
3 30 1.02 12 3, 10, 11, 8, 24 0.89
4 1, 14 1.00 13 25, 23, 31, 15, 13 0.88
5 9 0.99 14 17, 20 0.85
6 19 0.97 15 21 0.83
7 4, 32 0.96 16 7 0.84
8 12 0.94 17 5, 6 0.78
9 26, 27, 33 0.93 18 16 0.77

110 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



volume of standing stocks, located away from sensitive ecological zones, and specifically in
which semi-mechanized harvesting systems can be deployed. Obviously, such a planning
tool would enable planners to easily analyze the existing terrain conditions and may provide
a suitable framework for more optimally allocating available resources. This methodology is
efficient and very useful to use, particularly in steep terrain conditions for preanalysis of the
area under management before main operations take place, and it helps planners to properly
assign logistics technologies that would definitely improve harvest proficiency through large-
scale planning efforts rather than the traditional planning of small-scale operations (Boyland,
2003; González-García, Bonnesoeur, Pizzi, Feijoo, & Moreira, 2013). In addition, these deci-
sions further affect environmental risks and might also improve workforce productivity and
safety issues (Kühmaier & Stampfer, 2010). Around 72% of the harvestable zones were identi-
fied as a feasible zone for allocating semimechanized systems (i.e., using a chainsaw for fell-
ing trees and a skidder for transporting timbers to a wood terminal). These results are in line
with the previous research, for example, 88.70% by Pentek et al. (2008) in a mountainous for-
est in Croatia and 62% by Ezzati et al. (2016) in a steep-slope forest in Iran, where ground-
based harvesting systems were the main available harvesting systems. In this study, 32% of
the entire area was assigned to the animal logging system (i.e., using a chainsaw to fell the
trees and using animals, usually horses, to haul the products). Due to its low productivity,
this system is typically the desired option only for small-scale operations of transporting
small-sized timbers or fuel woods in final felling or thinning operations, mostly on a terrain
in which is too steep (up to 50%) or too costly for semi-mechanized or mechanized systems.

4.6 Conclusions
This experience illustrates how a geospatial DSS can be practically applied to the manage-
ment of natural resources, taking into consideration different, but complementary, decision-
making contexts. A brief survey of the most often used geospatial MCDA approaches was
discussed, and then a case study based on the context of timber harvest operations from the
perspective of Iranian forest resource management was described. A group multicriteria
decision analysis in the context of an ANP model was specifically developed to determine
the importance weight of attendant elements from different perspectives such as terrain con-
dition, environmental concerns, and standing vegetation, while fuzzy spatial analysis using
the weighted linear model and order weighted methods was used to combined this informa-
tion and generate a feasible plan to identify net harvestable zones, find suitable wood-yard
terminals, and deploy different harvesting systems to the harvestable zones. The multicriteria
decision system is technically feasible to generate a “pseudo-optimal solution” through con-
sidering a large amount of information from a variety of aspects via human value judgments;
however, it does not necessarily generate an “optimal solution” by itself. Moreover, the
resulting plan is insufficient itself to generate a plan periodically in a rolling horizontal way
as traditional optimization model does, this direction may open interesting avenues for
future research. A future extended of this model might include economic and/or monetary
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terms to develop and incorporate least-cost environmental strategies into traditional harvest-
scheduling models. It is important to remember that the spatial decision modeling could be
heavily sensitive to the weighting method of different influential elements derived from
expert opinions. However, the other weighting method with another specification could
potentially result in different solutions. The open-source “gstat” extension package provides
a robust and flexible suite geostatistical method analysis for the interpolation of biological
information very precisely. Nevertheless, the resolution of the solution and final statistical
outcomes varies with the computing capacity and the area of interest. The implemented
functionality eases estimation, and it can carry valuable information to visualize and under-
stand the nature of geospatial analyses.

To this end, the geospatial DSS considered in the current research was fruitful. However,
all implementations were not straightforward task. The complete data acquisition to run the
entire system may call for a systematic and organized approach. This is certainly an interest-
ing room for further research.
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5.1 Introduction
Flooding can directly impact: the wellbeing and prosperity of natural life and domesticated
animals; riverbank erosion and sedimentation; the dispersal of supplements and contamina-
tion; surface and groundwater supplies; and local landscapes and living spaces (Bonacci,
2007; Bubeck et al., 2017; Shapiro, 2016). Simulation of the rainfall�runoff (flooding) process
in the watershed is particularly important in order to have a better understanding of hydro-
logical issues, water resource management, river engineering, flood control structures, and
flood storage (Neitsch, Williams, Arnold, & Kiniry, 2011). Models of different types provide a
means of quantitative extrapolation or prediction that will hopefully be helpful in decision-
making (Beven, 2011). Recently, the application of models has become an essential tool for
understanding the natural processes that have occurred in the watershed (Sorooshian &
Gupta, 1995). Rainfall and runoff are the important phases of the hydrological cycle, and the
basis of a hydrological model is to examine the relationship between rainfall and runoff
(Knapp, Ortel, & Larson, 1991). The amount of runoff, erosion, and sediment transport
changes depending on various hydrological conditions, soil, and cover in the basin. For
example, the amount of sediment yield due to soil erosion may be significantly influenced
through water-harvesting techniques (Grum et al., 2017), slope gradient (Wu, Peng, Qiao, &
Ma, 2018), and different soil and water conservation strategies (Melaku et al., 2018).
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Certainly, considering these factors could be useful for land-use planners who intend to
implement different measures of catchment management. Therefore, simulating the above
processes requires the necessary information of spatial variation of these factors (Azizian &
Shokoohi, 2014). In this regard, natural process modeling based on a geographic information
system (GIS) is an important tool in the study of runoff and soil erosion and consequently in
the development of appropriate strategies to conserve soil and water, especially at the water-
shed scale (Memarian et al., 2013).

Thus far, different rainfall�runoff models have been tested in watersheds with different
climates, such as Identification of unit Hydrograph and Component flows from Rainfall
Evaporation and Stream flow data (IHACRES), Hydrologic Engineering Center�Hydrologic
Modeling System (HEC�HMS), and Hydrologiska Byrans Vattenavdelning (HBV). Different
physical models have been also examined to estimate the erosion/sediment process within
the watershed, including: Areal Nonpoint Source Watershed Environment Response
Simulation (ANSWERS) (Beasley, Huggins, & Monke, 1980), Chemicals Runoff and Erosion
from Agricultural Management systems (CREAM) (Knisel & Foster, 1981), Erosion
Productivity Impact Calculator (EPIC) (Williams, 1989), Simulator for Water Resources in
Rural Basin (SWRRB) (Williams, Nicks, & Arnold, 1985), and Soil and Water Assessment Tool
(SWAT) (Arnold, Williams, Srinivasan, King, & Griggs, 1994).

KINEROS2 (KINematic runoff and EROSion), or K2, originated at the USDA Agricultural
Research Service (ARS) in the late 1960s as a model that routed runoff from hillslopes, repre-
sented by a cascade of overland-flow planes using the stream path analogy proposed by
Onstad and Brakensiek (1968), and then laterally into channels (Woolhiser, Hanson, &
Kuhlman, 1970). Conceptualization of the watershed in this form enables solution of the
flow-routing partial differential equations in one dimension. Rovey (1977) coupled interactive
infiltration to this model and released it as KINGEN. After substantial validation using experi-
mental data, KINGEN was modified to include erosion and sediment transport as well as a
number of additional enhancements, resulting in KINEROS, which was released in 1990
(Smith, Goodrich, Woolhiser, & Unkrich, 1995; Woolhiser, Smith, & Goodrich, 1990). Kalin
and Hantush (2003) evaluated the efficiency of GSSHA and KINEROS2 models in simulating
runoff and sediment process. Based on the results, the K2 model, due to a better formulation
of the algorithm, had a better and stronger efficiency than the Gridded Surface/Subsurface
Hydrologic Analysis (GSSHA) (Downer & Ogden, 2004) model in sediment routing. In
another study by Smith, Goodrich, and Unkrich (1999), the ability of KINEROS2 to simulate
sediment and runoff by selective rainfall events in the basin of Catsop, the Netherlands, has
been investigated. According to simulation results due to the lack of data, a detailed hydro-
logic simulation is needed to simulate erosion successfully. In addition to the above cases
that examine the simulation of sediment transport in the watershed, other studies have been
done on flood simulation using this model, including the studies of Schaffner, Unkrich, and
Goodrich (2010). They assessed flash flood prediction using near real-time radar-rainfall esti-
mates of the National Weather Service. Michaud and Sorooshian (1994) employed this
model to achieve a flash flood forecasting with typical Automated Local Evaluation in Real-
Time (ALERT) data constraints, as well. Flood risk prediction under land-use change was
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also achieved as an application of KINEROS2 (Nikolova et al., 2009). The application of the
event-based physical model, KINEROS2, on a developed tropical watershed in Malaysia was
evaluated (Memarian et al., 2012). Three storm events of different intensities and durations
were applied for K2 calibration. K2 validation was done using two other rainfall events before
and after the calibration year. The results established that K2 could simulate runoff well, but
its capability in sediment load estimation was mostly limited to the accuracy of input data,
mainly land-use maps. Namavar (2011) evaluated the efficiency of KINEROS2 in predicting
runoff in the Kameh watershed, Iran, through the AGWA (Automated Geospatial Watershed
Assessment) toolbox (Miller et al., 2007) in the ArcGIS environment. According to the results,
KINEROS2 satisfactorily simulated hydrograph shape and peak magnitude. In addition, the
ability of sediment estimation was used in the watershed modeling, but was not calibrated
due to the lack of sediment data. Molaeifar (2013) evaluated the efficiency of KINEROS2 in
hydrograph simulation in the Ziarat watershed, Iran, and concluded that the model can esti-
mate the hydrological components with acceptable accuracy. KINEROS2 was also integrated
with a flow/sediment transport solver to analyze the relationship between hydrologic response,
management, and geomorphometrics (Norman et al., 2017). Gabriel et al. (2016) employed
the KINEROS2/AGWA interface to compare several spatial and temporal rainfall representa-
tions of postfire rainfall�runoff events. They determined the effect of differing representations
on modeled peak flow and obtained at-risk locations within a watershed. Small-scale
researches have also been conducted using K2. Kim et al. (2014) conducted their experiments
during four seasons in mixed tall fescue�Bermuda grass coarse sandy loam soils with 3%�
10% slopes and variable rainfall rates. Parameter ESTimation (PEST) algorithm (Doherty,
Brebber, & Whyte, 1994) was also used to assess and calibrate the nine KINEROS2/STWIR
parameters on 36 plots. Mirzaei et al. (2015) also studied the uncertainty in rainfall and the
input parameters of the KINEROS model which affect the model output (runoff). They aimed
at better quantifying the magnitude and uncertainty of extreme precipitation�runoff events.

Manual calibration of hydrological models has been used since the early 1960s, but due
to its complexity and being time consuming, automatic calibration has been available since
the end of the 1960s. Autocalibration needs an appropriate objective function, search algo-
rithm, and a criterion to complete the algorithm. However, in the early years, using this
method has not been very successful (Gupta, Sorooshian, & Yapo, 1999). From one side,
most of the obtained parameters have not been real conceptually; on the other hand, the
efficiency of the model on various data was different and calibration results were affected by
the selected data, the initial guess for the parameters, the objective function, and the search
process (Sorooshian & Gupta, 1983). Currently, there are a few known issues that have made
some serious problems for studies related to the optimum parameters set. These problems
include several local optimum set, numerical granularity, nonconvex response surface, non-
linear dependence of parameters, interaction of parameters on each other, creating a saddle
point where the first derivative is toward zero, outlier data and deviation, autocorrelation,
anisotropy, and variance in the residual error (Beven & Binley, 1992; Zambrano-Bigiarini &
Rojas, 2013). In order to solve the problems mentioned above, advanced calibration and
optimization algorithms and techniques have been proposed. These techniques include
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simulated annealing (SA), genetic and evolutionary programming (GP and EP) (Goldberg,
1989), particle swarm optimization (PSO) (Kennedy & Eberhart, 1995), ant colony optimiza-
tion (Dorigo & Stutzle, 2004), differential evolution (DE) (Storn & Price, 1997), and adaptive
multimethod searching or AMALGAM (Vrugt & Robinson, 2007). Recently, hybrid algorithms
have attracted much consideration and led to the identification of some new algorithms,
such as Bees Algorithm Hybrid with Particle Swarm Optimization (BAHPSO) (Zarea,
Kashkooli, Soltani, & Rezaeian, 2018) and Shuffled Complex-Self Adaptive Hybrid EvoLution
(SC-SAHEL) (Naeini et al., 2018). Among the methods mentioned above, the PSO algorithm,
due to its flexibility, easy implementation, and high performance, has been favored by many
researchers in recent years. This method has a high rate of convergence and
suitable computational cost (Parsopoulos & Vrahatis, 2002). The R package is the most
important software which uses the PSO algorithm to optimize hydrological models and to
implement sensitivity analysis, model calibration, and results analysis using the hydroPSO
tool as an independent package. This package is able to be connected with various hydrolog-
ical models. Thus far, the connection of hydroPSO has been conducted by SWAT (Abdelaziz
& Zambrano-Bigiarini, 2014) and MODFLOW (Zambrano-Bigiarini & Rojas, 2013) models. In
recent years, the PSO algorithm has been increasingly applied in the estimation of para-
meters of hydrological models (Baltar & Fontane, 2004; Gill, Kaheil, Khalil, McKee, &
Bastidas, 2006; Jiang, Liu, Huang, & Wu, 2010). Kamali, Mousavi, and Abbaspour (2013), in a
study, conducted automatic calibration on HEC�HMS using single- and multiobjective PSO
algorithms to model the rainfall�runoff process in Tamar basin. For this purpose, they used
three events to calibrate the model and one event to validate the model. According to the
results, multiobjective calibration could outperform the single-objective calibration tech-
nique. Gill et al. (2006) employed multiobjective particle swarm optimization (MOPSO) to
optimize 13 parameters of a rainfall�runoff model in Sacramento. They also used MOPSO
to calibrate a vector model with three parameters to predict soil moisture. Jiang, Li, and
Huang (2013) applied PSO for calibration of the rainfall�runoff model HIMS. They com-
pared classical PSO algorithm with distributed PSO versions, which are using the com-
plexes and shuffling mechanism. Results indicated that the distributed PSO variants were
significantly better than the original one. Abdelaziz and Zambrano-Bigiarini (2014) studied
adaptability and capability of hydroPSO to optimize hydrological models within R software
in the Geneiss watershed, Germany. According to the results, PSO was useful to optimize
MODFLOW. Furthermore, due to the use of parallel processing systems, the application of
hydroPSO could reduce the number of iterations required to achieve optimum value, and
consequently could reduce the time of the modeling computation to one-eighth of the total
time. Zambrano-Bigiarini and Rojas (2013) used the hydroPSO package as an independent
package in R software to calibrate SWAT and compared hydroPSO with standard
algorithms using a series of specific functions in two different watersheds. According to the
results, hydroPSO is an efficient and suitable method compared to other common optimi-
zation algorithms. Moreover, this is a scalable software package, that is, the efficiency of
the model is preserved by increasing the dimension of the problem and is adaptable to
different problems.
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This research was planned to achieve the following main goals:

1. To model rainfall�runoff processes in the GIS environment and to extract flood peak-
related maps at the two levels of plan and channel.

2. To connect K2, as a distributed hydrological model based on separate storm events to
hydroPSO optimization package (within R environment) in the Tamar watershed, Iran, to
overcome the problems resulting from the model calibration by common algorithms.

5.2 Materials and Methods
5.2.1 Study Area

Tamar watershed as a subwatershed of the Gorganrood basin is located in Golestan prov-
ince, Iran. The watershed area is 1525.3 km2 and geographically is located in the range of
37�240 to 37�490 northern latitude and 55�290 to 56�040 eastern longitude (Fig. 5-1). The high-
est point of the Tamar watershed is located in the Khoshyeylagh region, with an altitude of
2168 m above the sea level and the lowest point, with an altitude of 107 m, is located at the
Golestan dam. The average altitude of the Tamar watershed is 754.35 m. There are a limited
number of evaporation and hydrometric stations in this basin. Most of these have a short-
term inventory, except Tamar station, which has a 40-year inventory including daily rainfall
and temperature data. The watershed climate type is categorized within the subhumid class,
with a precipitation range of 400�800 mm (Gholami & Mohseni Saravi, 2010).

FIGURE 5-1 Geographic location of the study area.
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5.2.2 Data Set

A set of hydrometeorological data of water flow and rainfall records in four different storms,
that is, September 2004, May 2005, October 2005, and August 2005, has been collected from
the Tamar hydrometric station (Table 5-1). The land-use map was prepared based on field
observation and visual interpretation of SPOT images applied in Google Earth (Fig. 5-2). The
available data and FAO digital maps in the form of the Harmonized World Soil Database
(HWSD) (Nachtergaele et al., 2008) have been used to map soil series. The Digital Elevation
Model was extracted based on the Aster satellite data set with a resolution of 30 m (available
online at: http://gdex.cr.usgs.gov/gdex).

5.2.3 Methodology

5.2.3.1 KINEROS
KINEROS, as a physical model, examines the amount of runoff and erosion and simulates
routing of surface runoff at the watershed scale. In this model, the movement of water is
evaluated using a kinematic wave approximation of Saint-Venant equations and the resulting
runoff is estimated based on the Horton equation. According to this equation, runoff occurs
when the rainfall intensity is higher than the infiltration speed. Infiltration equations
employed in KINEROS are based on the Smith and Parlange (1978) infiltration model
(Memarian et al., 2013). In the KINEROS model, the watershed is divided into several subwa-
tersheds and each one of these is simulated based on similar surface flow planes and chan-
nels. In each subwatershed, surface flow planes are in the form of a rectangle and regular
surfaces with similar input parameters. The parameters of the model may be changed from
one plane/channel to another, but the specifications in each element are assumed to be sim-
ilar. These specifications mainly include hydraulic attributes of soil, rainfall properties,
topography, geometric shape of the earth, and land-use and land-cover characteristics. In
this model, the surface flow plane is created based on the general slope of the earth by
selecting the maximum and minimum altitude of the area. The channels with specific slope
and assumed trapezoidal shape are directed toward the outlet of basin (Memarian et al.,
2013). In the conceptual model of overland-flow, small-scale changes of infiltration and
microtopography are parameterized and considered in the simulation.

Table 5-1 Properties of Selected Storm Events

Event # Date Duration (h) Rainfall Depth (mm) Rainfall Volume (MCM) I60_max (mm/h)

1 September 19, 2004 17 50.28 76.7 13.13
2 May 6, 2005 34 57.43 87.6 8.14
3 October 8, 2005 14 41.17 62.8 7.67
4 August 9, 2005 20 59.6 90.9 9.93

I60_max: maximum 60 min intensity.
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FIGURE 5-2 Land-use map of the Tamar watershed.



KINEROS2 (K2) is an updated version of the KINEROS model (Woolhiser et al., 1990)
implemented under a graphical user interface (AGWA) in the ArcGIS environment. Modeling
in the urban region is based on runoff estimation of pervious and impervious sections. In
the K2 model, infiltration is dynamic and is associated with rainfall and runoff. The concep-
tual model is able to incorporate two layers in the soil profile and redistributes soil moisture
during storm hiatus (Semmens et al., 2008). Based on the topography map, AGWA discre-
tizes the watershed into subwatersheds (or planes) according to the contributing source area
(CSA), as defined by the user. The CSA is the minimum area that is required for initiation of
channel flow (Gal, Grippa, Hiernaux, Pons, & Kergoat, 2017). In this model, the surface flow
is considered as a one-dimensional flow, as follows:

@h
@t

1
@Q
@x

5 qðx; tÞ (5-1)

where Q is discharge per unit width, h is the depth of surface runoff, and q is the difference
between rainfall and infiltration intensity (Memarian et al., 2012; Semmens et al., 2008;
Smith et al., 1999).

Using the kinematic wave approximation, Q (in Eq. 5-1) is replaced with Eq. (5-2) and the
resulting differential equation (Eq. 5-3) is solved by the finite difference method. In Eq. (5-2),
the coefficients m and α depend on the amount of slope (s), roughness (n), and surface flow
regime on the planes (Memarian et al., 2012; Semmens et al., 2008).

Q5αhm (5-2)
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Given the boundary conditions upstream and downstream of the planes, Eq. (5-3) will be
solved. In K2, the flow equation (Eq. 5-4) in channels is estimated through the equation of
Saint-Venant:
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5 qc x; tð Þ (5-4)

where Q is water discharge in the channel, A is the cross-sectional area of the channel, and
qc is lateral flow. Using the kinematic wave approximation of Eq. (5-5) and substituting in
Eq. (5-4), differential Eq. (5-6) can be obtained and will be resolved through a finite differ-
ence method given the boundary conditions upstream and downstream of the channel
(Memarian et al., 2012; Semmens et al., 2008; Smith et al., 1999).

Q5αRm21 (5-5)
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In the above equation, the values of m and α can be calculated using the Manning and
Chezy equations in the channel:

α5 1:49
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3

2
(5-7)

CS
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2 5α (5-8)

where S is the channel slope, n is the Manning roughness coefficient, and c is the Chezy
roughness coefficient.

In this work, the local minimum method was applied on flow data to separate the base
flow (McCuen, 1989). The 58 planes with an average area of 27.65 km2 and 22 channels with
an average length of 10 km were discretized using the AGWA interface.

5.2.3.2 Optimization Algorithm
In this work, the PSO algorithm was utilized to determine the optimum values of K2 model
parameters. Initially, this algorithm is started by a swarm of random solutions. Each member
of this swarm is identified as a particle. Particle conducting is done in a way that all particles
store the best position during the searching process in the memory. On the other hand, the
best position obtained in each stage by all particles is stored. In this algorithm, all particles
move towards better solutions based on a weighted average with random components
to eventually converge to a single point (Kennedy & Eberhart, 1995; Poli, Kennedy, &
Blackwell, 2007).

In employed algorithm, a random point for each particle is defined in the hypersphere
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. The particle velocity is computed using the following equation:

~V
t11
i 5ω~V

t
i 1H ~G

t
i ; :~G

t
i 2

~X
t
i:

� �
2~X

t
i (5-9)

The particle’s position is updated by Eq. (5-10), as follows:
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where ~V
t
i and ~V

t11
i are the previous and new particle velocities, respectively; ~X

t
i and ~X
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i

denote the previous and new position of each particle, respectively; ~G
t
i is the previous gravity

center of each particle; i 5 1, 2, . . ., N, specify the swarm size, and t 5 1, 2, . . ., T, denotes
the number of iterations. ω is the inertia weight which controls the impact of earlier particle
velocity on its present one (Abdelaziz & Zambrano-Bigiarini, 2014).

At each iteration the swarm radius δt
� �

is computed using Eq. (5-11), as follows:

δt 5median:~X
t
i 2

~G
t
: (5-11)
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where :∙: denotes the Euclidean norm (Abdelaziz & Zambrano-Bigiarini, 2014; Evers &
Ghalia, 2009). The diameter of the search space is determined using the following equation:

diam Ψð Þ5 :ranged Ψð Þ: (5-12)

Then the normalized swarm radius δtnorm
� �

is used as a degree of convergence:

δtnorm 5
δt

diam Ψð Þ (5-13)

The hydroPSO package in R software environment was employed to implement the PSO
optimization algorithm. The possibility to develop R capabilities by adding the produced
packages by the users is one of the most important specifications of this software
(Bloomfield, 2014). The hydroPSO package includes the following key functions (Zambrano-
Bigiarini & Rojas, 2013):

1. The lhoat function implements sensitivity analysis based on Latin Hypercube One factor
At a Time (LH-OAT) technique (Van Griensven et al., 2006). In this technique, the most
effective parameter on model output receiving a rank of 1 and the parameter with the
lowest efficiency receiving a rank equal to the number of parameters (D).

2. The hydromod function controls model implementation. Initially, this function reads a
set of the parameter’s value written by the user in a file named Paramfiles.txt. Then, the
hydromod function recalls the model executable file to produce some outputs. These
outputs are read through the out.FUN function. Finally, simulated outputs are compared
to observed outputs through the gof.FUN function (fitness function). In this study, the
objective function of Nash�Sutcliffe efficiency (NSE) has been employed.

3. The hydroPSO function is the main driver of calibrating the hydrologic model. In the first
iteration of the algorithm, the parameters are sampled in a defined range by the user in
ParamRanges.txt file. Then, hydromod is recalled to estimate the fitness for each particle
and the location/speed of each particle is improved and evolved based on the setting
defined by the user to estimate the final standard of fitness and optimization. Finally,
hydroPSO collects and saves optimum parameters, sampled parameters, goodness of
fitness of the parameters, speed of the particles, and convergence measures.

4. The Plot-results function implements postprocessing of results and gives the plots with
high quality to the user to evaluate the results of the calibration.

5. The Verification function validates a set of parameters defined by the user using the
goodness-of-fit estimation.

5.2.3.3 Model Evaluation
The statistical measures used in this work are model bias (MB), modified correlation coeffi-
cient (rmod), and NSE. These metrics are the most common evaluation criteria in the litera-
ture. Capability of the model in water discharge estimation can be assessed by MB, while
rmod signifies the differences both in hydrograph size and shape (McCuen & Snyder, 1975;
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Safari, De Smedt, & Moreda, 2012; Memarian et al., 2013). Moreover, the skill of the model
for imitating the hydrograph can be examined utilizing the NSE (Memarian et al., 2013; Nash
& Sutcliffe, 1970; Safari et al., 2012). The following equations define these measures:
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where Qsi and Qoi are the simulated and observed water discharges at the time step i, QO is
the mean of measured flow in the simulation period, σoandσs describe the standard devia-
tions of observed and simulated discharges, respectively, r is the correlation coefficient
between observed and simulated data, and n is the number of observations during the simu-
lation period. The perfect rate for MB is 0 and for other assessors is 1. NSE is a normalized
statistic, extending between 2N and 1, which defines the relative amount of the residual
variance compared to the observed data variance. NSE values between 0.75 and 0.36 reflect
satisfactory simulation, while values $ 0.75 are considered excellent (Geza, Poeter, &
McCray, 2009; Musau, Sang, Gathenya, Luedeling, & Home, 2015).

For evaluating the size, shape, and volume of simulated hydrographs, an aggregated mea-
sure (AM) can be computed as follows:

AM5
rmod 1NSE1 ð12 MBj jÞ

3
(5-17)

An AM value of 1 reveals a perfect fit. Table 5-2 shows classes of goodness of fit based on
AM value.

5.2.3.4 Parameters of Model in Optimization Process
In this work, 16 parameters listed in Table 5-3 have been introduced as the effective para-
meters on flood simulation by K2. These parameters were calibrated using the hydroPSO
optimization package within R environment, which benefits from a parallel processing capa-
bility and a higher speed of computations, as compared with other software environments
like MATLAB. The common parameters in the calibration process involved in the main code
of K2 program include Ks, n, CV, G, and In. In this study, by changing some codes in K2
through the FORTRAN programming language, calibration parameters were increased by 16
parameters (Table 5-3). Therefore, the response of a watershed to the variations of these
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parameters, separated for channel and plane, can be well evaluated. As expressed in
Table 5-3, due to semidistributed simulation of K2, changing the amount of each parameter
was done through “relative changes” in the initial value using a multiplier approach.

5.3 Results and Discussion
One of the most common ways to measure the performance of any model is by plotting the
simulated values against its corresponding observations. Fig. 5-3 shows water discharge (Qw)
curves, hyetographs (PCP), and scatterplots for the best model output obtained by
hydroPSO. In this study, besides the NSE as the objective function, the coefficient of determi-
nation (R2) was utilized to compare observed and simulated flow. The R2 measures the
degree of colinearity between simulated and measured values and ranges from 0 to 1,
whereby values greater than 0.5 are generally considered acceptable (Moriasi et al., 2007;
Musau et al., 2015).

According to R2, the results indicated better fitness of simulated water flow to observed
flow for event #3 (Fig. 5-3). The R2 resulting by comparison of the simulated flow with mea-
sured flow was equal to 0.9114. This indicates that a large part of the variance of the
response variable, that is, water flow, is explained and justified by the model. After this event,
the best coefficient of determination (R2 5 0.9084) was obtained for event #2. In terms of
goodness of fit, the event #4 with an R2 of 0.8946 ranks after events #2 and #3. However, the
weakest result of optimization by hydroPSO was observed for event #1, with a coefficient of
determination of 0.6368. In all simulated events, due to higher R2 than a threshold of 0.5, the
result of hydroPSO simulation was acceptable in terms of collinearity (Moriasi et al., 2007;
Musau et al., 2015).

As shown in Fig. 5-3, the estimated peak flow compared to simulated peak flow was dif-
ferent for various events. This difference for the first event was 9%, which indicated that the
estimated peak flow was higher than the actual peak flow for 9%. In the second, third, and
fourth events, simulated peak flows were lower than observed hydrograph peaks, at 17%,
16%, and 30%. Therefore, the highest difference was observed in the second and fourth
events and the lowest difference was observed in the first event. Generally, the model

Table 5-2 Model Performance Categories

Goodness of Fit Aggregated Measure (AM)

Excellent . 0.85
Very good 0.70�0.85
Good 0.55�0.70
Poor 0.40�0.55
Very poor , 0.4

Source: Adapted from Safari, A., De Smedt, F., & Moreda, F. (2012). WetSpa model
application in the distributed model intercomparison project (DMIP2). Journal of
Hydrology, 418, 78�89.
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Table 5-3 Optimization Parameters Used in HydroPSO

No. Symbol Parameter
Values Suggested or
Used in the Reference References Initial Values

Multiplier
Range Used
in This Work

Lower Upper

1 Ks_p Saturated hydraulic conductivity
(mm/h)_planes

0.6�210 Woolhiser et al. (1990) 5�24.21 0.2 2
0.22�266.3 Meyer, Rockhold, and Gee (1997)
0.3�73.3 Guber, Yakirevich, Sadeghi, Pachepsky, and

Shelton (2009)
2 Ks_c Saturated hydraulic conductivity

(mm/h)_channels
17.2�48.3 Guber et al. (2011) 210 0.2 2
0�10 Al-Qurashi, McIntyre, Wheater, and Unkrich

(2008)
1.46�63.27 Memarian et al. (2012)

3 n_p Manning’s roughness
coefficient_planes

0.1�0.63 Woolhiser et al. (1990) 0.102�0.149 0.3 4
0.053�0.8 Al-Qurashi et al. (2008)

4 n_c Manning’s roughness
coefficient_channels

0.01�0.1 Memarian et al. (2012) 0.035 0.5 5
0.09�0.64

5 CV_p Coefficient of variations of
Ks_planes

0.1�2.0 http://www.tucson.ars.ag.gov/kineros/ 0.75�1.4 0 2
0.02�27.3 Guber et al. (2011)
1.6�7.6 Memarian et al. (2012)
0.57�0.95 Wagener and Franks (2005)

6 G_p Mean capillary drive (mm)_ planes 50.0�410 http://www.tucson.ars.ag.gov/kineros/ 120.67�240.87 0.3 3
46.0�407 Woolhiser et al. (1990)

7 G_c Mean capillary drive (mm)_ channels 1.0�263 Guber et al. (2009) 101 0.3 3
100�306 Guber et al. (2011)
1.0�10.0 Memarian et al. (2012)

8 In Interception depth (mm) 0.5�4.1 Woolhiser et al. (1990) 0.5�1.27 0.1 2
4.77�101.3 Wagener and Franks (2005)

9 Cov Percent of surface covered by
intercepting cover

1.0 Kasmaei, Van Der Sant, Lane, and
Sheriadan (2015)

0.229�0.66 0.5 2

34.5�46.5 Vatseva, Nedkov, Nikolova, and Kotsev
(2008)

5.0�90 Koster (2013)

(Continued)

http://www.tucson.ars.ag.gov/kineros/
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Table 5-3 (Continued)

No. Symbol Parameter
Values Suggested or
Used in the Reference References Initial Values

Multiplier
Range Used
in This Work

Lower Upper

10 Rock Volumetric rock fraction 0.57�0.62 Wagener and Franks (2005) 0�0.32 0.5 2
0.1 Kennedy, Goodrich, and Unkrich (2012)
0.011�0.193 Koster (2013)

11 Por_p Porosity_planes 0.44�0.46 Wagener and Franks (2005) 0.456�0.468 0.5 2
0.25�0.35 Kasmaei et al. (2015)

12 Por_c Porosity_channels 0.42�0.56 Koster (2013) 0.44 0.5 2
13 Dist_p Pore size distribution index_planes 0.15�0.694 Meyer et al. (1997) 0.26�0.34 0.5 2

0.14�1.43 Wagener and Franks (2005)
14 Dist_c Pore size distribution index_channels 0.25�0.54 Koster (2013) 0.545 0.5 2

0.16�0.40
15 Smax Maximum soil saturation 0�10 Al-Qurashi et al. (2008) 0.88�0.92 0.1 1

0.85 Memarian et al. (2012)
0.4�0.58 Koster (2013)

16 Sat Initial soil saturation 0�0.5 Al-Qurashi et al. (2008) 0.2 0.5 5
0.4 Wagener and Franks (2005)
0.19�0.32 Koster (2013)



FIGURE 5-3 Observed versus simulated water discharge of selected storm events.
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showed more intention toward underestimation of peak flow to fit simulated hydrograph
with observed hydrograph.

As shown in Table 5-4, events #2 and #4, with NSE equal to 0.92 and 0.85, respectively,
had the best fitness of simulated flow compared to observed flow. Event #3, with an NSE of
0.83, was placed next in order. However, event #1, with an NSE of 0.39, had the lowest fitness
among the simulated events. According to the AM measure, the best fitness was observed in
the simulation of event #2 (AM 5 0.92). The events #4, #3, and #1 ranked next in order,
respectively (with AM 5 0.85, 0.83, and 0.56). According to the MB measure, hydroPSO over-
estimated flood magnitude in simulation of events #2�4. However, underestimation of flood
magnitude was observed in simulation of event #1. Some diversions are observed in rising
and recession limbs of the simulated hydrographs than the real data which are higher for
event #1 than those for other events. These diversions or overestimation/underestimation of
water discharge could be caused by the fact that only one rain gauge station was used, and
only one isolated storm event on the watershed surface was considered (Hernandez et al.,
2000; Memarian et al., 2012; Memarian et al., 2013).

Using the optimized parameters and according to event #2, the discretized map in both
planes and channels was classified based on the simulated peak flow (Fig. 5-4).

The sensitivity analysis of K2 parameters was accomplished through following the evolu-
tion and convergence of parameter values, global optimum, and the normalized swarm
radius. Fig. 5-5 shows the evolution of the 16 parameters employed in K2 calibration. This
shows that the parameters Ks_p, Ks_c, n_p, n_c, CV_p, and Sat were the most effective para-
meters in K2 calibration, respectively. This was also reported and confirmed in previous
studies by Nearing et al. (2005), Canfield and Goodrich (2006), Martínez-Carreras, Soler,
Hernández, and Gallart (2007), Al-Qurashi et al. (2008), and Memarian et al. (2012).

Fig. 5-6A illustrates the frequency histograms of the 16 parameter values employed in K2
calibration. Sporadic and level states of the histograms suggest the uncertainty about the
likely optimal values of the parameters (Musau et al., 2015). In this work, the parameters are
moderately well defined due to the sharp distribution of the peak around the best value in
all parameters expect In, COV, Por_p, and Dist_p. The empirical cumulative distribution
functions (ECDFs) were utilized to estimate the factual primary cumulative distribution func-
tion of the sampled points (Fig. 5-6B). Fig. 5-6A, B endorses that the parameters n_p, n_c,
CV_p, G_c, Rock, Por_c, Dist_c, Smax, and Sat track normal and near-normal distributions,

Table 5-4 Fitting Metrics of Selected Storm Events for Runoff Modeling

Fitting Metrics Event #1 Event #2 Event #3 Event #4

MB 2 0.44 0.04 0.20 0.05
rmod 0.74 0.90 0.81 0.73
NSE 0.39 0.91 0.89 0.86
AM 0.56 0.92 0.83 0.85
Goodness of fit Good Excellent Very good Excellent
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while Ks_p and Ks_c depict an experimented distribution skewed toward the lower frontier
utilized for K2 calibration. Furthermore, the parameters In, COV, and Dist_p display a uni-
form distribution of sampled values. The posterior distributions of some parameters, for
example, Ks_p and n_c, seem to be more sharply peaked than the other parameters, which
designates less uncertainty in hydrological modeling. However, some other parameters such
as In, Cov, Por_p, and Dist_p did not extensively transform from their earlier uniform
distributions. This conduct may mean two sorts of errors, which are whether the efficient
blunders of input data or making up for auxiliary needs in the model (Shafiei et al., 2014;
Vrugt, Ter Braak, Clark, Hyman, Robinson, 2008).

Boxplots in Fig. 5-7A illustrate the statistical distribution of sampled values. In each box,
the top and bottom lines are the first and third quartiles, respectively. The horizontal line
within the box embodies the second quartile as the median. The notch extent is computed
to the range equal to 6 1.58UIQR/sqrt(n), where IQR is the interquartile range and n is the
number of points.

Dot plots in Fig. 5-7B show the parameter value against its corresponding goodness-of-fit
value (NSE) achieved during the K2 optimization. They are important for perceiving parame-
ter runs that create the best model execution (Abdelaziz & Zambrano-Bigiarini, 2014; Beven
& Binley, 1992). A visual check of Fig. 5-7B demonstrates that for 6 out of 16 parameters
(Ks_c, n_c, G_c, Rock, Dist_c, and Smax) the optimal value found amid the optimization

FIGURE 5-4 The discretized map, classified based on the peak flow in both planes and streams (based on event #2).

Chapter 5 • Parameter Optimization of KINEROS2 133



FIGURE 5-5 Parameters values for each run during the model calibration process based on event #2.



FIGURE 5-6 Graphical representation of parameters’ values sampled amid the optimization based on event #2. (A)
Histograms displaying the incidences of the parameter values. Vertical red line shows the finest value established
for each parameter. (B) ECDFs of parameter values. Horizontal gray dotted lines denote a cumulative probability of
0.5 as the median of distribution. Vertical gray dotted lines indicate a cumulative probability of 0.5, shown in the
upper part of each figure (Abdelaziz & Zambrano-Bigiarini, 2014).
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FIGURE 5-7 Graphical representation of parameters’ values sampled amid the optimization based on event #2.
(A) Box-and-whisker plots (or boxplots). (B) Parameter values versus their equivalent NSE. Horizontal and vertical
red lines specify the optimal value explored for each parameter (Abdelaziz & Zambrano-Bigiarini, 2014).
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matches with the median of all the sampled values. This condition establishes that a large
portion of the particles met in a small locale of the solution space. For In and Sat, examined
values were located inside the second quartile. Fig. 5-7B depicts that the optimum values
discovered for the parameters Ks_p, Ks_c, n_c, CV_p, and Sat are relatively well defined,
though other parameters demonstrate a more extensive district around their ideal.

The development of the global optimum (best model performance in each iteration, i.e.,
largest NSE) and the normalized swarm radius (a quantity of swarm ranged on the search
region) versus the number of iterations is illustrated in Fig. 5-8. Obviously, both the global
optimum and the normalized swarm radius decrease with an increasing number of repeti-
tions. This condition demonstrates that most of the particles met in a small state of the
answer region (Zambrano-Bigiarini & Rojas, 2013). Moreover, Fig. 5-8 shows that only eight
iterations (i.e., 8 3 200 5 1600 model executions) were needed to find the region of the
global optimum, and the remaining iterations were only utilized for search refining.

Fig. 5-9 shows three-dimensional dot plots, which show the interactions among para-
meters by plotting the NSE reaction surface onto the parameter space (for various pairs of
parameters). In general, it can be seen that particles are spread everywhere throughout the
parameter space, showing a decent exploratory capacity of PSO. The areas with the power-
less model execution have a low mass of focus, while locales with higher model execution
are more densely sampled, affirming the great capacity of the PSO exploitation (Zambrano-
Bigiarini & Rojas, 2013). This figure demonstrates that the optimal values explored for Ks_p,
Ks_c, and n_c characterize a limited scope of the parameter space with high model perfor-
mance. Also, it can be revealed that the model performance is more impacted by the interac-
tion of Ks and n parameters. The parameters CV_p and n_p represent a more extensive

FIGURE 5-8 Evolution of the global optimum and the normalized swarm radius (δ norm) over the 50 model
iterations based on event #2.
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FIGURE 5-9 Model performance (NSE) anticipated onto the parameter space for various pairs of parameters, based on event #2.



scope of the optimized levels. Good model performance for an extensive variety of estima-
tions of other parameters affirms that these parameters are not well distinguished and
enforce a few uncertainties on simulation outcomes (Shen, Chen, & Chen, 2012).

Finally, a correlation matrix among parameter values and model performance (NSE) is
shown in Fig. 5-10. The slice over the diagonal illustrates the Pearson’s correlation coefficient
between paired samples in addition to their statistical significance as stars. The bottom slice
depicts bivariate scatterplots between each column and row of the matrix, with a fitted line
assimilated using locally weighted polynomial regression (Abdelaziz & Zambrano-Bigiarini,
2014; Cleveland, 1979). A histogram of each factor sampled throughout the optimization is
illustrated on the diagonal. This figure shows that the highest linear correlation between the
NSE and K2 parameters is obtained for the Ks_p, Ks_c, and n_p, followed by CV_p, G_c,
Por_p, Dist_p, and Smax. Moreover, significant linear correlations are recognized between
the parameters In and Cov; Ks_p and Ks_c; Ks_p and n_p; and Ks_c and n_p. Based on
Fig. 5-10, it can be seen that nonlinear relationships are evident between some calibrated
parameters, for example, G_p versus Cov, Por_c versus Dist_c, and G_c versus n_c.

Looking at the outcomes in this work and in the previous study by Kamali et al. (2013),
where PSO and multiobjective PSO were executed for a similar case utilizing HEC�HMS, we
found that the utilization of hydroPSO integrated with KINEROS2 gave a noteworthy change
to the simulated water discharge based on events #2, #3, and #4. However, HMS-PSO outper-
formed K2-PSO for hydrological modeling based on event #1.

Finally, it is clear that there are some constraints concerning the absence of adequate
data, particularly soil characteristics and flood events, which have significant impacts on the
results of this study. In this regard, the outcomes and their generality are evidently limited.
However, any applications should use accessible data as much as possible, and the shortage
of sufficient records for a basin does not imply that something partially useful cannot be
done. Nevertheless, the gained results should be updated when new information becomes
accessible. Additionally, combining hydroPSO and uncertainty analysis would be an impera-
tive subject to which future works have to allude.

5.4 Conclusion
The proficient estimation of optimum parameter values is unavoidable in modeling of hydro-
logical phenomena. In this chapter, the hydroPSO package was applied to the KINEROS2
model in R software to assess parameter identification and calibration in the Tamar water-
shed, Iran. Sixteen parameters, representing the overland flow and channel flow for simula-
tion based on four storm events, were selected for model optimization. The following
conclusions can be drawn from the results of this study:

• The K2 model effectively simulated water discharge in the study area, considering the
three main performance evaluation metrics used. The results indicated better efficiency of
K2 based on event #2 with the coefficient of determination and NSE of 0.9084 and 0.92,
respectively. Events #3 and #4, with NSE of 0.89 and 0.86, showed excellent and very
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FIGURE 5-10 Correlation matrix between parameters and model performance (NSE), based on event #2.



good fitness of the simulated flow compared to observed flow, respectively. However, the
model had more intension toward underestimation of peak flow to fit the simulated
hydrograph with the observed hydrograph. According to the MB measure, hydroPSO
overestimated flood magnitude in the simulation of events #2�4. However,
underestimation of flood magnitude was observed in the simulation of event #1. The
diversions or overestimation/underestimation of water discharge could be caused by the
fact that only one rain gauge station was used, and only one isolated storm event on the
watershed extent was considered.

• Sensitivity analysis established that the parameters Ks_p, Ks_c, n_p, n_c, CV_p, and Sat
were the most effective parameters in K2 calibration, respectively. The posterior
distributions of some parameters, such as Ks_p and n_c, appeared to be more sharply
peaked than other parameters, which established less uncertainty in hydrological
modeling. However, some other parameters, such as In, Cov, Por_p, and Dist_p, did not
significantly change from their prior uniform distributions. This behavior represented two
types of error which were whether the systematic errors of input (forcing) data or
compensating for structural deficiencies in the model. Visual inspection of boxplots
showed that for 6 out of 16 parameters (Ks_c, n_c, G_c, Rock, Dist_c, and Smax) the
optimum value found during the optimization coincided with the median of all the
sampled values, confirming that most of the particles converged into a small region of the
solution space. Dot plots showed that the optimum values found for Ks_p, Ks_c, and n_c
define a narrow range of the parameter space with high model performance. On the
other hand, the model performance was more impacted by the interaction of Ks and n
parameters. The parameters CV_p and n_p showed a wider range of optimized levels.
Furthermore, during optimization, both global optimum and normalized swarm radius
decreased with an increasing number of iterations, indicating that most of the particles
converged into a small region of the solution space. Correlation analysis revealed that the
highest linear correlation between the NSE and K2 parameters was obtained for Ks_p,
Ks_c, and n_p, followed by CV_p, G_c, Por_p, Dist_p, and Smax.

• The HydroPSO R package can be successfully integrated with the K2 model in R software
to harness the combined benefits of a distributed hydrological model and flexible
computing capability of the open source R software.
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6.1 Introduction
In general, land subsidence is a surface topography sinking of the earth, which is directly or
indirectly created by human impacts (Divid & Alexander, 1999). Land subsidence is a global
problem and morphological phenomenon. This phenomenon is affected by human activities
and natural factors that may become a threat to human life and achievements. Although the
mentioned problem is seen in all climatic conditions; it has the greatest dispersion in arid
and semiarid regions. In general, climatic parameters are the factors influencing this phe-
nomenon, such as low rainfall, high temperatures, and the need for water in plains and cities
which can lead to excessive groundwater extraction, therefore the occurrence of subsidence
dangers in these areas is high in relation to the long-term extraction of groundwater (Chen,
Wang, & Chen Kuo, 2010). Land subsidence is sudden and gradual movement in clay aqui-
fers, which can potentially cause problems, such as creating gaps in the surface of the Earth,
demolition of buildings and rising water pipes from the ground, changing slopes of rivers
and roads, gradual downfall of towers and structures, laying down of wells, to change the
slope of the Earth and to increase flooding (Ayala, 2002). The subsidence phenomenon usu-
ally does not occur immediately with the outflow of fluid, but occurs a longer time after
water harvesting. The land-subsidence value varies from 1 to 50 cm for each 10 m decrease
in water level, meanwhile, this range completely depends on the thickness of the layers,
length of the loading time, and type of variable (Scott, 1979). This phenomenon is due to
various factors such as earthquake, volcano, fault activity, subsidence due to rising sea level,
dissolution in rocks, oxidation, compaction of organic sediments, development of pits in
karst lands, or is caused by human activities including extraction of fluid from the ground
such as water, oil, and gas (Guo, 2015). In general, the random forest data-mining technique
is one of the most important methods for prioritization of effective factors in spatial
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modeling and mapping some natural and manmade hazards (Friedl, Brodley, & Strahler,
1999). Also, the RF model was recently applied in some cases such as landslide susceptibility
and gully erosion (Micheletti et al., 2014; Rahmati, Haghizadeh, Pourghasemi, &
Noormohamadi, 2016). Several reports of land subsidence, especially in globally arid and
semiarid areas, have been presented (Pacheco et al., 2006). Kim, Lee, and Oh (2009) pre-
dicted land-subsidence risk using artificial neural networks and GIS in Samcheok, Korea.
The results indicated that the accuracy of the built map using an ROC curve was excellent
(96.06%). Also, in a similar study, Lee, Park, and Choi (2012) showed that spatial modeling
of land subsidence using an artificial neural network had excellent accuracy with an area
under the ROC curve value of 94.44%. Park, Lee, and Lee (2014) used frequency ratio, logistic
regression, artificial neural network, and also their combination for estimating susceptibility
of land subsidence around Samcheok Coal Mine in Korea. The results indicated that the
accuracy of the combined models was higher than then when they were used alone.
Pradhan, Abokharima, Jebur, and Shafapour Tehrany (2014) prepared a land-subsidence
susceptibility map in the Kinta valley (Malaysia) using evidential belief function (EBF) theory
and FR. The results showed that the accuracies of the EBF and FR models are 79.45% and
75.30%, respectively. Therefore, the EBF model had a higher accuracy than FR.

Shrestha, Shakya, Pandey, Birkinshaw, and Shrestha (2017) investigated the risk of land
subsidence in Kathmandu, Nepal. Their results showed that the northern and northeastern
parts of the study area are very susceptible to land subsidence. The results also indicated
that there is an annual average land subsidence of about 1.6 mm in the study area.
Therefore, the purpose of this study is identifying effective factors on land-subsidence occur-
rence in Jiroft Plain, Kerman Province, and its spatial modeling using the RF data-mining
technique. A literature review showed that no research on land-subsidence modeling using
RF model currently exists.

6.2 Study Area
The study area is 4943 square kilometers and is located between longitudes of 57�200 to
58�170E and latitudes of 28�110 to 29�000N (Fig. 6-1). The mean annual precipitation is
170 mm in the area, and its climate is classified as warm. In general, the study area is divided
into plains and mountains parts, with areas of 1759 and 3184 square kilometers, respectively.

6.3 Methodology
6.3.1 Land-Subsidence Inventory Mapping

In the present study, a land-subsidence inventory map was prepared using extensive field
surveys and Google Earth images (Fig. 6-1). In order to model land-subsidence susceptibility,
from a total of 194 subsidence locations, randomly, 70% (136) were used for modeling and
30% (58) were applied for validation of the final map (Hong, Pourghasemi, & Pourtaghi, 2016;
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Pourghasemi & Kerle, 2016; Pourghasemi, Pradhan, & Gokceoglu, 2012; Pourghasemi, Yousefi,
Kornejady, & Cerdi, 2017; Youssef, Pourghasemi, Pourtaghi, & Al-Katheeri, 2016).

The flowchart for the methodology of land-subsidence spatial modeling using the RF
data-mining technique in the study area is presented in Fig. 6-2.

6.3.2 Effective Factors on Land Subsidence

Based on a different literature review (Kim et al., 2009; Ozdemir, 2015) and availability of
data in the study area, 10 effective factors were selected for land-subsidence spatial model-
ing. These were slope percent, aspect, elevation, lithology units, distance from rivers, piezo-
metric wells data, land use, plan curvature, TWI, and distance from fault (Fig. 6-2A�J). For
this purpose, using topographic maps in 1:25,000 scale, a digital elevation model with 10 m
3 10 m spatial resolution was prepared and four morphometric parameters including slope
percentage, aspect, plan curvature, and TWI (Eq. 6-1) were created in ArcGIS 10.2.2 and
SAGA-GIS software. The land use map of the study area derivatives were from the Kerman
Governor’s Office in 1:100,000-scale and checked using Google Earth images. Also, the geo-
logical map of the study area was prepared and digitized at a scale of 1:100,000 (GSI, 1997).
On the other hand, maps of distance from rivers and faults were also prepared from the
topographic and geological maps, respectively. In this study, groundwater status analysis was
carried out using piezometric wells for a 15-year period between 2002�17 which was pre-
pared by the Regional Water Organization of Kerman Province. Then, a map of groundwater
table changes was drawn using the inverse distance weighting (IDW) interpolation
method (Eq. 6-2):

FIGURE 6-1 Location of the study area in Kerman Province, Iran.

Chapter 6 • Land-Subsidence Spatial Modeling 149



TWI5 Ln A=Tangβ
� �

(6-1)

λi5
Di2α

Pn
i51

Di2α
(6-2)

where A is specific catchment area; β is gradient tilt degree; TWI is topographic wetness
index; λi: is the point of i; Di is the distance between point i and an unknown point; and α is
equivalent to the weighing power (Setianto & Triandini, 2013).

In this study, in preparing the land-subsidence susceptibility map, the pixel size of all ras-
ter layers was converted to 10 m 3 10 m spatial resolution.

6.3.3 Spatial Relationship Between Land-Subsidence Locations and
Different Effective Factors

In this study, in order to investigate the spatial relationship between land-subsidence loca-
tions and effective factors, maps of each effective factor with land-subsidence inventory were
map crossed (overlaid) in ArcGIS 10.2.2. Finally, after calculation of percentage subsidence

FIGURE 6-2 Flowchart methodology of land-subsidence spatial modeling in the study area.
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for locations and classes of each factor (layer), the FR weight value of each class of factors
was extracted by Eq. (6-3) (Rahmati et al., 2016):

FR5
A=B
C=D

(6-3)

where A is the number of land-subsidence pixels, B is the total number of pixels affected by
land subsidence, C is the number of pixels of the classes of each factor, and D is the total
number of pixels of the study area (total area of the study area).

6.3.4 Random Forest (RF) Model

The random forest algorithm is an extension of the tree regression and classification, first
developed by Breiman (2001). The algorithm is based on a set of decision trees that is cur-
rently considered as one of the best learning algorithms for prioritizing and determining the
importance of factors affecting the objective function (here land subsidence). Random trees
have taken the input vector, categorized it with each tree in the forest, and the output is the
class labels received by the majority of votes (Breiman, 2001). In this model, two factors of
MDA (mean decrease accuracy) and MDG (mean decrease Gini) are used to determine the
importance of effective factors. In this study, for land subsidence, spatial modeling was used
from the “random forest” package in R 3.3.1 (Lehmann, McOverton, & Leathwick, 2002).

6.3.5 Assessment of Land-Subsidence Spatial Modeling

For validation of the final land-subsidence map, 30% of unused locations were used to draw
an ROC curve. According to Yesilnacar (2005), the most ideal model has the highest AUC
value. In general, AUC values vary from 0.5 to 1 (Rahmati et al., 2016). Therefore, if AUC
values are 0.9�1, 0.8�0.9, 0.7�0.8, 0.6�0.7, and 0.5�0.6, respectively, then the estimators
are excellent, very good, good, moderate, and poor (Pourghasemi & Kerle, 2016; Yesilnacar,
2005). For drawing ROC curve and calculation of AUC value, SPSS 17 software was used.

6.4 Results and Discussion
6.4.1 Investigating the Spatial Relationship Between Effective Factors

and the Occurrence of Land Subsidence Using the FR Model

The results obtained from the spatial relationship between different effective factors and the
observed land-subsidence locations using FR theory are presented in Table 6-1.

According to the results of Table 6-1, the highest weight of FR (1.21) is related to slopes of
,2%. Also, with an increase in slope percentage, the subsidence occurrence was decreased.
These results are in line with those of Yilmaz (2007), Kim et al. (2009), and Pradhan et al.
(2014). In general, the phenomenon of land subsidence occurs mainly on flat slopes and smooth
land. On the other hand, aspect factor results showed that the highest weight (FR 5 1.41)
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Table 6-1 Spatial Correlation Between Land-Subsidence Locations and Effective
Factors Using FR Model

Effective Factors Classes FR

Slope percent 0�2 1.20
2�5 0.06
.5 0.12

Aspect Flat 1.41
North 0.98
East 0.16
South 0.26
West 0.60
,550 1.43

DEM/elevation (meter) 550�600 3.87
.600 0.09
Concave 1.07

Plan curvature Flat 0.75
Convex 1.57
,8 0.53

TWI 8�12 0.81
12�25 2.36
0�50 1.22

Distance from river (meter) 50�150 0.75
150�250 1.05
.250 1.04

Land use Grave and shrubbery 13.78
Range land 0.55
Bare land 0.00
River bed 0.00
Irrigation agriculture and gardens 1.50
Residential areas 5.88
Sandy areas 0.46
Hard clay 7.03
Salt and salt lands 0.00
0�1000 0.67

Distance from faults (meter) 1000�2000 1.20
2000�3000 0.81
3000�4000 0.63
.4000 1.62
,13 0.43

Piezometric wells data (meter) 13�20 1.25
20�29 1.05
29�64 0.00
Qt2, QLc, Qfp, Qal, Qt1, Qc 0.00

Lithology Ef, QLm, JK, Ewf, 1.02
Erh, Eqt 1.35
Da, Pzla1 0.00
OMm, DCsg, OM1 0.00
G, gh, gd, gb 0.00
Ng2, Et1, Ev, Ngb, Es 0.00
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happened in flat and smooth directions, and then in the north direction (0.98), which is con-
sistent with Ozdemir (2015). Generally, areas reported with gentle slopes are more likely to
contain karst features compared to steep slopes. Most land-subsidence locations occurred in
the flat aspect (Ozdemi, 2015). As shown in the Table 6-1, altitude has no particular effect on
land subsidence. Investigating elevation factor shows that the highest weight of land subsi-
dence (3.87) was related to an elevation class of 550�600 m; whereas at higher altitudes
there was lower land subsidence occurrence, corresponding with the results of Park et al.
(2014). Therefore, this phenomenon usually doesn’t appear at high altitudes. Similar results
can be found in many previous studies (Day, 1983; Doğan & Yilmaz, 2011). Investigating
results of the plane curvature showed that in the three curvature classes less than 0.01 (con-
cave), 0.01�0.01 (flat) and greater than 0.01 (convex), the maximum weight of land subsi-
dence (1.57) is related to the convex slope hillside. The effect of TWI on subsidence
incidence in the study area showed that the highest FR weight (1.25) was related to the class
of more than 12. In general, TWI indicates the amount of water accumulation in a point or
part of the watershed and as a hydrologic factor, it investigates the spatial variations of mois-
ture (Moore, Grayson, & Ladson, 1991; Nefeslioglu, Duman, & Durmaz, 2008). The areas of a
catchment with the highest topographic wetness index values are those most likely to con-
tribute to runoff. During dry periods when soil-moisture storage is low, only areas with very
highest TWI values are likely to be saturated and contribute to runoff. In contrast, under sat-
urated conditions, areas with lower TWI values will contribute to runoff (Ozdemi, 2015). The
relationship between land subsidence and distance from rivers showed that the highest
weight (1.22) of the subsidence occurrence at a distance of ,50 m from a river. Therefore, it
indicated that lower distances from rivers had the greatest effect on land subsidence. In the
case of land use, the results showed that more land subsidence occurred in gravel and
shrubbery (13.78), hard clay (7.03), and residential areas (5.88), respectively. The results of
distance from fault factor and its effect on land-subsidence occurrence in the study area
showed that the highest weight of FR (1.62) occurred in classes of more than 4000 m; there-
fore, it can be stated that subsidence locations of the study area were not affected by earth-
quake force. Although fault condition plays an important role in subsidence event and there
is a lot of land subsidence, in this research the observed subsidence locations were farther
from the fault. In general, the distribution of subsidence is influenced by the fluctuations of
the groundwater table. Therefore, one of the reasons for land subsidence, and subsequently
degradation, is related to its natural effects of overexploitation of groundwater resources
(Ozdemi, 2015). A review of the results of underground water table changes showed that the
highest (FR 5 1.25) occurrence of subsidence was observed in the 13�20 m class, and it can
be deduced that when the level of groundwater is lower, the probability of occurrence of this
phenomenon is higher. Therefore, it is a basic theory that decreasing the water table, or in
contrast higher harvesting, causes more severe land subsidence. The results of lithological
units showed that the highest FR weight (1.35) were obtained for Erh (rhodeatic and rhy-
thetic domes) and EQt (dark green tuff), followed by Ef (flush sediments, sequential
sequences of sandstone, shale, fine-grained conglomerate, quicksilver numolilite limestone,
limestone, limestone blended with fine-grained glass pumice, green tuff), QLm (clay size
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sediments and silt), JK (cartilage clinker limestone, bright gray, well-layered, thin in deep
water, except containing limestone, marl, sandstone, shale, and limestone), Ewf (eocene
flysch-stormy) by weight values of 1.02. Also, in other lithological units, the weight value
obtained from the FR was zero.

6.4.2 Assessment of Effective Factors Using Random Forest Data-Mining
Technique

In this study, an attempt was made to assess the importance of effective layers using a ran-
dom forest data-mining technique. The results in Fig. 6-3 show that piezometric wells data
and DEM/elevation are more important factors than other layers based on mean decrease
accuracy. It is well known that subsidence distributions are influenced by groundwater level
fluctuations and groundwater chemistry (Ozdemi, 2015). Also, there are many subsidence
locations at low altitude, as altitude is important in the occurrence of subsidence. Because
low altitudes are often agricultural lands, these lands need more irrigation, and subsequently
there is an increase in water harvesting from groundwater which can cause more land
subsidence.

6.4.3 Preparing the Land-Subsidence Susceptibility Map Using an RF
Model

After preparing the effective factors and identifying the subsidence regions in the study area,
the spatial relationship between each layer and subsidence location was investigated and
then entered into the R software using Excel. After determining the output of the model in

FIGURE 6-3 Consideration of the importance of effective factors using a random forest model.
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TXT format, the file was entered in SPSS software and subsequently transferred to the
ArcGIS software and the final map was prepared at a pixel level for the entire study area.
Finally, the map of land-subsidence potential in the ArcGIS software environment was pre-
pared and based on natural breaks (Komac, 2006; Mohammady, Pourghasemi, & Pradhan,
2012; Ozdemir, 2011; Sezer, Pradhan, & Gokceoglu, 2011; Zabihi et al., 2018), and classified
into four classes including, low, moderate, high, and very high sensitivity (Fig. 6-4).

Also, the percentage of subsidence area occurring in the sensitivity classes of the studied
area is presented in Fig. 6-5. The results showed that 64.36% of the studied area is located
on the low-sensitivity class. Meanwhile, the areaa of other classes (moderate, high, and very
high) are 13.22%, 13.48%, and 8.94%, respectively. In general, RF theory has some advan-
tages, such as (1) it is able to combine predictions of several single/individual algorithms, (2)
different case studies showed that the mentioned algorithm has very high ability and accu-
racy for spatial modeling, and (3) this method is very important for determining the weight

FIGURE 6-4 Land-subsidence susceptibility map produced using a random forest model.
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of effective factors (variable importance) in comparison with some statistical and data-
mining techniques (Kotsiantis & Pintelas, 2004).

Finally, land-subsidence susceptibility zoning was evaluated using ROC curve and AUC
(Fig. 6-6 and Table 6-2). The results of the evaluation of the model indicate an AUC value of

64.36
13.22

13.48

8.94

Low Moderate High Very high

FIGURE 6-5 Percentage area of land-subsidence event using a random forest model.

FIGURE 6-6 ROC curve value of RF model.
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0.939 with a prediction accuracy of 93.90% and standard error of 0.022 in the study area.
Spatial modeling using new models for example random forest led to high-accuracy maps,
as reported in some studies. Stumpf and Kerle (2011) stated that the RF algorithm provided
relatively high accuracies of up to 87%; therefore, it can effectively handle missing data dur-
ing both the training and validating steps. In addition, because of its group design, it can
apply a prediction even when some of the input values are missing. Moreover, during the
process of modeling, a measure of variables' importance can be calculated (Ball, 2009).
Pourghasemi and Kerle (2016) showed that an RF model with AUC 5 81.77% had high abil-
ity for landslide susceptibility mapping. Zhang, Wu, Niu, Yang, and Zhao (2017) stated that
an RF model with an AUC value of 97% had excellent accuracy in landslide spatial modeling.

6.5 Conclusion
The purpose of this study was spatial modeling of land subsidence using an RF data-mining
model in Kerman Province, Iran. In order to investigate the spatial relationship between
effective factors and subsidence locations, an FR bivariate statistical model was used. Also, in
considering the importance of effective factors, an RF algorithm was applied. For spatial
modeling, from the total subsidence locations, 70% were used for calibration and 30% for
model evaluation. Validation of results showed that the RF model with an AUC value of
0.939 has excellent precision. Therefore, based on the results of spatial modeling of a land-
subsidence and susceptibility map, and also with regard to the correlation between effective
factors and subsidence areas, it is possible to mitigate this hazard. Also, we can plan for
managing water resources, in particular unauthorized wells and preventing extraction of
groundwater which was carried out in the study area.
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7.1 Introduction
Schools, as places where students spend considerable time for education, are regarded as
important facilities. Proper size, easy access, low cost, and suitable location of a school build-
ing can lead to an improvement in the development and health of students (Bukhari, Rodzi,
& Noordin, 2010; Mearig, Crittenden, & Morgan, 1997; Stewart, 2016). Also, optimized loca-
tion is one of the most important parameters in desirability of schools. Since proper site
selection of schools can remove the possibility other city services, such as business, industry,
infrastructure services, from unfavorably impacting on educational activities and in doing so,
reducing risks to students. Moreover, being adjacent to public facilities makes taking
advantage of the services those facilities offer possible, and leads to cost reductions and effi-
ciency improvements (Baas, 1973; Dadfar, 2014; Mearig et al., 1997). In recent years, several
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studies have been dedicated to site selection of schools, considering the criticality of the
aforementioned issue (Aziz, 2004; Bukhari et al., 2010; Dadfar, 2014; Jamal, 2016; Samad
et al., 2012; Talam & Ngigi, 2015).

Site selection is a matter of decision-making with spatial data. Basically, these data have
different variables that are sometimes in conflict with each other and sometimes result in fur-
ther complication of problem solving and decision-making. Therefore, in recent years,
researchers in various fields have tried to eliminate these problems by making use of multicri-
teria decision-making (MCDM) systems (Jato-Espino, Castillo-Lopez, Rodriguez-Hernandez,
& Canteras-Jordana, 2014; Mardani et al., 2015; Rezaei, 2015). MCDM algorithms break down
the decision-making problems into smaller parts by creating logical structures among the
components (Aggarwal & Singh, 2013; Palanisamy & Abdul Zubar, 2013). Therefore, they facil-
itate the analysis of prioritizing the factors to make optimal and better decisions. On the other
hand, GIS as a suitable and powerful tool, can save, manage, and analyze the spatial data,
and as a result, it has a crucial role in site selection operations (Rezaie & Panahi, 2015). As a
result, utilizing GIS-MCDM, leads to solving the spatial problems for which a decision-making
system is required (Jankowski, 1995; Jankowski & Nyerges, 2001; Malczewski, 2006).

In fact, in the GIS-MCDM method, problem solving is achieved by calculating the
weight of each factor with regard to the priorities of different factors using MCDM; then,
factors are weighted in an overlay manner using GIS tools (Malczewski, 2004). The site
selection studies based on city planning development which have already been done by
means of the aforementioned method are retail site locations (Hernandez, 2007; Roig-
Tierno, Baviera-Puig, Buitrago-Vera, & Mas-Verdu, 2013; Suárez-Vega, Santos-Peñate, &
Dorta-González, 2012), car parking areas (Aliniai, Yarahmadi, Zarin, Yarahmadi, & Lak,
2015; Jelokhani-Niaraki & Malczewski, 2015), and conflagration sites planning (Chaudhary,
Chhetri, Joshi, Shrestha, & Kayastha, 2016; Erden & Coşkun, 2010; Lai, Han-lun, Qi, Jing-yi,
& Yi-jiao, 2011). Although, GIS-MCDM offers a lot, it has some shortcomings (Aghdam,
Pradhan, & Panahi, 2017; Aghdam, Varzandeh, & Pradhan, 2016; Dehnavi, Aghdam,
Pradhan, & Morshed Varzandeh, 2015), which have made researchers improve the accu-
racy of this method by combining GIS-MCDM with other intellectual methods and evolu-
tionary algorithms. For instance, it has been utilized for increasing the accuracy of the
results of site selection (Aydin, Kentel, & Sebnem Duzgun, 2013; Kuo & Liang, 2011;
Tabari, Kaboli, Aryanezhad, Shahanaghi, & Siadat, 2008). Tehran, as the capital city of Iran,
has experienced a vast growth in its population and extent. In many cases, the selection of
a school site has not been systematic enough and, sometimes, schools have been located
in unsuitable places. Therefore, the determination of the suitability of existing schools is
vital in Tehran Metropolitan. The main aim of this study was to determine the suitability of
existing schools and the site selection of new school buildings using two models, namely
the stepwise weight assessment ratio analysis (SWARA) method and a combination of the
SWARA, radial basic function (RBF), and imperial competitive algorithm (ICA)
(SWARA�RBF�ICA) methods in GIS. The main difference between this study and the liter-
ature is that this study tries to combine (ensemble) the SWARA decision-making method
by RBF and ICA data-mining techniques to eliminate gaps of SWARA algorithm and to
increase the accuracy of results of site selection.
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7.2 Study Area
Tehran Metropolitan, as the political, economic, and official capital of Iran, is located
between latitudes of 35�330 to 35�500N and longitudes of 51�150 to 51�350E. The city has a
total population of around 12 million inhabitants. Tehran Metropolitan has 22 districts,
which have been developed over the years and, therefore, have various urban design stan-
dards as well as a direct influence on the site selection of schools (Panahi, Rezaie, &
Meshkani, 2014). In order for better comparison of the effects of urban design, District 12
with an old urban design standard is considered along with the adjacent District 6,
with new updated standards (Fig. 7-1). The descriptive details of these two districts are
as follows:

1. District 6: This district has a population of 230,000 in an area of 7.95 km2 located in the
central part of Tehran Metropolitan. District 6 is unique among all Tehran Districts with
respect to its official and services functions. This district is a good representative of all the
recently developed districts with comparatively high urban development standards. It has
a total of 106 schools (Lotfi & Koohsari, 2009).

2. District 12: Located in an area of 8.05 km2 with a population of 240,000, this is one of the
oldest areas in Tehran. The biggest traditional market (Bazaar) and some of the old city
structures are located in District 12. Having an increasing working population and
receiving less attention to the needs of this district means that it needs urgent municipal
attention (Asadollah-Fardi, 2004). There are a total of 137 schools, the majority of which
are old.

7.3 Methodology
As shown in Fig. 7-2, the methodology of this research is divided into four steps, including
the following:

FIGURE 7-1 Study area and the location of school buildings of Districts 6 and 12.
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FIGURE 7-2 Flowchart of the study.
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Step 1: Effective factors
Similar to other facilities, the evaluation of suitability and site selection for educational

centers is affected by several factors and their subfactors; therefore, it is necessary to deter-
mine the most influential factors in the process of site selection. For this purpose, the origi-
nal factors are categorized into five main groups:

• Urban facilities
The urban facility factor includes gas stations, high-pressure gas pipes, and power

lines. The closer the schools are to each of these places, the greater potential danger for
students. Therefore, when selecting school sites, they should be away from these types of
facilities (Bukhari et al., 2010; Dadfar, 2014; EPA, 2011; Mearig et al., 1997; Talam & Ngigi,
2015).

• Population density and proximity to residential areas
The proximity of schools to residential areas with large student population is highly

important, because less distance between students, schools, and their houses reduces the
risks that threaten students (Dadfar, 2014; EPA, 2011; Jamal, 2016; Mearig et al., 1997;
Stewart, 2016; Talam & Ngigi, 2015).

• Accessibility to urban road networks
The distance to streets and highways is another important factor in site selection

for schools (Baas, 1973; Bukhari et al., 2010; Dadfar, 2014; EPA, 2011; Jamal, 2016;
Koc-San, San, Bakis, Helvaci, & Eker, 2013). The closer the schools are to streets,
the easier transportation and, as a result, more time and costs are saved for students
and parents. Furthermore, a short distance to highways may endanger students’
lives due to the possibility of accidents. On the other hand, being away from
highways reduces accessibility to schools, making it more costly and time-consuming.
Therefore, for each school there is an optimum distance to highways. This distance is
100�200 m.

• City services
Healthcare centers, fire stations, police stations, and disaster management centers are

recognized as city services (Baas, 1973; EPA, 2011; Mearig et al., 1997). A short distance
from schools to these centers can facilitate providing services during and after potential
disasters. On the other hand, the proximity of schools to these centers may impose life-
threatening, mental, and social dangers. As a result, the optimum distance for each
school to the aforementioned city centers is 100�200 m.

• Cultural and recreational centers
Proximity to parks and libraries as recreational and cultural centers can increase

students’ spiritual and psychological health and has a direct impact on increasing the
students’ knowledge (Baas, 1973; Bukhari et al., 2010; Dadfar, 2014; EPA, 2011; Stewart,
2016). Also, construction of new schools close to such centers facilitates the students’
access to these facilities and, therefore, there is no need to provide such services inside
schools.
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Step 2: Prioritization and weighing factors using the SWARA algorithm
After extracting/preparing the effective factors for the suitability of schools, each factor is

classified with reference to the aforementioned studies (Aghdam et al., 2016). Then, the
MCDM method is used for calculating the weight of each factor, its subfactors, and also clas-
ses of each subfactor. In this study, the SWARA algorithm, which was first introduced by
Keršuliene, Zavadskas, and Turskis (2010), was used. In this method, each factor is allocated
a rank based on its importance and effectiveness. Subsequently, this method calculates the
weight of each factor in four steps (Fig. 7-2), which are as follows (Keršuliene et al., 2010):

1. Determination of comparative importance of average value ðSjÞ:

Sj 5

Pn
i Ai

n
(7-1)

where n stands for the number of experts, Ai shows the offered ranks by experts for each
factor, and j represents the number of the factor.

2. Determining the coefficient Kj for each criterion as:

Kj 5
1 j5 1

Sj 1 1 j. 1

�
(7-2)

3. Calculating the recalculated weight Qj using the following equation:

Qj 5
Kj21

Kj
(7-3)

4. The relative weights of the factors and subfactors are obtained by the following equation:

Wj 5
QjPm
i51 Qi

(7-4)

where Wj denotes the relative weight of the jth criterion, and m represents the total
number of criteria. Based on the SWARA method and the abovementioned references
the weights of all factors, subfactors, and classes of each subfactors are presented in
Tables 7-1�7-3, respectively.

Table 7-1 Factors Weight Calculation by the SWARA Method

Factor Sj Kj5 Sj 11 Qj5Kj21/Kj
Wj 5

QjPm

i51
Qi

City facilities 1.00 1.00 0.27
Population facilities and proximity to residential areas 0.15 1.15 0.87 0.24
Urban road network accessibility 0.20 1.20 0.72 0.20
City services 0.20 1.20 0.60 0.17
Cultural and recreational centers 0.35 1.35 0.45 0.12
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Table 7-2 Factors and Subfactors Weight Calculation by the SWARA Method

Factor Subfactor
SWARA
Weights (Wj) Factor Subfactor

SWARA
Weights (Wj)

City facilities Gas station 0.4 City services Hospital 0.37
Gas pipeline 0.33 Fire station 0.33
Electrical power

transmission
lines

0.27 Police
station

0.29

Population facilities and
proximity to residential
areas

Population density 0.53 Cultural and
recreational
centers

Park and
open
space

0.51

Residential areas 0.47 Cultural
centers

0.49

Urban road network
accessibility

Highway 0.52

Road 0.48

Table 7-3 Classses of Each Subfactor Weight Calculation by the SWARA Method

Subfactor Class
SWARA
Weights (Wj) Subfactor Class

SWARA
Weights (Wj)

Gas station (m) 0�150 0.06 200�250 0.10
150�300 0.09 250�300 0.08
300�450 0.13 300, 0.05
450�600 0.18 Hospital (m) 0�250 0.10
600�750 0.23 250�500 0.15
,750 0.31 500�750 0.21

Gas pipeline (m) 0�150 0.06 750�1000 0.21
150�300 0.10 1000�1250 0.15
300�450 0.13 1250�1500 0.11
450�600 0.17 1500, 0.08
600�750 0.21 Fire station (m) 0�350 0.13
,750 0.33 350�700 0.15

Electrical power transmission
lines (m)

0�50 0.05 700�1050 0.18
50�100 0.08 1050�1400 0.18
100�150 0.13 1400�1750 0.15
150�200 0.18 1750�2100 0.13
200�250 0.23 ,2100 0.09
,250 0.32 Police station (m) 0�350 0.12

Population density (number
people/km2)

0�104 0.11 350�700 0.15
104�295 0.15 700�1050 0.20
295�485 0.20 1050�1400 0.20
485�678 0.25 1400�1750 0.15
678�1850 0.29 1750�2100 0.12

(Continued)
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Step 3: Optimizing the SWARA weights by RBF and ICA data-mining algorithms

7.3.1 Multicriteria Decision-Making Drawbacks

Despite all the advantages of using MCDM for prioritizing and calculating the weighting
factors, this method has some problems. For instance, the calculated weight for each class
factor is a discrete number; in other words, the calculated weight for minimum, median,
and maximum values for each class is the same (Dehnavi et al., 2015). Furthermore, the
calculated weight values close to the border of two neighboring classes are vastly different
(Aghdam et al., 2016). To reduce the effects of abrupt changes of weight values at the
boundaries of each class, the median of classes of each subfactor is determined. Then, fit
curving is carried out among these medians and the weight of corresponding classes is
calculated.

There are different methods for curve-fitting which can be referred to as statistical,
intelligence, and evolutionary methods. These algorithms have gained a lot of attention
and are widely used in different studies due to their high accuracy compared to tradi-
tional methods including artificial neural network (ANN), particle swarm optimization
(Chen & Leou, 2012; Hong et al., 2017), artificial bee colony (Mansouri, Asady, & Gupta,
2013), ANFIS (Kurtulus & Flipo, 2012), and RBF (Kindelan, Moscoso, & González-
Rodríguez, 2016). However, the results of recent studies indicate that the combination of
ANN with a metaheuristic model can significantly reduce the interpolation errors
(Aghdam et al., 2016, 2017; Dehnavi et al., 2015). Therefore, in this study, two intelligent
algorithms, namely RBF and ICA, are utilized for interpolating the weights of considered
factors.

Table 7-3 (Continued)

Subfactor Class
SWARA
Weights (Wj) Subfactor Class

SWARA
Weights (Wj)

Residential areas (m) 0�100 0.31 2,100, 0.07
100�200 0.24 Park and open

space (m)
0�200 0.32

200�300 0.18 200�400 0.25
300�400 0.14 400�600 0.18
400�500 0.09 600�800 0.13
,500 0.05 800�1000 0.08

Highway (m) 0�200 0.09 ,1000 0.05
200�600 0.27 Cultural centers

(m)
0�100 0.29

600�1000 0.22 100�200 0.24
1000�1400 0.18 200�300 0.18
1400�1800 0.14 300�400 0.14
,1800 0.11 400�500 0.09

Road (m) 0�50 0.25 ,500 0.05
50�100 0.21 , 500 0.05
100�150 0.17
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7.3.2 Radial Basic Function

The ANN is an in-progress method and is currently being used in different fields, for exam-
ple, patterning, pattern-recognition, clustering, predicting, and global approximation, with
successful results. Similar to a biological neural system, the ANN has a large number of nerve
cells (neurons) and a complex relationship between the neurons is their ability to perform
complex processing, learning, and decision-making.

In recent decades, the development of ANN has accelerated and the network structures,
as well as several ANN with multiple applications, have been introduced. RBF, as an ANN
feed-forward, was introduced by Broomhead and Lowe (1988). It has a high speed of learn-
ing and can avoid local minimum problems which have been used in various fields including
earth sciences (Bianchini, Frasconi, & Gori, 1995; Broomhead & Lowe, 1988).

RBF structure is composed of three layers (Fig. 7-3) including the input layer, assuming
that x5 ½x1; x2; . . .; xn�T is the input vector having n dimensions, the nonlinear hidden layer,
which is composed of a series of hidden nodes, and the linear output layer, assuming that
y5 ½y1; y2; . . .; yn�T is the output vector (Buhmann, 2003). In this structure, each hidden-layer’s
node is connected to all input- and output-layer nodes. In fact, each of the hidden-layer nodes
is a cluster data and has its special properties including centurial and effective radius. Each
node has the duty of calculating the distance from the center cluster and vector data input.
Using the basis function in RBF, the distance transforms and the value is the result of the
nodes’ hidden layer. Different functions as basic functions are used in RBF including thin mul-
tiquadrics and inverse multiquadrics, and Gaussian and plate spline functions. The Gaussian
function (Eq. 7-5) has a noticeable flexibility to input data (Park, Chung, Oh, Pedrycz, & Kim,
2011) and hence, it is used as a basic function in the present study.

Фj xð Þ5 exp 2
:x2μj:

2

2σ2
j

 !
; for j5 1; 2; 3; . . .;N (7-5)

FIGURE 7-3 Structure of RBF.
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where x5 ½x1; x2; . . .; xn�T is the input vector data and N is the number of RBF unit. μj;σj

are the center and cluster of the jth RBF unit, respectively, and Øj is the output jth of the
RBF unit.

Finally, for computing the amount of each output layer tie, Eq. (7-6) can be utilized:

yh xð Þ5
Xh
i51

WihФi xð Þ; for h5 1; 2; 3; . . .;N (7-6)

where yh is the output of the hth node of the output layer, assuming y5 ½y1; y2; . . .; yn�T is the
output vector, and Wih is the weight between the ith node of the output layer and the hth is
the node of the hidden layer.

Various training methods for RBF are available, among which ICA, particle swarm optimi-
zation (PSO), and GA (genetic algorithm) can be mentioned. In all the abovementioned
training algorithms, cost function should be used to determine the error rate on training RBF
and to check the accuracy of the training. In the present study, mean square error function
is used as the cost function. The cost function is calculated as:

j5
1

N

XN
k51

ðyk2ŷkÞ2 (7-7)

where yk is the output for the kth node of output layer RBF, ŷk is the target, N is the number
of nodes in the output layer, and j is the value of the error rate on training RBF.

In this study, ICA was used to train RBF and to implement this algorithm, Package
“RSNNS” has been used in “R” language programming.

7.3.3 Imperialist Competitive Algorithm

Another new evolutionary algorithm, which was introduced by Atashpaz-Gargari and Lucas
(2007), designed according to social�political relationships, is the Imperialist Competitive
Algorithm. Today, ICA is an example of a powerful metaheuristic algorithm among research-
ers and is widely used for optimization of problems (Atashpaz-Gargari & Lucas, 2007;
Bashiri, 2014; Emami & Derakhshan, 2015; Karami & Shokouhi, 2012; Nemati, Shamsuddin,
& Darus, 2014; Sharafi, Khanesar, & Teshnehlab, 2016). Like any other evolutionary
algorithm, ICA is made up of a series of components where each component represents one
solution. These components are dispersed in desired search space to find the best solution
for the relevant problem. ICA implementation needs seven steps as follows (Atashpaz-
Gargari & Lucas, 2007).

7.3.3.1 Initial Empires Creation
Each ICA component is called a “country” and is supposed to have n variables; thus, shown
as Country5 ½p1; p2; . . .; pn�. Assuming there was a negative correlation between function,
cost countries, and their power with regard to the cost function for those countries, the
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countries with lower cost are labeled as “imperialist” and the countries with higher costs are
labeled as “colony.” On the other hand, the power of any empire determines the number of
their colonies, so that a strong empire has more colonies and a weak empire has fewer colo-
nies and results in the creation of empires (Fig. 7-4).

7.3.3.2 Assimilation Policy
In this step, colonies of empire are encouraged to move toward their related imperialist. In
fact, this assimilation is a vector which has the magnitude of its random number from the
uniform distribution and the direction of vector is from the colony to their related imperialist
(Fig. 7-5). Supposing that “x” is the amount of assimilation, it is calculated by the following
equation (Atashpaz-Gargari & Lucas, 2007):

FIGURE 7-4 A representation of creating empires.

FIGURE 7-5 Movement of colony toward their relevant imperialist.
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xBUð0;β3 dÞ (7-8)

where β is a number larger than 1, and d is the distance between the colony and the imperi-
alist. θ is a deviation degree for the demarcation line between the colony and imperialist, so
that the colony can search all available spaces while moving toward the imperialist
(Khabbazi, Atashpaz-Gargari, & Lucas, 2009). This number, which is random from the uni-
form distribution, is defined as follows: (Khabbazi et al., 2009):

θBU 2γ; 1 γð Þ (7-9)

where γ is a random degree, representing the colony movement vector with the demarcation
line between the colony and the imperialist, and is usually considered as π=4 (Khabbazi
et al., 2009).

7.3.3.3 Revolution
In the real world, as a result of sudden changes in social�political parameters in some
countries, a phenomenon called a “revolution” takes place. For the implementation of
this phase in ICA, a low percent of the colonies randomly changes its position in the
sociopolitical axis, so that it can be effective on escaping local optima (Mitras & Sultan,
2013).

7.3.3.4 Exchanging the Positions of the Colony and the Imperialist
After finishing the previous phases, the positions of the colonies and the imperialists are
compared using calculated cost function. If the position of colonies is better than that of the
imperialists, they change their positions. Therefore, the colonies will assimilate their new
imperialists (Fig. 7-6).

7.3.3.5 The Calculation of Empires’ Power
A great deal of each empire’s power depends on the power of its imperialist (Atashpaz-
Gargari & Lucas, 2007). Yet, it must be noted that the total power of colonies of each

FIGURE 7-6 Exchanging the position of the colony and the imperialist.
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imperialist can also make a change in the empire’s accumulative power. In order to calculate
the cost of an empire, the following formula is used (Atashpaz-Gargari & Lucas, 2007):

T:C:n 5Cost imperialistn
� �

1 ξmeanðCostðcolonies of empirenÞÞ (7-10)

where T:C:n is the total cost on the nth empire, ξ is the ratio that determines the effective-
ness ratio of average colonies’ cost on the empire’s total cost and moves between 0 and 1. As
the ratio increases or decreases, the effectiveness of an empire’s colonies’ power will have
more and less effectiveness on the empire’s power, respectively.

7.3.3.6 Empires’ Competition
In order to grow more and gain more power than other empires, the empires constantly
compete. This competition is performed according to each empire’s power calculation. Thus,
the most powerful empire annexes the weakest colony of the weakest empire and regards it
as its own colony (Fig. 7-7). The trend continues until the weak empire has no colony and
only the imperialist remains. As a result, the empire collapses and the imperialist is annexed
to another empire as a colony itself. Therefore, firstly the cost of empire is normalized by the
following formula (Atashpaz-Gargari & Lucas, 2007):

N:T:C:n 5max T:C:if g2T:C:n i5 1; 2; . . .;Nimp (7-11)

FIGURE 7-7 Showing of competition between empires in possession of the weakest colony.
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where T:C:n is the total cost of nth empire and N:T:C:n is the normalized total cost. Now the
possession probability of each empire is defined as in Eq. (7-12) (Atashpaz-Gargari & Lucas,
2007):

Ppn 5
N:T:C:nPNimp

i51 N:T:C:i
(7-12)

For specification of that empire which holds the possession of the weakest colony of the
weakest empire, the vector P consists of:

P5 ½Pp1 ;Pp2 ;Pp3 ; . . .;Ppimp � (7-13)

Therefore, the same size vector as P is made whose components are accidental numbers
with uniform distribution (Atashpaz-Gargari & Lucas, 2007):

R5 r1; r2; r3; . . .; rimp

� �
r1; r2; r3; . . .; rimpBUð0; 1Þ (7-14)

Then, the vector D is obtained by Eq. (7-15):

D5P2R5 D1;D2;D3; . . .;Dimp

� �
5 Pp1 2 r1;Pp2 2 r2;Pp3 2 r3; . . .;Ppimp 2 rimp

� � (7-15)

The indicated colonies are given to those empires which have vector D, wherein the cor-
related index in this vector is senior to other empires.

7.3.3.7 Convergence
Phases 2�6 go on so long as to lead to one empire gaining victory against all other empires
and annexing all colonies and the imperialists as its new colonies; hence, making them col-
lapse and only one imperialist remains. It must be noted that in some optimization pro-
cesses, due to specific conditions, the condition for convergence can exist an utmost number
of renovations or having snatched enhancement in target function (Yousefi, Darus, &
Mohammadi, 2012). Additionally, in order to implement this algorithm and optimizing RBF,
package “ICAFF” has been used in “R” language programming.

7.3.4 Combination of SWARA, RBF, and ICA

As an example in the study area, the weight of each class is determined by defining classes
which are made according to their distance from the fire station and using the experts’ opi-
nions and also applying the SWARA method as depicted in Table 7-2. Then, the average of
class amounts and their weights is determined via fit curving by combination of RBF and
ICA (Fig. 7-8).

This method was also used for optimizing other classes of each factor. The result is shown
in a GIS software environment (Figs. 7-9 and 7-10).
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7.4 Results
After detecting the effective factors, subfactors, and their classes, their weights were calcu-
lated by the SWARA method. Following the optimization of weights for each class of
subfactor, the GIS tool was used for weighting overlaying factors and subfactors by the

FIGURE 7-8 The calculated weight factors by SWARA for each class of fire station and fit curving of weights for
SWARA by combination of RBF and ICA.

FIGURE 7-9 (A) The geographical location of fire stations; (B) maps of calculated weight classes for fire stations
using the SWARA method; and (C) maps of calculated weight classes for fire stations using the combination of
SWARA_ RBF and ICA methods.
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combination of the SWARA�RBF�ICA method. And then, it eventually led to the produc-
tion of five suitability maps for urban facilities, accessibility to urban road network, popu-
lation density and proximity to residential areas, city services, as well as cultural and
recreational centers, until a final map entitled the “suitability map” was formed.

FIGURE 7-10 (A) Gas station; (B) gas pipeline; (C) electrical power transmission lines; (D) population density; (E)
proximity of home; (F) highway; (G) urban road network; (H) hospital; (I) fire station; (J) police station; (K) park and
open spaces; and (L) culture center.
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One of the goals of the present study was to evaluate the suitability of existing schools in
accordance with the developed maps for two districts of Tehran Metropolitan. Therefore,
they were categorized into five groups, namely very good, good, medium, bad, and very bad.

Generally, standard classification schemes are used to classify data. The four most com-
mon schemes are natural breaks, quantile, equal interval, and standard deviation. In this
study, equal interval has been used because class ranges’ value in these methods had to be
equal in order to be able to compare them with each other (Rezaie & Panahi, 2015).

Furthermore, using GIS, the value of each school with three zoning maps was
determined.

Also, as represented in Fig. 7-11, the relative score of each school location in each cate-
gory was determined using frequency percentage as follows.

7.4.1 The Location of Schools Regarding Urban Facilities

Based on the calculated weight factors from SWARA, the distances to gas stations, gas pipe-
lines, and overhead power lines have the most influence on the suitability of schools, respec-
tively (Tables 7-2 and 7-3).

The calculated weight of classes of subfactors indicated that the lower distance from these
subfactors has the lowest weight. Also, those classes that have the greatest distance from
these subfactors have more weight.

In addition, the results presented in Fig. 7-11A for both methods showed that the loca-
tions of schools in both study districts are not very good based on these subfactors, and thus
a considerable number of schools are located in “bad” and “very bad” areas. Also, the num-
ber of schools located in “good” and “very good” areas in District 12 is higher than in
District 6, which shows a better condition for the former. This is mainly due to the fact that
District 12 is downtown of Tehran and hence more attention has been paid in construction
of infrastructures in this district in order to reduce the negative effects of improper site selec-
tion of buildings to the minimum.

To compare the results of implemented methods, as the first step, some schools were
chosen with their suitability and categorized as “very good” by using SWARA and a combina-
tion of SWARA�RBF�ICA, respectively. As the second step, those selected schools and city
facility subfactors were located by GIS in order to produce a new map (Fig. 7-12A). The
resulting map showed that the distance between the selected schools and subfactors of city
facilities was high, that is, their distances were optimal. Consequently, it can be concluded
that the suitability of those schools is “very good.” Therefore, the results of combining
SWARA�RBF�ICA have a higher accuracy than the SWARA method alone.

7.4.2 The Location of Schools Regarding the Population Density and
Proximity to Residential Areas

Regarding school suitability, the results of the determined weight factors from SWARA indi-
cated that population density is slightly more influential than proximity to residential areas
(Tables 7-2 and 7-3). The calculated weight factors indicated that a class with more
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FIGURE 7-11 (A) Urban facilities; (B) population density and proximity to residential areas; (C) accessibility to urban
road network; and (D) city services; (E) cultural and recreational centers.
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population has the highest weight and a class with lower population has a low weight; and
hence, there is a direct correlation between population density and the number of schools.
Regarding the proximity to residential areas, a class with shorter distance to residential areas
gains more weight and hence is more suitable for school buildings (Tables 7-2 and 7-3).

According to the results of the SWARA method and the combination of the
SWARA�RBF�ICA methods, regardless of the utilized method, all schools are located in
“good” and “very good” areas. Also, the number of schools in “good” areas in District 6 is
greater than in District 12. However, the number of schools in “very good” areas in District 12
is greater than in District 6. The reason for this can be related to residential regions; since
District 12 is more heavily populated than District 6. Also, the main goal of urban planning for

FIGURE 7-12 (A) Urban facilities; (B) population density and proximity to residential areas; (C) accessibility to urban
road network; (D) city services; and (E) cultural and recreational centers.
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District 6 was to establish government and nongovernment offices; however, the main emphasis
in urban planning of District 12 has been on developing market areas and residential regions.

Comparing the results for the utilized methods shows a vast difference between the num-
ber of schools in “good” and “very good” areas. As an example, while the SWARA method
gives 87.85% and 11.21%, respectively, for schools in District 6 as “good” and “very good”
areas, these numbers for the combination of SWARA�RBF�ICA methods are 94.39% and
1.87%, respectively. In other words, comparing the results of these two methods shows utili-
zation of the combination of SWARA, RBF, and ICA methods categorizes higher percentages
of school building in “very good” areas than only the SWARA method (Fig. 7-11B). In order
to determine the accuracy of the two utilized methods, some schools were selected which
have been recognized as “very good” in the combination of SWARA�RBF�ICA methods,
which have been recognized as “good” in the SWARA method. According to the developed
map, the selected schools and factors of population facilities, as well as their proximity to
residential areas, distances between those schools and the abovementioned factors are low.
It is concluded that these schools are “very good” and, as a result, the combination method
leads to more accurate results (Fig. 7-12B).

7.4.3 The Location of Schools Regarding Accessibility to the Urban Road
Network

The results of the SWARA method showed that proximity to the road network is marginally
more important than proximity to highways in determination of school suitability (Tables 7-2
and 7-3). Based on the calculated weight factors, the classes related to 200�600 m from high-
ways subfactor, is the optimized distance that has the highest weight. Moreover, classes of
minimum and maximum distances from the highway have been calculated that allocated
less weight. That is to say, schools must be an optimized distance away from the highway
which shows many schools were constructed with an acceptable distance to highways. Also,
in the road network subfactor, a class that is the closest to the road network, maximum
weight is calculated and for a class that has the maximum distance, the minimum weight is
calculated (Tables 7-2 and 7-3). In other words, schools close to the road network are ideal
in this regard (Fig. 7-11C).

Also, the results indicated that the majority of schools in the two considered districts are
located in “good” or “very good” areas. The sums of schools located in these areas are com-
parable in these districts. However, the schools located in “very good” regions in District 6
are much larger than in District 12. Furthermore, the two utilized methods showed a differ-
ence up to 14%. By selecting some of the schools that have been designated as “very good”
in the combination method and as “good” in the SWARA method and by adding them to the
maps of road network and highways, it is concluded that these schools are close to roads
network (Fig. 7-13A); however, they have a 200�600 m distance from highways.
Consequently, these schools are classified as “very good,” which is accurately identified by
the combination of SWARA�RBF�ICA method (Fig. 7-12C).
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7.4.4 The Location of Schools Regarding City Services

The results of this section showed that in the SWARA method; the distances to hospitals, fire
stations, and police stations have the highest influence on suitability of schools, respectively.
The result of weight factors shows schools should be placed a safe distance from hospitals,
fire stations, and police stations, at 500�1000, 700�1400, and 700�1400 m, respectively
(Tables 7-2 and 7-3).

The results illustrated that a very small number of existing schools that are located in
the studied districts are regarded as “very good” with respect to factors of city services.
The majority of schools in District 6 are located in “very bad” areas; whereas in District 12,
the numbers of these schools are low, which proves the better condition of school buildings
in this district. Generally, it is concluded that site selection of schools in these districts was
made while disregarding city services factors. Moreover, the two methods in this study show
a maximum of 10% difference in the results (Fig. 7-11D). For determining the accuracy of
these two utilized methods, similar to the above sections, some schools are “very good” in
the combination method while in the other method (SWARA) they have been recognized as
“good.” It is observed that these schools are located an optimum distance from city service
subfactors. As a result, the combination of the SWARA�RBF�ICA method is more accurate
with respect to factors of city services (Fig. 7-12D).

7.4.5 The Location of Schools Regarding Cultural and Recreational
Centers

According to the results of the SWARA method, the proximity of parks has marginal superior-
ity in the determination of schools’ suitability, compared to the proximity to cultural centers.
The results of weight factors indicated that classes with less distance from these two

FIGURE 7-13 Sample schools located near: (A) street and (B) park.
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mentioned factors have the highest weight, which shows their higher suitability for being the
place for “schools.” In other words, schools closest to these factors will be the most reliable
to take advantage of the provided services (Tables 7-2 and 7-3).

The results in this part clearly showed that few schools of the studied districts are located in
“very good” areas. Also, the number of schools in “very good” and “good” areas in District 12 is
more than in District 6. Moreover, the number of schools in “very bad” areas in District 6 is
more than in District 12. The main explanation for this result is the higher population of
District 12 compared to District 6, which has received better attention from the municipality for
the development of cultural centers and parks in District 12 (Fig. 7-11E). For validation of these
two methods, the numbers of schools which have been recognized as “very good” in the com-
bination of the SWARA�RBF�ICA method were chosen that have been in “good” areas in the
SWARA method. By locating parks, cultural centers, and selected schools in GIS, it becomes
clearly that those schools are located at the ideal distance from the abovementioned factors
(Fig. 7-13B). Consequently, they are in the “very good” class. Also, the accuracy of the combina-
tion of the SWARA�RBF�ICA method is better than the SWARA method alone (Fig. 7-12E).

7.5 Discussions
The comprehensive suitability map is provided by weighted overlaying of five maps, includ-
ing urban facilities, accessibility to urban road network, population density, and proximity to
residential areas, city services, cultural and recreational centers using calculated weight with
SWARA (Table 7-1). This map can be used for determining the suitability of the locations of
existing schools; and is used for identifying the places that require the construction of new
schools, as follows:

A. Evaluating the suitability with the overall appearance of schools
By placing the schools on the comprehensive suitability map using their geographical

location and determining the value of each school, the suitability of schools is classified
into four groups, namely: “very bad,” “bad,” “good,” and “very good” (Fig. 7-14).

Since each of the aforementioned maps resulting from the combination of the
SWARA�RBF�ICA method is more accurate than the SWARA method, the integrated
map from the weighted superposition of these maps by the former method is more
accurate than that based on the SWARA method. Consequently, in order to determine
the suitability of schools in the final map, only the combination method was utilized.

The results showed that the number of schools in Districts 6 and 12 located in “bad”
and “very bad” areas is significantly higher than those located in “good” and “very good”
areas. Also, the numbers of schools in both districts in “bad” areas are larger compared
to those located in “very bad” areas. However, the number of schools in Districts 6 and
12 in “very bad” areas is 13.08% and 2.92%, respectively. Moreover, the numbers of
schools in Districts 6 and 12 in “good” areas are 24.30% and 40.80%, respectively.
Consequently, the overall condition of schools in District 12 is better than in District 6.
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The results of these two implemented methods have up to 5% differences, which
proves the validity of this method. The combination of the SWARA�RBF�ICA method
eliminates the SWARA method drawbacks and leads to 5% more optimized results.
Considering the total number of students involved in this study, the slight improvement
was achieved thanks to the hybrid method and made a large difference.

B. Site selection for building new schools
For site selection of new schools, the results of Fig. 7-14 were used. Based on Fig. 7-14,

the most preferred places for constructing new schools are the most preferred areas where
no other school is located nearby. To this end, a 500 m boundary was applied to each of
the existing school buildings and “erasing” the areas inside, the most preferred areas were
derived. It is observed that the most preferred areas for new schools are located in the
northern parts of District 6 (Fig. 7-15).

7.6 Conclusions
The goal of this study was to determine suitability of schools with regard to factors including
city facilities, population and proximity to residential areas, access to roads, city services, rec-
reational centers, and cultural centers, as well as site selection for building new schools using
GIS and two methods: SWARA and a combination of SWARA�RBF�ICA algorithm.

The results of this research can be divided into four units:

1. Determining the spatial optimality and school site selection depends on parameters such
as urban planning, social sciences, educational sciences, and so on. Using them can offer
us a whole new view in this trend.

2. Using MCDM methods including SWARA can help to determine spatial optimality, and
site selection has an impressive influence on the appointment of effective weight
parameters. However, the SWARA method is similar to other MCDM methods and always
has gaps that could be closed by using hybrid methods such as the combination of the
SWARA�RBF�ICA algorithm to improve the results. In this study, in all five prepared

FIGURE 7-14 Final map of school location suitability.
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maps for Districts 6 and 12 in Tehran city, the results showed that a combination
method/hybrid method was better than the SWARA method alone.

3. Using the abovementioned method, we can survey a city from various sites and various
points of view and extract optimum and nonoptimum areas in each of the city parts.

4. As the schools are buildings that many students use, optimization of such researches has
many advantages for students and their families, including the following: (1) decreasing
the possible dangers which may threaten students and their families, (2) reducing the city
and family costs, and (3) increasing education efficiency.

To meet these requirements, this study has shown that the combination of the
SWARA�RBF�ICA method could optimize the final results; therefore, it can be used for site
selection in various fields.
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8
Application of SWAT and MCDM
Models for Identifying and Ranking
Suitable Sites for Subsurface Dams

Javad Chezgi
SARAYAN FACULTY OF AGRICULTURE, UNIVERSITY OF BIRJAND, BIRJAND, IRAN

8.1 Introduction
Approximately, one-third of the total nonglaciated land areas of the world are covered with
arid and semiarid regions (Walton, 1969). A characteristic of the arid and semiarid regions of
the world is surface water scarcity because of deficient precipitation and very high evapora-
tion. This causes to seasonal rivers with extreme flow variability and distinct periods of runoff
separated by periods of no flow (Knighton & Nanson, 2001). However, the problem of water
shortage in dry areas is not only a shortage of rainfall throughout the season and a uniform
rainfall distribution, but, also lakes with potential for storage of runoff, especially in periods
of drought or even flooding (Olufisayo, Olufayo, Otieno, & Ochieng, 2009). An important part
of southwest Asia is located in an arid region, particularly in Iran, which constantly suffers
from water shortages and drought. Furthermore, the severity, duration, and frequency of
drought have been increased over the last three decades in Iran (Kousari et al., 2014).
Because of uneven distribution of rainfall both spatially and temporally, most of the annual
precipitation falls from October to April (Malekinezhad, 2009). In most of the country, the
main source of water is precipitation, which normally amounts to 251 mm or 413 billion
cubic meters, annually (Mahdavi, 1995). This precipitation depth is less than one-third of
worldwide mean precipitation (831 mm) and about one-third of the mean precipitation in
Asia (732 mm) (Kardavani, 2000; Malekinezhad, 2009). Therefore, water is a basic and essen-
tial need for mankind worldwide, especially in arid regions, because water is the centerpoint
of efforts to address food security, poverty reduction, economic growth, energy production,
and human health. In the absence of a permanent surface water and reliable, groundwater
and water-harvesting structures in arid and semiarid regions play a significant role in irriga-
tion and maintaining the sustainability of water resources (Berhane et al., 2016). In these
regions, seasonal water storage can be an important strategy for transition from water
shortages (Lasage, Aerts, Mutiso, & de Vries, 2008). One of these regional small storage
methods is subsurface dams. These barrages are structures capable of blocking the
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subsurface flow and hence retaining the water in the zonal aquifer or deviating it to an adja-
cent aquifer (Nilsson, 1988). Th groundwater level may be locally increased, giving greater
and easier access to water resources (Robaux, 1954). Barrages are generally built across river
channels, where there are large seepage flows (Forzieri, Gardenti, Caparrini, & Castelli,
2008). For construction of subsurface dams, the identification of suitable sites is complex
and difficult (Grimaud, 2000); therefore, it requires integration of many conditioning factors.
One of the best ways for reducing the time and expenditure required is combined geographic
information systems (GIS) and remote sensing (RS) techniques, because have the excellent
ability to display various parameters simultaneously. Thus, they enable quick decision-
making and efficient water resources management through identifying special areas, which
can be used as potential sites for special purposes (Jamali, Olofsson, & Mörtberg, 2013). In
the last few years with the aid of this functionality, GIS has been used in order to facilitate
and lower the cost of the process of selection (Kao, Lin, & Chen, 1997; Siddiqui, Everett, &
Vieux, 1996). One of the most important issues in water supply management is selecting the
optimal strategy for water supply in rural and urban areas. The MCDM methods are one of
the applicable approaches for solving these problems (Minatour, Bonakdari, Zarghami, &
Bakhshi, 2014). MCE (Multi-Criteria Evaluation) in a GIS environment is a procedure to
identify and compare different solutions for a spatial problem based on a combination of
multiple factors (Malczewski, 1999). More authors have combined MCDM with GIS for land-
fill site selection (Bahrani, Ebadi, Ehsani, Yousefi, & Maknoon, 2016; Chang, Parvathinathan,
& Breeden, 2008; Geneletti, 2010). Several authors have applied MCDM models with GIS for
locating appropriate sites for subsurface dam construction and water harvesting using differ-
ent factors such as topography, geology, land cover, hydrology, and hydrogeology (Chezgi,
Pourghasemi, Naghibi, Moradi, & Kheirkhah Zarkesh, 2016; Jabr & El-Awar, 2004; Jamali
et al., 2013; Jamali, Mörtberg, Olofsson, & Shafique, 2014; Rezaei, Rezaie, Nazari-Shirkouhi,
& Jamalizadeh Tajabadi, 2013; Sehat, Kamanbedast, & Asadilout, 2013).

Forzieri et al. (2008) introduced a new methodology for the preselection of suitable sites
for surface and underground small dams in arid areas of Kidal, Mali County. In the first step,
66 sites were identified as appropriate areas. In the secondary step, based on Google Earth
(GE) and filed surveys, 17 sites passed the proposed selection criteria. The results showed
that three sites had the highest scores for constructing of a dam.

Quilis et al. (2009) modeled hydrological processes of sand-storage dams on different spa-
tial scales in the Kitui District in Kenya. They modeled two scenarios including a single dam
and several dams. The results from a measurement campaign on hydrological processes in
the surroundings of a single dam indicated that groundwater levels increase quickly after
precipitation and recession of groundwater levels during the dry season. Also, the results
indicated that interdam distance is an important factor in the second scenario. The results
from measurements and modeling confirmed that in the dry season, sand-storage dams can
effectively increase water availability. The described model showed high sensitivity for para-
meters like thickness and hydraulic conductivity of the shallow aquifer on the riverbanks and
thickness of the sand layer in the riverbed.

Kadam, Kale, Pande, Pawar, and Sankhua (2012) used the Landsat Thematic Mapper
(TM) imagery and other collateral data to identify potential rainwater-harvesting sites in a
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basaltic region of western India. In the first step, several layers such as land use, slope, soil,
drainage, and runoff were used. In the next step, an Arc-CN runoff tool was used to create
the curve number (CN) for deriving runoff. Afterwards, based on the field survey, sites that
gathered of Boolean algorithm, in the follow checked with field survey and Google Earth soft-
ware and verified. The result indicated that the method developed in this study can be used
in large catchment areas.

Jamali et al. (2014) used the multicriterion analysis to locate suitable sites in the construction
of underground dams in the northern parts of Pakistan. In this research, different factors includ-
ing, geology, slope, land cover, soil depth, and topographic wetness index (TWI) were used. Two
weighting techniques, that is, the analytic hierarchy process (AHP) and the factor interaction
method (FIM), were employed and compared. The results showed that the suitability map
derived from the AHP yielded about 3% (16 km2) of the total area as the most appropriate, about
4% (22 km2) as moderately suitable, and about 0.8% (5 km2) as the least applicable.

Chezgi, Pourghasemi, Naghibi, Moradi, and Kheirkhah Zarkesh (2016) tried to identify proper
areas for underground dam construction considering five criteria, namely distance to faults,
slope percent, qanat, geology, and land use in Alborz Province, Iran. In this research, SMCE
(Spatial Multi-Criteria Evaluation) with emphasis on an AHP model and GIS techniques was
used. The first phase brought to light 51 potential sites with highly distinctive characteristics.
Only 31 of these sites passed the second phase of selection. In the final stage, these sites were
ranked based on AHP and SMCE weights. Then, 6.5% of these sites were recognized as the most
fitting for the construction of underground dams; 87% of the study area was suitable and 6.5%
had the lowest potential for the construction of underground dams.

Although, there are many studies for subsurface dam construction (Borst & de Haas,
2006; Ertsen & Hut, 2009; Lasage et al., 2008; Mesfin, 1999; Quilis et al., 2009) and locating
(Dorfeshan, Heidarnejad, Bordbar, & Daneshian, 2014; Forzieri et al., 2008; Jamali et al.,
2013; Jamali et al., 2014; Kadam et al., 2012; Rezaei et al., 2013; Sehat et al., 2013), there is
no study measuring and evaluating the subsurface flows that play a great role in identifying
these dams. Therefore, in this research we tried to develop a new methodology for identify-
ing suitable sites in the construction of subsurface dams in southern Iran. The SWAT distri-
bution model was proposed to measure surface, subsurface flow, and water quality in the
study area. Moreover, a specific aim was to test and compare two weighting and MCDM
techniques, namely, AHP and TOPSIS, for solving decision problems in order to evaluate
and rank a suitable site for the subsurface dam’s construction.

8.2 Study Area and Data Analysis
Keryan Region, with 2657 km2 area, is located in eastern Hormozgan Province, Iran. The
study area lies approximately between 25�080N to 26�520N latitudes and 57�050E to 57�520E
longitudes. According to the Mazabi Weather Station, 25-year average precipitation in the
region is the 204.3 mm. Average temperature in the region is about 28.42�C (Hormozgan
Meteorological Organization). The highest elevation in the area is 1720 m in the east, and
the lowest is 42 meters in the output from the study area (Fig. 8-1).
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The study area is formed by two important sub-basins, where the Keryan and Senderek
Rivers join together at the Mazabi Hydrometric Station, and the end is connected to Oman
Sea. The geology of the study area varies from Paleozoic to Cenozoic, but 90% of the region
is Cenozoic. In general, 30% of lithological units of Cenozoic are shale, mudstone, and silt
shale, with minor amounts of sandstone and limestone; whereas, 10% is piedmont fan and
valley terrace deposits, stream channel, braided channel, and flood plain deposits
(Geological Survey of Iran) (Table 8-1). According to the geological map of the study area
(Fig. 8-2), most of area has moderate and highly susceptible erosion that is not suitable for a
surface dam, because the reservoir would rapidly fill with sediment.

The Natural Resource and Watershed Management Organization constructed two subsur-
face dams (Senderek and Tomboo) in the study area with the following attributes.

Senderek subsurface dam lies in latitudes of 26�420N to 57�310E and Tomboo subsurface
dam at longitudes of 26�500N to 57�250E. The subsurface dams are located to the northeast of
Minab City (Table 8-2).

In this study, for calibration and validation of models, these dams were used.

8.2.1 Data

Different spatial data were used in the analysis to select suitable sites for the subsurface
dam. In the first step, a Digital Elevation Model (DEM) in raster format by 30-m spatial reso-
lution was prepared with topography maps. The slope and stream layers were extracted from
this DEM. In the secondary step, geology and fault maps in a vector format were obtained
from the Geological Survey of Iran (GSI). Land cover data (30 m resolution) were extracted
from Landsat/8 satellite images (NCCI) (June, 2014), and checked in field surveys.
Subsequently, for running the SWAT model, weather daily data (synoptic stations) of Minab,
Jask, and Roudan, which were obtained from the weather survey of Hormozgan Province,
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FIGURE 8-1 The case study area (Chezgi, Malekinezhad, Ekhtesasi, & Nakhei, 2016).
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Table 8-1 Types of Geological Formation of the Study Area (Geological Survey of Iran)

FID
Lithological
Units Description Age Age_Era Class

1 om3 Pelagic limestone, radiolarian chert,
and shale in association with basalt
and basaltic andesite pillow lava

Late Cretaceous Mesozoic Moderate

2 tm Tectonic melange—association of
ophiolitic components, pelagic
limestone, radiolarian chert, and
shale with or without Eocene
sedimentary rocks (colored Melange
complex)

Triassic�Paleogene Mesozoic�Cenozoic Moderate

3 Ef Eocene flysch in general, composed of
shale, marl, sandstone,
conglomerate, and limestone

Eocene Cenozoic Moderate

4 EOf Rhythmically bedded sandstone and
shale with volcanoclastic sandstone,
minor limestone and tuff (e.g., Ruk,
Nargakan, Mashkid units, and
Kamsefid sandstone)

Eocene�Oligocene Cenozoic Moderate

5 KPedu Undifferentiated limestone, basic to
intermediate lava and pillow lava,
metavolcanics, phyllite, schist,
sediments, metasediments with
minor tuff, and intrusive rocks
(Dur�Kan complex)

Cretaceous�Paleocene Mesozoic�Cenozoic Moderate

6 Kurl Undifferentiated pelagic limestone and
radiolarian chert

Late Cretaceous Mesozoic Moderate

7 M1f Rhythmically bedded sandstone,
calcareous sandstone, mudstone,
gypsiferous mudstone, and shale
(e.g., Pishin and Dehdiran units)

Oligocene�Miocene Cenozoic Moderate

8 MuPlaj Brown to gray, calcareous, feature-
forming sandstone and low-
weathering, gypsum—veined, red
marl, and siltstone (Aghajari FM)

Miocene Cenozoic High

9 Mmn Low-weathering gray marls alternating
with bands of more resistant shelly
limestone (Mishan FM)

Miocene Cenozoic High

10 M1-2m Shale, gypsiferous shale, gypsiferous
mudstone, and silty shale with minor
sandstone and limestone (e.g., Sabz
and Ghasr Gand units)

Oligocene�Miocene Cenozoic High

11 MPlc Polymictic conglomerate, sandstone,
and mudstone (e.g., Tahtun unit and
Palami conglomerate)

Miocene�Pliocene Cenozoic Moderate

(Continued)
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Iran, were used. Soil data (30 m resolution) in a vector format were obtained from the
Natural Resource and Watershed Management Organization of Hormozgan Province
(NRWMSI). Hydrometric data were obtained from Iran Water Resource Management
Company (IWRMC). The Soil Water Assessment Tool (SWAT) is a physically based, semidis-
tributed and process-oriented eco-hydrological model to predict discharge, sediment yield,
and nutrient and pesticide loads under different land use or climate change scenarios
(Neitsch, Arnold, Kiniry, & Williams, 2005), that were used in this research to obtain water
quantity and quality.

Table 8-1 (Continued)

FID
Lithological
Units Description Age Age_Era Class

12 M2-3s Sandstone, siltstone, conglomerate,
shale, mudstone, and shell bads
(e.g., Darpahn and Jaghin units)

Miocene Cenozoic High

13 OMf Rhythmically bedded sandstone and
shale, with minor siltstone and
mudstone (e.g., Angohran unit)

Oligocene�Miocene Cenozoic Moderate

14 OMql Massive to thick-bedded reefal
limestone

Oligocene�Miocene Cenozoic Moderate

15 Plbk Alternating hard or consolidated,
massive, feature-forming
conglomerate and low-weathering
cross-bedded sandstone (Bakhtyari
FM)

Pliocene Cenozoic Moderate

16 Plc Polymictic conglomerate and sandstone Pliocene Cenozoic Moderate
17 Pzkb Undifferentiated basic schist, pelitic

schist, psammitic schist, calc-silicate
rocks, amphibolite, recrystalized
limestone, marble and phyllite
(Bajgan metamorphic complex and
Deyader complex)

Paleozoic Paleozoic Moderate

18 Qal Stream channel, braided channel, and
flood plain deposites

Quaternary Cenozoic High

19 Qft2 Low-level piedment fan and valley
terrace deposits

Quaternary Cenozoic High

20 Qft1 High-level piedmont fan and valley
terrace deposits

Quaternary Cenozoic Moderate

21 Qft2 Low-level piedment fan and valley
terrace deposits

Quaternary Cenozoic High

22 sm2 Sedimentary melange-sheared and
boudined sediments with
nonrecognizable stratigraphy,
containing tectonic blocks of
Cretaceous to Miocene age

Miocene Cenozoic Moderate
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8.2.2 Methodology

This research tries to select suitable sites for subsurface dams using ArcGIS and Boolean
algorithm, also evaluating and ranking suitable sites with TOPSIS and AHP models in
Hormozgan Province, Iran (Fig. 8-3).

N

S

W E

300000

Geology

30
00

00
31

00
00

32
00

00
33

00
00

34
00

00
35

00
00

30
00

00
31

00
00

32
00

00
33

00
00

34
00

00
35

00
00

36
00

00

320000 340000 360000 380000

300000 320000

EOf

Ef

KPedu

Kurl

M1-2m

M1f

M2-3s

MPIc

Mmn

MuPlaj

OMf

OMql

Plbk

Plc

Pzkb

Qal

Qft1

Qft2

om3

sm2

tm
0 5 10 20 30 40

Kilometers

340000 360000 380000

FIGURE 8-2 Geological map of the study area (Geological Survey of Iran).

Table 8-2 Characteristics of Subsurface Dams (Forests, Range, & Watershed
Management Organization)

Subsurface
Dam Region

Site
Name Longitude Latitude

Watershed
Area (km2)

Dam
Height
(m)

Dam Axis
Length (m)

Width of
Dam (m)

Discharge
(L/s)

Construction
Year

Tomboo
subsurface
dam

South
Iran

Tomboo 552740 2954347 63 7 90 2 30 2008

Sendrek
subsurface
dam

South
Iran

Sendrek 542186 2969390 360 7 380 2 25 2010
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8.2.2.1 Identification and Selection the Suitable Sites (Boolean Algorithm)
In this step (phase 1), based on literature reviews and data availability (Chezgi,
Pourghasemi, et al., 2016; Forzieri et al., 2008; Jamali et al., 2014; Rezaei et al., 2013; Sehat
et al., 2013), subsurface dam site selection factors including distance to faults, slope percent,
geology, and land use were selected.

In the following, you can see details of these layers/factors and their importance.

8.2.2.2 Fault Criteria
Faults and fractures, which are created by earthquakes, cause the escape of water rapidly
from dam reservoirs (Hilley, Arrowsmith, & Amoroso, 2001). Therefore, subsurface dams cre-
ated on a fault are highly dangerous because, if the faults move, and an earthquake occurs,
then the dam is fractured. This creates a route for water escaping from the reservoir; hence,

Identifying and ranking the suitable sites for subsurface dam

Soil and water assessment tools
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Water quantity
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Axis depth

Reservoir slope
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Ranking the suitable sites for
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FIGURE 8-3 Flowchart of the methodology used in the study area.
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appropriate sites for underground dams are not selected near faults (Chezgi, Pourghasemi
et al., 2016; Forzieri et al., 2008). According to expert opinions (judgments), the optimal
distance from a fault was calculated to be more than 200 m in the study area (Fig. 8-4).

8.2.2.3 Slope Percent
Typically, slopes have an important role in reservoir volume, infiltrated water to ground, and
flow speed (surface and subsurface) (Petersen, 2013). Therefore, by increasing the slope per-
cent, we observe a decrease in reservoir volume and infiltrated water and subsequently
increased flow speed, as they impact on one other. In general, the topographical gradient of
the construction sites is between 0.2% and 4% (Nilsson, 1988). Fig. 8-5 shows the slope map
of the study area used in this study.

8.2.2.4 Geology
Subsurface dams can be built in riverbeds with any height of riverbanks, except in wandering
riverbeds, because such riverbeds will drain water out of a subsurface dam (Petersen, 2013).
Therefore, geology is an important factor for the quantity and quality of water in the reser-
voir, as coarse gravel and sands can store and retain up to 35% of their total volume as water
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(Petersen, 2013). The subsurface reservoir is recharged through flash floods following rain-
storms. When the reservoir is filled, surplus water passes through the dam without infiltra-
tion. The stored water is captured for use by digging a scooping hole, or constructing an
ordinary well or tube well (Tuinhof & Heederik, 2003) (Fig. 8-2). Details of a geology map
are given in Table 8-1.

8.2.2.5 Land Use
According to land use/land cover types, some areas were restricted for construction of sub-
surface, dams including urban areas, industrial areas, perennial rivers, and lakes. River beds
located within this area were eliminated, and other land covers retained (Jamali et al., 2014)
(Fig. 8-6).

8.2.3 Nomination Criteria for Evaluating and Ranking Suitable Sites

In general, 10 factors were used in this study, including water quantity (surface and subsur-
face), water quality (surface and subsurface), length and depth of axis of the dam, reservoir
storage coefficient, reservoir volume, lithology of the embankment, slope percent, water
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demand (people, agriculture, and industry), and accessibility (village, road, and quarries).
Then, the SWAT model as a semidistributed model was used for water quantity and quality
in the study area. The SWAT model (Arnold, Allen, & Bernhardt, 1993) is a surface watershed
model that simulates the hydrology, taking into account the spatial variability of data for weather,
soil, topography, and vegetation by GIS interfaces. The simulations and outputs are organized
into hydrologic response units (HRUs): areas of homogeneous land use, management, and soil
characteristics. Within SWAT, runoff is simulated separately for each HRU, aggregated at the sub-
watershed level (semidistributed model), and then routed to calculate the total runoff and pollut-
ant delivery. The hydrological cycle used in SWAT includes precipitation (including snowfall),
evapotranspiration, discharge, and groundwater recharge. The maximum temporal resolution is
1 day. Discharge is calculated as the sum over all flow components according to the following
equation (Neitsch, Arnold, Kiniry, & Williams, 2001a, 2001b):

Q5Qgw 1Qlat 1Qtile 1Qsurf (8-1)

where Q is discharge, Qgw is groundwater flow, Qlat is lateral flow, Qtile is tile flow, and Qsurf

is surface runoff. All of the units are in mm. For a detailed description of SWAT, see the
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SWAT theoretical documentation and user’s manual, version 2000 (Neitsch et al., 2001a,
2001b). Field surveys and Google Earth (GE) images were applied to obtain the length of
axis and reservoir volume. Also, using laboratory experimental and geology layer, the
reservoir storage coefficient was extracted. In this study, water demand was obtained from
population, agriculture area, and industrial regions, whereas data for accessibility were
extracted from roads, villages, and quarry layers. The program Sequential Uncertainty
Fitting Algorithm (SUFI-2) was used for calibration and uncertainty analysis (Schuol,
Abbaspour, Srinivasan, & Yang, 2008). SUFI-2 is an algorithm of several algorithms in the
SWAT-CUP models. The SWAT-CUP is a computer program for the calibration of SWAT
models (Trihartono et al., 2015).

8.2.4 Secondary Phase

In the secondary phase, the selected areas using 10 conditioning factors (Table 8-3) were
compared using the AHP and TOPSIS MCDM techniques in order to rank the suitable sites
in the R software environment.

8.2.4.1 Assigning Criteria Weights
A weight is a value assigned to a criterion that indicates its relative importance to the other
criteria under consideration. There are many methods suggested for assessing criteria
weight (Choo, Schoner, & Wedley, 1999; Hobbs & Meier, 2000; Hwang & Yoon, 2012;
Stillwell, Seaver, & Edwards, 1981). The various methods used for assigning the criteria
weight cause different ranking results for MCDM models. In this study, pair-wise compari-
son matrix (AHP) and average of experts’ votes (TOPSIS) were used to evaluate criteria
weights. The averaging method applies a simple mean of relative weights. In the present
research, the data set for both techniques is driven from expert knowledge. In this study,
50 questioners were created, based on 10 main criteria and forwarded for 50 experts of
executives and university professors, eventually 38 of experts answered the questioners
used for this research.

8.2.4.2 Approaches for Weighting of Criteria
ANALYTIC HIERARCHY PROCESS
The Analytic Hierarchy Process (AHP), introduced by Saaty (1980), was one of the useful
MCDM algorithms, and plays an important role in selecting alternatives (Chan, Chan, &
Tang, 2000; Fanti, Maione, Naso, & Turchiano, 1998; Labib, O’Connor, & Williams, 1998).
The AHP model provides a comprehensive and lucid composition for structuring a decision
problem, relating their elements to overall goals, and evaluating alternative solutions (Kumar
& Hassan, 2012). The AHP allows for group decision-making, where group members can use
their experience, values, and knowledge to break down a problem into a hierarchy and solve
it by AHP steps (Eqs. 8-2�8-4). Participants can weigh each element against each other
within each level. Each level is related to the levels above and below it, and the entire
scheme is tied together mathematically (Saaty, 1980).
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Table 8-3 Weight of Main Criteria (Consistency Ratio5 0.0974)

Criteria
Water
Quantity

Water
Quality

Length
of axis

Depth
of axis

Reservoir
Storage
Coefficient

Reservoir
Volume

Lithology of
Embankment

Reservoir
Slope

Water
Demand Accessibility Wij

Water quantity 1.00 3.00 5.00 5.00 4.00 5.00 7.00 4.00 5.00 5.00 0.28
Water quality 0.33 1.00 5.00 5.00 0.33 0.20 5.00 2.00 0.33 0.50 0.07
Length of axis 0.20 0.20 1.00 0.25 0.25 0.14 0.50 0.20 0.14 0.14 0.02
Depth of axis 0.20 0.20 4.00 1.00 0.33 0.20 4.00 0.20 0.17 0.17 0.04
Reservoir
storage
coefficient

0.25 3.00 4.00 3.00 1.00 0.33 3.00 0.33 0.25 0.25 0.06

Reservoir volume 0.20 5.00 7.00 5.00 3.00 1.00 5.00 4.00 0.33 0.33 0.12
Lithology of
embankment

0.14 0.20 2.00 0.25 0.33 0.20 1.00 0.20 0.14 0.14 0.02

Reservoir slope 0.25 0.50 5.00 5.00 3.00 0.25 5.00 1.00 0.25 0.25 0.07
Water demand 0.20 3.00 7.00 6.00 4.00 3.00 7.00 4.00 1.00 3.00 0.17
Accessibility 0.20 2.00 7.00 6.00 4.00 3.00 7.00 4.00 0.33 1.00 0.14



The AHP process consists of the following steps (Saaty, 1980):

1. Determination of the local priority for each criteria and alternatives:
2. Determination of the overall priority by Eq. (8-2):

AAHP score 5
Xn
i51

aij �Wj (8-2)

where aij is the local priority for i-th alternatives in j-th criteria and Wj is the local priority
for j-th criteria.

3. Calculation of the inconsistency index by Eq. (8-3):

I:I:5
λmax 2n
n2 1

(8-3)

where λmax is maximal Eigen-value and n is the number of alternatives.
4. Calculation of the inconsistency ratio by Eq. (8-4):

I:R5
I:I

R:I:I
(8-4)

where R.I.I5 1.98 (n2 2/n) and is called the random index. If I.R is less than 10%, then the
matrix can be considered consistent (Saaty, 1980).

TECHNIQUE FOR ORDER PERFORMANCE BY SIMILARITY TO IDEAL SOLUTION
The technique for order performance by similarity to ideal solution (TOPSIS) views an
MADM problem with m alternatives as a geometric system with m points in the n-dimen-
sional space, where n represents the number of criteria to be used for the evaluation
(Asgharpour, 1998; Hwang & Yoon, 1981; Olson, 2004; Wang & Chang, 2007). It was devel-
oped by Hwang and Yoon (1981). It defines an index, namely similarity (or relative close-
ness) to the positive-ideal solution (PIS) and the remoteness from the negative-ideal solution
(NIS). Then, the alternative with the maximum similarity to the positive-ideal solution and
remoteness from the negative-ideal solution is chosen (Hwang & Yoon, 2012). The TOPSIS
simultaneously considers the distances to both PIS and NIS, and then a preference order is
ranked according to their relative closeness, and a combination of these two distance mea-
sures. In fact, TOPSIS is a utility-based method that compares each alternative directly based
on data in the evaluation matrices and weights (Dai et al., 2010; Hwang & Yoon, 2012).

The idea of TOPSIS can be expressed in a series of steps (Hwang & Yoon, 1981; Olson, 2004):

1. Calculating the normalized decision matrix as Eq. (8-5):

Nij 5
rijffiffiffiffiffiffiffiffiffiffiffiPm
i51

r2ij

s (8-5)
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where Nij is a normalized decision matrix element and rij is the A-th alternative
performance in j-th criteria.

2. To calculate the weighted normalized decision matrix as Eq. (8-6):

Vij 5WijNij (8-6)

where Vij is the weighted normalized matrix element, Nij is the normalized matrix
elements, and Wj is the weight of criterion j.

3. Determining the ideal and negative-ideal solutions by Eqs. (8-7) and (8-8):

A1 5 mi ax vijj jAJ
� �

; mi in vijj jAJ 0
� �

i5 1; 2; . . .;mj g5 v11 ; v
1
2 ; . . .; v

1
j ; . . .; v

1
n

n on
(8-7)

A2 5 mi in vijj jAJ
� �

; mi ax vijj jAJ 0
� �

i5 1; 2; . . .;mj g5 v21 ; v
2
2 ; . . .; v

2
j ; . . .; v

2
n

n on
(8-8)

J 5 j5 1; 2; . . . ;n jABenefit
�� ��

J 0 5 j5 1; 2; . . .;n jACost
�� ��

where J and J0 are related to increasing and decreasing criteria, respectively.

4. Measuring the ideal and negative-ideal solution distances is as in the following
equations:

di15
Xn
j51

vij2v1j

� 	2
( )0:5

; i5 1; 2; . . . ;m (8-9)

di25
Xn
j51

vij2v2j

� 	2
( )0:5

; i5 1; 2; . . . ;m (8-10)

where di1 is the ideal solution and di2 is the negative-ideal solution.
5. The last stage involved the calculation of the similarity index to prioritize the alternatives.

Therefore, the alternatives with higher similarity index are superior (Manokaran,
Subhashini, Senthilvel, Muruganandham, & Ravichandran, 2011; Opricovic & Tzeng,
2004; Purjavad & Shirouyehzad, 2011; Ustinovichius, Zavadkas, & Podvezko, 2007)
according to Eq. (8-11):

CL5
di2

di1 1di2ð Þ ;0#CL# 1 (8-11)

Order alternatives ranked on based of the similarity index (CL) in step 5 (Olson, 2004).
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8.3 Results and Discussion
8.3.1 First Step (Boolean Algorithm)

The result of the first step (Boolean algorithm) was selection of 10 suitable sites for construc-
tion of subsurface dams (Fig. 8-7).

The results showed that the most suitable sites for construction of subsurface dams are a
riverbed with Quaternary formation under 5% slope, far away from faults and residential
areas. That is in line with other researches, such as Nilsson (1988), Forzieri et al. (2008),
Jamali et al. (2013, 2014), and Chezgi, Pourghasemi et al. (2016). However, in some coun-
tries, subsurface dams are constructed in limestone aquifers (Japan) and in clay, silt, and
sand aquifers (Burkina-Faso) (Ishida, Tsuchihara, Yoshimoto, & Imaizumi, 2011).

In this study, for checking the selected sites, extensive field surveys and Google Earth
(Forzieri et al., 2008; Petersen, 2013) images were used. Suitable sites should have appropri-
ate indices such as: impermeable axis anchorage, high capability for water storage, lowest
length of axis, and percent slope under 5% (Lalehzari & Tabatabaei, 2015). All potential sites
(32 point) obtained in the first step were examined, and the 10 most suitable sites selected
(Fig. 8-7).
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FIGURE 8-7 Boolean map of the study area (phase 1).
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8.3.2 Secondary Step

Table 8-3 shows the weights of main criteria based on a pair-wise judgment matrix. Also,
Table 8-4 presents a standard matrix that is obtained by multiplying normalized and criteria
weight tables.

The result of the AHP model indicated that Senderek and Bondar are the best sites, and
Kharu and Sooz the worst sites (Table 8-5). In addition, the results of the TOPSIS model
illustrated that Bondar and Senderek are the best and, in contrast, Sooz and Kharu the worst
(Table 8-5).

The results of Table 8-3 show different parameters with different Wi for evaluating and rank-
ing based on expert knowledge. Therefore, types of criteria are important for evaluating and
ranking. For example, the sites that have high water quantity and water damage are in first prior-
ity, because these parameters have the highest Wi, with 0.28 and 0.17, respectively (Table 8-3).

So, based on the results of Table 8-5 (row 4), the AHP model illustrated that 30% of sites
are first priority, such as Senderek subsurface dam which is the most suitable site in the
ranking, and it is the best. Also, 60% of sites are secondary priority and 10% of sites are last
priority for construction of subsurface dams. The Senderek subsurface dam that is elected as
the first preference was constructed by the Natural Resource and Watershed Management
Organization of Iran in 2010. Instead of the proposed model ranked on the Tomboo subsur-
face dam as secondary priority in election 8, where the Tomboo dam was constructed by the
Natural Resource and Watershed Management Organization of Iran previously in 2008. The
AHP model elected Senderek dam, but it is not suitable for the Tomboo dam. The high
weight of water quantity and water demand in the other parameters based on expert knowl-
edge is one of the reasons that the Senderek subsurface dam is placed in first priority,
because Senderek dam has very high discharge (35 L/second), and a greater population lives
in Senderek City. Also, the results of Table 8-5 (row 2) for the TOPSIS model show that 60%
of suitable sites are included in the initial priority with a similarity index above 0.5, such as
Bondar subsurface site with a similarity index (CL) of 0.738 and Senderek dam which ranked
number 2 with a similarity index of 0.705. Tomboo dam is located in first priority (ranking
number 5). The range over secondary priority is 0.3�0.5, with 30% of sites located in this
priority. On the other hand, 10% of sites are placed in last priority. The last elected dam in
this model is the Kharu subsurface dam site.

One of the criticisms of MCDM is that different techniques may yield distinct results
when applied to the same problem. An analyst looks for a solution that is closest to the ideal,
in which alternatives are evaluated according to all established criteria (Purjavad &
Shirouyehzad, 2011). Therefore, it is necessary to compare the MCDMs plus assessment of
subjectivity with observed data or actual data. In this study, the existent data are Senderek
and Tomboo subsurface dams that were constructed by the Natural Resource and
Watershed Management Organization of Iran. The results of the AHP model showed the
Senderek dam as rankin first and Tomboo dam as ranking eighth, while TOPSIS model
ranked the Senderek dam as second and Tomboo dam as fifth. Based on the input data and
constructed dams, two models were able to be ranked, but the TOPSIS model has a better
ranking ratio than the AHP model.
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Table 8-4 Standard Matrix (TOPSIS Model)

Criteria

Water
Quantity

Water
Quality

Length
of Axis

Depth
of Axis

Reservoir Storage
Coefficient

Reservoir
Volume

Lithology of
Embankment

Reservoir
Slope

Water
Demand Accessibility

Subsurface
Dam Sites

Anbari 0.071 0.021 0.003 0.014 0.021 0.052 0.006 0.020 0.054 0.017
Bondar 0.095 0.021 0.005 0.012 0.021 0.039 0.006 0.020 0.070 0.017
Eslamabad 0.059 0.027 0.003 0.009 0.021 0.027 0.007 0.027 0.062 0.025
Graou 0.107 0.018 0.007 0.014 0.018 0.066 0.006 0.014 0.047 0.037
Kariyan 0.107 0.021 0.003 0.010 0.021 0.044 0.007 0.014 0.047 0.071
Kharu 0.059 0.027 0.007 0.012 0.018 0.026 0.007 0.027 0.039 0.092
Khashaneh 0.095 0.021 0.004 0.012 0.018 0.029 0.006 0.027 0.039 0.021
Senderk 0.107 0.024 0.012 0.009 0.018 0.026 0.004 0.020 0.070 0.012
Sooz 0.071 0.027 0.003 0.010 0.021 0.027 0.007 0.034 0.047 0.050
Tomboo 0.083 0.027 0.004 0.010 0.021 0.034 0.007 0.020 0.062 0.027

Table 8-5 Ranking of the Subsurface Dam on MCDM Models

Dam 

Modells 

Anbari Bondar Eslamabad Graou Kariyan Kharu Khashaneh Senderk Sooz Tomboo 

TOPSIS 

0.66 0.74 0.49 0.70 0.47 0.11 0.60 0.71 0.38 0.63 

AHP 

4 1 7 3 8 10 6 2 9 5

6 3 5 2 4 9 7 1 10 8

0.30 0.58 0.32 0.69 0.39 0.20 0.27 0.74 0.19 0.22 

Priority of sites based on value: green: first priority; yellow secondary priority; and red: last priority.



8.4 Validation of Ranking Sites
For the validation of the two models in this research, two underground dams (Senderek and
Tomboo) were used. This research showed that these two sites were selected as
suitable sites in our site selection (step one) and ranking (step two). For example, in TOPSIS
ranking, the rank of the Senderek subsurface dam is 2, which is an appropriate site, and the
rank of the Tomboo subsurface dam is 5 in the whole area; but, in the AHP ranking, the rank
of the Senderek subsurface dam is 1, which is a best suitable site, and the rank of the
Tomboo subsurface dam is 8 in the whole area.

8.5 Conclusions
The important issue for the construction of subsurface dams is hydrological data. In this
study, for solution of hydrological issues, in particular subsurface flow, a hydrology distribu-
tion model was used, namely SWAT, to obtain the quantity and quality of surface and sub-
surface flow in each sub-basin and the total watershed. The present study aimed to consider
and combine the ArcGIS (Boolean algorithm), SWAT, and MCDM models for identifying,
evaluating, and ranking the suitable sites for the construction of subsurface dams in southern
Iran. Suitable sites for subsurface dams are riverbeds with quaternary formation, under 5%
slope, and far from faults. The results of a Boolean algorithm gave 32 potential sites; mean-
while, using Google Earth images and field surveys 10 suitable sites were selected from 32
potential sites. In the next step, for evaluating and ranking these sites, MCDM models includ-
ing AHP and TOPSIS were used. For ranking suitable sites 10 conditioning factors were
applied, including water quantity (surface and subsurface), water quality (surface and sub-
surface), length of axis dam, depth of axis dam, reservoir storage coefficient, reservoir vol-
ume, lithology of embankment, slope percent, water demand (people, agriculture, and
industry), and accessibility (villages, roads, and quarries). In group decision making, it is
necessary to control and analyze opinions to make the best decision; therefore, this study
used 38 experts to elect the main criteria and in the end obtain weights for each criterion.
The results of the final step illustrated that suitable sites are located in three priority classes
(first, secondary, and third). The results of the AHP models showed that 30% of sites were
located as first priority, 50% secondary, and 20% third priority. Also, in the TOPSIS model,
first priority was 30% of sites, 40% secondary, and 30% third priority. Finally, for evaluating
the two models (AHP and TOPSIS) observed input data and real data were used (construc-
tion dams: Senderek and Tomboo). Of course, it is better to compare the functions of these
two methods in other topics, too. This study also included effective criteria to choose
suitable sites, which were analyzed by the proposed method. Local studies showed that the
proposed method was a proper method for compatibility of the opinions and group decision
making in multicriteria problems, such as water resources. It is suggested to compare this
method and some other MCDM methods in future for these types of work (water resources
management).
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9.1 Introduction
Species distribution models (SDM) are increasingly being used in environmental manage-
ment, such as managing endangered species, habitat suitability studies, and environmental
change impacts (Guisan & Zimmermann, 2000; Hirzel, Le Lay, Helfer, Randin, & Guisan,
2006). The preparation of spatial distribution and prediction maps could play an important
role in studying the current and future impacts of global changes to species habitat and also
understanding the extinction rate in natural ecosystems (Franklin, 2010). SDMs demonstrate
the relationship between the presence of a species and environmental factors (Elith et al.,
2006; Elith & Leathwick, 2009). Among the different statistical models that are used to deter-
mine the spatial distribution of plant species, the generalized linear model (GLM) has illus-
trated reliable results in recent research (Bolker et al., 2009; Guisan & Zimmermann, 2000;
Rupprecht, Oldeland, & Finckh, 2011).

Artemisia aucheri is an endemic aromatic perennial plant belongs to the Asteraceae family,
and is found in mountainous rangelands of Iran. In the northern parts of Fars Province, it has
been used as a medicinal plant by native people, as well as fodder for local livestock. This
shrubby species plays an important role in soil conservation in steep slopes, reserving carbon
in tissues, and carbon sequestration in understory soils (Hosseini et al., 2013; Sadeghi &
Raeini, 2016). In some research, the habitat distribution of A. aucheri in central parts of Iran
has been documented using a maximum entropy model (Hosseini et al., 2013). Nevertheless,
application of the GLM model in modeling suitable habitats of A. aucheri has not been
observed in Fars Province rangelands. The aim of the current study is the application of GLM
in the prediction of habitat suitability of A. aucheri in the semiarid rangelands of the northern
Fars, Iran, and its mapping as a tool in soil conservation and management of rangelands.
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9.2 Materials and Methods
The methodology flowchart for this study is shown in Fig. 9-1, which shows the preparation
of data, model application, and its validation.

9.2.1 Study Area

The study area, in the northern part of Fars Province, is located at latitudes 29�310�29�540N
and longitudes 52�120�52�410E (Fig. 9-2). The mean annual precipitation of the study area is
285 mm, with an average annual temperature of 13�C (IRIMO, 2016). The area is mainly
covered with mountainous landscapes and complex composition of geological formations.
The elevation ranges from 2100 to 3900 m above sea level. Artemisia aucheri is the dominant
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FIGURE 9-1 Flowchart of data used and methodology of GLM in the study area.

214 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



plant of the study area along with Astragalus susianus, Elymus pertenuis, Phlomis olivieri,
Scariola orientalis, Prangos ferulacea, Cousinia cylindracea, and Daphne mucronata.

9.2.2 Spatial Dataset Preparation

9.2.2.1 Species Occurrence Data
In the field surveys stage, a total of 300 locations with A. aucheri were recorded. The geo-
graphical location of each point was recorded using handheld GPS (Garmin map 62s) and
the spatial distribution map of the species was drawn in ArcGIS 10.2.2 (Esri Redlands,
California, USA).

9.2.3 Geo-Environmental Variables

The mean annual temperature and mean annual rainfall maps, as the main climate factors,
were produced using a data set extracted from 48 climatic stations in a statistical period of
27 years inside and surrounding the study area (IRIMO, 2016). Two climatic layers were

FIGURE 9-2 Location of the study area in Iran and Fars Province.
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mapped using an inverse distance weight (IDW) interpolation method in ArcGIS 10.2.2
(Fig. 9-3A, B). These layers were then converted from vector to raster for model application
(Lee & Sambath, 2006).

In this study, a digital elevation model (DEM) with a pixel size of 10 m 3 10 m was
derived from an NCC (National Cartographic Center of Iran) data set. This DEM layer was

FIGURE 9-3 Conditioning layers used in the current research: (A) mean annual rainfall, (B) mean annual
temperature, (C) elevation, (D) slope percent, (E) aspect, (F) lithology, (G) sand percentage, (H) OC, and (I) pH.
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used to generate important topographic parameters including elevation, slope degree, and
aspect (Fig. 9-3C�E). To prepare the lithological units, Geological Survey of Iran (GSI) data
(1:100,000 scale) were used in ArcGIS 10.2.2 (Fig. 9-3F). Due to the complexity of the litho-
logical units, the geological map was grouped into 13 categories based on the lithological
composition (Table 9-1). A total of 33 soil samples were taken inside the A. aucheri habitat at
0�30 cm depth. The soil samples were air-dried, sieved through a 2-mm mesh size screen,
and prepared for chemical and physical analyses. The soil parameters, including soil texture
(sand, silt, and clay percent), organic carbon, and acidity (pH), were determined in the labora-
tory. The soil texture was determined through a hydrometer method (Bouyoucos, 1962). Soil
pH was measured in 1:1 soil/water suspension using an electric pH-meter (Mc Lean, 1982).
Soil organic carbon (SOC) was measured using the Walkley�Black method (Nosetto, Jobbágy,
& Paruelo, 2006). The data set of soil parameters which were derived from laboratory analyses
was used to produce soil parameter maps using the IDW technique (Fig. 9-3G�I).

9.2.4 Model Description

9.2.4.1 Generalized Linear Model (GLM)
The application of a binomial distribution of GLM, such as logistic regression (LR) for
binary response variables, is a powerful tool to predict the distribution of plant and

FIGURE 9-3 (Continued).
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Table 9-1 Geological Units of the Study Area

Symbol Lithology Main Composition

Group 1

Ju-Ks1 Brownish red to brown sandstone Sandstone

Group 2

d Brown well-bedded dolomite Limestone
El White to pale pink nummulite limestone marl and conglomerate Limestone
Jl Gray thin- to thick-bedded limestone and sandy limestone Limestone
Jl2-3 Light to dark gray, thicky bedded to massive fetid oolitic limestone Limestone
Kl1 Gray to dark gray, thick bedded to massive limestone Limestone
Kl2 Red, pink and bluish-green, thin-bedded plagic limestone with

calcite veins
Limestone

m Marble Limestone
ml Meta limestone and calc schist Limestone
PlQm1 Alternation of light gray, white, marly limestone, marl limestone,

and conglomerate
Limestone

Pm Light gray, thick-bedded nodulous, cherty, slightly metamorphic
limestone

Limestone

Group 3

PTRmet Metamorphic rocks, mica schist, slate, volcanic rocks, calc schist,
meta sandstone

Metamorphic rocks, mica schist, slate,
volcanic

Tr3mkol Undivided black to greenish-gray slate, schist, marble,
metavolcanics, and related

Metamorphic rocks, mica schist, slate,
volcanic

Group 4

mt Meta tuff Meta tuff

Group 5

Jml1-2 Light gray and buff white weathering, thin-bedded siltstone, shale,
sandstone, marl

Siltstone, shale, sandstone, marl

Group 6

Trls3 Dark gray to tan, medium-bedded reefal limestone-shale,
calcareous shale

Limestone, shale

Group 7

Ec Conglomerate Conglomerate
OMc Conglomerate Conglomerate

Group 8

Ju Shale, marl, shalely limestone, limestone, sandstone, volcanic
rocks, tuffaceous shale

Shale, marl, shalely limestone,
sandstone, volcanic

Group 9

Js Greenish gray to dark gray, red sandstone and shale Sandstone and shale

(Continued)
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animal species. This method uses multiple regression to create a relationship between
environmental factors (independent variables) and binary variables of species occurrence
and nonoccurrence as dependent variables (Hosmer & Lemeshow, 2000; Rupprecht et al.,
2011; Wang, Sawada, & Moriguchi, 2011). The logistic regression model can be expressed
as follow:

P5
expðPβX Þ

11 expðPβX Þ (9-1)

where P is the probability of the presence of the species of interest, which varies between 0
and 1, X represents the independent variable, and B is the partial regression coefficient.

The logistic regression model was performed in “Logit R-Package 1.3” (Hilbe & De Souza,
2015) to obtain the regression coefficient for each conditioning factor (Duchesne, Fortin, &
Courbin, 2010; Pourghasemi, 2016).

9.2.5 Model Validation

The area under the curve (AUC) of the receiver operating characteristics (ROC) is a recom-
mended index for model validation (Fielding & Bell, 1997; Merow, Smith, & Silander, 2013).
This index ranges from 0.5 to 1.0. Values close to 1 means better performance (Yuan, Wei, &
Wang, 2015). In the current study, the ROC index was used to validate the GLM performance
using “AUC package 0.3.0” in R statistical software (Ballings & den Poel, 2013). This method
is widely used and its efficiency has been approved in previous researches (Douglas &
Newton, 2014; Garcia, Lasco, Ines, Lyon, & Pulhin, 2013; Phillips, Anderson, & Schapire,
2006; Pourghasemi & Rahmati, 2018; Razavi Termeh, Kornejady, Pourghasemi, & Keesstra,
2018; Zabihi et al., 2018; Zhou et al., 2018).

Table 9-1 (Continued)

Symbol Lithology Main Composition

Group 10

Ksl,sh,1 Alternation from thin- to thick-bedded sandy limestone, marl, and
shale

Sandy limestone, marl, and shale

Group 11

OMl,m Light gray limestone and marl Limestone and marl

Group 12

Qt1 High-level piedmont and alluvial fan High-level piedmont and alluvial fan

Group 13

Qt2 Low-level alluvium deposits Low-level alluvium deposits
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9.3 Results and Discussions
9.3.1 Application of GLM

The results of a multicollinearity test in GLM are indicated in Table 9-2. The variance
inflation factor (VIF) and tolerance were performed to determine the collinearity among
independent conditioning factors. If VIF $ 5 and tolerance , 0.1, then that variable will be
ignored and is not entered into the final GLM analysis (Wang, Guo, Sawada, Lin, & Zhang,
2015). Afterward, the selected final variables are applied in the GLM to determine the rela-
tionship of the probability of A. aucheri occurrence with different environmental factors
(Tables 9-2 and 9-4). There are nine conditioning variables, including mean annual precipi-
tation, mean annual temperature, elevation, slope percent, slope aspect, lithology, pH, OC,
and sand percent, which are applied in the final GLM (Table 9-4).

The X2 Homer and Lemeshow test was greater than 0.05 (Table 9-3), indicating the statis-
tically significant and predictive capability of GLM (Ayalew & Yamagishi, 2005). The Cox &
Snell R Square and the Negelkerke R Square were 0.488 and 0.651, respectively.

These results showed that the dependent variable (species occurrence) could be
explained by independent conditioning variables (Pourghasemi, 2016; Wang et al., 2011).
The results of the relationship between conditioning factors and species occurrence data in
GLM are shown in Table 9-4. According to Table 9-4, slope aspect, sand percent, and several

Table 9-2 The Results of the Multicollinearity Test of Conditioning Factors

Collinearity Statistics

Factors Tolerance VIF

Mean annual rainfall 0.324 3.085
Mean annual temperature 0.258 3.875
Elevation 0.350 2.860
Slope 0.788 1.270
Aspect 0.982 1.019
Geology 0.857 1.167
pH 0.656 1.525
Sand 0.286 3.493
OC 0.296 3.380

Table 9-3 Statistics and Accuracy of the GLM Model

Hosmer and Lemeshow Test

Chi-Square
Df (Degree of
Freedom) Significant

�2 Log
Likelihood

Cox & Snell
R Square

Nagelkerke
R Square

11.671 8 0.166 300.786 0.488 0.651
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geological formations mainly consisted of limestone, sandstone, and shale (d, El, Jl, Jl2-3, Kl1,
Kl2, m, ml, PlQm1, Pm, Jml1-2, Trls3, Ju, Js, Kslsh1, and OMlm) and are positively related to
species occurrence (Table 9-4), while elevation, annual mean rainfall, annual mean tempera-
ture, pH, carbon, and geological formation including Ju-Ks1, PTRmet, Tr3mkol, mt, Jml1-2,
Ec, OMc, Qt1, Qt2 with shale, tuff, mica schist, marl, conglomerate composition, and quater-
nary deposits showed a negative relationship with A. aucheri occurrence (Table 9-4).

In Table 9-4, B coefficients for each conditioning variable and results of statistics are
shown. According to GLM coefficients (B coefficient column), the temperature (212.952), pH
(28.954), and organic carbon (21.602) had the higher negative B values compared to other
numerical variables. The results indicated that A. aucheri has a strong correlation with sev-
eral geological formations that contain lime, sandstone, and shale. Another variable that
showed high positive B value was sand percent in soil (Table 9-4). In the literature, it had
been indicated that A. aucheri prefers calcareous coarse-textured soils (Hosseini et al., 2013).
Both climatic factors showed a negative relationship with the occurrence of A. aucheri.
In other words, when temperature and rain increase, the occurrence probability of this
plant species decreases. In the study area, A. aucheri mainly grows in areas with lower
mean temperatures in the parts with higher elevation. Hosseini et al. (2013) and

Table 9-4 B Coefficients of Variables Used in GLM Model

Variables B Coefficient Wald Significant

Aspect (N) 0.194 0.225 0.635
Aspect (S) 0.415 0.725 0.395
Aspect (E) 0.757 2.917 0.088
Slope 2 0.013 1.414 0.234
Elevation 2 0.005 16.259 0.000
Temperature 2 12.952 14.291 0.000
Rainfall 2 0.060 13.994 0.000
Geology (1) 2 1.452 2.333 0.127
Geology (3) 2 2.048 4.360 0.037
Geology (6) 2.062 3.904 0.048
Geology (9) 21.514 0.000 0.999
Geology (4) 2 3.675 6.192 0.013
Geology (11) 18.716 0.000 0.999
Geology (5) 2 20.626 0.000 0.999
Geology (7) 2 0.320 0.053 0.82
Geology (12) 2 2.192 4.586 0.032
Geology (13) 2 1.735 2.837 0.092
Geology (8) 0.892 0.391 0.532
Geology (2) 1.345 0.706 0.401
Geology (10) 2.019 4.008 0.045
pH 2 8.954 4.751 0.029
OC 2 1.602 0.339 0.560
Sand 0.089 5.120 0.024
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Sahragard and Chahouki (2015) showed that the habitats of A. aucheri are limited to the
mountainous landscapes in Yazd Province (central Iran) with cooler air temperature. Several
species of Artemisia genus, particularly endemic species of A. sieberi and A. aucheri, are classi-
fied as xerophytic plants which can grow in areas with annual mean rainfall ,300 mm
(Abbaspour & Ehsanpour, 2016; Hosseini et al., 2013).

The results of the model prediction and its accuracy are shown in Table 9-5. According to
Table 9-5, the results of the prediction accuracy for species occurrence were 87.6% and for
the area with nonspecies occurrence it was 85.2%. Also, the overall accuracy was 86.4%
(Table 9-5). Previous research has proved the reliable accuracy of GLM in comparison to
other statistical methods (Gastón & García-Viñas, 2011). Finally, the habitat suitability map
(HSM) was calculated (Fig. 9-4) using Eq. (9-2):

HSM5 262:378� ½0:0133 Slopeð Þ2 0:0053 Elevationð Þ2 12:9523 Temperatureð Þ � 0:0603
Rainfallð Þ � 8:9543 pHð Þ � 1:6023 OCð Þ1 0:0893 Sandð Þ1 Aspectð Þ1 Geologyð Þ� (9-2)

The HSM represents the relative habitat potential for species occurrence and ranges from
0 to 1. A value closer to 1 shows more suitable habitat. To visualize the results, the HSM was
reclassified into four classes, including low, moderate, high, and very high, using a natural
break classification method (Constantin, Bednarik, Jurchescu, & Vlaicu, 2011; Pourghasemi,
2016). According to the HSM (Fig. 9-4), 71.78% of the total area was very high and high,
13.84% moderate, and 14.38% low as suitable habitats for A. aucheri, respectively. The study
area has a complex topography which is covered with high mountain slopes mainly domi-
nated by limestone and shale formations with cold weather in the winter season. These envi-
ronmental conditions are suitable for widespread distribution of A. aucheri as confirmed by
field observations.

9.3.2 Validation of the Habitat Suitability Map

In this study, the accuracy of HSM was evaluated using an ROC curve (Fawcett, 2006; Jaafari,
Najafi, Pourghasemi, Rezaeian, & Sattarian, 2014). The area under the ROC curve could
determine the ability of the GLM model to predict the occurrence or nonoccurrence of the
plant species of interest. The ROC curve of this study is shown in Fig. 9-5. The results indi-
cated 0.855% or 85.5% accuracy for the GLM model (Fig. 9-5, Table 9-6).

Table 9-5 The Accuracy of Predicted Species Occurrence and Nonoccurrence Used in
GLM

Predicted

Species Occurrence

Observed 0 1 Percentage Correct

Species occurrence 0 179 31 85.2
1 26 184 87.6

Overall percentage 86.4
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The results of the application of the GLM model illustrate satisfactory performance.
Several previous researches have shown that the GLM model could give an acceptable result
in the prediction of suitable habitats for plants and animals (Pearce & Ferrier, 2000; Singh &
Kushwaha, 2011). Moreover, the suitability of the GLM in the prediction of natural events
such as landslide, forest fire, and ground subsidence has been described (Das, Stein, Kerle,
& Dadhwal, 2012; Galluzzi et al., 2017; Kim, Lee, Oh, Choi, & Won, 2006; Pourghasemi, 2016;
Stojanova, Panov, Kobler, Džeroski, & Taškova, 2006; Sun, Miao, & Yang, 2018; Wang et al.,
2011). Also, the application of binary-dependent variables in a logistic regression model
should be emphasized (Pourghasemi, 2016).

9.4 Conclusion
In this study, the GLM was used to analyze the current spatial distribution of A. aucheri as
an endemic important shrub and to predict its suitable habitats in semiarid areas of the
northern Fars Province, Iran. According to the results derived from the GLM model, the
overall accuracy of model prediction is 86.4%. The AUC value of 85.5% shows satisfactory
model performance in the prediction of suitable habitats for the plant of interest. In the
study area, A. aucheri is a dominant perennial plant which has several important roles in
terms of soil and water conservation, livestock feeding, carbon sequestration, as well as
medical uses. The results of the current study could provide reliable tools for governmental

FIGURE 9-4 Habitat suitability map produced from GLM.
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agencies, local rangeland managers, and environmental planners to identify more
suitable habitats for A. aucheri for development and conservation planning.
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10.1 Introduction
Hazard refers to the probability of a potentially dangerous phenomenon occurring in a given
location within a specific period (Alexander, 1993). Natural hazards are events capable of
causing significant damage to the natural environment and manmade properties
(Vorogushyn, Lindenschmidt, Kreibich, Apel, & Merz, 2012). Many studies have indicated
that flash floods in arid areas, caused by storms of high intensity and short duration, are one
of the most frequent, widespread, and disastrous natural hazards in Egypt. They cause con-
siderable damage to highways, human activities, and subsequently lead to a slump in the
economy (Ashmawy, 1994; El-Etr & Ashmawy, 1993; El-Shamy, 1992a, 1992b; Hassan, 2000;
Youssef, Abdel Moneim, & Abu El-Maged, 2005; Youssef & Hegab, 2005; Youssef, Pradhan, &
Hassan, 2010; Youssef, Pradhan, & Sefry, 2016; Youssef, Sefry, Pradhan, & Al Fadail, 2016).
Woodward (2009) mentioned that heavy rainfall influences the volume of runoff and
enhances flash floods in downstream areas. Taylor, Davies, Clifton, Ridley, and Biddulph
(2011) and Dawod, Mirza, and Al-Ghamdi (2012) indicated that flood disasters can cause
substantial economic cost and also bring pathogens into urban environments causing micro-
bial development and diseases. Bathrellos, Skilodimou, Chousianitis, Youssef, and Pradhan
(2017) and Skilodimou, Bathrellos, Maroukian, and Gaki-Papanastassiou (2014) described
flood disasters which are triggered by climate change, which can cause morphological
changes in landforms and disrupt human activities. Flash floods in desert areas are strongly
influenced by topography, geomorphology, drainage networks, human activities, engineering
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structures, and climate change (Bathrellos, Karymbalis, Skilodimou, Gaki-Papanastassiou, &
Baltas, 2016; Chang, Franczyk, & Kim, 2009; Kjeldsen, 2010; Saleh, 1989). Flash floods are
generated when precipitation rates increase to overcome the drainage capacity saturation
values, causing a tremendous amount of runoff water along the drainage networks and pro-
ducing exceptionally high discharge rates at the basin outlets (Youssef, Pradhan, Gaber, &
Buchroithner, 2009). The dynamic changes to the socioeconomic system associated with the
expansion of urban areas may significantly increase the extent of damage and the flood
disaster potential (Tehrany, Pradhan, Mansor, & Ahmad, 2015). Karymbalis, Chalkias,
Ferentinou, and Maistrali (2011) indicated that the most critical physical causes that are
responsible for flash floods are the geomorphic features of the drainage networks.

Recently, problems related to flash floods have dramatically increased due to different
factors such as land use/land cover changes, urbanization activities in flash flood-prone
areas, substandard construction, and increased household density (Munich Reinsurance,
2002; Pelling, 2003). Flood control and prevention measures are urgently needed to help in
decreasing and minimizing the tremendous and irreversible potential damage to agriculture,
transportation, bridges, and urban infrastructure (Billa, Shattri, Mahmud, & Ghazali, 2006).
Early warnings and emergency responses to flash floods are urgently needed solutions so
that governments and agencies can minimize any damage (Feng & Wang, 2011). Flash flood
susceptibility maps (FFSMs) provide information on the spatial distribution of flood-prone
areas. They are crucial tools for planners, developers, decision makers, and environmental
managers to help in selecting favorable locations for future land use development
(Abdulwahid & Pradhan, 2016; Bathrellos, Kalivas, & Skilodimou, 2009; Chousianitis et al.,
2016; Das, Sonmez, Gokceoglu, & Nefeslioglu, 2013; Jebur, Pradhan, Shafri, Yusof, &
Tehrany, 2015; Pham, Pradhan, Bui, Prakash, & Dholakia, 2016; Rozos, Skilodimou,
Loupasakis, & Bathrellos, 2013; Youssef, Pradhan, et al., 2016; Youssef, Sefry, et al., 2016).

For many decades remotely sensed data (multitemporal datasets) had been used effi-
ciently and effectively for interpreting, monitoring, and analyzing different types of hazard.
(Elbialy, Mahmoud, Pradhan, & Buchroithner, 2013; Martinez & Le Toan, 2007; Mason et al.,
2010; Youssef, 2015; Youssef, Maerz, & Hassan, 2009; Youssef, Pradhan, et al., 2016; Youssef,
Sefry, et al., 2016). Bubeck, Botzen, and Aerts (2012) indicated that mapping of flood-prone
areas is the crucial step in flood risk management. GIS environment presents practical tools
for handling, integrating, and visualizing diverse spatial datasets (Al-Sabhan, Mulligan, &
Blackburn, 2003; Dongquan, Jining, HaozhShangbing, & Zheng, 2009). GIS and remote sens-
ing methods have made a significant contribution to flash flood modeling, susceptibility
mapping, and hazard zoning and prediction, as described in various publications (Billa et al.,
2006; Gogoase, Armaş, & Ionescu, 2011; Haq, Akhtar, Muhammad, Paras, & Rahmatullah,
2012; Pradhan, 2010; Pradhan & Shafiee, 2009; Pradhan & Youssef, 2011; Saleh &
Al-Hatrushi, 2010; Youssef et al., 2010; Youssef, Pradhan, & Tarabees, 2011). Due to the lack
of knowledge about flood phenomena, expertise is required to provide analyses for decision
and risk management purposes using multidisciplinary approaches (Matori, 2012). One of
these approaches using multicriteria evaluation depends on the coupling of the Analytical
Hierarchy Process (AHP) method and GIS platform. This approach has been considered to
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be one of the essential tools used in hazard and susceptibility mapping (Fernández & Lutz,
2010; Rozos, Bathrellos, & Skillodimou, 2011; Saaty, 1980).

In general, there are various approaches including heuristic, statistical, and deterministic
that are applied in natural hazard assessment and land use suitability analysis (Ayalew &
Yamagishi, 2005; Papadopoulou-Vrynioti et al., 2014; Svoray, Bar Kutiel, & Bannet, 2005).
One widely applied heuristic method is the AHP which is considered as a multiple objective
decision-making method and was developed by Saaty (1977). The AHP is a weight evaluation
process that combines qualitative and quantitative factors for ranking and evaluating alterna-
tive scenarios, to select the best solution for a problem (Saaty, 1990, 2004). An integrated
approach of AHP within a GIS environment has gained comprehensive application in the
assessment of a single natural hazard (Fernández & Lutz, 2010; Karaman & Erden, 2014;
Peng, Shieh, & Fan, 2012; Pourghasemi, Pradhan, & Gokceoglu, 2012). It is also used for site
selection and land use suitability analysis (Baja, Chapman, & Dragovich, 2007; Bathrellos,
Gaki-Papanastassiou, Skilodimou, Papanastassiou, & Chousianitis, 2012; Panagopoulos,
Bathrellos, Skilodimou, & Martsouka, 2012; Thapa & Murayama, 2008; Youssef et al., 2011).
On the other hand, several researchers have produced flood susceptibility models to define
flood-prone areas using the AHP method. They have proved that the AHP technique is a
robust method to provide accurate and reliable predictions (Bathrellos et al., 2016;
Fernández & Lutz, 2010; Rahmati, Zeinivand, & Besharat, 2016).

The prediction of flash floods can be highly effective in preventing damage to property
and loss of life. Through scientific methods, flood-susceptible areas can be detected. The use
of multicriteria analysis in flood susceptibility mapping has not been explored in flash flood
mapping in Egypt. The main aim of the present study is to apply flood susceptibility assess-
ment using a multicriteria technique and to examine its efficiency and reliability for flood
susceptibility analysis in the Ras Gharib area, Egypt. This study also aims to verify the sus-
ceptibility model using real flood events extracted from high-resolution images acquired after
previous flood events (2016) using a slicing technique and historical flood data.

10.2 Study Area
The study area is the drainage basins of three main wadis, namely wadi Abu Had, wadi
Darb, and wadi Kareim. The study area has frequently suffered damage due to flash flood
events. It is located in the north part of the eastern desert, covering an area of B1775 km2. It
lies between latitudes of 27�51000v to 28�23000vN and longitudes of 32�17000v to 33�23000vE
(Fig. 10-1). The area under investigation represents one of the areas that has had few studies
of flash flood hazards. Topographically, the study area is characterized by a high elevated hill
on the west (reach up to 1600 m above sea level) and the low land of the coastal strip on the
east. Highly urbanized areas, roads, highways, and industrial sites are located in the eastern
section along the wadi outlets. These wadis drain their flood water into the Gulf of Suez. The
basins are characterized by sparse vegetation, steep slopes on the western part, poor soil
development, large impermeable areas (urban areas and roads on the east). In addition,
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FIGURE 10-1 (A) Location map of the study area in Egypt map, and (B) detailed map of the study area.
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rainfall in the region has erratic distribution, ranging from extended drought periods to
extreme rainfall events resulting in flash floods.

Geomorphologically, the catchments surrounding the Ras Gharib area have three distinc-
tive geomorphological zones. The Gulf of Suez coastal zone is irregular and extends in an
NW-SE direction. The coastal zone is located to the east of the Red Sea mountain chain,
which extends from contour 0 (the Gulf of Suez coast line) to contour 300 m (at the toe of
the Red Sea mountains chain) and is characterized by a gentle slope toward the east. It
consists of some sedimentary rocks, wadi deposits, and sabkha deposits. The Ras Gharib res-
idential area, highways, and industrial zones are located along the coastal zone. The moun-
tainous zone is situated to the west of the Gulf of Suez (representing the northern part of the
Red Sea mountains chain) and is characterized by steep high mountains and abrupt changes
in slope angles toward the east.

The morphology of the basins comprises plain areas with low altitudes to the east and
mountainous terrain to the west. The watersheds flow toward the east, and the drainage net-
work presents a dendritic shape which seems to be well developed.

Geologically, the study area was achieved through the geologic map of Egypt (1:500,000
scale) prepared by the Egyptian General Petroleum Corporation (Conoco Coral, 1987), and
verified with other maps developed by many researchers (Hassan & Hashad, 1990). The geo-
logical formations cropping out in the study area comprise a variety of rock units of different
ages, including igneous and sedimentary rocks, wadi deposits, and sabkha deposits.

An arid climate characterizes the study area. The Red Sea mountainous chain in the west-
ern part of the area increases the amount of the occasional rainfall. The area is characterized
by moderate to high temperature throughout the year, especially during the summer season.
According to the Egyptian Authorities of Meteorology, the area is surrounded by four meteo-
rological stations, which are Hurghada, Suez, San Antinu, and Bair- Owida. Table 10-1 shows
the minimum and maximum temperature, the average temperature recorded during daytime
and nighttime, average annual rainfall in mm, maximum rainfall recorded in one day, the
evaporation rates mm/day, and the annual relative humidity.

Table 10-1 Summary of the Metrological Data Collected from 1975 to 2016 from the
Rainfall Stations Surrounded in the Study Area

Station

Min�Max
Temperatures in
Degrees
Centigrade

Average
Temperature in
Degrees Centigrade
(night/day)

Rain
Average
Annually
(mm)

Rain Depth
Maximum in
One Day
(mm/day)

Evaporation
(mm/day)

Relative
Humidity
(%)

Suez 4.1�46.1 14.7�28.9 6.2 49.6 (1965) 6.7�15.4 42�56
Hurghada 3.4�43 15.7�30 1.5 24.7 (1954) 9.8�18.8 43�55
Sant
Antinu

(21.3)�42.5 13.2�29.6 3.1 18.3 (1954) 13.9�31.1 31.3�51.7

Bair
Oweida

(21.7)�44.7 10.9�28 1.5 3 (1978) 6.2�20.2 26�64
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10.3 Consequences and Causes of a Flash Flood Event in
the Ras Gharib Area

The location and diachronic changes to the urban areas of Ras Gharib City and the infra-
structures along the coastal zone area have dramatically expanded in the last few decades.
Due to the importance of the area and the increasing number of residences, the infrastruc-
tures have extended toward areas that are prone to flash flooding. Many field investigations
were accomplished after a flash flood event in 2016. The improper use of the land leads to
closing of the pathways of the wadis, causing flash floods. The runoff comes from the hills
and mountains located west of the Suez Gulf and follows their old paths towards the Suez
Gulf, causing flood inundation to Ras Gharib City which is located along the old floodplains
of these wadis. Nowadays, flash floods are frequent events in Egypt. In recent years, extreme
rainfall events of a few hours duration have happened, causing flash floods along different
areas in Egypt (e.g., Aswan, Sohag, and Red Sea governorates). One of these event occurred
on October 18, 2016, near Ras Gharib City. This event was characterized by about 50 mm of
rainfall in 3 hours. It caused extensive flooding (an inundation problem), loss of life with a
death toll of 22 persons, many injuries, damage to more than 5000 homes, damage to hun-
dreds of vehicles, an erosional effect, and destruction of the main highways and roads
(Fig. 10-2). Our findings indicated that different factors caused this flash flood on October
18, 2016. These factors include: (1) heavy rainfall (reaching 50 mm in 3 hours); (2) inade-
quate drainage system of the wadis toward the Gulf; (3) unplanned expansion of urban areas
toward flood-prone areas to occupy the old pathway of the wadis; (4) other factors related to
manmade activities such as roads, highways, and earth dykes that lead to collected waters
behind them later causing a catastrophic floods when they broke down; (5) absence of any
early warning system lead to an increase in the death toll; and (6) there are no engineering
solutions for the upper reaches of the wadis to protect the urban areas located to the east.

10.4 Data Used and Methodology
Current research demonstrates the application of AHP and GIS to determine the FFSM using
different factors. These factors were extracted from various thematic layers including: (1)
topographic maps (1:50,000 scale); (2) geological maps (1:500,000 scale); (3) digital elevation
model (DEM) of 20 m resolution which was created from the above-mentioned topographic
maps; (4) high-resolution satellite images (Astro Digital, 5-m spatial resolution) acquired in
2014 and 2016 for the study area; (5) urban area map of the Ras Gharib area; and (6) the
recorded flood events in national databases, bibliography, and field data (photographs of
inundating areas). The datasets have various formats and scales. To facilitate the precise
processing and robust interaction between the datasets, a spatial GIS database using the
ArcGIS 10.2 software was created. All datasets were georeferenced using UTM coordinate
system zone 36 with a spatial resolution of 20 m. A DEM and topographic maps were used to
extract all drainage networks to determine different drainage orders. ArcGIS 10.2 was used to
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FIGURE 10-2 Large portions of the city were inundated completely with water and mud that was carried with the
water from the open desert area. (A, B) water in the streets up to 50 cm height, (C) photos from an airplane shows
runoff water in desert areas, (D E) photograph from an airplane showing the inundation problem for a large
portion of the Ras Gharib City, and (F) a flash flood destroyed the main highway in the area.
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establish a FFSM. Interpretation of high-resolution satellite images (5-m resolution for 2014
and 2016) was carried out to determine the flash flood-affected areas from the events of 2014
and 2016 to prepare an inventory map for helping in verification of model results.

In the current study, three stages were carried out to prepare the flood susceptibility
map. In the first stage, the AHP method and GIS were implemented to support the proces-
sing and assessment of flood-related factors. At this stage, different factors were extracted
using ArcGIS 10.2, including geomorphological factors from DEM 20-m resolution including,
slope angle, elevation, and curvature. Lithological units were obtained from a geology map
of the study area. Hydrology data including streams and the topographic wetness index
(TWI) were derived from DEM 20-m resolution. Streams of orders 3, 4, 5, 6, 7, and 8 were
used for the model. The stream map was verified using the topographic map. In the second
stage, the extracted factors were converted to grid maps with 20-m resolution, then classified
into different categories, and finally the AHP model was applied to determine the weight
value for each class and factor, and subsequently, the FFSM was established using an overlay
function in the ArcGIS environment. In the third stage, verification was applied according to
real flash flood area maps. Different satellite images were collected and processed using
remote sensing images of 5-m resolution for two time spans: 2014 and 2016. Also, some
enhancement procedures were applied (such as image stretching, Gaussian, and equaliza-
tion) to help in better detection of flood-affected areas (Envi 5.4). Mapping of flood locations
for the years 2014 and 2016 was applied using slicing technique.

10.4.1 Flood-Related Factors

Liu and De Smedt (2005) indicated that conditioning factors are needed as independent vari-
ables to produce a flood susceptibility map. These factors can contribute to the occurrence
of flooding in a specific area (Tehrany et al., 2015; Youssef, Pradhan, et al., 2016; Youssef,
Sefry, et al., 2016). Many relevant independent factors can be used and analyzed for flood
susceptibility modeling. The independent factors should be measurable and collected from
the whole study area while they should not represent uniform spatial information (Ayalew &
Yamagishi, 2005). The conditioning factors can be in nominal, ordinal, interval, or ratio scale
format (Park, Choi, Kim, & Kim, 2013). Many factors may be influential in the flood occur-
rence for a specific area, while the same factors may not be adequate for other environ-
ments. Numerous researchers used some of these factors according to their importance and
vital role in flood studies. Anthropogenic factors, which are related to flood events, such as
urban areas, road network, and land use, should be taken into consideration in flood suscep-
tibility assessment (Skilodimou, Livaditis, Bathrellos, & Verikiou�Papaspiridakou, 2003).
Different factors, used in the current work, were selected according to previous literature
(Khosravi, Nohani, Maroufinia, & Pourghasemi, 2016; Khosravi, Pourghasemi, Chapi, &
Bahri, 2016; Kia et al., 2012; Lee, Kang, & Jeon, 2012; Pradhan, 2010; Rahmati &
Pourghasemi, 2017; Razavi Termeh, Kornejady, Pourghasemi, & Keesstra, 2018). The data
were collected and compiled into spatial databases using ArcGIS 10.2 software. The selected
independent factors are slope angle, elevation, distance from streams, lithological units, TWI,
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and curvature. Each factor was resampled to be presented by a 20 3 20 m grid. The selected
factors and the corresponding class numbers were selected based on different literature
reviews (Bathrellos et al., 2016; Rahmati et al., 2016; Stefanidis & Stathis, 2013; Tehrany
et al., 2015; Umar, Pradhan, Ahmad, Jebur, & Tehrany, 2014). In the current study, each fac-
tor was classified into various categories, with a rating according to the importance of each
class in relation to the other classes. Table 10-3 outlines the selected factors, their classes,
and their ratings.

Slope angle: The slope angle of the study area was classified into five distinctive categories
including (1) ,2 degrees, (2) 2�6 degrees, (3) 6�12 degrees, (4) 12�20 degrees, and (5)
.20 degrees (Fig. 10-3A). Since the smooth morphological relief is more vulnerable to flood-
ing, it was assigned the highest rating at the low slope values.

Elevation: This is an important factor for reliable assessment of flash flood hazard, as it
influences the runoff direction and movement, extent, and depth of the flood. The elevation
map was derived from the DEM by 20-m resolution. The elevation map was subdivided into
five classes, namely (1) ,50 m, (2) 50�100 m, (3) 100�200 m, (4) 200�500 m, and (5)
.500 m above sea level (Fig. 10-3B).

Distance from streams: Streams are taken into account in this study. They have an adverse
effect on urban growth because they cause flash floods from time to time and they are
restricted areas for urban and industrial development. In this study, the drainage network
was derived from the DEM 20-m of the study area. The drainage network was coded accord-
ing to Strahler’s (1957) stream order system. The main channel of the drainage network is an
eight-orders stream. The first and second orders were considered to have a small contribu-
tion to flooding. Thus, only high-order steams (third and higher) were taken into consider-
ation. Buffer zones for each stream order were compiled using the buffer tool in ArcGIS 10.2
software. Buffer zones were drawn around different orders (Fig. 10-3C).

Lithological units: The lithological units of the study area were grouped into three catego-
ries according to their characteristics (Bathrellos et al., 2017): (1) well-drained unit consists
of wadi deposits, (2) semidrained unit includes sedimentary rocks and old terrace deposits,
and (3) impermeable unit has Precambrian rocks (igneous and metamorphic rocks) (Fig. 10-3D).
The highest rate was assigned to the impermeable unit followed by semidrained areas, then
the well-drained areas.

Topographic wetness index (TWI): This index is capable of predicting areas susceptible to
saturated land surfaces and areas that carry the potential to produce overland flow. Many
authors have applied this index as a model input such as to establish a predictive soil map,
wildfire hazard risk, and to prepare a landslide susceptibility map (Chuvieco & Congalton,
1989; Frazier, Rodgers, Briggs, & Rupp, 2009). This involves the upslope contributing area
and a slope angle (Eq. 10-1). In the case of the TWI, three categories were considered
(Fig. 10-3E). The highest rate was assigned to the high values of TWI, and the lowest value
was assigned to the lowest value.

TWI5 ln
a

tanB
(10-1)
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FIGURE 10-3 Thematic maps of the conditioning factors involved in the flash flood susceptibility analysis. (A) Slope
angle, (B) elevation, (C) distance from streams, (D) lithological units, (E) TWI, and (F) curvature.

238 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



FIGURE 10-3 (Continued).

Chapter 10 • Flood-Hazard Assessment Modeling Using Multicriteria Analysis and GIS 239



FIGURE 10-3 (Continued).
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where TWI 5 topographic wetness index (unitless relative values), a 5 upstream contribut-
ing area in m2, and B 5 slope angle.

Curvature: In the case of curvature, three classes were considered: convex, flat, and con-
cave (Fig. 10-3F). Concave, flat (low gradient areas) will gather water (wet areas), whereas
steep, convex areas will shed water (dry areas). Threshold values are applied to the output
raster, via classification, based on local knowledge, field characteristics, and observations of
the local terrain’s response to intense precipitation and overland flow. The highest rate was
assigned to the flat areas followed by concave, and then convex.

10.4.2 Application of AHP Approach

Rating of the factors for flood susceptibility mapping of the study area was achieved using
the AHP method. The AHP is a multicriteria approach that couples qualitative and quantita-
tive factors for ranking and evaluating alternative scenarios to make the best decision. The
fundamental concept of the AHP is the implementation of a hierarchical representation of a
decision-making issue and the reduction of the complex problem into pair-wise compari-
sons. The AHP approach was firstly proposed by Saaty (1977). It has a broad application in
different fields, such as site selection, suitability analysis, regional planning, and landslide
susceptibility analysis (Bathrellos et al., 2012; Mandal & Maiti, 2015; Moradi & Rezaei, 2014).
Saaty (1977, 1980, 2000, 2004) and Saaty and Vargas (2012) indicated that when the factor on
the vertical axis is more important than the factor on the horizontal axis, this value varies
between 1 and 9 (Table 10-2). On the other hand, when the factor on the horizontal axis is
more important than the factor on the vertical axis, the value varies between 1/2 and 1/9.
The diagonal boxes of a pair-wise comparison matrix always take a value of 1. The AHP
method is used in this study to assign preferences systematically. When comparing two attri-
butes (layer classes or factors in a layer), the following numerical relational scale is used
(Table 10-2).

Table 10-2 The Relative Importance and Random Consistency Index (RI)
(Saaty, 1977, 1980)

Rank of Importance

1 5 Equal importance (two activities contribute equally to objective); 3 5 weak importance of one over another
(experience and judgment slightly favor one activity over another); 5 5 essential or strong importance (experience
and judgment strongly favor one activity over another); 7 5 demonstrated importance (an activity is strongly favored
and its dominance demonstrated in practice); 9 5 absolute importance (the evidence favoring one activity over
another is the highest possible order of affirmation); and 2, 4, 6, 8 5 intermediate values between the two adjacent
judgments (when compromise is needed).

1/9 � 1/8 � 1/7 � 1/6 � 1/5 � 1/4 � 1/3 � 1/2 � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

Less Importance More Importance

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59
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Another essential feature of the AHP is the ability to evaluate pair-wise rating inconsis-
tency. The eigenvalues quantify a consistency measure which is an indicator of the inconsis-
tency in a set of pair-wise ratings. Saaty (2000) indicated that the consistency index (CI)
could be measured using Eq. (10-2), in which the variable λmax is the largest eigenvalue,
and the variable n is the number of comparisons.

CI5
λmax2n
n2 1

(10-2)

Saaty (1977, 2000) randomly generated reciprocal matrices using scales 1/9, 1/8,. . ., 1, . . .,
8, 9 to evaluate a so-called random consistency index (RI). The average random consistency
index of 500 matrices is shown in Table 10-1. A consistency ratio (CR) was introduced to
evaluate the inconsistency of pair-wise ratings (Saaty, 1980, 2004). It is a comparison
between the CI and the random consistency index (RI) (Eq. 10-3). The subjective judgment
is acceptable if the CR is smaller or equal to (0.1) 10%, but if the CR is higher than (0.1) 10%,
the subjective judgment is inconsistency and it needs to be reassessed to ensure realistic
results (Saaty, 1990).

CR5
CI

RI
(10-3)

10.4.3 Application of Remote Sensing to Establish a Flood
Inventory Map

At the time of catastrophic flash flood events, the ground-based data collection and monitor-
ing is challenging, prohibitive, or sometimes impossible. This has prompted the application
of airborne and space-borne remote sensing techniques for monitoring and mapping the
inundated areas affected by flash flood hazards (Youssef, Pradhan, et al., 2016; Youssef,
Sefry, et al., 2016). The use of satellite imagery for preparing an inventory flood area is very
crucial work. The lack of real data about events probably will affect establishing and validat-
ing of the flash flood susceptibility model. Many authors have used the analysis of aerial
photographs for glacial hazard research (Kääb, 1996; Margreth & Funk, 1999). Historical
information on flash flood occurrences is the backbone of the validation of flood susceptibil-
ity models. An inventory map can be achieved from different sources, including field data
collection, historical archives, interviews with local people, and satellite image interpretation
(van Westen, Van Asch, & Soeters, 2006). In recent years, satellite imagery has increasingly
been used in the analysis of hazardous areas. Most previous applications of satellite imagery
(e.g., ASTER, Landsat, or SPOT data) focused on the detection and assessment of ice ava-
lanches, monitoring large landslides, and debris flows mapping (Huggel, Kääb, & Salzmann,
2004; Röessner, Wetzel, Kaufmann, & Samagoev, 2002; Salzmann, Kääb, Huggel, Allgöwer, &
Haeberli, 2004; Yamaguchi, Tanaka, Odajima, Kamai, & Tsuchida, 2003). With the develop-
ment of the spatial resolution of satellite imagery (high and very high resolution), different
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types of problems can be analyzed, investigated, identified, and extracted, which helps to cal-
ibrate and validate the susceptibility built model. Different types of high-resolution remote
sensing data can help in preparing the inventory map for different types of natural hazards,
such as Google Earth (,1-m resolution), IKONOS (0.81-m resolution), Quickbird (0.6-m res-
olution), Astro Digital (5-m resolution), OrbView-3 (1-m resolution), SPOT-5 (2.5-m resolu-
tion), and Geo-Eye panchromatic satellite images (0.5-m resolution) (Birk et al., 2003;
Youssef, Pradhan, et al., 2016; Youssef, Sefry, et al., 2016).

In the current study, two methods were used to prepare the flood inventory map. The
first method uses historical data sources, including interpretation of high-resolution satellite
images (Google Earth and Astro Digital images from 2006 to 2016), field investigation, inter-
views with local citizens, data collected from the civil defense department, and flash flood
reports for the past 20 years. The second method includes a detailed assessment of the study
area, before and after the catastrophic flood event on October 18, 2016, using high-
resolution satellite images (Astro Digital, 2.5-m spatial resolution), acquired on October 13,
2016, and on November 5, 2016, with the help of field investigation. Astro digital data with
stream real-time imagery were provided for different applications. Two techniques were
applied to investigate and analyze the high-resolution satellite imageries of the study area.
Visual interpretation and slicing classification technique were used on the image acquired
on November 5, 2016, after the flash flood event to extract the flooded areas and prepare a
flood map event for the study area using the Environment for Visualizing Images (ENVI 5)
software.

10.5 Results and Analysis
10.5.1 Drainage Networks and Their Characteristics

Catchments and streams have an impact on the Ras Gharib area. The approach of the drain-
age system delineation for the watersheds was obtained using two sources, including (1)
topographic maps in 1:50,000 scale which were scanned and then rectified using ERDAS
IMAGINE 9.2 software followed by vectorization (on-screen digitizing). Tracing the drainage
line from topographic maps and its verification using ETM1 image (15 m resolution,
acquired in 2005). (2) A DEM by 20-m resolution was used to extract all drainage basins and
networks as well as their morphometric characteristics [watershed modeling systems (WMS
8.1)]. Data derived from topographic maps and DEM were integrated together to produce
the drainage network of the study area. Three basins were produced, namely Wadi Abu Had,
Wadi Darb, and Wadi Kareim. The drainage systems of different wadis are a threat to the Ras
Gharib area, as well as to the roads connecting and crossing the area. The drainage networks
of these basins are external, well developed, and highly integrated. These basins originated
mainly from the mountainous highland of basement rocks, which are flanked further east by
a relatively low-lying sedimentary strip. These wadis flow through the area from west to east
up to the Gulf of Suez coast, where there are many developing activities, urban areas, oil
constructions and tanks, and other industrial sites. The morphometric analysis for drainage
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basins has been studied by different authors (Horton, 1945; Melton, 1957; Strahler, 1952)
(Table 10-3). It was found that the main channel of Abu Had wadi is eights orders, while the
main channels for wadis of Darb and Wadi Kareim are six orders, according to the Strahler
classification.

10.5.2 Flash Flood Susceptibility Map

In the current study, AHP Excel Template Version 2014-07-26 and AHP Online System were
used for the pair-wise comparisons and calculations of the weights and CRs (Klaus, 2013,
2014). In this study, the AHP approach was implemented twice, firstly to weight the factor
classes and secondly to weight flood-related factors. Tables 10-4 and 10-5 show an example
of a pair-wise matrix for slope and all flood-related factors. It was found that the CR values
range from 0.78% to 8.1%, which are less than 10%, indicating that the matrix has an
acceptable level of consistency (Table 10-6). The final weight values for each factor class and
the overall weight for each factor are presented in Table 10-7.

The thematic layers of the factors giving weight values to all classes of the different factors
that affect the susceptibility analysis and the weight values of each factor in relation to
other factors were combined to calculate the overall flash flood susceptibility index (FFSI)
(Eq. 10-4). Using the weighted linear method the overall weighted value for each factor was
calculated by a multiplication of each factor weight to each class weight of the same factor.
The previous step was followed by a summation of the results of all flood-related factor

Table 10-3 Drainage Network Orders, Numbers, and Lengths for Each Basin in the
Study Area

Wadi/Properties Abu Had Darb Kareim

Basin area (km2) 1084.8 177.1 332.2
Stream orders # 1 Number 22625 3020 2502

Length (km) 5625.5 1078 844
# 2 Number 5345 710 611

Length (km) 1953.4 351 269
# 3 Number 1151 121 102

Length (km) 908.7 140 100
# 4 Number 282 29 23

Length (km) 469 73 40
# 5 Number 67 5 7

Length (km) 195 43 20
# 6 Number 18 1 1

Length (km) 98.8 29 24
# 7 Number 3 � �

Length (km) 23 � �
# 8 Number 1 � �

Length (km) 40.8 � �
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weights to produce a final FFSI. This method is the most frequently used technique for tack-
ling spatial multiattribute decision making.

FFSI5
Xn
j51

Xij3Yj (10-4)

where FFSI, flash flood susceptibility index, Xij, weight of class i in factor j; Yj, weight of fac-
tor j; n, number of factors.

The application of the proposed approach described in this chapter yielded a FFSM. The
calculated "FFSI" values range from 0.07 to 0.394. A lower value of "FFSI" indicates low flash

Table 10-4 Relative Importance Matrix of Slope Classes in the Study Area

Slope Class C1 C2 C3 C4 C5 Rating Value

,2 degrees C1 1 2 3 4 5 0.4185
2�6 degrees C2 1/2 1 2 3 4 0.2625
6�12 degrees C3 1/3 1/2 1 2 3 0.1599
12�20 degrees C4 1/4 1/3 1/2 1 2 0.0973
.20 degrees C5 1/5 1/4 1/3 1/2 1 0.0618

Table 10-5 Relative Importance Matrix of all Flood-Related Factors in the Study Area

Factors C1 C2 C3 C4 C5 C6 Weight Value

Slope C1 1 4 1/2 3 2 3 0.246
Elevation C2 1/4 1 1/4 1/2 1/3 1/2 0.056
Distance from stream C3 2 4 1 4 3 2 0.335
Lithological units C4 1/3 2 1/4 1 1/3 1/2 0.074
Topographic wetness index C5 1/2 3 1/3 3 1 3 0.180
Curvature C6 1/3 2 1/2 2 1/3 1 0.108

Table 10-6 Results of the Consistency Index (CI), Random Consistency Index (RI), and
Consistency Ratio (CR) for Flood-Related Factors

Factor N Λmax Cl RI CR %

Slope 5 5.259 0.0650 1.12 5.78
Elevation 5 5.068 0.0170 1.12 1.52
Distance to streams 5 5.349 0.0870 1.12 7.79
Lithological units 3 3.009 0.0045 0.58 0.78
Topographic wetness index 3 3.074 0.0370 0.58 6.38
Curvature 3 3.094 0.0470 0.58 8.10
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flood susceptibility and a higher value reveals high flash flood susceptibility. There are differ-
ent classification methods available, such as quantiles, natural breaks, equal intervals, and
standard deviations (Ayalew & Yamagishi, 2005). If the data distribution has a positive or
negative skewness, the quantile distribution classifiers could be chosen (Akgun, Sezer,
Nefesliogl, Gokceoglu, & Pradhan, 2012). The calculated susceptibility index values of the
FFSM were classified using the quantile method (Akgun et al., 2012; Youssef, Pradhan, et al.,
2016; Youssef, Sefry, et al., 2016) with five categories corresponding to very low, low, moder-
ate, high, and very high susceptibility (Fig. 10-4). According to the FFSM, the percentages of
the susceptibility zones were calculated as follow: 18.6%, 24.4%, 23.1%, 17.4%, and 16.5% for
very low, low, moderate, high, and very high susceptibility zones, respectively. The high and

Table 10-7 Weight Values for Each Factor Class and Entire Factors

Factors Classes Class
Rating

Factor
Rating

Factors Classes Class
Rating

Factor
Rating

Slope (�) , 2 degrees 0.41 0.246 Elevation (m a.s.l.) ,150 m 0.419 0.419
2�6 degrees 0.268 151�300 m 0.263 0.263
6�12 degrees 0.174 301�450 m 0.160 0.160
12�20

degrees
0.119 451�650 m 0.097 0.097

. 20 0.029 . 651 m 0.062 0.062
Distance from

streams (m)
3rd order Distance from

streams (m)
4th order

0�50 m 0.442 0.335 0�100 m 0.442 0.335
51�100 m 0.271 101�200 m 0.271
101�150 m 0.157 201�300 m 0.157
151�200 m 0.105 300�400 m 0.105
. 200 m 0.025 . 400 m 0.025
5th order 6th order
0�100 m 0.442 0.335 0�100 m 0.442 0.335
101�200 m 0.271 101�300 m 0.271
201�400 m 0.157 301�500 m 0.157
401�600 m 0.105 2700 m 0.105
. 600 m 0.025 .700 m 0.025
7th order 8th order
0�100 m 0.442 0.335 0�100 m 0.442 0.335
101�300 m 0.271 101�300 m 0.271
301�600 m 0.157 301�600 m 0.157
601�1000 m 0.105 601�1000 m 0.105
. 1000 m 0.025 .1000 m 0.025

Lithological units Well drained 0.163 0.074 Topographic
wetness index

. 14 0.571 0.180
Semidrained 0.297 9�14 0.374
Impermeable 0.540 ,9 0.054

Curvature (100/m) Concave 0.186 0.108
Flat 0.687
Convex 0.127

246 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



very high flash flood susceptibility zones cover about 33.9% of the whole study area, with
spatial distribution mainly in the eastern part of the study area and along the main wadis of
Abu Had, Darb, and Kareim and their major tributaries. In the central and western parts
of the study area, the method gave low and very low susceptibility zones, covering an area of
43% of the entire study area. Finally, the moderate susceptibility zone covers an area
of 23.1% of the whole study area, extending all over the study area.

10.5.3 Real Flood Area Extraction From Satellite Images

Two time-span images of astro digital data, with a spatial resolution of 5 m, were used to inves-
tigate and prepare the flood event map of the flood which happened on October 18, 2016.
True color imagery (bands 1, 2, and 3: RGB) was used for these time spans. Image processing
and enhancing were carried out using the ENVI-5 software. In the current study, two methods
of analysis were employed. The first method of investigation is according to the visual interpre-
tation of the imagery data in the GIS environment as shown in Figs. 10-5 and 10-6. Analysis of
these images indicated that no flooded areas could be detected on the imagery acquired on
October 13, 2016 (Fig. 10-5A�D). However, the flooded areas can be easily identified on the
imaging acquired on November 5, 2016 (Fig. 10-6A�D). This image showing the flooded areas
provides a great opportunity to map inundated areas due to this flash flood event. The second
method is by using an enhanced processing method (slicing classification technique) to extract

FIGURE 10-4 The flood susceptibility assessment map using the AHP technique.
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the flooded areas due to the flash flood event that occurred on October 18, 2016. Extraction of
flooded areas by a slicing technique relies on the flooded area feature characteristics as shown
in Fig. 10-6A. The results of this analysis were used to establish an inventory flood map for the
study area (Fig. 10-7). Two hundred and thirty-four flooded areas were detected, extracted, and
mapped over the entire study area. Historical data of flash floods were plotted over the inven-
tory map for the last flood event showing a good match between these data (Fig. 10-7). The
inventory flood map was used to verify the FFSM prepared using AHP.

10.6 Model Validation
The accuracy and quality of the proposed susceptibility model can be validated quantita-
tively using the receiver operating characteristic (ROC) curve by comparing the acquired
susceptibility map with existing real data (Lee & Pradhan, 2007; Pourghasemi et al., 2012;

FIGURE 10-5 (A) High-resolution image acquired on October 13, 2016, before the flash flood event on October 18,
2016, (B, C, D) close-up views for some selected areas showing no floods.
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Pourghasemi & Rahmati, 2018; Rahmati & Pourghasemi, 2017; Tien Bui, Pradhan, Lofman,
Revhaug, & Dick, 2012). In general, the prediction rate shows the predictive capability of the
model in a given area by measuring the area under the prediction rate curves (AUC)
(Pourghasemi et al., 2012; Tien Bui et al., 2012). In the current study, the validating flash
flood inventory map that was extracted from remote sensing analysis was used to evaluate
the prediction capability of the model. The prediction curve is shown in Fig. 10-8. The AUC
value of 0.833 represents 83.3% of the area under the curve (AUC) and depicts the prediction
accuracy for the AHP model. Thus, the AHP seemed to be efficient for flood susceptibility
mapping in the study area. In addition, another analysis was provided in order to test the
performance of the AHP model according to the previous flood data. The relationship
between the historical flooded areas (232 flood locations) and the AHP flood susceptibility
map indicated that 76.2% of the historical flooded areas were located in the very high and
high susceptible zones (54.9% and 21.3% for very high and high zones, respectively); 19.1% of

FIGURE 10-6 (A) High-resolution image acquired on November 5, 2016, after the flash flood event on October 18,
2016, showing flooded areas and water running along the wadis, (B, C, D) close-up views for some selected
inundated areas during the flash flood event.
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FIGURE 10-7 The slicing technique used to produce the flooded areas that were extracted from a satellite image
acquired on November 5, 2016 (note that historical flood locations overlie the inventory flood map).

FIGURE 10-8 Prediction rate curve for the AHP model.
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the historical flooded areas were located in the moderate flood susceptibility zone; 4.7% of the
historical flooded areas were located in the low flood susceptibility zone; and no historical
flooded areas were located in the very low flood susceptibility zone.

10.7 Conclusions
In the present work, multicriteria analysis (AHP) in conjunction with GIS environment was
implemented to produce a FFSM. The FFSM is crucial and vital for proper future urban
development and expansion. The susceptibility map of the study area was divided into five
categories that represent the potential flash flood susceptibility, including very low, low,
moderate, high, and very high susceptibility zones. The areas of high and very high suscepti-
bility are spatially distributed mainly in the eastern part of the study area and along the main
streams of Abu Had, Darb, and Kareim and their major tributaries. The areas of low and
very low suitability were observed in the western part. Finally, the areas of moderate suscep-
tibility are distributed all over the study area. The flood susceptibility map for the study area
was validated using two methods, one due to an inventory map that was extracted using a
slicing technique from the high-resolution satellite image acquired after the catastrophic
flood event on October 18, 2016, which gave an overall prediction of 83.3%. The second
method of verification was established using the historical records of flash flood events of
the study area. In the case of historical flood events, the vast majority of them (76%) fall into
high and very high susceptible zones, 19.1% fall into the moderate susceptible zone, and
4.7% were located in low and very low susceptibility zones. Both methods of validation indi-
cated that the AHP technique has a high predictive capability. The results of this study dem-
onstrated that the vast majority of the existing settlements were located within the high and
very high susceptibility zones. On the other hand, the roads and highways established per-
pendicular and parallel to the main streams represent high and very high flood susceptibility
zones. The reason for this is that the majority of the infrastructure and urban areas were con-
structed a long time ago when natural hazard evaluations were not taken into account before
the construction process. According to these results, appropriate hazard reduction techni-
ques can be efficiently established and implemented, and an awareness strategy of unsafe
areas concerning flash flood hazards will be extremely useful in emergency preparedness
and planning. Therefore, planners, developers, engineers, decision makers, private sectors,
and environmental authorities may implement the current approach during new and existing
urban and infrastructure planning projects to produce flash flood mitigation measures.
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11.1 Introduction
In recent years, population growth and urban development, with infrastructure in
unstable and dangerous areas has led to an increase in natural disasters in industrialized
and developing countries (Guzzetti, 2005). Natural disasters have direct and indirect impacts
on the economic and social issues of people, and the damage caused is more serious in
developing countries (Koehorst et al., 2005). More importantly, in many countries, landslides
cause more damage annually than other types of natural hazards, including earthquakes,
floods, and storms (García-Rodríguez, Malpica, Benito, & Díaz, 2008). Landslides are consid-
ered to be one of the major natural disasters globally, due to the loss of life, property dam-
age, and environmental influences. Each year landslides have a great role in destroying
communication roads, grasslands, gardens, residential areas, and creating erosion and pro-
ducing high sediment volumes in watersheds. Mass movement to move relatively large
volumes of materials, including rocks and soil on a foundation fixed for various reasons are
said to be based on its shape and cause, divided into various types in which landslides are
the most important, most dangerous, and most rapid movement type (Petschko, Brenning,
Bell, Goetz, & Glade, 2014).

Moradi, Mohammadi, Pourghasemi, and Mostafazadeh (2010), in their study, analyzed
the susceptibility of landslides in the Mazandaran province using the theory of
Dempster�Shafer and 12 factors that affected the landslide were considered. The assess-
ment showed that the Dempster�Shafer theory has an acceptable accuracy for analyzing
the susceptibility of landslides in an area. In order to zone landslide susceptibility in
Nepal, Devkota et al. (2013) used the comparison of confidence factor models, entropy
index, and logistic regression. In the present study, 12 factors affecting the landslide
occurrence of the area were identified and landslide susceptibility maps were prepared. In
general, the results of the evaluation showed that the models had almost the same accu-
racy. In order to estimate a landslide’s sensitivity, magnitude, and frequency, Wu and
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Chen (2013) prepared landslide hazard mapping in the Shihmen watershed in Taiwan. In
this study, an inverse gamma algorithm was used to estimate the magnitude of the land-
slide. Then, based on the length of the statistical period of 15 years, landslide hazard
maps were prepared in periods of 2, 5, 10, 20, 50, 100, and 200 years. Jaafari, Najafi,
Pourghasemi, Rezaeian, and Sattarian (2014) used two models, including frequency and
Shannon entropy index, in order to zone landslide susceptibility in the Kojour watershed.
The results showed that the Shannon entropy model is more accurate than the frequency
ratio model. Also, sensitivity analysis showed that normalized difference vegetation index
(NDVI) factors and elevation had the greatest effect and the factor of the slope had the
least effect. Pourghasemi, Moradi, Fatemi Aghda, Gokceoglu, and Pradhan (2014) evalu-
ated geographic information system (GIS)-based landslide susceptibility mapping with a
probabilistic likelihood ratio and spatial multicriteria models in the north of Tehran, Iran.
The validation of results showed that the areas under the curve for spatial multi-criteria
evaluation (SMCE) and probabilistic likelihood ratio (PLR) models were 76.16% and
80.98%, respectively. The results obtained in this study also showed that the probabilistic
likelihood ratio model performed slightly better than the spatial multicriteria evaluation.

According to previous studies, the factors affecting landslides vary in different regions.
Also, in each region, a particular model has the highest accuracy; this does not mean that
the same model is the best for landslide zoning in the same area (landslide sensitivity, risk,
and hazard). The purpose of this study is to investigate various methods and models empha-
sizing GIS and R software for assessing the susceptibility and risk of landslides in different
areas. R is a free, cooperatively developed, powerful, and flexible statistical programming
language and computing environment that has become the effective standard among statisti-
cians. In this research, all of the remote sensing (RS) and other statistical methods have
been investigated using R software (version R, 3.5.0).

11.2 Materials and Methods
11.2.1 Case Study

The study area is located in the northern part of Tehran in Iran, between longitudes of 51�

050 26 E to 51� 500 30v E, and latitudes of 35� 450 50v N to 35� 590 16v N (Fig. 11-1). It covers
an area of about 900 km2. The altitude of the area ranges from 1349.5 to 3953 m a.s.l. The
major land use of the study area consists of rangeland, which covers almost 90.5% of the
area. The slope angles of the area range from 0� to as much as 83�. The mean annual rainfall
according to the Fasham Station over a period of 37 years is around 700 mm. Also, based on
the records from the Iranian Meteorological Department [I.R. of Iran Meteorological
Organization (IRIMO), 2011], the maximum and minimum rainfalls occur in April and
September, respectively. The survey of aerial photos, reports of the country’s landslide data-
base and especially extensive field visits, identified landslides in the region, and a total of 528
typical slip positions were identified in the study area. The minimum and maximum areas of
landslides observed in the studied area were 684 and 280,803 m2, respectively. In addition,
Tehran is the most populated city in Iran and is also the capital city, and so landslides are a
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big danger for this important city. Furthermore, the existence of a rich source of data and
accessibility of the region is a good motivation for choosing this area as a case study.

11.2.2 Methodology

Identifying the factors that affect landslide occurrence is one of the main steps in the study
of landslide susceptibility. This identification leads to the selection of appropriate methods

FIGURE 11-1 Landslide location map of the study area.
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for controlling these movements. The study of landslides is very complicated due to the
diversity of factors affecting their occurrence and uncertainty due to ambiguous conditions
and concepts associated with parameters such as geology, hydrology, tectonics, vegetation,
rainfall, and erosion. Therefore, precise and appropriate methods for landslide investigation,
as one of the domain instabilities, is required. There are different types of methods that can
be used for the study and evaluation of landslides, such as data mining, logistic regression,
Shannon entropy, Dempster�Shafer theory, fuzzy logic, analytical hierarchy process, and
probability-weighted event method. A brief summary of different methods and models is
given next, followed by adaptive neuro-fuzzy inference system (ANFIS) and binary logistic
regression (BLR) methods that were used in the current study.

11.2.2.1 Binary Logistic Regression
The binary logistic model, as a nonlinear regression model, is a special case of a generalized
linear model (Schumacher, Robner, & Vach, 1996). The goal of logistic regression is to find
the best model to describe the relationship between a dependent variable and multiple inde-
pendent variables (Lee, 2005; Ohlmacher & Davis, 2003; Ozdemir, 2011). The advantage of
logistic regression is that, through the addition of an appropriate link function to the usual
linear regression model, the variables may be either continuous or discrete, or any combina-
tion of both, and they do not necessarily have normal distributions (Lee & Pradhan, 2007).
The algorithm of logistic regression applies maximum likelihood estimation after transform-
ing the dependent variable into a logic variable representing the natural logarithm of the
odds of the dependent occurring or not (Atkinson & Massari, 1998; Bai et al., 2010). The
described model can be expressed according to Eq. (11-1) (Lee & Pradhan, 2007):

P5
1

11 e2z
5

1

11 e2 βo1β1x11β2x21?1βnxnð Þ (11-1)

where P denotes the probability of landslide, β0 is the intercept, β1; . . . ;βn denotes the coef-
ficients associated with the independent variables, and xi are the independent variables for
i5 1; 2; . . . ;n.

The linear part of Eq. (11-1), denoted by Z, is obtained as follow.

z5 b0 1 b1x1 1 b2x2 1?1 bnxn (11-2)

where b0 is the estimation for the intercept, and b1; b2; . . .; bn are the estimations for the coef-
ficients associated with the independent variables.

The BLR analysis was performed using the R. In order to process the input data layers, all
the conditioning factors and landslides were converted into grid format and then into
American Standard Code for Information Interchange (ASCII) data format (Devkota et al.,
2013). ASCII data of each map were exported to SPSS, and then the BLR model was run to
obtain the coefficients of the landslide conditioning factors for numerical and categorical
data.
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11.2.2.2 Bayesian Theory
The Bayesian networks are also known as decision network, casual network, and influence
diagram. This method is based on the Bayes’ theorem which calculates the conditional and
joint probability distributions as decision support systems for medical studies. In the past
few decades, Bayesian theory has been widely used in different areas of sciences, especially
in mapping landslide susceptibility. To perform Bayesian logistic regression, we first use
Eqs. (11-3)�(11-5) to calculate the probable weights of each factor and its associated
classification.

P
b
a

� �
5P

a
b

� �
3

P bð Þ
P að Þ (11-3)

where P(a) is the probability of occurrence a, P(b) is the probability of occurrence b, P b=a
� �

is the probability of occurrence b provided that a event has occurred P a=b
� �

and the proba-
bility of occurrence a provided that b event has occurred (van Westen, 2002).
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i 5 loge
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� �

" #
(11-5)

In order to have a better understanding of the above relationships and ease of work, espe-
cially in the GIS environment, the model is based on Eqs. (11-6) and (11-7) (van Westen,
2002; Yesilnacar, 2005). Finally, for each factor for landslide hazard zonation, the weights are
calculated based on Eqs. (11-8) and (11-9) (Lee & Choi, 2004; Lee, Choi, & Min, 2002).

w1
i 5 loge

Npix1= Npix1 1Npix2

� �� �
Npix3= Npix3 1Npix4

� �� �
" #

(11-6)

w2
i 5 loge

Npix2= Npix1 1Npix2

� �� �
Npix4= Npix3 1Npix4

� �� �
" #

(11-7)

where Npix1 is the number of sliding pixels in a class; Npix2 is (total number of slider pixels in
a map)2 (number of sliding pixels in a class); Npix3 is (number of pixels per class)2 (num-
ber of sliding pixels in a class); and Npix4 is (total number of pixels per map) � (total number
of slider pixels in a map) � (number of pixels per class) 1 (number of sliding pixels in a
class).

C5 W1
� �

2 W2ð Þ� 	
(11-8)
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Wfinal 5
C
Sc

(11-9)

where C is the difference between positive and negative weights; Wfinal is the standardized
weight; and Sc is the standard deviation equal to the rotational variance of each of the posi-
tive and negative weights.

11.2.2.3 SINMAP Model
A process-based model is used to assess the unstable conditions for creating a landslide haz-
ard zonation map, the sustainability index map (Pack, Tarboton, & Goodwin, 2005). P, based
on an unlimited number of slope stability, has been established (Hammond, Hall, Miller, &
Swetik, 1992). The SINMAP model balances and simulates the unstable components (gravity)
and stabilizer (friction force and soil adhesion) of the slope on a level of failure along the
surface of the Earth, and neglecting the boundary effect. Pneumatic pressure due to available
moisture reduces the effective natural resistance of the soil, which is related to the shear
strength of the internal friction. This method has been used to model the confidence coeffi-
cient (Hammond et al., 1992) which is defined as the ratio of stabilizing forces to
unstable forces of the slope.

FS5
C1 cosθ 12min Ra=Tsinθ;

� �
:r

� 	
tanφ

sinθ
(11-10)

In this regard, C is the effective adhesion of soil (relationship 10) (dimensionless), φ the
internal friction angle of the soil (degree), R the effective precipitation (rainfall that pene-
trates directly into the soil) mm=h

� �
, and it is important to note that R is not a long-term

average (for example, 1 year old) rainfall. In fact, R is an effective rainfall for a critical period
of wet weather, which may lead to the beginning of the landslide process (Kirkby & Beven,
1979); T is the soil drainage factor m2=h

� �
, r is the specific gravity of the water to the mois-

ture content of the wet soil, and a is the upper hillside level (m2) with the slope of the hill-
side θ (degree). They are derived from topographic maps and a digital elevation model,
respectively (Pack et al., 2005). The effective adhesion of the soil is obtained from
Eq. (11-11).

C5
Cs1Cr

ρs3 g3h

� �
(11-11)

In this regard, Cs is soil adhesion N=m2
� �

, CR is root adhesion N=m2
� �

, g is acceleration
due to gravity 9:81 m=s2

� �
, and h is the thickness of the soil (m) obtained from Eq. (11-12).

The water absorption coefficient is derived from Eq. (11-13).

h5 d3 cosθ (11-12)
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T 5Ks3 d (11-13)

In this regard, Ks is the saturated hydraulic conductivity m=day
� �

and (m) is the depth of
soil perpendicular to the slope (m). Table 11-1 presents the classification of the sustainability
class in the SINMAP model.

11.2.2.4 Adaptive Neuro-Fuzzy Inference System
The fuzzy models have the ability to demonstrate complex processes by applying the con-
cepts of if-then rules. In addition, if the number of input variables is high in the description
of the problem, the choice of membership functions and if-then rules will be appropriate in
the fuzzy model. This problem can easily be solved by using artificial neural network learn-
ing algorithms (Yesilnacar, 2005). In this method, the learning algorithm automatically
selects the appropriate parameters for membership functions in the fuzzy model. Although
neural networks are extremely useful unsupervised learning methods, they are not able to
provide an interpretable result for the complex systems. Hence, the ANFIS is used to over-
come this problem (Polat & Günes, 2006). In general, ANFIS uses a hybrid learning rule that
combines the gradient method and the least squares method to determine the parameters
(Oh & Pradhan, 2011; Wang & Elhag, 2008).

11.2.2.5 Random Forest Algorithm
Random forest is a supervised learning method that uses multiple trees in the classification
(Stone et al., 1984). The random forest algorithm, with the replacement and constant change
of the factors affecting the target, leads to the creation of a large number of decision trees.
Then, all trees are combined for the prediction of landslide susceptibility (Vorpahl,
Elsenbeer, Märker, & Schröder, 2012). In the process of training, each series of original tree
data is determined by a random selection (Breiman, 2001). A random forest consists of three
user-defined parameters, the number of variables used in the construction of each tree, the
number of trees in the random forest, and the minimum number of end nodes. The number
of variables used in the construction of each tree expresses the power of each independent
tree. The power of the random forest prediction increases with the increasing strength of
independent trees and reducing the correlation between them (Lieb, Glaser, & Huwe, 2012).

Table 11-1 Definition of SINMAP Stability Class (Pack et al., 2005)

Class Term Forecast Mode

1 SI . 1.5 Sustainable area
2 1.5 . SI . 1.25 Medium stability zone
3 1.25 . SI . 1 Pseudo-stable region
4 1 . SI . 0.5 The area is lower than the threshold level
5 0.5 . SI . 0 Area above threshold level
6 0 . SI Protected area
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The random forest algorithm does not use all the available data for tree propagation and
uses 66% of the data, called the bootstrap instance. Then, a predictor variable is randomly
added during the process of growing the forest. Choosing this variable to split a node into a
tree is done randomly, in this way the decision tree is made to the largest possible size. The
33% of the remaining data is used to evaluate the fitted tree (Breiman, 2001). This process is
repeated several times, and the average of all predicted values is used as the final prediction
of the algorithm (Birks, Lotter, Juggins, & Smol, 2012). In this model, two factors are used to
reduce the accuracy and mean Gini reduction to determine the priority of each of the effec-
tive factors. The use of a mean reduction in accuracy compared with the Gini’s importance
index in determining the priority of effective is better and more stable factors, especially
when there is a relationship between different environmental factors exist (Nicodemus,
2011). Thus, by entering data related to effective factors and mapping the landslides to R
software, modeling using random forest is performed and the role of the factors affecting
landslides is determined. Finally, the weight of the random forest algorithm in the R software
is transferred to the ArcGIS environment and the final landslide sensitivity maps for the
study area are prepared. R is free statistical software that is widely used in different scientific
areas for data analysis. To facilitate the computation, there are many different packages cre-
ated in R that are collections of R functions, data, and compiled code in a well-defined for-
mat. There are different packages in R that perform neuro-fuzzy and random forest
algorithms. To be specific, the package “random Forest” has the function random Forest
which is used to create and analyze random forests. To create a random forest in R, one has
to specify the formula that describes the predictor and response variables and specify the
data using “random Forest (formula, data)” syntax. The package “ANFIS” uses the adaptive
neuro-fuzzy inference system. This package is mainly used for regression tasks. To perform
the neuro-fuzzy via ANFIS in R, one has to specify the data, number of labels or variables,
maximum number of iterations, the step size that is a real number between 0 and 1, and
type of implication functions. More details about each of these packages can be found on
the R website at https://www.r-project.org.

In order to evaluate landslide sensitivity, the results of two BLR and neural-fuzzy infer-
ence system implementations in northern Tehran, Iran, are briefly described.

11.3 Results and Discussion
11.3.1 Binary Logistic Regression

The Hosmer and Lemeshow test shows that the goodness-of-fit of the equation can be
accepted because the significance of chi-square is larger than 0.05 (1.00). The values of Cox
and Snell R2 (0.009) and Nagelkerke R2 (0.624) show that the independent variables can, in a
way, explain the dependent variables. A landslide susceptibility map with the BLR method is
shown in Fig. 11-2.

The β coefficient of each conditioning factor is shown in Table 11-2. According to
Table 11-2, it can be seen that the NDVI, slope-length (SL), distance from the faults, and
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FIGURE 11-2 Landslide susceptibility map based on BLR. BLR, Binary logistic regression.

Table 11-2 Beta Coefficients and Test Statistics of the Variables Used in the Logistic
Regression Equation

Conditioning Factors β SE Wald df Significance Exp (B)

Slope degree 2 2.463 1.457 3.291 1 0.070 0.071
Aspect (flat) 11.657 1051.286 0 1 0.991 115,540.320
Aspect (north) 16.336 1051.289 0 1 0.988 1.244E7
Aspect (northeast) 0.473 1569.861 0 1 1 1.600
Aspect (east) 1.547 1355.837 0 1 0.999 4.698
Aspect (southeast) 3.448 1248.227 0 1 0.998 31.443
Aspect (south) 17.566 1051.299 0 1 0.987 4.252E7
Aspect (southwest) 2 3.174 1467.256 0 1 0.998 0.042
Altitude 2 0.023 0.013 2.822 1 0.093 0.978
Plan curvature 2 11.197 110.365 0.010 1 0.919 0
NDVI 1.930 13.996 0.019 1 0.890 6.888
Land use (range land) 0.875 3353.479 0 1 1 2.398
Lithology (group 1) 2.473 5128.669 0 1 1 11.858
Lithology (group 2) 2 8.171 976.674 0 1 0.993 0
Lithology (group 3) 13.738 872.773 0 1 0.987 925,652.247
Lithology (group 4) 2 4.795 2471.053 0 1 0.998 0.008
Distance from rivers 0.042 0.027 2.380 1 0.123 1.043
Distance from roads 0.009 0.006 1.974 1 0.160 1.009
Distance from faults 0.030 0.017 3.063 1 0.80 1.031
SPI 2 0.050 0.031 2.629 1 0.105 0.951
Slope-length 1.542 0.902 2.855 1 0.091 4.593
Constant 2 0.016 3621.269 0 1 1 0.985

NDVI, Normalized difference vegetation index; SE, Standard Error; SPI, stream power index.
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distance from the rivers have a positive effect on the landslide susceptibility mapping of the
study area, because of positive β value. The β values of these conditioning factors are 1.930,
1.524, 0.042, 0.030, and 0.009, respectively. On the other hand, slope degree, altitude, and
stream power index have a negative effect on landslide occurrence with β values of 22.643,
20.023, and 20.050, respectively. In the case of slope aspect, south (β 5 17.566), north (β
5 16.336), flat (β 5 11.656), southeast (β 5 3.448), east (β 5 1.547), and northeast (β 5

0.470) facing have a positive β coefficient. In contrast, a southwest facing has a value of
23.174. For the land use factor, the results showed that only rangeland type has an effect on
landslide susceptibility, with a value of 0.875, while the remaining land use types do not play
any role in landslide occurrence in the north of Tehran. Based on the results of logistic
regression for lithology factor, it can see that lithological formation of groups 3 and 1 have
positive β values, whereas groups 2 and 4, with negative values of 28.171 and 24.795, have
an inverse effect on landslide susceptibility (Table 11-2).

11.3.2 Landslide Susceptibility Map Using ANFIS

The results of the relationship between landslides, the effective factors, and the effects of
each of them are presented in Table 11-3 using the frequency ration model [Eq. (11-14)] and
the normalized values. The results of the gradient factor model show that most of the land-
slides occurred in the gradient class of 15�30�. In low slopes (0�5 and 5�15�), the forces
are such that the force (vertical) is greater than the propulsion (horizontal) and the landslide
conditions are not provided. In high slopes (more than 30�), other erosion processes are
dominant and there is not enough soil to occur under landslides, so the number of abun-
dance decreases, which is consistent with previous views (Pourghasemi, Moradi, Fatemi
Aghda, Mahdavifar, & Mohammadi, 2010). The study of other effective factors in Table 11-3
showed that the highest slip and the frequency ratio were related to the group lithology of
seven (2.36), which is basically shale, sandstone, tuff, marn, and limestone. The main reason
for this is the high sensitivity of these formations to erosion and landslide. The slope aspect
of the northeast, east, and northerly direction frequency ratios are 1.89, 1.33, and 1.27,
respectively. The frequency ratio in rangeland is 1.09. The reason for this can be attributed
to the high extent of this type of use (90%) in the study area. The frequency ratios in dis-
tances of 100�200 and 200�300 m from the river are 1.13 and 1.36, respectively, with land-
slide occurring. The main reason for this is that the waterways cause river and riverside
erosion along the river, causing imbalancing of the slope and instability of the slopes over-
looking the river. Distances 300�400 m from the road and more than 400 m are 1.17 and
1.13, respectively. As the distance from the road increases, landslide occurrences also
increase. Although the roads are in a natural state, the balance of the slope of the area is
shaken and creates vertical cuts, leading to additional pressure on the lower section of the
road and causing an increase in ground scales around the roads. This result was confirmed
by the results of Pourghasemi et al. (2010). The higher and lower slope frequency ratios are
low. Regarding the NDVI, it is necessary to note that the minimum and maximum values are
from 20.4 to 0.6, and, according to Table 11-3, in general, high slope areas are most likely to
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Table 11-3 Standardized Factors Affecting Landslides

Factor Class
Pixel
Number

Number of
Landslides

Frequency
Ratio

Standardized
Value

Land use Agriculture 12,673 0 0 0.1
Rock outlet 9643 0 0 0.1
Forest 207,254 4 0.47 0.44
Garden 540,179 1 0.04 0.13
Rangeland 8155,076 365 1.09 0.9
Residential

area
49,206 0 0 0.1

Water zones 15,393 0 0 0.1
Lithologya Group 1 919,687 22 0.58 0.30

Group 2 15,945 0 0 0.1
Group 3 1597,077 87 1.32 0.55
Group 4 2474,738 66 0.65 0.32
Group 5 3055,530 150 1.19 0.50
Group 6 426,844 7 0.40 0.24
Group 7 308,607 30 2.36 0.9
Group 8 190,996 8 1.02 0.45

Slope degree 0�5 208,056 1 0.12 0.1
5�15 810,093 9 0.27 0.21
15�30 3821,708 194 1.23 0.9
30�50 4084,952 165 0.98 0.72
50, 64,615 1 0.38 0.29

Topographic wetness
index

6. 180,568 4 0.54 0.36
6�8 5297,896 228 1.05 0.74
10�8 2499,080 130 1.26 0.9
.10 1011,880 8 0.19 0.1

NDVI ,2 0.001 5104,044 234 1.11 0.89
20.0�0.001 389,157 12 0.75 0.63
0.0�0.05 1579,113 62 0.95 0.77
0.0�1.05 835,563 39 1.13 0.9
0.0�1.5 1060,265 23 0.53 0.48
.0.5 21,282 0 0 0.1

Drainage density
(km/km2)

,1.13 4020,070 204 1.23 0.9
1.2�2.4 3909,501 151 0.94 0.64
2.5�5.4 1059,853 15 0.34 0.1

Slope aspect Flat 2311 0 0 0.1
North 746,415 39 1.27 0.64
Northeast 925,769 72 1.89 0.9
East 1164,311 63 1.32 0.66
Southeast 1261,381 43 0.83 0.45
South 1410,918 39 0.67 0.38
Southwest 1488,757 46 0.75 0.42
West 1139,281 33 0.70 0.40
Northwest 850,281 35 1 0.52

(Continued)
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occur in tropical and sparse vegetation areas with bare soil, and the lowest risk of the occur-
rence of landslides was in dense vegetation areas, which is consistent with other studies
(Song et al., 2012).

After normalizing [Eq. (11-15)] the frequency ratios (Table 11-3), these weights were
introduced into MATLAB software. In this step, the fuzzy inference system of the third type
(clustering c-mean) was used with the Gaussian function to fuzzy. In order for optimization
and learning, the post-propagation hybrid algorithm (HA) and least squares (LS) were used
(Pourghasemi et al., 2014).

FR5
A
B

(11-14)

where FR is the frequency, A is the percentage of slide pixels, and B is the percentage of non-
slide pixels.

Ni 5 0:8
xi 2 xmin

xmax 2 xmin

� �
1 0:1 (11-15)

Table 11-3 (Continued)

Factor Class
Pixel
Number

Number of
Landslides

Frequency
Ratio

Standardized
Value

Distance from roads (m) ,100 1066,777 17 0.39 0.1
100�200 826,979 23 0.68 0.40
200�300 689,664 30 1.06 0.79
300�400 622,091 30 1.17 0.9
.400 5783,913 270 1.13 0.86

Distance from rivers (m) ,100 3587,993 116 0.79 0.45
100�200 2612,101 121 1.13 0.72
200�300 1623,562 91 1.36 0.9
300�400 819,441 30 0.89 0.53
400�500 276,267 11 0.79 0.59
.500 70,060 1 0.35 0.1

Slope length index (m) ,30 1332,777 25 0.46 0.1
30�60 2789,349 134 1.17 0.86
60�90 2552,783 127 1.21 0.9
90�120 1147,793 49 1.04 0.72
.120 1166,722 35 0.73 0.39

NDVI, Normalized difference vegetation index.
aLithology: group 1, Quaternary including alluvial fans and terrace; group 2, Miocene deposits including sandy marl, siltstone,
conglomerate, gypsum, and limestone; group 3, Eocene including sandstone, conglomerate, gypsum, nummulite marly limestone;
group 4, Eocene including massive green tuff, shale with basaltic lava flows, dark grey shale with alternation of green tuff, and partly
with sandstone, shale, conglomerate, and limestone; group 5, Paleocene including thick-bedded to massive polygenetic conglomerate,
sandstone, and locally limestone beds; group 6, Triassic including thick-bedded-massive dolomites and dolomitic limestone; group 7,
carbonifer shale, sandstone, tuff, marn, and limestone; group 8, Tertiary, mostly Oligocene, including mostly syenite and some
leuosyenite porphyry.
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where Ni is the standard value, xi is the actual value, xmin is the minimum value, and xmax is
the maximum value.

The structure of the comparative ANFIS model of the study area is presented in Table 11-4.
After the model was trained and finalized for the whole region, the final file with the text for-
mat was transferred from the R software to GIS in order to provide a landslide zonation map.

Finally, the landslide susceptibility map prepared on the basis of natural fractures was
divided into four classes: low, moderate, high, and very high (Bednarik, Magulová, Matys, &
Marschalko, 2010; Xu, Dai, Xu, & Lee, 2012). The results of landslide susceptibility zonation
in Fig. 11-3 show that 16.04%, 36.23%, 33.79%, and 13.94% of the studied area are located in
low, moderate, high, and very high risk. To evaluate the model, the receiver operating char-
acteristic (ROC) curve was used (Fig. 11-4). This curve is one of the most effective methods
in providing specification, probabilistic identification, and system prediction that estimates
the accuracy of the model quantitatively. Based on the results of the ROC curve, the surface
area under the curve of the study area (0.7748 or 77.48%) with a standard deviation of 0.026
is estimated. Therefore, Fig. 11-3 illustrates a good evaluation of the ANFIS model in identi-
fying the factors affecting landslide and its vulnerability zoning. The results of this study are
compared with Vahidnia, Alesheikh, Alimohammadi, and Hosseinali (2010) in Mazandaran
Province, Sezer, Pradhan, and Gokceoglu (2011) in the Malaysian Selengor area, Oh and
Pradhan (2011) on Penang Island in the Malaysian Peninsula, Tien Bui, Pradhan, Lofman,
Revhaug, and Dick (2012) in Vietnam, and Sdao, Lioi, Pascale, Caniani, and Mancini (2013)
in southern Italy. Compared with the two-variable, probabilistic and experimental models, it
is perfectly consistent.

After the model was trained and finalized, the whole region was generalized. The final
text file format (Text) was transmitted from R software to ArcGIS software and the landslide
susceptibility map was prepared (Fig. 11-3). The results are carefully determined with ROC
curve and the area under the curve of a landslide zonation map (Fig. 11-4). Determining
high accuracy in landslide susceptibility assessment studies is very important and simplifying
the main parameters of the landslide, their classes, and the interactions between them can
lead to incorrect results in the final map (Devkota et al., 2013). Also, in most studies, expert
judgments play an important role, and empirical approaches are widely used for various eva-
luations (Bai et al., 2010; Devkota et al., 2013).

Table 11-4 Structure of the ANFIS Model

Number of nodes 1003
Number of linear parameters 495
Number of nonlinear parameters 900
Total number of parameters 1395
Number of pairs of training data 2072
Number of pairs of experimental data 518
Number of fuzzy rules 45

ANFIS, Adaptive neuro-fuzzy inference system.
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11.4 Conclusion
Natural disasters are part of our human environment. Natural disasters do not discriminate
between people of a society and other communities. In general, no crisis is solely dependent
on natural factors. The purpose of this study is to prepare a landslide susceptibility map
using dual logistic regression models and comparative fuzzy inference in northern Tehran.
For this purpose, after providing maps of landslide distribution, slope information layers,
lithology, slope direction, slope length index, land use, distance from the river, distance from
the road, topographic moisture index, and normalized differential vegetation index as factors
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FIGURE 11-3 Landslide susceptibility map using ANFIS model. ANFIS, Adaptive neuro-fuzzy inference system.

FIGURE 11-4 ROC curve and the area under the curve of a landslide zonation map.
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affecting the occurrence of landslides were identified. In order to weigh the classes of
each of the factors, a frequency ratio method was used and the normalized weights were
transferred to the R software environment. For the evaluation of the model ROC and 30%
landslide point’s residual was used. The results showed that the accuracy of the model was
estimated by ANFIS in the study area of 77.48% (good accuracy); this data-mining method
depends on the number of pairs of training, experimental and fuzzy data used in the
research, and, in particular, by increasing the number of fuzzy rules of the process, more
accurate simulation can be provided. So far, different methods have been proposed for land-
slide susceptibility zonation. The accuracy or the error of each of these methods, as well as
the use and comparison of each of these methods, requires knowledge of the foundations on
which the methods are based. So far, different approaches to landslide susceptibility zona-
tion have been proposed, but what is certain is that all these methods can provide accurate
results with minimal data and costs and at very low levels. Combining these models with GIS
and RS systems not only increases the accuracy of dealing with complex issues and uncer-
tainties, but also leads to the emergence and development of new theories and methods in a
variety of issues.
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12.1 Introduction
Soil disturbance caused by skidder traffic is a serious problem that can affect commercial for-
ests in Iran (Najafi, Solgi, & Sadeghi, 2009). The detrimental effects of skidding increase bulk
density (Ampoorter, Van Nevel, De vos, Hermy, & Verheyen, 2010), decrease porosity (Hillel,
1998), and cause shifts in soil aggregate shapes and size distribution (Arthur, Schjonning,
Moldrup, Tuller, & De jonge, 2013). Changes in these fundamental characteristics lead to
infiltration reduction (Frey, Rudt, Sciacca, & Matthies, 2009), runoff (Christopher & Visser,
2007), and nutrient leaching (Miller, Lamond, Sweetland, & Larney, 2000) as they alter the
soil’s water-holding capacity and hydraulic properties (Zhang, Grip, & Lovdahl, 2006).
Consequently, these modifications reduce forest productivity in the long term (Dominati,
Patterson, & Mackay, 2010) and the original soil properties cannot be recovered in a short
period of time (Bottinelli, Capowiezc, & Ranger, 2014). Therefore, it is necessary to preserve
all soil properties and functions for future generations.

Most of the studies related to soil disturbances following timber harvesting deal with
comparisons between the soil physical (Rab, Bradshaw, Campbell, & Murphy, 2005),
mechanical (Unger & Cassel, 1991), and chemical (Schoenholtz, Van Miegroet, & Burger,
2000) disturbances in different conditions and there is a lack of knowledge to define site-
specific boundary conditions to prevent soil disturbance.

One of the ways to anticipate harvesting impact is soil disturbance susceptibility mapping
by data-mining models. The aim of this method is to identify sites that are susceptible
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to future disturbances based on the knowledge of past disturbance events, soil attributes,
terrain factors, and other possible management conditions that are associated with the pres-
ence or absence of disturbances (Sowa & Kulak, 2008). These maps rank different sites of
forest according to the degree of actual or potential soil disturbance susceptibility; thus,
planners are able to choose favorable sites for tree marking, forest road, and skid trail con-
struction and logging.

Susceptibility zonation methods have received less consideration in preventing and
reducing soil disturbance during skidding, although they are widely used in other sciences.
Sowa and Kulak (2008) used a generalized linear model for determining characteristics of
the stands and features of the timber harvesting process connected with the occurrence of
disturbances in southern Poland. Reeves, Reeves, Abbott, Page-Dumroese, and Coleman
(2012) developed a harvest disturbance decision support tool based on systematically
collected soil monitoring data in the northern region of the USDA Forest Service. Both of
these studies used statistical models using logistic regression (LR) for soil disturbance map-
ping. Recently, new modeling techniques have been used for soil disturbance mapping, such
as support vector machine, neuro-fuzzy, and decision tree methods (Pourghasemi &
Rahmati, 2018; Pourghasemi, Yousefi, Kornejady, & Cerda, 2017; Rahmati, Tahmasebipour,
Haghizadeh, Pourghasemi, & Feizizadeh, 2017; Reeves et al., 2012). The spatial results of
these approaches are generally appealing, and they give rise to qualitative and quantitative
maps of the soil disturbance susceptibility areas. In the current study, LR, general additive
model (GAM), and classification and regression tree (CART) models were applied to evaluate
and compare the importance of causative factors affecting soil disturbances as a result of
harvesting at Shourab Forests, Iran.

12.2 Study Area
The study area covered was around 2669 ha, located in the Hyrcanian Forests in northern
Iran (Fig. 12-1). The climate of this mixed hardwood forest is humid and moderate, with
temperatures ranging from 0 to 28�C, with 850 mm of annual precipitation (Administration
of Nowshahr Natural Resources, 2017). The soil texture is classified as clay, loamy, and silty-
clay. The dominant tree species are pure beech (Fagus orientalis Lipsky), maple (Acer veluti-
num Boiss), and hornbeam (Carpinus betulus L.). In the study area, stands mostly show an
uneven-aged structure which is managed by a single selection system with 2.5 m3/ha/year
volume increments.

In these forests, ground-based extraction systems are commonly used by all logging com-
panies as the primary bunching extraction and transportation system. A wheeled skidder
(Timber Jack 450C-6BTA5.9) with 10-t weight and 177 hp equipped with a winch was used to
remove the timber from the study area.

Extraction was from June to July (2010�16). At the time of logging and sampling, weather
conditions were dry and warm for more than one month, so that the average soil�water
content at the time of logging was 26%.
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FIGURE 12-1 Study area and soil disturbance sample maps according to Table 12-1.
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12.3 Data Collection
For any kind of soil disturbance study, a correct soil disturbance database is a pre-requisite.
In addition, soil disturbance sampling mapping is the most fundamental step in any soil
disturbance susceptibility modeling. This allows us to develop knowledge about the past soil
disturbance intensity, failure process, and conceptual knowledge about the relationship
between the existing soil disturbance and conditioning and triggering factors. Samplings are
prepared using different techniques depending on the available resources (aerial photo-
graph, satellite images, and field survey), properties of the available information, the scale
of base maps, the scope of the research, and the extent of the study area (Reeves, Page-
Dumroese, & Coleman, 2011). In the study area, a total of 264 soil disturbance samples were
mapped in the field survey. The modes of failure for the soil disturbances identified in the
study area were determined according to the soil disturbance classification system proposed
by Page-Dumroese, Abbott, and Rice (2009).

This method calls for randomly locating a start point and traversing a transect that covers
the entire area. The entire transect was located and oriented at 17,400 m (Fig. 12-1), and the
plot distance was 50 m (348 plots) (Page-Dumroese et al., 2009). Turning points were located
within the activity area so that the last plot before a turn was not within an area of influence
of the surrounding stand (height of the tallest trees) (Fig. 12-2).

A plot is defined as a 15 cm diameter circular area (Page-Dumroese et al., 2009). The
presence or absence of each disturbance indicator at the point is noted. The visual distur-
bance class of each sample point is determined using the most limiting visual indicator at
the point (Table 12-1). Therefore, 264 monitoring points were randomly determined among
348 (66 monitoring points for each soil disturbance class).
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FIGURE 12-2 Illustration of the technique used for soil disturbance study (Page-Dumroese et al., 2009).

280 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



Table 12-1 Soil Disturbance Classes (Page-Dumroese et al., 2009)

Soil disturbance
class 0 (low)

Soil surface:
• No evidence of compaction, i.e., past equipment operation, ruts, skid trails
• No depressions or wheel tracks evident
• Forest floor layers present and intact
• No soil displacement evident
• No management-generated soil erosion

Soil disturbance
class 1
(moderate)

Soil surface:
• Faint wheel tracks or slight depressions evident and are ,5 cm deep
• Forest floor layers present and intact
• Surface soil has not been displaced and shows minimal mixing with subsoil
Soil compaction:
• Compaction in the surface soil is slightly greater than observed under natural conditions
• Concentrated from 0 to 10 cm deep
Observations of soil physical conditions:
• Change in soil structure from crumb or granular structure to massive or platy structure; restricted

to the surface 0�10 cm
• Platy structure is noncontinuous
• Fine, medium, and large roots can penetrate or grow around the platy structure. No “J” rooting

observed
• Erosion is slight

Soil disturbance
class 2 (high)

Soil surface:
• Wheel tracks or depressions are 5�10 cm deep
• Accessorya: Forest floor layers partially intact or missing
• Surface soil partially intact and may be mixed with subsoil
Soil compaction:
• Increased compaction is present from 10 to 30 cm deep
Observation of soil physical condition:
• Change in soil structure from crumb or granular structure to massive or platy structure; restricted

to the surface, 10�30 cm
• Platy structure is generally continuous
• Accessorya: Large roots may penetrate the platy structure, but fine and medium roots may not
• Erosion is moderate

Soil disturbance
class 3 (very
high)

Soil surface:
• Wheel tracks and depressions highly evident with depth .10 cm
• Accessorya: Forest floor layers missing
• Evidence of surface soil removal, gouging, and piling
• Most surface soil displaced. Surface soil may be mixed with subsoil. Subsoil partially or totally

exposed
Soil compaction:
• Increased compaction is deep in the soil profile (. 30 cm deep)
Observations of soil physical conditions:
• Change in soil structure from granular structure to massive or platy structure extends beyond

30 cm deep
• Platy structure is continuous
• Accessorya: Roots do not penetrate the platy structure
• Erosion is severe and has produced deep gullies or rills

aAccessory items are those descriptors that may help identify individual severity classes.

Chapter 12 • Prediction of Soil Disturbance Susceptibility Maps of Forest Harvesting 281



In order to carry out soil disturbance susceptibility zoning of the study area, 10 soil
disturbance conditioning factors were considered. These factors were slope degree, slope
aspect, altitude, slope length (LS), topographic position index (TPI), topographic wetness
index (TWI), soil texture, forest type, forest density, and distance from roads and skid trails.

A digital elevation model (DEM) was created at 1:25,000-scale (digitalization of contours
at 10-m intervals). DEM was subsequently used to derive the slope degree, slope aspect, alti-
tude, LS, TPI, and TWI, which are considered as important topographic factors for stability of
the terrain.

The slope degree is divided into five different classes including: (1) ,5 degrees, (2) 5�15
degrees, (3) 15�30 degrees, (4) 30�50 degrees, and (5) .50 degrees (Fig. 12-3A). Slope
aspect layer is categorized into nine classes: (1) flat, (2) north, (3) northeast, (4) east, (5)
southeast, (6) south, (7) southwest, (8) west, and (9) northwest (Fig. 12-3B). The altitude
map for the study area, with a cell size of 103 10 m, was produced from the DEM and classi-
fied into five classes, that is, (1) ,1200 m, (2) 1200�1500 m, (3) 1500�1800 m, (4)
1800�2100 m, and (5) .2100 m (Fig. 12-3C).

The LS factor (Fig. 12-3D) was derived based on the slope map and specific catchment
area (AS) (Moore, Grayson, & Ladson, 1991) according to Eq. (12-1):

LS5
As

22:13

� �0:6

3
sin β
0:0896

� �1:3

(12-1)

where β is the slope angle in degrees and AS is calculated based on the following equation
(Hengl, Gruber, & Shrestha, 2003):

As5 Am 3
P2P
Li

� �
(12-2)

In Eq. (12-2), P is the pixel size, Am is the cumulative drainage fraction from m neighbors,
and

P
Li is derived as the sum of lengths for drainage pixels. The LS was grouped into four

classes that consisted of (1) ,5 m, (2) 5�10 m, (3) 10�15 m, and (4) .15 m (Fig. 12-3D).
The TPI was created by DEM and a slope map and classified into three categories: (1) can-
yons, (2) slopes, and (3) ridges (Fig. 12-3E). The TWI (Moore et al., 1991), as another effec-
tive factor in soil erosion, is defined as [Eq. (12-3)]:

TWI5 ln
α

tan β

� �
(12-3)

where α is the cumulative upslope area draining through a point (per unit contour length)
and tan β is the slope angle at the point. The ln(α/tan β) index reflects the tendency of water
to accumulate at any point in the catchment (in terms of α) and the tendency of gravitational
forces to move that water downslope (expressed in terms of tan β as an approximate hydrau-
lic gradient). The TWI was classified into four classes: (1) ,5, (2) 5�10, (3) 10�15, and (4)
15�20 (Fig. 12-3F). Both variables LS and TWI are functions of secondary terrain attributes
which are implemented in SAGA-GIS software.
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FIGURE 12-3 Predictor variable maps in the study area; (A) slope degree, (B) slope aspect, (C) altitude, (D) slope-
length (LS), (E) topographic position index (TPI), (F) topographic wetness index (TWI), (G) soil texture, (H) forest
type, (I) forest density, (J) distance from roads and skid trails.
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The soil texture map was obtained from a 1:100,000-scale soil map (Fig. 12-3G). The forest
type (Fig. 12-3H) and density (Fig. 12-3I) data were prepared from the administration of
Nowshahr natural resources (1:25,000 scale) and were verified by a field survey. The map of
distance from roads and skid trails was constructed by buffering intervals of 50 m (Fig. 12-3J).

12.4 Soil Disturbance Susceptibility Modeling
12.4.1 Logistic Regression

To predict the absence or presence of soil disturbances, a GLM model, was used. LR has been
widely used in ecological methodology (Pourghasemi & Rossi, 2017; Willems et al., 2008;

FIGURE 12-3 (Continued).
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Ysebaert, Meire, Herman, & Verbeek, 2002) to predict the probability of a detriment occur-
rence, based on the management and environmental factors. Since the sample distribution
was binary (absent or present), the logit link was used. The backward/forward stepwise
selection method was used to select the best set of variables.

The logistic model can be described in its simplest form as follows [Eq. (12-4)]:

P5
ExpðZÞ

11Exp Zð Þð Þ½ � (12-4)

where P is the probability of an event (soil disturbance), which varies from 0 to 1 on an
S-shaped curve; Z [Eq. (12-5)] is defined by the following equation (LR model), and its value
varies from 2N to 1N:

Z5 β0 1β1X1 1β2X2 1?1βnXn (12-5)

where β0 represents the intercept of the model, 1; 2; . . ., n the partial regression coefficients,
X1, X2, . . ., Xn represent the independent variables.

12.4.2 General Additive Model

GAM is a nonparametric model developed by Hastie and Tibshirani (1990) who extended
the classical linear model, GLM. These models are able to explore nonlinear and nonmono-
tonic relationships between the response variable and the set of predictor variables. Guisan,
Edwards, and Hastie (2002) introduced GAM as data-driven, due to its ability in using
smoothing functions.

In the present study, GAM was fit in R 2.9 using the generalized regression and spatial
predictions package (GRASP) (Lehmann, Overton, & Leathwick, 2002) and spline smoothing
functions. The soil disturbance intensity was modeled using an ordered categorical family
(ocat) with identity link. The predictor variables first entered the models individually using a
smoothing spline with a relatively conservative smoothing parameter to avoid fitting noise.
Because of the unwieldy number of predictor variables, a series of stepwise procedures were
applied using each class of predictor variables individually to reduce the number of predictor
variables and to determine if those that remain should enter with smooth or linear terms.

Stepwise results were compiled to create unique models for soil disturbances. An alterna-
tive approach to creating subsets of predictor variables is offered by Leathwick, Elith, Francis,
Hastie, and Taylor (2006). Model accuracy was assessed by Akaike Information Criterion (AIC;
Akaike, 1973). In GAM, it is assumed that response variable (Y) has an exponential distribution
with a mean μ5E(YtX1, X2, X3, . . ., Xp) connect to predictor variables (Xj) via a link function
(g). In general, GAM expresses as [Eq. (12-6)] (Hastie & Tibshirani, 1986):

g μð Þ5α1
XP
j51

fj Xj

� �
(12-6)
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where f j(Xj) is a nonparametric smoothing function for the jth independent variable X. The
only underlying assumption is that the smoothing functions in GAM are additive. This addi-
tive restriction allows us to interpret a GAM model in a similar way as a traditional linear
regression model.

12.4.3 Classification and Regression Tree

The CART is a practical data-mining method based on recursive binary partitioning
(Breiman, Friedman, Stone, & Olshen, 1984). The result of the CART [Eq. (12-7)] is a hierar-
chical binary tree which subdivides the prediction space into regions (Rm) where the values
of the response variable are similar (J am) (Gutiérrez, Schnabel, & Contador, 2009):

f Xð Þ5 am; ’ xARm (12-7)

Function f Xð Þ is the probability of occurrence of soil disturbance that means response
variable.

The principal inconveniences of the CART are the possible complexity of the resulting
model, the hierarchical dependence between nodes at different levels, and the difficulties
that CART presents to reproduce smooth variations in the response. The model based on
CART theory was computed using the CART tool implemented in R software which sup-
ports the classic algorithm described by Breiman et al. (1984). The mean of the response
values in each node presents the terminal node predicted value. Regression trees can cover
missing data by surrogates and thus provide an advantage for dealing with outlier data
(De’ath & Fabricius, 2000). In addition to the regression modeling, the hierarchical struc-
ture of classification allows a model interaction between predictor variables (Breiman
et al., 1984). In the current study, the CART was made by the “rpart” package (Therneau,
Atkinson, & Ripley, 2018), as a function of R software version 3.2.5. In order to prune the
decision tree, Gini coefficient via complexity parameter was used to determine the most
important predictors.

12.5 Spatial Prediction
Of the 264 soil disturbances identified, 185 (70%) locations were used for the soil disturbance
susceptibility maps as training, while the remaining 79 (30%) cases were used for the model
verification as validation. In order for statistical evaluation criteria of models, the AIC value
and kappa coefficient (Akaike, 1973; Yee & Mackenzie, 2002) were calculated for training and
validation dataset, respectively.

The output of a GRASP model as a text file was transformed to Arc GIS 9.3 for spatial
prediction of disturbance and was mapped based on response variable values. The obtained
pixel values were then classified based on natural breaks (Jenks) into four classes: low, mod-
erate, high, and very high.
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12.6 Results
Descriptive statistic results of topographic factors and the other site conditions are displayed
in Table 12-2.

The final models for soil disturbance in all techniques were constructed using the training
dataset. According to AIC value and kappa coefficient accuracy, the GAM model accuracy
was higher for both the training and validation datasets compared to others (Table 12-3).

AIC and kappa indices are frequently used for assessing the model performance. The
success-rate results were obtained using the soil damage grid cells in the training dataset. It
could be observed that GAM has a more desirable AIC (2454.47) and kappa coefficient (0.88)
than LR (98.73 and 0.57, respectively) and CART models (268.72 and 0.76, respectively). The
results of the prediction rates are also illustrated in Table 12-3. The results indicated that GAM
(AIC: 2396.35, kappa: 0.83) has relatively higher prediction performance than LR (127.01,
0.52) and CART models (226.85, 0.73). The comparison of model performance among LR,

Table 12-2 Descriptive Statistic Results of Predictor Variables

Variables Mean6 SD

Slope degree 24.3861.47
Aspect SW, N
Altitude (m) 1598.606 266
LS 6.886 3.75
TPI Canyons, slopes, ridges
TWI 6.776 1.62
Soil texture Clayey, loamy, silty-clayey
Forest type Pure beech, mixed beech
Forest density (ha) 153.456 8.50
Distance from road (m/ha) 13.69
Distance from skid trail (m/ha) 10.31

LS, slope length; TWI, topographic wetness index; TPI, topographic position index.

Table 12-3 Performance Results of Three Data-Mining Models

Techniques AIC Kappa

LR Training 98.73 0.57
Validation 127.01 0.52

CART Training 2 68.72 0.76
Validation 2 26.85 0.73

GAM Training 2 454.47 0.88
Validation 2 396.35 0.83

LR, logistic regression; CART, classification and regression tree; GAM, general additive model.
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CART, and GAM shows that differences between the techniques are maximal, as GAM had a
better performance than others.

According to a LR statistical model, the strongest predictors were slope degree, soil tex-
ture, altitude, and forest density, followed by TWI and forest type (Table 12-4). All differences
in values of the predictive variables are statistically significant at the 5% level and χ2 test.
The most important predictors in the final LR model are shown in Eq. (12-8).

Z5 � 20:381 17:84 TWI Class 2ð Þ1 3:80 TWI Class 3ð Þ � 24:87 TWI Class 4ð Þ1 23:48 Altitude
Class 2ð Þ1 3:31 Altitude Class 3ð Þ � 20:62 Altitude Class 4ð Þ � 3:18 Altitude Class 5ð Þ1 13:72
Slope Class 2ð Þ1 21 Slope Class 3ð Þ1 61:96 Slope Class 4ð Þ1 80:99 Slope Class 5ð Þ1 3:84 Forest
Density Class Mediumð Þ � 3:30 Forest Density Class Highð Þ1 3:55 Mixed Beech
Forest Type� 38:66 Loamy Soil Texture� 44:16 Silty � Clayey Soil Texture

(12-8)

The slope degree and soil texture were effective predictors of soil susceptibility in the final
model of the CART (Fig. 12-4), however, prior to pruning, the main variables were LS, alti-
tude, and slope aspect (Table 12-5).

Table 12-6 showed the statistic results of effective variables on soil disturbance based on
GAM. The model predicts that the probability of soil disturbance for Shourab Forest is high

Table 12-4 The Most Important Predictor Variables Based on the LR Model

Predictors df Deviance AIC LRT P (.Chi)

TWI 3 79.67 107.67 14.94 .00187
Altitude 4 112.85 138.85 48.12 .00000
Slope degree 4 172.64 198.64 107.91 .00000
Forest density 2 87.55 117.55 22.82 .00001
Forest type 1 70.35 102.35 5.62 .01781
Soil texture 2 184.16 214.16 119.43 .00000

AIC, Akaike information criterion; TWI, topographic wetness index; LRT, likelihood-ratio test.

Slope degree 

Soil texture

<15° (28.79%) >15° (71.21%)

Clay (55.85%)Loamy, silty–clay (55.85%) 

FIGURE 12-4 Decision tree of soil disturbance occurrence after pruning.
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in sets made at site conditions, when the slope is in classes 4 and 5 (range of . 30 degrees)
(Fig. 12-5A), at a more LS (range of ,10 m) (Fig. 12-5B), TWI , 10 (Fig. 12-5C), when the
soil texture is clay (Fig. 12-5D), and when distances from roads and skid trails are less than
50 m (Fig. 12-5E). With respect to the aspect, altitude, TPI, forest type, and forest density, the
relationship between these variables and forest soil disturbance was poor and no pattern
was observed.

The susceptibility maps produced by LR, CART, and GAM techniques are shown in
Figs. 12-6�12-8, and comprised four soil disturbance susceptibility classes including low,
moderate, high, and very high. The areal extents of the subclasses for three models are
reported in Table 12-7.

12.7 Discussion
The results produced regarding the susceptibility zone showed that zones 3 and 4 contain
81.37% and 48.93% of the disturbance zone by LR and CART models, respectively.
Otherwise, approximately 25% of the disturbance zone coincide with the vulnerable area

Table 12-5 Importance of Variables Based on CART

Predictors Importance Value (%)

Slope degree 24
Soil texture 22
LS 19
Slope aspect 10
Forest density 8
Altitude 7
TWI 4
Forest type 3
Distance to road and skid trail 2
TPI 1

CART, classification and regression tree; LS, slope length; TWI, topographic wetness index; TPI, topographic
position index.

Table 12-6 The Most Important Predictor Variables Based on GAM

Variables Model Contributor AIC P Value

LS 17.46 2 101.65 .016
TWI 18.65 2 105.95 .000
Slope degree 25.63 2 120.77 .000
Soil texture 21.41 2 111.95 .000
Distance to road and skid trail 16.85 298.62 .024

GAM, general additive model; LS, slope length; TWI, topographic wetness index; AIC, akaike information criterion.
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FIGURE 12-5 The significant predictor variables on soil disturbance occurrence: (A) slope degree, (B) LS, (C) TWI, (D)
soil texture, (E) distance to road and skid trail. LS, Slope length; TWI, topographic wetness index.
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(zones 3 and 4) in the GAM susceptibility map. It may be assumed that the GAM technique
determined the susceptibility zones with more accuracy, while LR and CART were affected
by mountainous and steep conditions more than other factors. This issue can be a cause of
reduced accuracy in these models. Validation is a basic step in the development of each
model to determine its quality (Zhang, Gove, & Heath, 2005). The quality of a soil distur-
bance susceptibility model is commonly estimated using independent information that is not
available for building the model. The AIC value and kappa coefficient are usually used to
evaluate the accuracy of different models (Akgün, 2012; Akgün, Dag, & Bulut, 2008).
According to the results, the GAM is a favorable and comprehensive technique for classifica-
tion of soil disturbance susceptibility compared to others in this study. Nowadays, GAM is
one of the most widely used statistical data integration techniques because it can be applied
with the help of only a few predictive variables (Wood, 2001; Wood & Augustin, 2002).

These results present GRASP as a powerful automated tool, which formalizes an approach
to soil disturbance modeling using GAM (Lehmann et al., 2002). The GAM-based models via
the GRASP package promoted slightly better predictions than the other approaches.
Classification accuracy of the map is high in GAM, which makes the result reliable, unlike
the previous models such as LR and CART.

FIGURE 12-6 Soil disturbance susceptibility map produced by the LR model. LR, Logistic regression.
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In most of the world, timber harvesting and transportation systems that are suited to har-
vesting in mountainous forests are assigned based on inherent topographic classes such as
slope (Najafi et al., 2009; O’connell, Ryan, Mckenzie, & Ringrose-Voase, 2000). Thus, in order
to minimize the soil disturbance, the soil susceptibility classes should be determined accord-
ing to protocols, but this approach cannot be followed in Hyrcanian Forest, Iran. The slope
degree was one of the most important predictor variables in soil susceptibility classification
(Hengeveld et al., 2012). Shourab Forest is generally located in a slope range of 15�30
degrees (D 27%�55%). Inevitably, many forest harvesting activities will be performed on the
steep slope. There are three main reasons for slope impact on the determination of soil
susceptibility classes: (1) high slopes cause an increase in the load contact area, (2) load
skidding is slower on a steep slope, and (3) load turning and vibration increase by the slope
increasing during transportation. All of these conditions will promote the probability of soil
disturbance.

Forest areas with lower slope length will have a little soil susceptibility. There are two
components, length (L) and slope steepness (S), in slopes of an area as LS (Moore & Burch,
1986). LS plays a fundamental role in the universal soil loss equation (Moore & Wilson, 1992).

FIGURE 12-7 Soil disturbance susceptibility map produced by the CART model. CART, Classification and regression tree.
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Forestry activities, especially harvesting and timber transportation, can increase the sediment
movement capacity of upland flows.

Besides the LS, there is another factor called TWI, which has a significant effect on soil
susceptibility. Furthermore, train attributes like LS and TWI in each area depend upon soil
properties, soil porosity levels, water pressure, and soil strength (Moore et al., 1991).
However, soil disturbances resulting from tree cutting and transportation differ between soil

Table 12-7 Covered Area (%) for Susceptibility Subclasses in Each Model

Models

Susceptibility Subclasses in Percent

Low Moderate High Very High

LR 6.47 12.16 7.45 73.92
CART 0.01 51.07 4.73 44.19
GAM 60.11 14.53 15.28 10.08

LR, logistic regression; CART, classification and regression tree; GAM, general additive model.

FIGURE 12-8 Soil disturbance susceptibility map produced by the GAM. GAM, General additive model.
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textures and have a management importance beside their ecological roles. Servadio (2010)
reported the negative effects of timber skidding, particularly on clay soils (Marsili, Servadioa,
Pagliaib, & Vignozzi, 1998). Additionally, soil susceptibility to disturbance can be reduced
when the soil texture is coarse, such as sandy, silty or loamy soils (Ampoorter et al., 2010;
Rohand, Al Kalb, Herbauts, & Verbrugge, 2004).

Surrounding areas of roads and skid trails commonly received more disturbance than
other areas (Genet & Pothier, 2013). Continuous skidding of timber from near and far posi-
tions to roads and skid trails results in contact intensification of soils, which increase soil sus-
ceptibility (Cimon-Morin, Ruel, & Darveau, 2010). In the present study, soil damage was
evident at distances 0�50 and 50�100 m from roads and skid trails.

12.8 Conclusion
Nowadays, there is an increasing interest in applying geospatial modeling like LR, CART, and
GAM for data mining and prediction of ecological data due to the desirable qualities, such as
less restrictive model assumptions. In the current study, LR, CART, and GAM (implementa-
tion via GRASP) techniques were developed to evaluate the role of each predictor variable
on soil disturbance and to predict a soil susceptibility map for Shourab Forest. The results
showed that among the three mentioned models, GAM plays two main roles in forest har-
vesting management: (1) it develops statistical relationships between soil disturbance and
explanatory variables providing descriptions of soil disturbances patterns and (2) it is a desir-
able technique for building susceptibility spatial prediction via point measurements of the
attributes. The approaches developed in this work can support management objectives by
providing soil conservation protocols and susceptibility maps in other forest types.
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13
Spatial Modeling of Gully Erosion
Using Linear and Quadratic
Discriminant Analyses in GIS and R
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1DEPARTMENT OF GEOMORPHOLOGY, TARBIAT MODARES UNIVERSITY, TEHRAN, IRAN

2DEPARTMENT OF NATURAL RESOURCES AND ENVIRONMENTAL ENGINEERING,
COLLEGE OF AGRICULTURE, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

13.1 Introduction
Soil is one of the most valuable natural resources and has vital ecosystem functions, as well as
having many valuable resources (Cerdà, Rodrigo-Comino, Giménez-Morera, & Keesstra,
2017). Soil erosion is as old a phenomenon as humankind and can be manmade (Issaka &
Aqeel Ashraf, 2017). Soil erosion by water is one of the most important land degradation pro-
cesses around the world (Romshoo, Bhat, & Rashid, 2012). In areas with agricultural produc-
tion, expanding population, construction, and urbanization, as well as human activities, soil
erosion is a major problem (Ding, Chen, Cheng, & Wang, 2015). Soil erosion processes are
very active in dry and semidry ecosystems as a consequence of intense rainfall, reduced vege-
tation cover, low soil organic matter, and erodible parent materials (Kumar Samanta, Sankar
Bhunia, & Kumar shit, 2016). Gully erosion is one of the most destructive types of water ero-
sion as soil is transported based on the concentration of surface and subsurface water in nar-
row flow paths, thus causing the formation of channels that may grow into gullies deeper than
30 cm within a short time (Luffman, Nandi, & Spiegel, 2015). Gully erosion is one of the most
devastating forms of soil erosion and can be expressed in terms of onsite effects such as
destruction of property and natural habitats, reduction of land productivity, and offsite effects
such as sedimentation of reservoirs and rivers which call for rapid solutions (Ayele et al., 2015;
Borrelli, Märker, Panagos, & Schütt, 2014; Gessesse, Bewket, & Bräuning, 2015; Kou et al.,
2015). Gully erosion is a significant sediment source, and can contribute up to 90% of the total
annual sediment yield from a basin (Zegeye et al., 2014). This reduces the useful life of the
downstream reservoirs and has greatly affected the livelihood of communities that depend on
the reservoirs for drinking water and agriculture. In the study area, due to the dry climatic con-
ditions, extreme rainfall, favorable erosion, geology, overgrazing, and vegetation destruction,
gully erosion is the most important cause of soil degradation and soil loss. In order to
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understand and manage gully erosion, identifying the effective factors in gully occurrence is
necessary. Gully erosion is a threshold-dependent process controlled by a wide range of geo-
environmental factors including rainfall features such as intensity (Lanckriet, Frankl, Mesfin,
Descheemaeker, & Nyssen, 2015), topographic factors such as elevation, slope degree, slope
aspect, and slope curvatures (Pourghasemi, Yousefi, Kornejady, & Cerda, 2017), land use/land
cover (LU/LC) (Rahmati, Haghizadeh, Pourghasemi, & Noormohamadi, 2016), hydrological
factors such as topography wetness index (TWI), stream power index, drainage density, and
distance from river (Rahmati et al., 2016), and geological characteristics (Conforti, Aucelli,
Robustelli, & Scarciglia, 2011). Soil properties and soil types also play a significant role in gully
formation and expansion (Parras-Alcántara, Lozano-García, Keesstra, Cerdà, & Brevik, 2016).
For example, vertisols, form deep wide cracks from the surface downward when they dry out
and are prone to the development of pipes that can collapse and as a result turn into large gul-
lies (Frankl et al., 2016). These pipes are part of gully networks and during the raining, infiltrat-
ing rainfall discharges through the pipes increasing the lower soil horizon’s vulnerability to
erosion (Vanmaercke et al., 2016). Models that have been developed for assessing the gully
erosion rate require data that are usually not available and/or difficult to assess. Also, these
models do not predict the spatial distribution of gullies, which is a significant factor for evalu-
ating the impact of environmental changes on the occurrence and location of gullies and for
planning erosion-control proceedings (Benipal et al., 2017; Topalidis, Harris, Hardaway,
Benipal, & Douvris, 2017). Over the last few decades, many models have been developed in
the field of gully erosion susceptibility mapping to identify areas prone to soil erosion and
reduce the related risks. These models are support vector machine (Pourghasemi et al., 2017),
maximum entropy (Pourghasemi et al., 2017), multivariate adaptive regression splines (MARS)
(Gómez-Gutiérrez, Conoscenti, Angileri, Rotigliano, & Schnabel, 2015), conditional probability
(Conoscenti et al., 2013; Rahmati, Tahmasebipour, Haghizadeh, Pourghasemi, & Feizizadeh,
2017); classification and regression trees (Geissen, Kampichler, López-de Llergo-Juárez, &
Galindo-Acántara, 2007; Gómez, Schnabel, & Felicísimo, 2009; Kheir, Chorowicz, Abdallah, &
Dhont, 2008), weights of evidence (Dube et al., 2014), frequency ratio (Rahmati et al., 2016),
logistic regression (Akgün & Türk, 2011; Chaplot, Coadou le Brozec, Silvera, & Valentin, 2005;
Conoscenti et al., 2014; Martínez-Casasnovas, Ramos, & Poesen, 2004; Arabameri et al.,
2018a), information value (Conforti et al., 2011), spatial information technology (Martínez-
Casasnovas, 2003), analytical hierarchy process (Svoray, Michailov, Cohen, Rokah, & Sturm,
2012), normalized topographic method (Castillo, Taguas, Zarco-Tejada, James, & Go�mez,
2014), and random forest (Kuhnert, Henderson, Bartley, & Herr, 2010). Linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA) are data-mining models that have
been successfully used in different fields of study such as landslide susceptibility mapping, for-
est fire, soil classification, and groundwater susceptibility mapping (Hong, Naghibi, Moradi
Dashtpagerdi, Pourghasemi, & Chen, 2017; Naghibi & Moradi Dashtpagerdi, 2017; Ramos-
Canon, Prada-Sarmiento, Trujillo-Vela, Macias, & Santos-R, 2015). Therefore, the purpose of
this research was assessing the capability of LDA and QDA data-mining models for gully ero-
sion susceptibility mapping. The application of LDA and QDA models for gully erosion suscep-
tibility mapping is novel to the current research.
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13.2 Study Area
The Shahroud Basin is located in Semnan Province, Iran, between latitudes
36�11019v�36�26047v E and longitudes 54�36054v�55�15003v E (Fig. 13-1). Its has an area of
847.87 km2, and its altitude ranges from 1084 to 2131 m above sea level. The study area is
considered to have an arid/semiarid climate, with a mean annual rainfall of 250 mm (WRCS,
2015). It receives approximately 73% of its annual rainfall from January to April. In winter,
the temperature ranges from 22�C to 12.4�C (IRIMO, 2014). The average slope of the study
basin is about 4.04 degree and the maximum slope length is 6.8 km. Most of the study area
is covered by low-level pediment fan and valley terrace deposits.

FIGURE 13-1 The study area.
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13.3 Methodology
The methodological process of the present study is given in Fig. 13-2. Based on Fig. 13-2, the
flowchart comprises of three main steps, including (1) preparation of datasets, such as the
gully erosion inventory map (GEIM) and gully conditioning factors, (2) multicollinearity anal-
ysis using tolerance (TOL) and variance inflation factor (VIF) indicators, and (3) gully erosion
susceptibility mapping using LDA and QDA data-mining models and validation of models
using receiver operating characteristics (ROCs) curve.

13.3.1 Gully Erosion Inventory Map

To prepare an accurate GEIM, after Google Earth images interpretation, to determine the
locations of gully erosions, an extensive field survey with a differential global positioning sys-
tem device (Pourghasemi et al., 2017) was performed in the study area. The gully inventory
was randomly split into a testing and training dataset and among 172 detected gully loca-
tions, 121 (70%) gully locations in the polygon format were used for training the models and

Gully erosion conditioning factors
Gully erosion locations

Topographic factors

Slope angle

Slope aspect

Altitude

Plan curvature

Hydrological factors

Distance from rivers

Drainage density

TWI

Geology

Geological factors

Environmental factors

Distance from roads

LCU/LC

Validation
dataset

Training 
dataset

LDA

Validation of maps using the area under the curve 
(AUC)

Convergence index

NDVI

QDA 

Applying of data-mining
models

Selection of the best model and 
offer suggestions

Collinearity
test using 
tolerance
and VIF

If tolerance 
value >0.1, 

VIF value <5

Selection of
conditioning 

factors

FIGURE 13-2 Flowchart of research in the study area.
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51 (30%) gully locations for testing (Rahmati et al., 2016). The locations of training and test-
ing gullies are shown in Fig. 13-1.

13.3.2 Gully Erosion Conditioning Factors

In this study, according to the knowledge obtained from a literature review (Pourghasemi
et al., 2017; Rahmati et al., 2016; Zakerinejad and Maerker, 2014; Arabameri et al., 2018b,c),
the availability of data and field surveys, 12 conditioning factors including elevation, slope
degree, slope aspect, plan curvature, distance from river, drainage density, convergence
index (CI), TWI, distance from road, LU/LC, normalized difference vegetation index (NDVI),
and lithology were selected (Fig. 13-3A-l).

13.3.2.1 Elevation
Elevation was controlled by several geological and geomorphological processes. In general,
elevation is related to factors such as rainfall, soil types, vegetation types, and vegetation cov-
erage which impact slope stability; therefore, these factors the control gully erosion process
(Hongchun, Guoan, Kejian, & Haiying, 2014; Rahmati et al., 2016). An elevation map of the
study area was produced by ASTER DEM with a resolution of 30 m. The elevation of the
study area varies from 1084 to 2131 m.

13.3.2.2 Slope Degree
The slope affects infiltration, drainage density, surface runoff, and soil erosion (Conforti
et al., 2011). Therefore, steep slopes increase runoff velocity and consequently gully erosion
initiation (Rahmati et al., 2016). In this study, the slope degree factor is derived from the
ASTER DEM with a resolution of 30 m. Minimum and maximum gradients in the study area
are 0 and 59.11 degrees, respectively, whereas the average slope in the mentioned watershed
is 4.02 degree.

13.3.2.3 Slope Aspect
Slope aspect is considered to be one of most significant factors in enhancing sensitivity pro-
cesses (Nagarajan, Roy, Vinod Kumar, Mukherjee, & Khire, 2000). Aspect values range from
0 to 360�. A value of 21 is used to detect flat surfaces such as flood plains. The influence of
slope aspect is mainly reflected in the impact of the microclimate and the ratio of heat and
water (Conforti et al., 2011). The slope aspect, because it affects the duration of sunlight
exposition, precipitation intensity, moisture, and the vegetation cover, can influence gully
erosion processes indirectly (Conforti et al., 2011). The slope aspect map was derived auto-
matically in ArcGIS 10.5 software using the ASTER digital elevation model (DEM) with a grid
cell size of 30 3 30 m, and is classified into nine classes F, N, NE, E, SE, S, SW, W, and NW.

13.3.2.4 Plan Curvature
Plan curvature is defined as the curvature of a contour line formed by intersecting a horizon-
tal plane with the surface (Wilson & Gallant, 2000). Plan curvature is considered to be the

Chapter 13 • Spatial Modeling of Gully Erosion 303



geometry of the Earth's surface, and describes a slope's change in inclination or aspect
(Nefeslioglu, Duman, & Durmaz, 2008). The curvature value can be appraised using compu-
tation of the reciprocal value of the radius of curvature in a particular direction (Wilson &

FIGURE 13-3 Gully erosion conditioning factors. (A) elevation, (B) slope degree, (C) slope aspect, (D) plan curvature,
(E) distance to river, (F) drainage density, (G) convergence index, (H) topography wetness index (TWI), (I) distance
to road, (J) land use/land cover (LU/LC), (K) NDVI, (L) geology.
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Gallant, 2000). The influence of plan curvature on slope erosion processes is the convergence
or divergence of water during downslope flow. Positive values of plan curvatures define con-
vexity; negative values of plan curvatures describe concavity of the slope curvature. Values of
plan curvatures around zero demonstrate that the surface is flat. The ASTER DEM is used for
producing plan curvature in System for Automated Geoscientific Analyses (SAGA-GIS). Plan

FIGURE 13-3 (Continued).
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curvature in the study area varies from 25.33 to 3.85. The central part of the study area has
a flat topography.

13.3.2.5 Distance From River
Among all environmental characteristics in a catchment, only the drainage area had a strong
positive association with gully head cut retreat (Frankl, Poesen, Deckers, Haile, & Nyssen,
2012). Distance from a river has a significant role in gully erosion and gullies mostly are
linked to the drainage network (Conoscenti et al., 2014). The river incision can cause insta-
bility of slopes by changing the groundwater level and toe erosion. Moreover, the drainage
network may reflect the degree of surface incision. The power of degree of surface incision is
directly related to the development of drainage (Guo-liang, Yong-shuang, Javed, & Xin,
2017). The distance calculation operation in ArcGIS 10.5 was used to derive the distance
from rivers in the study area. The maximum distance from a river in the study area is
1513.44 m.

13.3.2.6 Drainage Density
Drainage density also has an important role in gully erosion occurrence. The drainage pat-
tern of an area is affected by several factors, such as the nature and structure of the geologi-
cal formation, soil characteristics, vegetation cover condition, infiltration rate, and slope
degree (Pourtaghi & Pourghasemi, 2014; Rahmati et al., 2016). The Line Density tool in
ArcGIS 10.5 was used to derive the drainage density map of the study area. The density of
drainage in the study area has a maximum pf 7.31 km/km2.

13.3.2.7 Convergence Index
The CI gives a measure of how flow in a cell diverges (CI in negative values) and converges
(in positive values) (Arabameri, Pourghasemi, & Yamani, 2017). The CI factor is one of the
main factors controlling slope erosion processes, since the erosive power of running water
directly influences slope toe erosion and river incision (Nefeslioglu et al., 2008). It is also
indicative of the potential energy available to entrain sediment, so that areas with a high CI
have great potential for erosion (Kakembo, Xanga, & Rowntree, 2009). A CI map was pro-
vided in SAGA-GIS 2.1.1. The values of CI in the study area vary from 299.68 to 99.87.

13.3.2.8 Topography Wetness Index
The TWI factor has been used widely to characterize the effect of topography on the place
and size of saturated source areas of runoff generation (Beven and Kirkby, 1979). Because
TWI has been proven to be correlated with soil erosion processes, this factor was used in
this study. TWI is calculated as shown in Eq. (13-1) (Moore, Grayson, & Ladson, 1991):

TWI5 ln
S

tan~

� �
(13-1)

306 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



where, S is the cumulative upslope draining area and α is the slope gradient in degrees
(Moore et al., 1991). The highest values of TWI were mostly recorded in valley bottoms, ter-
raced surfaces, and gentle slopes. The values of TWI in the Shahroud Watershed have a max-
imum of 14.57 and a minimum of 1.80.

13.3.2.9 Distance From Roads
Road construction and undercutting increase stress and strain on the back of the slope,
resulting in slope disturbance and failure (Guo-liang et al., 2017). The distance calculation
operation in ArcGIS 10.5 was used to produce the distance from roads in the study area. The
maximum distance from a road in the study area is 19,321.5 m.

13.3.2.10 Land Use/Land Cover
Land use changes in many landscapes lead to upland erosion and gully formation, reduc-
ing land productivity, carving up agricultural land, and filling up downstream reservoirs
(Ayele et al., 2015; Ben Slimane et al., 2015; Gessesse et al., 2015; Haregeweyn et al., 2013;
Kou et al., 2015). The type of LU/LC has a significant effect on the geomorphological stabil-
ity of a slope and gully erosion; generally, barren and sparsely vegetated areas are influ-
enced by faster erosion and greater instability than forests (Conforti et al., 2011). Since
plant cover decreases the erosive action of surface runoff, it has reducing effects on gully
erosion susceptibility. To calculate the LU/LC of the study area, maximum likelihood
supervised classification algorithms are used (Altaf, Meraj, & Romshoo, 2014). The classifi-
cation was performed in such a way that the produced classes are those which have a
direct impression on soil erosion. Four LU/LC, including pasture, irrigation farming, and
bare lands are detected in the study area with a scale of 1:50,000. The produced LULC was
verified using 245 ground control points in the field. Kappa coefficient for the final map
was estimated by Eq. (13-2) (Lo & Yeung, 2002):

K 5

N
Pr
i51

Xiið Þ2N
Pr
i51

Xi1UX1ið Þ
� �

N2
2

Xr

i51

Xi1UX1ið Þ (13-2)

where, r is number of rows in the error matrix; Xii is the number of observations in row i and
column I; Xi1 is total number of observations in row i; X1i is the total number of observa-
tions in column i; and N is the total number of observations included in the matrix. Kappa
coefficient of generated LC/LU was obtained as 95.86%.

13.3.2.11 Normalized Difference Vegetation Index
NDVI is a measure of surface reflectance and gives a quantitative estimation of vegetation
growth and biomass (Wu, Li, Wang, & Yan, 2016). Plants and their roots affect the soil physi-
cal properties, such as infiltration rate, aggregate stability, moisture content, and shear
strength, which play a significant role in soil conservation (Gyssels, Poesen, Bochet, & Li,
2005). Plants and their roots decrease runoff and soil erosion in both dry and wet seasons
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(De Baets et al., 2008; Li, Marschner, & George, 1991; Zhou & Shangguan, 2005). Previous
studies demonstrated that the root systems of plants play a critical role in stabilizing banks
of gullies and streams by enhancing soil shear strength (De Baets et al., 2009; Vannoppen,
Vanmaercke, De Baets, & Poesen, 2015). Landsat 8 OLI images (21/08/2016) with a resolu-
tion of 30 m were selected to extract NDVI using ENVI 5.1 software. An NDVI map of the
study area was produced using Eq. (13-3):

NDVI5
IR2R
IR1R

(13-3)

where, IR is the infrared portion of the electromagnetic spectrum and R is the red portion of
the electromagnetic spectrum. The NDVI values in the study area vary from 20.114 to 0.608.

13.3.2.12 Lithology
It is widely accepted that lithology plays an important controlling role in the gully erosion
distribution. The responses of rocks to the processes of weathering and erosion are the main
criteria for awarding the ratings of lithology (Guo-liang et al., 2017). Gully erosion exclusively
depends on the lithology and weathering properties of the material exposed or close to the
earth surface. Thus, the large diversity of lithological types outcropped in the study area has
been grouped into 10 categories according to their mechanical characteristics and expected
erodibility. Lithological types of the study area are shown in Table 13-1.

13.3.3 Multicollinearity Test

Multicollinearity is a condition of very high intercorrelations or interassociations among the
independent variables. Therefore, it is a type of disturbance in the data, and, if present in the
data, the statistical conclusions of the data may not be reliable (Bui, Lofman, Revhaug, &
Dick, 2011). The main reasons for multicollinearity are inaccurate use of dummy variables,

Table 13-1 Lithology of the Study Area (GSI, 1997)

Code Lithology Geological Age

Murmg Gypsiferous marl Miocene
Qft2 Low-level piedmont fan and valley terrace deposits Quaternary
Ku Upper cretaceous, undifferentiated rocks Cretaceous
Jd Well-bedded to thin-bedded, greenish-gray argillaceous limestone with intercalations

of calcareous shale (DALICHAI FM)
Jurassic

PeEz Reef-type limestone and gypsiferous marl (ZIARAT FM) Paleocene�Eocene
PlQc Fluvial conglomerate, Piedmont conglomerate, and sandstone. Pliocene�Quaternary
Jl Light gray, thin-bedded to massive limestone (LAR FM) Jurassic�Cretaceous
E2c Conglomerate and sandstone Eocene
PlQc Fluvial conglomerate, piedmont conglomerate, and sandstone Pliocene�Quaternary
E1c Pale-red, polygenic conglomerate, and sandstone Paleocene�Eocene
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repetition of the same kind of variable, and high correlation among variables. The TOL and
VIF are two widely used indices for multicollinearity test. TOL is 12R2 for the regression of
that variable against all the other independents, without the dependent variable (O’Brien,
2007). VIF measures the degree to which the correlation of the variable with other predictor
variables inflates the variance of the estimated regression coefficient for the variable
(O’Brien, 2007). A TOL value of less than 0.1 or a VIF value larger than 10 indicates serious
multicollinearity (Chen et al., 2017).

13.3.4 Data-Mining Models

13.3.4.1 Linear Discriminant Analysis Model
The LDA multivariate model was originally developed in 1936 by Fisher (1936) for classifying
objects from a set of input-independent variables, in one or more sets of mutually exclusive
groups. This model is robust, easy to use, and has high prognostic accuracy (Hong et al.,
2017). The advantage of the LDA model is that when the classes are well distinguishable, the
factor predictors for LDA are stable (Steorts, 2014). In the LDA, the estimated values (L) are
determined by a linear combination of a set of influence factors such as L5X1 c
(c5 constant), which best differentiates the group of a case by finding β coefficients (Eker,
Dikmen, Cambazoğlu, Düzgün, & Akgün, 2015). The LDA can also be used as a preproces-
sing step in machine learning models for dimensionality reduction. In this study, the R statis-
tical package (“caret”) was used to apply the LDA model and produce gully erosion
susceptibility map (GESM) using this model (Kuhn et al., 2017).

13.3.4.2 Quadratic Discriminant Analysis Model
The univariate statistical method of QDA is used for constructing a model based on groups
that consider the observed effective factors (Hong et al., 2017). In the QDA model, it is
assumed that the measurements in each class have normal dispensation. In QDA it is not
assumed that the covariance of each class is the same (Eker et al., 2015). QDA acquires a cat-
egory membership containing a square n3n matrix (n5number of expository variables)
and a linear combination of these variables according to Eq. (13-4) (Eker et al., 2015):

Q5 xTAx1 oTx1 z (13-4)

where A is the n 3 n coefficient matrix, o shows the linear combination coefficient, and z is
a constant (Eker et al., 2015). One of the advantages of QDA in comparison to the LDA
model is that QDA can deal with different covariance values of the classes (Naghibi &
Moradi Dashtpagerdi, 2017). In this study, QDA was applied using “caret” package in R
(Kuhn et al., 2017).

13.3.5 Validation of Models

Validation of GESM is considered to be one of the most important tasks. In addition, it is an
essential requirement to check the predictive capabilities of the GESM produced in the study
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area. Therefore, without validation, the prediction model will not have scientific significance
(Pourghasemi & Rahmati, 2018; Pourghasemi et al., 2017; Tien Bui, Le, Nguyen, Le, &
Revhaug, 2016; Zabihi, Mirchooli, Motevalli, Darvishan, & Pourghasemi, 2018). The ROCs
curve was used to check the accuracy of the gully erosion susceptibility models applied in
this study (Pourghasemi et al., 2017; Rahmati et al., 2017). The ROC curve is a useful method
to determine the quality of deterministic and probabilistic detection and forecast systems
(Bui et al., 2011). In the ROC curve, the best model has an area under the curve (AUC)5 1,
while an AUC value close to 0.5 shows inaccuracy in the prediction model (Achour et al.,
2017). The quantitative�qualitative relationship between AUC value and prediction accuracy
can be classified as follows: 0.5�0.6, poor; 0.6�0.7, average; 0.7�0.8, good; 0.8�0.9, very
good; and 0.9�1, excellent (Chen, Chai, Zhao, Wang, & Hong, 2016).

13.4 Results
In this study, the results are represented in three sections including (1) multicollinearity data
analysis, (2) gully erosion susceptibility mapping using LDA and QDA data-mining models,
and (3) validation of the GESMs.

13.4.1 Multicollinearity

The results of the multicollinearity analysis among 12 gully conditioning factors used in this
study are presented in Table 13-2. This analysis shows that the TOL and VIF of all variables
used in this study were $ 0.1 (0.299) and # 10 (3.343), respectively. As a result, there is no
multicollinearity among the independent variables used in this study.

Table 13-2 Multicollinearity of Gully Conditioning Factors

Factors

Multicollinearity

Tolerance VIF

TWI 0.998 1.002
Slope degree 0.672 1.489
Distance from roads 0.323 3.094
Distance from rivers 0.674 1.483
Plan curvature 0.945 1.058
NDVI 0.864 1.158
LU/LC 0.826 1.211
Lithology 0.920 1.087
Drainage density 0.666 1.503
Elevation 0.299 3.343
Convergence index 0.942 1.062
Aspect 0.941 1.063

TWI, Topography wetness index; NDVI, normalized difference vegetation index; LU/LC, land
use/land cover; VIF, variance inflation factor.
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13.4.2 Applying the Linear Discriminant Analysis Model

The LDA model with RMSE5 0.591 was applied in R using the caret package. The overall
accuracy of the LDA model with confusion matrix is shown in Table 13-3. The confusion
matrix indicates the disagreement between the final model’s predictions and the real results
of the training observations. In the confusion matrix, rows are the real observations, columns
are the model predicts for observations, and the cells show the number of observations in
each variable (Williams, 2011). Based on Table 13-3, the model predictions are shown with
“1” and the observations with “0.” The results show that the training dataset and the model
agree that there are no gully erosions for 2151 observations and there will be gully erosions
for 2342 observations. Nevertheless, there are 401 gully erosion pixels that the model predicts
that are not gully erosions. Similarly, the model predicts that 592 observations will be gully
erosions, where, in fact, they are not gully erosions. The results of the LDA model are shown
in Table 13-4. According to Table 13-4, drainage density, plan curvature, and slope aspect
with scores of 0.120, 0.093, and 0.047, had high importance in gully erosion, while NDVI,
LU/LC, and lithology with scores of 22.21, 20.114, and 20.060, had the lowest impact

Table 13-4 Weights of Gully Conditioning Factors
Obtained by LDA Model

Conditioning Factors Weights

TWI 2 0.004
Slope degree 0.042
Distance from road 0.000
Distance from river 0.001
Plan curvature 0.093
NDVI 2 2.210
LU/LC 2 0.114
Lithology 2 0.060
Drainage density 0.120
Elevation 0.002
Convergence index 0.007
Aspect slope 0.047

TWI, Topography wetness index; NDVI, normalized difference vegetation index; LU/LC, land
use/land cover; LDA, linear discriminant analysis.

Table 13-3 Confusion Matrix in LDA Model

Observation

Predicted

0 1

0 2151 592
1 401 2342

LDA, Linear discriminant analysis.
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(negative effect) on gully erosion, respectively. The factors of slope degree, CI, elevation, dis-
tance from river, distance from road, and TWI with values of 0.041, 0.007, 0.002, 0.0006,
0.0001, and 20.004 are located in ranks 4�9. Finally, Eq. (13-5) is used to prepare the GESM
by the LDA model:

GESMLDA 5 20:00443TWIð Þ1 0:04163 Slope degreeð Þ1 0:00013Distance from roadð Þ
1 0:00063Distance from riverð Þ1 0:09323Plan curvatureð Þ1 22:21023NDVIð Þ
1 20:11423 LU=LC
� �

1 20:06003 Lithologyð Þ1 0:12013Drinage densityð Þ
1 0:00243Elevationð Þ1 0:00723Convergence indexð Þ1 0:04703Aspect slopeð Þ

(13-5)

As a result, according to Eq. (13-5), the final GESM was produced using the LDA model
and classified into four classes, including low, moderate, high, and very high (Fig. 13-4).
According to Fig. 13-4, the susceptibility condition is very high in the extreme southeastern
part of the study area. This area is mainly represented by being hilly and without vegetation.
Moderate gully erosion susceptibility zones are shown to be widely distributed in the north-
east part and in the extreme southeast of the study area. The low gully erosion susceptibility
areas are mainly in the central part of the study area. From Table 13-3, it can be observed
that 56.28% of the total area was found to have low gully erosion susceptibility. The

FIGURE 13-4 Gully erosion susceptibility map produced using the LDA model. LDA, Linear discriminant analysis.
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moderate susceptibility zone represents 18.04% of the total area. The high and very high sus-
ceptibility areas are 12.24% and 13.44%, respectively (Table 13-6). It has been also observed
that gully erosion density in the various susceptibility zones increases with an increase in the
degree of susceptibility.

13.4.3 Applying the Quadratic Discriminant Analysis Model

The confusion matrix and importance of the gully erosion conditioning factors in the QDA
model are shown in Table 13-5 and Fig. 13-5, respectively. Based on Table 13-5, the model
agrees that there will be gully erosion for 2511 observations and there will be no gully ero-
sion for 1903 observations. However, there are 840 gully erosion pixels that the model

FIGURE 13-5 Weights of gully erosion conditioning factors using the QDAmodel.QDA, Quadratic discriminant analysis.

Table 13-5 Confusion Matrix in QDA Model

Observation

Predicted

0 1

0 1903 840
1 232 2511

QDA, Quadratic discriminant analysis.
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predicts will have gully erosion. Also, the model predicts that 232 of the observations will not
have gully erosion, where, in fact, there is gully erosion. According to Fig. 13-5, factors of
LU/LC, drainage density, and elevation had the greatest impact on gully erosion. Also, the
factors of distance from road, CI, slope degree, plan curvature, NDVI, lithology, distance
from river, aspect slope, and TWI are located in the next ranks. Finally, GESM by the QDA
model was created. The GESM produced from the QDA method (Fig. 13-6) was divided into
four hierarchic classes including very high, high, moderate, and low using the natural break
method (Pourghasemi & Beheshtirad, 2014; Pourghasemi, Pradhan, & Gokceoglu, 2012;
Pourghasemi, Pradhan, Gokceoglu, Mohammady, & Moradi, 2013). In the case of the GESM
created by QDA, low, moderate, high, and very high classes cover 63.55%, 6.59%, 7.25%, and
22.61% of the study area, respectively (Table 13-6). The very high susceptibility zones are
mainly shown in the southeastern part of the study area; while, the gully erosion susceptibil-
ity is low in the central part of the study area.

13.4.4 Validation of Models

The results of the AUC-ROC for the two data-mining models applied in this study, IDA and
QDA, are shown in Table 13-7 and Fig. 13-7. According to the results, the LDA

FIGURE 13-6 Gully erosion susceptibility map produced using the QDA model. QDA, Quadratic discriminant
analysis.
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Table 13-6 Area of Susceptibility Classes Using LDA and QDA Models

Susceptibility Classes

LDA Model QDA Model

Pixels % Pixels %

Low 530,243 56.28 598,694 63.5503
Moderate 169,912 18.04 62,085 6.590212
High 115,343 12.24 68,292 7.249074
Very high 126,581 13.44 213,008 22.61042

LDA, Linear discriminant analysis; QDA, quadratic discriminant analysis.

Table 13-7 Area Under the Curve

Models Area Standard Error Asymptotic Significant

Asymptotic 95% Confidence
Interval

Lower Bound Upper Bound

QDA 0.862 0.009 0.000 0.844 0.881
LDA 0.875 0.009 0.000 0.857 0.893

QDA, Quadratic discriminant analysis; LDA, linear discriminant analysis.

FIGURE 13-7 Values of the AUC curve. AUC, Area under the curve.
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(AUC5 0.875) and QDA (AUC5 0.862) models had acceptable (very good) performance for
gully erosion mapping in the study area.

13.4.5 Discussion

GESMs provide basic knowledge of the reasons and impressive factors for gully erosion
occurrence and can be beneficial in soil conservation, hazard management, and its mitiga-
tion measures. The results presented that the two data-mining models used in this study had
satisfactory performance for gully erosion susceptibility mapping. The areas under the curve
of ROCs for the two models are very close. However, the LDA model has a relatively higher
predictive accuracy. This result is in line with Ramos-Canon et al. (2015), Hong et al. (2017),
and Naghibi and Moradi Dashtpagerdi (2017). Naghibi and Moradi Dashtpagerdi (2017)
used four data-mining models including K nearest neighbor, LDA, MARS, and QDA for
groundwater potential mapping in Khalkhal Region, Iran. According to their results, the per-
formance of LDA was acceptable; meanwhile, the performance of QDA was excellent. Hong
et al. (2017) performed a comparative assessment between linear and quadratic discriminant
analyses (LDA�QDA) with frequency ratio and weights-of-evidence models for forest fire
susceptibility mapping in China. The results of this study indicated that FR, WofE, LDA, and
QDA had acceptable performance and could be used for forest fire susceptibility mapping at
the regional scale. Some advantages of LDA over QDA include (1) LDA has straightforward
interpretability, while QDA does not have interpretability capability, (2) in the LDA model,
linear composition coefficients provide relatively straightforward results, (3) the LDA model
is very good at diagnosis of global phenomena, and (4) the LDA model requires fewer cases
for model implementation. Therefore, this study proposes to use the described data-mining
techniques for natural and manmade hazards in different countries to consider their results
and performances.

13.5 Conclusion
In this study, LDA and QDA models are used to map gully erosion susceptibility in Shahroud
Watershed, Semnan Province, Iran. For this purpose, a dataset from a GEIM and 12 geo-
environmental conditioning factors including elevation, slope degree, slope aspect, plan cur-
vature, distance from river, drainage density, CI, TWI, distance from road, LU/LC, NDVI, and
lithology was prepared. Then, the models were applied and the results mapped. The ROC
curve was used for validation of models. The presented methodology for evaluation of gully
erosion susceptibility was according to data-mining methods implemented in ArcGIS envi-
ronment. It was applied using a training dataset and validated with a validation set of gully
areas. The results of the validation indicate that the LDA and QDA models are good predic-
tors of gully erosion susceptibility and could be used for gully erosion susceptibility mapping.
Finally, the results showed that the selection of appropriate conditioning factors together
with the data-mining method and the application of GIS are able to successfully identify
areas that are susceptible to gully erosion. The methodology developed in this study could
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be used in different areas for gully erosion susceptibility mapping. The produced GESMs can
help soil conservation and natural hazard managers in determining high potential gully ero-
sion areas, and constitute an important tool for planners, decision makers, and engineers.
They can minimize and avoid losses caused by existing and future gullies, or avoid highly
susceptible areas, by suitable prophylactic measures and reducing procedures, and help to
make rapid and well-grounded decisions.
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14.1 Introduction
Natural hazards, which are exacerbated by rapid urban growth and climate change
(Kjeldsen, 2010), may result in loss of life, injury or other health impacts, property damage,
social and economic disruption, as well as environmental damage [UNISDR (United Nation
Office for Disaster Risk Reduction), 2009]. Floods are considered to be severe natural hazards
that can cause immeasurable damage (Rozalis, Morin, Yair, & Price, 2010). Floods are also
among the most frequent and costly disasters in terms of social and economic losses (Chan,
2015; Rufat, Tate, Burton, & Maroof, 2015). The number of people living in flood-prone areas
is estimated to be 1.3 billion by 2050 (Ligtvoet et al., 2014). The ever-increasing use of flood-
plains for urban development and food production has impacted on the natural functioning
of rivers and led to increased management interventions to reduce the risks of flooding
(SEPA, 2015). Flood forecasting and prediction capabilities have evolved gradually since the
1970s and 1980s (NBCBN, 2005).

The Geographic Information System (GIS) is viewed as a useful tool for data management
(Rahmati, Pourghasemi, & Melesse, 2016). Flood susceptibility mapping is a key step to pre-
dict and manage upcoming flooding (Kourgialas & Karatzas, 2011). Much research has been
done on flood susceptibility mapping. In doing so, GIS has been coupled with other
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algorithms, including decision tree (Tehrany, Pradhan, & Jebur, 2013), frequency ratio
(Rahmati, Pourghasemi, & Zeinivand, 2016), maximum entropy (Siahkamari, Haghizadeh,
Zeinivand, Tahmasebipour, & Rahmati, 2017), weights of evidence and support vector
machine (Tehrany, Pradhan, & Jebur, 2014), evidential belief function, random forest and
boosted regression trees (Rahmati & Pourghasemi, 2017), artificial neural networks (ANNs)
(Elsafi, 2015; Kia et al., 2012; Tiwari & Chatterjee, 2010; Varoonchotikul, 2003), analytical
hierarchy process (Papaioannou, Vasiliades, & Loukas, 2015), logistic regression (Pradhan,
2010), and the adaptive neuro-fuzzy interface system (Mukerji, Chatterjee, & Raghuwanshi,
2009). While numerous hydraulic models have been widely used for flood inundation model-
ing (Cook, 2008; Costabile & Macchione, 2015; Horritt & Bates, 2002; Papaioannou,
Vasiliades, Loukas, & Aronica, 2017), the required datasets to implement and verify (calibra-
tion and validation) these models are not available in data-scarce regions. Additionally,
implementing these models, particularly multidimensional unsteady models, can be complex
and unaffordable. The application of GIS-based methods, as this study proposes, paves the
way for flood inundation mapping using data that are globally available.

In urban areas, high imperviousness reduces infiltration and accelerates runoff, which leads
to flooding. Prediction of urban flood risk has recently received more attention (Djordjevic,
Prodanovic, & Maksimiovic, 1999; Hsu, Chen, & Chang, 2000; Schmitt, Thomas, & Ettrich,
2004) as well as reversing flooding along floodplains (UNDRO, 1978; White, 1945). Chen, Hill,
and Urbano (2009) applied a GIS-based model for urban flood inundation in the University of
Memphis and suggested it as an alternative to physically based hydraulic models.

The objectives of this study are to: (1) combine GIS with an ANN model to identify flood--
prone areas in Emam-Ali town, Khorasan Razavi Province, Iran and (2) to analyze the impor-
tance of flood conditioning factors, considering historical flood events using the learning
vector quantization (LVQ) procedure. This is the first application of an ANN model for urban
flood susceptibility mapping.

14.2 Material and Methods
14.2.1 Study Area

Emam-Ali town, in Mashhad, is located in Khorasan Razavi Province, Iran (Fig. 14-1). With a
population of 2,749,374, it ranks as the second most populated city in Iran. Mashhad is at
risk of earthquakes and floods, and is the second most exposed city to the risk of disasters in
the east of Iran [UNISDR (United Nation Office for Disaster Risk Reduction), 2017]. The rapid
growth of the city from 1966 to 2002 has increased its imperviousness, which has increased
the peak flood discharge and led to destructive effects (Hosseinzadeh, 2005).

14.2.2 Methodology

The application of the proposed GIS-based ANN for flood susceptibility mapping in the study
area includes the following steps: (1) generation of a GIS database for the selected flood
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FIGURE 14-1 Location of the study area in Iran.
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conditioning factors, (2) collection of the flood inventory mapping, (3) production of a flood
susceptibility map by application of an ANN model, (4) investigation of the most significant
factor in flood occurrence using the LVQ algorithm, and (5) validation of the produced
susceptibility map.

These steps are explained in the forthcoming subsections.

14.2.2.1 Flood Inventory Mapping
Inventory maps are the most important factor for forecasting the probability of occurrence of
future disasters (Tien Bui, Pradhan, Lofman, & Revhaug, 2012). Therefore, gathering past
records of flood events within an area is of great importance in order to forecast future flood
events (Manandhar, 2010).

A flood inventory map of the study area was generated using the detected flooded loca-
tions by the local municipal organization, past records, and a field survey. Applying the ANN
resulted in a total of 58 flooded locations that were randomly divided into two groups of
training (70%, or 40 locations) and validation (30%, or 18 locations) phases, respectively. The
location of flooded points is shown in Fig. 14-1.

14.2.2.2 Flood Conditioning Factors
Flood-influencing factors as independent variables are essential to generate a flood suscepti-
bility map (Liu & De Smedt, 2005). Kia et al. (2012) argued that the contributing parameters
used for specific study areas may have no impact in other regions, therefore variable selec-
tion should be case-specific. Among the most important and common factors used are alti-
tude, land use, drainage distance, drainage density, rainfall, water depth, and soil parameters
(Pradhan, 2010; Rahmati & Pourghasemi, 2017; Rahmati, Pourghasemi, & Zeinivand, 2016;
Siahkamari et al., 2017; Tehrany et al., 2013, 2014; Tehrany, Pradhan, Mansor, & Ahmad,
2015). On the other hand, investigation of flood behavior in areas with sparse data has
recently received considerable attention. Similar to Smith, Sampson, and Bates (2015), the
current study aims to carry out urban flood inundation mapping in a region where principal
data such as water depth are scarce.

In this study, applied factors including elevation, slope angle, distance to drainage, drain-
age density, and land use were selected according to previous related studies of urban flood
mapping (Fernandez & Lutz, 2010; Kia et al., 2012; Youssef, Pradhan, & Sefry, 2016) (Fig. 14-2).
Due to the small extent of study area, variation of some factors within the study area, such as
rainfall, was not significant, and therefore such factors were ignored in this analysis.

The topography and its derivative factors play a significant role in flood susceptibility rec-
ognition (Pradhan, 2009). Topography directly influences runoff speed (Kia et al., 2012) and
steep slopes also accelerate runoff velocity and consequently decrease interception rates
(Abdalla, 2012). Also, the flood magnitude is greatly affected by the distance from a river.
Drainage density is among the factors that greatly affects flood occurrence (Glenn et al.,
2012), as high drainage density means a lower interception rate and therefore runoff concen-
tration (Edet, Okereke, Teme, & Esu, 1998).
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FIGURE 14-2 (A) Elevation, (B) slope angle, (C) distance from drainage, (D) drainage density, and (E) land use in the
study area.
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Furthermore, hydrological processes, such as interception, evapotranspiration, and run-
off, are influenced by land use. Due to the negative relationship between flood and vegeta-
tion cover, vegetated areas are less exposed to flood occurrence and low vegetation cover
adversely affects urban areas because of less permeable surfaces, increased runoff, and con-
sequently increased flood hazard (Tehrany et al., 2013).

14.2.2.3 Artificial Neural Networks
ANNs simulate the human nervous system (Kim, Kim, & Hur, 2014) and can learn and gen-
eralize from examples to produce meaningful solutions even when the input data contain
errors or are incomplete (Luk, Ball, & Sharma, 2001). ANNs have been applied to solve a
wide range of problems (Akmeliawati, Ooi, & Kuang, 2007). ANNs have been able to repro-
duce the unknown relationship between a set of input variables, such as rainfall, and output
variables, such as runoff (Chakraborty, Mehrotra, Mohan, & Ranka, 1992) or groundwater
level (Daliakopoulos, Coulibaly, & Tsanis, 2005). As such, ANNs are considered to be capable
tools for hydrologic prediction and forecasting.

Computation of ANN begins with introducing an array of numbers, xi, to the input layer
of the processing nodes. These signals then move along connections to each of the nodes in
the adjacent layer and can be inhibited or amplified through connection-specific weights, wt.
The adjacent layer nodes are summation devices for the incoming signals. The incoming sig-
nal is then transformed into an output signal (Oj) within the processing units by passing it
through a threshold function [Eq. (14-1)]:

f xð Þ5 1

11 e2x
(14-1)

In Eq. (14-1), the output, f(x), ranges between 0 and 1, and the output from the proces-
sing unit is then calculated as:

Qj 5
1

11 e2
P

xiwi
(14-2)

This output signal, Qj, is subsequently carried along the weighted connections to the fol-
lowing layer of nodes. The process is repeated until the signal reaches the output layer. The
output signal can then be interpreted as the response of the ANN to the given input stimulus
(Rumelhart, Hilton, & Williams, 1986).

14.2.2.4 Variable Contribution Analysis
The impact of each independent flood-related factor on flooding was evaluated by analyzing
each independent factor within the historical flood inventory data using the LVQ algorithm in
the R statistical package. This algorithm has been applied in various subjects such as mineral
potential mapping (Tayebi & Tangestani, 2015), landslide susceptibility mapping (Pavel,
Nelson, & Fannin, 2011), groundwater modeling (Naghibi, Pourghasemi, & Dixon, 2016), gully
erosion susceptibility mapping (Rahmati, Haghizadeh, Pourghasemi, & Noormohamadi, 2016),

328 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



analyzing the coastal ocean model and land use activities (Erbek, Özkan, & Taberner, 2004).
Kohonen (1995) developed the LVQ algorithm as a supervised neural network method. In
this technique, classification of input values is on the basis of the nearest neighborhoods and
the shortest distance between the input vector and reference vectors. This study adopts the
“winner-takes-all” learning strategy (Pham & Oztemel, 1994).

An LVQ network is composed of an input layer (that conveys the input patterns to the net-
work), a hidden layer, in which actual information processing is performed (Kohonen neurons),
and an output layer, which yields the category of the input pattern. An LVQ network is trained
by enabling competition between the Kohonen neurons. Euclidean distance is the basis of a
competition between the input vector and the weight vectors. This method follows Eq. (14-3).

di 5 :Wi 2X:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

Wij2Xj

� �2s
(14-3)

In which, d is the distance between the weight vector, Wi of neuron i and the input vector
X, Wij and Xj are the jth components of Wi and X, respectively.

In this competition, the neuron with minimum distance wins and is allowed to change its
connection weights. The weights of the other neurons remain unchanged. Depending on
whether the winning neuron is in the correct output category or not, the new weights are
given by Eqs. (14-4) and (14-5), respectively:

Wnew 5Wold 1λ X 2Woldð Þ (14-4)

Wnew 5Wold 2λ X 2Woldð Þ (14-5)

where λ is the learning rate and decreases monotonically with the number of iterations.

14.2.2.5 Validation of Flood Hazard Maps
The area under the receiver operating characteristic (ROC) curve (AUC) is widely used to esti-
mate the predictive accuracy of distributional models derived from presence�absence data
(Cohen, 1960; Remondo et al., 2004). In addition, we used the ROC to determine the accuracy
of the flood hazard maps by quantifying the agreement between the predicted (via the ANN)
and observed (inventory database) flood hazard (Negnevitsky, 2002; Pourghasemi, Pradhan, &
Gokceoglu, 2012). The accuracy of the produced hazard map was evaluated using the AUC
approach by taking into account those flood locations that were set aside for the validation
phase. The relationship between AUC and prediction accuracy is as follow: 0.9�1: excellent;
0.8�0.9: very good; 0.7�0.8: good; 0.6�0.7: average; and 0.5�0.6: poor (Yesilnacar, 2005).

14.3 Results and Discussion
The generated flood hazard map (Fig. 14-3), through ANN, classified hazards into four clas-
ses of low, medium, high, and very high. The results show that the northeast part of the
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study area is exposed to the highest hazard as a result of a dense drainage river network and
short distance from drainage, elevation, and ground slope. Flood mitigation actions are
recommended to be planned and implemented immediately, given that a huge population is
living in these areas, which are predicted to be susceptible to severe flooding. The similar
declaration of Tehrany et al. (2015), who argued that the probability of flood occurrence is
large in low slope and concave areas, backs up the results of this study. In another study,
Tehrany et al. (2014) also concluded that the flooding mostly occurs near to the bank of the
river and low-elevated areas. Kia et al. (2012) also demonstrated that floods are almost
impossible to occur in high-elevation areas.

Fig. 14-4 illustrates the proportion of each conditioning factor to flood occurrence based
on the LVQ technique. Drainage density and elevation were found to be the most and least

FIGURE 14-3 Flood hazard map for the study area.

330 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



conditioning factors in the study area, with variable importance values of 43.6% and 6.5%,
respectively. The validation results (Table 14-1) indicate that the ANN model is an excellent
predictor of flood-prone areas with AUC values of 94.6% and 92.0% for training and
validation, respectively.

This study serves as an example to flood modelers working on complex floodplain sys-
tems in data-scarce regions such as Iran, where limited flood records often hinder the imple-
mentation of complex physically based hydraulic models. The proposed coupled GIS�ANN
approach was found to be a reasonable alternative for hydraulic model. As such, the gener-
ated flood hazard maps have implications for flood managers, urban planners, and decision
makers. Our results are only valid for the current case study and should be cautiously extrap-
olated to other areas. Even in the case study, other machine learning models, spatial resolu-
tion of the datasets, and inventory flood databases could alter our findings. Future research
should consider other flood conditioning factors (e.g., topographic wetness index, groundwa-
ter table, etc.) that are critical in the determination of flood susceptibility. These factors could
be determined by engaging local and regional experts and stakeholders to support group
decision making. Additional observed flood data containing details about flood characteris-
tics such as duration could provide a fuller picture of the flood dynamics (Ahmadisharaf,

FIGURE 14-4 Variable importance of the flood conditioning factors.

Table 14-1 Accuracy of the Artificial Neural Network (ANN) Model

Step AUC (%) Standard Error

Training 94.6 0.003
Validation 92.0 0.004

AUC, Area under the curve.
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Kalyanapu, & Chung, 2015, 2016; Ahmadisharaf, Tajrishy, & Alamdari, 2016; Dang, Babel, &
Luong, 2011), thereby leading to greater flood prediction accuracy. In this context, satellite-
based flood data are of value.

14.4 Conclusions
Flood susceptibility maps are indispensable tools for anticipating flood magnitude and prob-
able damage. This study has presented an ANN model to map flood-prone areas in Emam-
Ali town in Khorasan Razavi Province, Iran. The flood inventory map illustrates the thematic
layers of six flood conditioning factors—elevation, slope angle, slope aspect, distance from
drainage, drainage density, and land use. Our results indicate that the drainage density is the
most important flood conditioning factor in the study area. The coupled GIS�ANN method
was found to be very effective in identifying susceptible areas to flooding. Application of this
method is highly recommended, particularly in data-scarce areas with limited information
about flood characteristics, such as flood depth. Immediate flood mitigation actions need to
be urgently implemented in the study area, given that a large population lives in there.
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15.1 Introduction
Forests are primary natural resources which play an important role in maintaining the eco-
logical balance of the environment. The greatest importance of forest ecosystems is in natu-
ral air purification and in the production of oxygen (Pourtaghi, Pourghasemi, & Rossi, 2014).
The condition, shape, and health of the forest are true indicators of the environmental condi-
tions that prevail in that area (Jaiswal, Mukherjee, Raju, & Saxena, 2002). In addition to eco-
logical importance, forests also have economic and social significance. For these reasons it
can be claimed that forests have a crucial and irreplaceable role in the survival of all living
beings on Earth. According to data published in the Global Forest Resources Assessment,
world forests occupy an area of 4000 million ha, representing 30.6% of the planet’s total sur-
face area (FAO, 2015). The total area of forests in the Republic of Serbia extends over
2,169,000 ha, which is approximately 31.1% of the country’s area.

Forest endangerment can be caused by various factors, but one of the most significant
and widespread is fire. Forest fires represent the most extreme form of devastation and com-
plete destruction of forests. Forest fires are a natural or manmade hazard and based on the
definition of natural disasters and classification by two organizations: the Centre for
Research on the Epidemiology of Disasters and Munich Reinsuranse Company (Munich RE),
forest fires are classified as a group of climatological natural disasters. More than 50,000
forest fires occur worldwide every year and, on average, they destroy more than 40 million
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ha of forests (Aleksić & Jančić, 2011). Also, it should be pointed out that forest fires
are among the most frequent natural disasters and hazards in the Republic of Serbia
(Lukić et al., 2013).

According to the damage caused and the consequences, as well as the extent that is being
destroyed every year, forest fires represent a worldwide problem and require the involve-
ment of all institutions and entities of society for prevention and extinguishing. Forest fire
problems have become very complex, both globally and locally, threatening the economy,
ecosystems, landscapes, and people. Increasing the number of forest fires and damage asso-
ciated with them, whether caused by human negligence or weather conditions, leads to
enormous damage to forests (destruction of hundreds or thousands of trees), environmental
degradation and loss of natural resources, and endangering local communities and their
property.

Numerous researches have confirmed that forest fires disturb the ecosystem balance and
intensify the greenhouse effect (Ajin, Loghin, Jacob, Vinod, & Krishnamurthy, 2016; Jaiswal
et al., 2002; Marozas, Racinskas, & Bartkevicius, 2007; Thompson et al., 2015; Thonicke,
Venevsky, Sitch, & Cramer, 2008; Xu et al., 2006). During fires, large emissions of aerosol
pollutants are released that affect the chemical structure and reduce the quality of and cause
risk to human health (Andreae & Merlet, 2001; Hardy, Ottmar, Peterson, Core, & Seamon,
2001). At the local level, the negative consequences of forest fire include soil erosion, floods,
and changes to the organic composition of soil and vegetation (Chuvieco, 2003; Ghobadi,
Gholizadeh, & Dashliburun, 2012; Hernandez-Leal, Arbelo, & Gonzalez-Calvo, 2006; Lentile
et al., 2006; Pourghasemi, 2016).

Recently, Joint Research Centre JRC Technical Reports have suggested that because of cli-
matic changes with temperature increases and humidity reduction, Europe could see a dou-
bling of the areas affected by forest fires (San-Miguel-Ayanz et al., 2017). This is worrying
and suggests serious analysis of this phenomenon and preventive actions. Although it is diffi-
cult to control forest fires, it is possible to predict their place of occurrence in order to reduce
the risk of fire and to avoid potential damage. With forest fire identification, areas of
increased risk of the fire occurrence and development are indicated, which is a basis for
emergency intervention plans. This creates favorable conditions for minimizing the number
of fires and conditions for their formation.

Modern tools and technologies along with traditional knowledge can be of great impor-
tance in the prevention, control, and management of forest fires. The geographic information
system (GIS), in combination with other forms of technology such as remote sensing (RS)
and computer modeling, are increasingly used in all aspects of wildfire management.

In the literature, there are several different methods and techniques for modeling and
mapping forest fires. Some studies have used probabilistic models that predict potential fire
behavior using a specific mathematical model such as fire simulators FARSITE (Fire Area
Simulator) (Jahdi et al., 2015), fire behavior prediction and fuel modeling system BEHAVE
(Burgan & Rothermel, 1984), FIRETEC (Linn, Reisner, Colman, & Winterkamp, 2002), and
Fire Dynamics Simulator (Mell, Jenkins, Gould, & Cheney, 2007). In comparison to probabi-
listic methods, statistical methods are more suitable for modeling forest fires when the field
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of study is large (Zheng, Huang, Li, & Zeng, 2017). This is because statistical methods are
able to collect and process spatial data of a large area with different scales and resolutions
(Chuvieco, 2003). Different statistical methods and techniques are applied for forest fire
modeling, such as logistic regression (Arndt, Vacik, Koch, Arpaci, & Gossow, 2013; Chuvieco
et al., 2010; Pourghasemi, Beheshtirad, & Pradhan, 2016; Preisler, Brillinger, Burgan, &
Benoit, 2004), Monte Carlo simulations (Conedera et al., 2011), and multiple linear regres-
sion (Oliveira, Oehler, San-Miguel-Ayanz, Camia, & Pereira, 2012). Recently, a large number
of authors have used machine learning techniques such as support vector machines (Sakr,
Elhajj, & Abou-Saad Huijer, 2010), random forest (Oliveira et al., 2012), kernel logical regres-
sion (Tien Bui, Le, Nguyen, Le, & Revhaug, 2016), maximum entropy (Arpaci,
Malowerschnig, Sass, & Vacik, 2014), and artificial neural network (Perestrello De
Vasconcelos, Sllva, Tome, Alvim, & Pereira, 2001; Satir, Berberoglu, & Donmez, 2016).

It is considered that multicriteria decision analysis (MCDA) techniques in integration
with GIS is a powerful technique for analyzing and forecasting natural and manmade
hazards (Gigović, Pamučar, Bajić, & Drobnjak, 2017; Gigović, Pamučar, Lukić, & Marković,
2016; Pamučar, Ćirović, Sekulović, & Ilić, 2011). MCDA methods have been developed to
address conflicting preferences amongst the different criteria. The most popular and com-
monly used MCDA technique is the analytical hierarchical process (AHP) (Saaty, 1980). AHP
provides the ability to measure the consistency of a decision maker (DM) in group decision-
making and allows manipulation with qualitative and quantitative criteria. The AHP method
is characterized by the application of a pairwise generation process in order to determine
the relative importance of criteria, subcriteria, and alternatives. In addition to pairwise crea-
tion, this method is characterized by a hierarchical structure of the problem as well as a spe-
cially built technique for determining the consistency of the comparison.

However, in many real problems in making decisions, the values of the criteria and/or
their weights are not and cannot be precisely defined. These types of problems are often
present in decision-making. For such problems that are characterized with uncertainty,
ambiguity, and vagueness, it is more appropriate to use values that are expressed in intervals
instead of well-defined (crisp) values. In this case, the classical AHP method is combined
using fuzzy or interval numbers (Atesoglu, 2014; Eskandari, Ghadikolaei, Jalilvand, &
Saradjian, 2013; Feizizadeh, Omrani, & Aghdam, 2015; Gigović et al., 2017; Pourghasemi
et al., 2016; Vadrevu, Eaturu, & Badarinath, 2010). The interval numbers theory enables a
more efficient approach to solve problems that have a significant level of uncertainty and
therefore it is successfully applied in many areas of analysis, modeling, and prediction.

This study presents the GIS-IR’AHP MCDA model for the development of a forest fire sus-
ceptibility map with integrating satellite images, and topographic and other auxiliary data.
The GIS-IR’AHP MCDA model is a combination of GIS and the AHP multicriteria technique
in which the weighting coefficients of the criteria are determined using IR numbers. This
approach has not been used so far for zoning a wildfire susceptibility map. This study was
conducted in order to produce a reliable map of forest fires and comparison of the accuracy
of the interval process with respect to the fuzzy and the classic (crisp) AHP. Therefore, in
this study applied in the National Park Tara, Republic of Serbia, the final results of the forest
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fire maps were compared to three models of the GIS-AHP MCDA model. The first modality
implied the use of IR’AHP technique, the second application of fuzzy AHP (FAHP), and the
third scenario assumed the traditional (crisp) AHP approach for determining the weight of
the criteria for wildfires.

15.2 Study Area and Data
15.2.1 Study Area

The study area includes whole Serbian National Park Tara, which covers approximately
67,000 ha between latitudes of 43�43013v�44�01009vN, and longitudes of 19�13051v�19�44020vE.
The study area is located in the western part of the Republic of Serbia (Fig. 15-1). The altitude of
the study area ranges from 0 to 1591 metres above sea level.

Mountain Tara is in the internal Dinaric Alps and is part of the Serbian Old-Vlach
Mountains. It is located in the far west of Serbia in the area bounded by the Drina River and
next to the state border. By altitude, Tara is a medium-high mountain with a mean altitude
of 1000�1200 m above m.s.l. The highest peak is Kozji Rid with a height of 1591 m.

The area of Mountain Tara is a typical forest area, covered with mixed forests of
European spruce, silver fir, and European beech (over 85% of the forest area), with individual
specimens or smaller groups of other conifers such as pine and deciduous species such as
maple, jasper, birch, etc.

National Park Tara was established in 1981. UNESCO MAB Committee nominated
National Park Tara and Nature Park Mokra Gora as a potential biosphere reserve in 2002.
Due to its richness, the National Park Tara complex represents a real living archive of the

FIGURE 15-1 Location of the study area.
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plant world characteristic of the greater part of the Balkan Peninsula and a reserve of the
genetic fund of European and planetary significance. The greatest specificity in relation to
the other mountains of the Balkan Peninsula is a large number of relict and endemic forest
species of plants and communities. Special value and great importance of National Park Tara
are represented by Serbian spruce, an endemic and relict species, which inhabits canyons
and ravines and managed to survive the last Ice Age. The significance of refugial habitats in
the National Park Tara is that, in extremely distinct living communities, many species occur
together, which in other habitats and under other conditions do not go together.

15.2.2 Used Data

Generally, the construction and collection of forest fire occurrences and locations into a spa-
tial inventory database is a primary and essential step for forest fire susceptibility mapping.
The most common technique for collecting data of forest fires is a combination of data
obtained by remote sensing (RS), GIS, and field works. Therefore, high-resolution
Worldview-2 images, Landsat 8 OLI, MODIS satellite images, aerial photos, historical reports,
and field surveys were applied to prepare the forest fires inventory map for the study area.
The acquisition period of satellite images for the fire inventory database was between 2010
and 2016. The analyzed aerial photos were from 2015 to 2016, with a spatial resolution of
0.4 m. The field survey was done during 2015�16.

Forest fire conditioning factors are another key topic in this study. One of the most
important conditioning factors for forest fire assessment is topography data (Pourghasemi,
2016). In the literature, the impacts of elevation, slope, and aspect in fire behavior have been
widely reported (Adab, Kanniah, & Solaimani, 2013; Renard, Pélissier, Ramesh, &
Kodandapani, 2012). In the current research, a digital elevation model (DEM) was created
with 20-m spatial resolution from digital topography data at 1:25,000 scale. Using this DEM,
conditioning factors such as slope, aspect, elevation, plan curvature, and topographic wet-
ness index (TWI) were produced.

Altitude is a significant forest fire conditioning factor. It is an important physiographic
variable that is associated with temperature, moisture, and wind behavior, hence, it affects
the likelihood of fires (Gao, Fei, & Xie, 2011). Therefore, it has an important role in fires
spreading (Jaiswal et al., 2002). It was pointed out that the fire behavior trends are less
pronounced at higher altitudes due to higher precipitation.

In addition, aspect is the direction in which the slope faces and is related to the amount
of sunshine that an area receives. It describes the direction of the maximum rate of change
in elevation between each cell and its neighboring cells (Vadrevu, Badarinath, & Eaturu,
2008). It has an effect on the climate of an area in terms of insulation and exposure to winds.
Therefore, the opposite aspect trend retains more moisture, supporting greenish and healthy
vegetation. In general, forest fires occur in southern areas, because vegetation is typically
drier and less dense on south-facing slopes than north-facing ones (Adab et al., 2013). Due
to this, drier fuels are more exposed to ignition (Adab et al., 2013).
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Furthermore, slope degree is prepared from the DEM map and represents a gradient of
the land expressed as a percentage or angle, and has a great influence on fire behavior. It is
an indicator of the rate of change of elevation (degrees). Slope affects both the rate and
direction of the fire spread (Kamran, Omrani, & Khosroshahi, 2014). Fires usually move
faster uphill than downhill. In addition, the rate of forest fire decreases remarkably as the
slope increases.

Curvature is defined as the rate of change of slope gradient or aspect, usually in a particu-
lar direction. The plan curvature represents the morphology of topography and can be seen
as the convergence or divergence of water during downhill flow. Positive and negative curva-
tures indicate that the surface is upwardly convex or concave at that cell, respectively
(Pourghasemi, 2016). Also, a value of zero indicates that the surface is flat (Oh & Lee, 2011).
The plan curvature map was prepared in ArcGIS 10.4 software.

TWI describes the effect of topography on the location and size of saturated areas of run-
off generation. It is defined as TWI5 ln(AS/tan β) (Moore, Grayson, & Ladson, 1991), where
AS is the specific catchment area in square meters and β is the slope in degrees.

Soil type reflects the textures and compositions of soil materials that affect fire occur-
rence. The soil texture map was created using national soil data at 1:50,000 scale and was
classified into six categories, including, calcaric fluvisol, chromic cambisol, dystric cambisol,
eutric cambisol, haplic leptosol, and rendzic leptosol.

For assessment of vegetation cover, the normalized difference vegetation index (NDVI)
was derived from LANDSAT 8 OLI images. For calculating NDVI, LANSAT 8 OLI images were
collected on August 28, 2016. In general, Normalized Difference Vegetation Index (NDVI) is
a spectral band calculation that uses the visible (RGB) and near infrared (NIR) bands of the
electromagnetic spectrum. The basic concept is that chlorophyll in plants absorb red light
during photosynthesis and healthy plants reflect very strongly in the NIR band. Red NDVI is
a number ranging between 1 1 and 2 1 with 1 1 indicating healthy vegetation and 2 1
indicating dead or extremely stressed vegetation. NDVI is defined based on the following
equation (Rouse, Haas, Schell, & Deering, 1974):

NDVI5
NIR2RED

NIR1RED
(15-1)

where NIR and RED values are the infrared and red bands of the electromagnetic spectrum,
respectively. In this research, the NDVI map was generated using eCognition software
(Drobnjak, Ćirović, Sekulović, & Regodić, 2013).

Human activities and vehicular movement on roads provide suitable opportunities for
negligent and accidental manmade forest fires. Therefore, forest fire-prone areas are often
positioned in forest areas near to roads. In additional, forested areas near to urban areas are
more fire-prone, because the ordinary social activities of the residents can lead to accidental
fire (Jaiswal et al., 2002). Distance from rivers, distance from roads, and distance from urban
areas were prepared using digital topographic database at 1:25,000 scale produced by the
Serbian Military Geographical Institute and calculated based on the Euclidean distance algo-
rithm in ArcGIS 10.4.
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Forest fire occurrence, their frequency, as well as intensity primarily depend on climatic
conditions, directly through the weather conditions, which enables the ignition and burning
of forest fires, and indirectly through the supply of sufficient vegetation fuel for the mainte-
nance of fire (Falk, Miller, McKenzie, & Black, 2007). Meteorological and weather factors also
play an important role in the spread and behavior of fires. As meteorological factors, average
annual temperature, wind power, and average annual rainfall are used and obtained using
meteorological data from the Hydrometeorological Service of the Republic of Serbia. Within
the test area, there are 14 meteorological stations. Using the inverse distance weighted inter-
polation method, grids of the factors average annual temperature, wind power, and average
annual rainfall were obtained using the gstat tools from R software.

Average annual temperature is a basic weather factor which should be taken into
account. The temperature greatly influences the moisture amount and condition of forest
fuel, as a dry forest may lead to quick combustion.

Wind power varies greatly, even within very short time scales (seconds to minutes). Two
wind characteristics are used for forest fire susceptibility mapping: wind speed and wind
direction. The wind is a very important factor because it provides a large amount of fresh
oxygen, it increases and accelerates the effect of combustion of vegetation fuels, and helps in
transmission and the rate of spread of existing forest fires (Rawat, 2003).

Average annual rainfall is another important factor which contributes to high fuel mois-
ture and soil moisture, thus, it is a negative indicator of fire spread.

15.3 Methodology
The methodological hierarchical model in this research is based on the GIS-MCDA structure.
This approach uses the ability of GIS to manage geospatial data and the flexibility of MCDA
to combine factual information with value-based information. From a methodological point
of view, the proposed model for forest fire susceptibility mapping in Serbian National Park
Tara consists of the following steps (Fig. 15-2).

In the first step, the data collection is presented, where all data are placed in the data-
base. In the following, crisp AHP, fuzzy AHP, and interval rough AHP models are applied.
Furthermore, the weighted linear combination (WLC) method is used in the map aggrega-
tion process. The WLC method multiplies each standardized criteria map with the weights of
the criteria obtained as a result of the particular AHP method and then sums the results as a
final map. Finally, validation of the constructed models was tested using an receiver operat-
ing characteristic (ROC) curve and kappa coefficient value.

15.3.1 Interval Rough Numbers

In group decision-making associated with a large number of experts, the problem of aggregation
of expert decisions becomes apparent, as well as the definition of priorities from aggregated
decisions and processing subjectivity in experts' decisions (Palomares & Martínez, 2014). In this
study, rough numbers (RNs) were used to solve these problems. The concept of RNs presented
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FIGURE 15-2 Schematic diagram for forest fire spatial modeling in the study area.
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by Zhai, Khoo, and Zhong (2007) was derived from the theory of rough sets (Pawlak, 1982). RNs
(Zhai et al., 2007) were created for processing a subjective assessment of respondents and deter-
mining intervals of their grades. RNs consist of a lower boundary, an upper boundary, and a
boundary interval. The above-mentioned elements of RNs are derived from the original data
obtained from the respondents. This means that additional information is not required for the
definition of a RN, which can impair the quality of the existing data with its subjectivity. In this
way, the perceptions of respondents (experts) who express their decisions in an objective man-
ner, additionally improve the objectivity of the decision-making process.

Suppose that U is the universe which contains all objects and let X be an arbitrary object
from U . Assume that there is a set of k classes that represent the preferences of the DM,
R5 ðJ1; J2; . . .; JkÞ, with the condition that they belong to a row that satisfies the condition
that it is J1 , J2 , ; . . .; , Jk. Then, ’XAU ; JqAR; 1# q# k the lower approximation AprðJqÞ,
the upper approximation AprðJqÞ and boundary interval BndðJqÞ are determined as follows,
respectively (Stević, Pamučar, Vasiljević, Stojić, & Korica, 2017):

AprðJqÞ5 , XAU=RðX Þ# Jq
� �

(15-2)

AprðJqÞ5 , XAU=RðX Þ$ Jq
� �

(15-3)

BndðJqÞ5 , XAU=RðX Þ 6¼ Jq
� �

5 XAU=RðX Þ. Jq
� �

, XAU=RðX Þ, Jq
� �

(15-4)

The object Jq can be represented by a RN RNðJqÞ5 LimðJqÞ; LimðJqÞ
h i

defined by its lower
limit LimðJqÞ and the upper limit LimðJqÞ, respectively:

LimðJqÞ5
1

ML

X
RðX Þ

��XAAprðJqÞ (15-5)

LimðJqÞ5
1

MU

X
RðX Þ XAAprðJqÞ

�� (15-6)

where ML and MU represent the sum of the objects contained in the lower and upper
approximations of the object Jq, respectively.

Since RNs belong to a group of interval numbers, arithmetic operations that are applied
in interval numbers also apply to RNs (Pamučar, Mihajlović, Obradović, & Atanasković, 2017;
Stević, Pamučar, Kazimieras Zavadskas, Ćirović, & Prentkovskis, 2017; Stević, Pamučar,
Vasiljević et al., 2017).

15.3.2 Rough Analytical Hierarchy Process Method

One of the widespread techniques in MCDA is application of the AHP method for solving vari-
ous decision-making problems (Kubler, Robert, Derigent, Voisin, & Le Traon, 2016). The
main power of the AHP method lies in its impartiality and the logical classification system, but
also in its flexibility to integrate with various techniques such as linear programming, fuzzy
logic, gray theory, and rough theory (Saaty & Vargas, 2001). This allows users to use the good
sides of the combined methods and achieve the desired goal. As a practical and widespread
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methodology to deal with fuzziness and uncertainty, fuzzy logic combined with AHP, most
commonly known as fuzzy AHP or FAHP (van Laarhoven & Pedrycz, 1983), has been widely
used in the last few years. According to a recent study on fuzzy multicriteria techniques
(Mardani, Jusoh, & Zavadskas, 2015; Pamučar & Ćirović, 2015), FAHP is the second most
widely used technique when considering independent application (following AHP).

In addition to the fact that fuzzy sets are a very powerful tool for introducing uncertainty,
the choice of the function of belonging to the fuzzy sets is based on subjectivity, experience,
and intuition (Gigović et al., 2017; Pamučar, Petrović, & Ćirović, 2018). A very convenient
tool for treating uncertainty, which eliminates subjectivity that exists in fuzzy sets, is the
rough sets theory. Pawlak (1982) was the first to present the rough sets theory. Since its
inception, the rough sets theory has evolved through the solution of many problems using
rough sets (Khoo & Zhai, 2001; Li, Tang, Luo, & Xu, 2009; Liang, Xu, & Liu, 2017; Nauman,
Azam, & Yao, 2016; Zhai, Khoo, & Zhong, 2010) and using RNs (Pamučar et al., 2017;
Pamučar et al., 2018; Song, Ming, & Wu, 2013; Song, Ming, Han, & Wu, 2013; Stević,
Pamučar, Kazimieras Zavadskas et al., 2017; Stević, Pamučar, Vasiljević et al., 2017; Tiwari,
Jain, & Tandon, 2016; Zhu, Hu, Qi, Gu, & Peng, 2015). Unlike the fuzzy set theory whose
application requires the definition of a partial function of membership without clear set
boundaries, in rough sets theory, the set boundary field for the equation of ambiguity is
used. In rough sets theory, only internal knowledge is used. Uncertainties are introduced
into the decision-making process based on existing operational data. This eliminates the
need to rely on the assumptions that are present in the parameter determination process
and the interval of the belonging functions of fuzzy sets (Song, Ming, Han et al., 2013; Song,
Ming, & Wu, 2013). In other words, in the application of rough sets, instead of various addi-
tional/external parameters, only the structure of the given data is used (Düntsch & Gediga,
1997). Düntsch and Gediga (1997) considered that the basic logic of the rough sets theory is
that data should speak for themselves. In rough sets, measurement of indeterminacy is based
on the uncertainty that already is contained in the data (Khoo & Zhai, 2001). This leads to
objective indicators that are contained in the data. In addition, rough sets theory is
suitable for applications that are characterized by a small number of data, and for which sta-
tistical methods are not suitable (Pawlak, 1991).

In addition to multicriteria selection, the AHP method has a special place for solving the
weight coefficients problem of the criteria. It provides the ability to measure the consistency
of DMs in group decision-making and allows manipulation with qualitative and quantitative
criteria. The final decision using the AHP method is made based on subjective assessments
of DMs (Song, Ming, & Wu, 2013). Due to the subjectivity and uncertainty that occur in
group decision-making, this research uses RNs in combination with the AHP method in
order to exploit the subjectivity of the method. In the next section, the procedure for using
RNs in the AHP method is described, whereby the weight criterion is obtained as the final
target. The structure of the model is as follows (Saaty & Vargas, 2001, 2012):

Step 1. Establishing a hierarchical structure of evaluation criteria: a group of experts is
formed who carry out the selection criteria and define a problem hierarchy with global
goals at the upper- and lower-level criteria.
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Step 2. Completion of matrices for comparison in pairs of evaluation criteria: The
members of the group of experts perform a comparison in pairs of evaluation criteria in
order to define the weight coefficients of the criteria. Comparison in pairs is done using
Saaty’s 9th degree of linguistic scale (Saaty & Vargas, 2012). Each e-th expert represents
their comparisons using the following matrix:

Zk 5

1 ze12 ? ze1n

ze21 1 ? ze2n

^ ^ & ^

zen1 zen2 ? 1

2
66664

3
77775
n3n

; 1# i; j#n; 1# k# e (15-7)

where zeij represents linguistic expession from Saaty’s 9th degree of linguistic scale, which
the expert e will represent in comparison to relevant criteria.

Based on the evaluation of all experts, Z1, Z2, . . ., Ze matrices are obtained in which e
experts performed comparisons of the criteria pairs.

Step 3. Determination of the expert's weight coefficients: For each comparison, matrix Zk
is determined by consistency of the expert's evaluation. To check consistency, Saaty
(1977) proposed a consistency ratio (CR). The consistency degree calculation consists of
two steps. In the first step, the consistency index (CI) is calculated as follows:

CI5 ðλmax 2nÞ=ðn2 1Þ, where n is the matrix rank, and λmax the maximal Eigen value
of the comparison matrix.

In the second step, the CR is calculated as the ratio between the CI and the random
index (RI):

CR5
CI

RI
(15-8)

The RI depends on the matrix rank and its values are obtained with random
generation of 500 matrices (Saaty, 1977). If the CR is less than or equal to 0.10, the result
indicates that the expert was consistent and that there was no need to repeat the
evaluation (Saaty & Vargas, 2012). If the CR is higher than 0.10, the DM should repeat (or
modify) its evaluation in order to improve its own consistency.

The expert’s weight coefficients are obtained by normalizing the reciprocal values of
the CR according to following equations:

Wke 5
1

CRe
(15-9)

where CRe represents the CR of the expert e, andWke is the weight coefficient of the expert e.
The normalization of the expert’s weight coefficient is carried out using additive normalization:

wke 5
WkePe
k51 Wke

(15-10)

where Wke is the weight coefficient of the expert e.
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Step 4. Construction of the average IR comparison matrix: Using Eqs. (15-2)�(15-6)
elements of zeij comparation matrix Zk are transformed into RN RNðzeijÞ:

RNðzeijÞ5 LimðzeijÞ; LimðzeijÞ
h i

(15-11)

where LimðzeijÞ and LimðzeijÞ are lower and upper limits of RN RNðzeijÞ, respectively.
Therefore, for each comparation matrix in pairs of expert e, a rough sequence RNðzeijÞ

is obtained and represented as follows:

RNðzeijÞ5 Limðz1ijÞ; Limðz1ijÞ
h i

; Limðz2ijÞ; Limðz2ijÞ
h i

; . . .; LimðzeijÞ; LimðzeijÞ
h in o

(15-12)

Using Eq. (15-12), an average RN RNðzijÞ is obtained:

RNðzijÞ5RN z1ij ; z
2
ij ; . . .; z

e
ij

� �
5

LimðzijÞ5Le
i51LimðzðwiÞ

ij Þ
LimðzijÞ5Le

i51LimðzðwiÞ
ij Þ

(
(15-13)

where wi represents weight coefficient i-th experts (i5 1; 2; . . .; e), and LimðzijÞ and
LimðzijÞ are the lower and upper limits of the RN RNðzijÞ, respectively.

Therefore, the average IR comparison matrix in pairs of evaluation criteria (Z) is
obtained as:

Z5

1 RNðz12Þ ? RNðz1nÞ
RNðz21Þ 1 ? RNðz2nÞ

^ ^ & ^
RNðzn1Þ RNðzn2Þ ? 1

2
664

3
775
n3n

(15-14)

Based on Eq. (15-7) matrix (15-14) can also be shown as

Z5

1 Limðz12Þ; Limðz12Þ
h i

? Limðz1nÞ;Limðz1nÞ
h i

Limðz21Þ; Limðz21Þ
h i

1 ? Limðz2nÞ;Limðz2nÞ
h i

^ ^ & ^
Limðzn1Þ; Limðzn1Þ
h i

Limðzn2Þ; Limðzn2Þ
h i

? 1

2
666664

3
777775
n3n

(15-15)

Step 5. Calculation of priority criteria vectors: The priority criteria vector represents an IR
weighted coefficient RNðwjÞ, and is determined for each n evaluation criterion. The IR
weighted coefficient RNðwjÞ is calculated using Eqs. (15-15)�(15-18). Using Eq. (15-15)
matrix Z elements are summed by columns:

RNða0ijÞ5
Xn
j51

RNðzijÞ5
Xn
j5

LimðzijÞ;
Xn
j51

LimðzijÞ
" #

(15-16)
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By dividing the elements of the matrix (15-15) with the values obtained by Eq. (15-16), a
normalized matrix of weight coefficients W is obtained [Eqs. (15-17) and ( 15-18)]:

RNðWijÞ5 LimðWijÞ; LimðWijÞ
h i

5
RNðzijÞPn
j51 RNðzijÞ

5
LimðzijÞPn
j51 LimðzijÞ

;
LimðzijÞPn
j5 LimðzijÞ

" #
(15-17)

W 5

1 LimðW12Þ; LimðW12Þ
h i

? LimðW1nÞ; LimðW1nÞ
h i

LimðW21Þ; LimðW21Þ
h i

1 ? LimðW2nÞ; LimðW2nÞ
h i

^ ^ & ^
LimðWn1Þ; LimðWn1Þ
h i

LimðWn2Þ; LimðWn2Þ
h i

? 1

2
666664

3
777775
n3n

(15-18)

The final IR weight coefficients RNðwjÞ for the evaluation criteria are calculated using
Eq. (15-19):

RNðwjÞ5
RNðWijÞ

n
5

LimðWijÞ
n

;
LimðWijÞ

n

� �
(15-19)

where n is the number of evaluation criteria, and RNðwiÞ is the final values of the weight
coefficients used in the decision-making process.

15.3.3 Validation of Forest Fire Susceptibility Maps

The most reliable modality is confirmed through the validation process. In order to check
the accuracy of models, a comparison was applied between the predicted and real distribu-
tion of forest fire areas. Furthermore, the kappa coefficient test and ROC method were used
to evaluate the accuracy of the built models. The area under the curve (AUC) in ROC repre-
sents the accuracy of the prediction method based on the distribution of actual points of
wildfire (Mohammadi, Bavaghar, & Shabanian, 2014). In general, kappa coefficient repre-
sents a coefficient which expresses a degree of compatibility between assigned classes by
removing the misclassification (Drobnjak, Sekulović, Amović, Gigović, & Regodić, 2016). The
kappa coefficient test has 0�1 tolerance, with 1 showing the correct zoning (Lillesand &
Kiefer, 1999).

15.4 Results
The aim of this research is to propose a reliable GIS-MCDA model for developing a forest
fire susceptibility map, which can serve as a useful tool for risk prevention and reduction of
damage from forest fires, as well as creating a spatial policy and forest management system.
For selecting the criteria and the decision-making process, five experts with experience in
crisis management, spatial planning, forests, and environmental protection participated.
During the interviewing of experts, the data collected were processed and aggregation of
their opinions was carried out.
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15.4.1 Geographical Information System-Multicriteria Decision Analysis
Analytical Hierarchy Process and Fuzzy Analytical Hierarchy Process

The criteria selection for evaluating the forest fire and its mapping is an important step for
analyses. It is essential to identify forest fire conditioning factors in order to create a reliable
forest fire susceptibility map (Gigović et al., 2016). Based on experts’ opinions and longer
observations from the field, this study adopted 13 criteria that are very important for forest
fire susceptibility in Serbian National Park Tara.

This phase involves standardization, expert work, weighting, summary analysis, aggrega-
tion of all criteria that are considered in the decision-making process, and their validation.

As data are collected in different ways and in different formats, the first step of the MCDA
was standardization of all data sets in units that can be compared (Gigović et al., 2016).
Based on the literature and experience of the experts, fuzzy concept has been used to stan-
dardize the data of criteria in this study. The fuzzy logic concept is flexible and suitable for
modeling data in which there is no exact objects boundary of the set, determined by 0�1. In
such cases, the affiliation of objects to a set is defined based on the degree of belonging to
one of the functions (sigmoidal, J-shaped, linear, and user-defined). Which of the functions of
belonging will be used, depends on the nature of the data and is based on the decision and
experience of the experts (Gigović et al., 2016; Guillen, Adjouadi, Goryawala, & Gaillard, 2009).

In this research, for the criteria whose elements have a categorical value (soil type), a dis-
crete classification was used, in which the experts directly assigned values to the elements of
the fuzzy set. For other criteria, whose element values gradually change from one location to
another, the elements are summarized by standardized application of the fuzzy concept
based on the linear or sigmoidal functions. For fuzzification, a scale ranging from 0 to 1 was
used, where 0 is the least risky, and 1 the highest value of the element in the set relative to
forest fire (Table 15-1).

Each forest fire conditioning factor is standardized into a scale range from 0 to 1 using
fuzzy and shape membership function, and different control points, as shown in Table 15-1.
The applications of the crisp AHP, FAHP, and hybrid IR’AHP models were demonstrated
through the evaluation of five clusters of topography (Fig. 15-3), environmental (Fig. 15-4),
meteorological (Fig. 15-5), and social (Fig. 15-6) variables.

After standardization, it is necessary for decision-makers to define the significance of par-
ticular factors using appropriate weight coefficients (weight) for criteria.

The procedure for determining the weight of the criteria in this study was carried out in
three scenarios in which different number modalities were used in the arithmetic of the AHP
method (IR numbers, triangular fuzzy numbers, and crisp values) in order to emphasize the
most reliable modality.

15.4.2 The Application of the IR’AHP Model

The application of the hybrid IR’AHP model was demonstrated through the evaluation of
clusters of meteorological (C1), topography (C2), social (C3), and environmental (C4)
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variables. Within these four clusters, a total of 13 criteria were evaluated: wind power (C11),
average annual temperature (C12), average annual rainfall (C13), altitude (C21), slope (C22),
aspect (C23), plan curvature (C24), TWI (C5), distance from roads (C31), distance from
urban areas (C32), soil type (C41), distance from river (C42), and NDVI (C43). Five experts
(Ee; e5 1; . . .; 5) who performed cluster/criterion evaluation participated in the research.

Table 15-1 Fuzzy Standardization of Criteria

Criteria
Fuzzy and Shape
Membership Function

Control Points/
Value Points Final Utility

Wind power (C11) Sigmoidal, monotonically
increasing

a5 2.1 m/s
b53.3 m/s

0�2.1 m/s equal to 0, 2.1�3.3 m/s
between 0 and 1, more than 3.3 m/s
equal to 1

Average annual
temperature (C12)

Sigmoidal, monotonically
increasing

a5 12�C
b517�C

0�12�C equal to 0, 12�17�C between 0
and 1, more than 17�C equal to 1

Annual rainfall (C13) Linear, monotonically
increasing

a5 780 mm
b51020 mm

0�780 mm equal to 0, 780�1020 mm
between 0 and 1, more than 1020 mm
equal to 1

Altitude (C21) Linear, monotonically
decreasing

c5100 m
d51500 m

0�100 m equal to 1, 100�1500 m
between 1 and 0, more than 1500 m
equal to 0

Slope degree (C22) Linear, monotonically
increasing

a5 5�

b570�
0�5� equal to 0, 5��70� between 0 and
1, more than 70� equal to 1

Aspect (C23) Sigmoidal, symmetric a5 22.5�

b5157.5�

c5202.5�

d5337.5�

337.5�22.5� equal to 0, 22.5�157.5�

between 0 and 1, 157.5�202.5� equal
to 1, 202.5�337.5� between 1 and 0

Plan curvature (C24) Sigmoidal, monotonically
increasing

a523
b50.8

2400 to (23) equal to 0, 23�0.8
between 0 and 1, more than 0.8 equal
to 1

Topographic wetness
index (C25)

Sigmoidal, monotonically
increasing

a523
b512

27 to (23) equal to 0, 23�12 between 0
and 1, more than 12 equal to 1

Distance from roads
(C31)

Linear, monotonically
decreasing

c550 m
d54000 m

0�50 m equal to 1, 50�4000 m between
1 and 0, more than 4000 m equal to 0

Distance from urban
areas (C32)

Linear, monotonically
decreasing

c550 m
d57000 m

0�50 m equal to 1, 50�7000 m between
1 and 0, more than 7000 m equal to 0

Soil type (C41) Discrete categorical data Calcaric fluvisol—1, chromic cambisol—0.8, dystric cambisol—
0.6, eutric cambisol—0.4, haplic leptosol—0.2, rendzic
leptosol—0

Distance from river
(C42)

Linear, monotonically
decreasing

c550 m
d56500 m

0�50 m equal to 1, 50�6500 m between
1 and 0, more than 6500 m equal to 0

NDVI (C43) Sigmoidal, monotonically
increasing

a520.11
b50.4

21 to (20.11) equal to 0, 20.11�0.4
between 1 and 0, more than 0.4 equal
to 1

NDVI, Normalized difference vegetation index.
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FIGURE 15-3 Topographical factors related to forest fire with fuzzy set membership functions: (A) altitude,
(B) aspect, (C) slope degree, (D) plan curvature, and (E) TWI. TWI, Topographic wetness index.
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After expert evaluation of the criteria, matrices of clustering/cluster pairs were obtained. The
comparative matrix in cluster pairs is shown in Table 15-2.

In the same way, a comparison was made in pairs of criteria, and for each group of crite-
ria (within the cluster) one comparison matrix in pairs was formed. After completing the
comparison matrix in pairs (Table 15-2), it can be noticed that there is a certain amount of
uncertainty and imprecision in the expert cluster comparison. The same dose of uncertainty
came to the fore in the expert filling of the matrix of benchmarking. This can be concluded
based on the values assigned by the experts in the comparison matrices. As can be seen in
Table 15-2, in the comparison process, experts assigned fairly different values to pairs of
clusters.

After the pairing of criteria, the degree of consistency of the comparison matrices
(Table 15-3) is determined, on the basis of which the weight coefficients of the experts are
determined using Eqs. (15-8) and (15-9).

FIGURE 15-4 Environmental factors related to forest fire with fuzzy set membership functions: (A) NDVI,
(B) distance from rivers, and (C) soil type. NDVI, Normalized difference vegetation index.
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FIGURE 15-5 Meteorological factors related to forest fire with fuzzy set membership functions: (A) wind power,
(B) average annual temperature, and (C) average annual rainfall.

FIGURE 15-6 Social factors related to forest fire with fuzzy set membership function: (A) distance from roads, and
(B) distance from urban areas.
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WE1 5
1

CR1
5

1

0:062
5 16:129; WE2 5

1

CR2
5

1

0:090
5 11:11; WE3 5

1

CR3
5

1

0:083
5 12:05;

WE4 5
1

CR4
5

1

0:084
5 11:90; WE5 5

1

CR5
5

1

0:028
5 35:71

Using Eq. (15-10), the final values of the experts’ weight coefficients were obtained
(Table 15-3)

wE1 5
16:129

16:131 11:111 12:051 11:901 35:71
5 0:1856;

wE2 5
11:11

16:131 11:111 12:051 11:901 35:71
5 0:1278;

wE3 5
12:05

16:131 11:111 12:051 11:901 35:71
5 0:1386;

wE4 5
11:90

16:131 11:111 12:051 11:901 35:71
5 0:1369;

wE5 5
35:71

16:131 11:111 12:051 11:901 35:71
5 0:4109:

In order to obtain an average rough matrix of cluster comparison based on the data in
Table 15-4 and using Eqs. (15-2)�(15-6), the elements zeij comparation matrix Zk are trans-
formed into a RN RNðzeijÞ.

The determination of the comparison matrices' rough elements Z1, Z2,. . ., Z5, are shown
in the example of obtaining the element at the position C1�C3. A RN (15-11) consists of the

Table 15-2 Comparative Matrix in Cluster Pairs

Criteria C1 C2 C3 C4

C1 1;1;1;1;1 5;0.14;0.14;5;0.33 5;7;1;5;1 0.33;0.2;0.2;0.14;0.14
C2 0.2;7;7;0.2;3 1;1;1;1;1 1;9;7;1;3 0.14;3;3;0.11;0.2
C3 0.2;0.14;1;0.2;1 1;0.11;0.14;1;0.33 1;1;1;1;1 0.14;0.11;0.2;0.11;0.14
C4 3;5;5;7;7 7;0.33;0.33;9;5 7;9;5;9;7 1;1;1;1;1

Table 15-3 CRe Comparison Matrix and Experts Weights

Expert CRe wke

E1 0.062 0.1856
E2 0.090 0.1278
E3 0.083 0.1386
E4 0.084 0.1369
E5 0.028 0.4109
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lower approximation (15-5) and the upper approximation (15-6). The object class in the
C1�C3 position has five elements:

ze23 5 5; 7; 1; 5; 1f g

Using Eqs. (15-2)�(15-6), the lower and upper approximations of all objects at the posi-
tion C1�C3 were defined:

Limð5Þ5 1
4 ð51 11 51 1Þ5 3; Limð5Þ5 1

3 ð51 71 5Þ5 5:67;

Limð7Þ5 1
5 ð51 71 11 51 1Þ5 3:80; Limð7Þ5 7;

Limð1Þ5 1; Limð1Þ5 1
5 ð51 71 11 51 1Þ5 3:80;

Therefore, for the C2�C3 position, a rough sequence (15-18): RNðz113Þ5 ½3; 5:67�,
RNðz213Þ5 ½3:80; 7�, RNðz313Þ5 ½1; 3:80�, RNðz413Þ5 ½3; 5:67�, and RNðz513Þ5 ½1; 3:80� was obtained.
In the same way, rough sequences in other positions for five rough matrices of cluster Zk
were obtained.

Using Eq. (15-13) and the expert’s weight coefficients (Table 15-3), an average RN
RNðz13Þ5 ½2:245; 5:269� was obtained:

RNðz13Þ5RNðz113; z213; . . .; z513Þ5
Limðz13Þ5 3ð Þ0:185589U 3:80ð Þ0:12785U?U 1ð Þ0:410947 5 1:691

Limðz13Þ5 5:67ð Þ0:185589U 7ð Þ0:12785U?U 3:80ð Þ0:410947 5 4:675

	

Therefore, an average rough comparison matrix of cluster pairs was obtained
(Table 15-4).

In the same way, an average rough criteria matrix is obtained. Based on the data in
Table 15-4, using Eqs. (15-16) and (15-17), a normalized matrix of weight coefficients W is
obtained (Table 15-5).

Using Eq. (15-19), rough coefficients of the cluster (Table 15-6) are obtained. By multiply-
ing the weight coefficients of the cluster by the weight coefficients of the criteria, the final
(global) weight coefficients of the criteria are obtained. In Table 15-6, in addition to the
rough weight coefficients of the cluster/criteria, the values of the coefficients obtained by
applying the traditional crisp AHP and FAHP methods are also shown (Table 15-6).

When calculating values of weight coefficients, the FAHP method used the symmetric
form of triangular fuzzy numbers. From Table 15-6, it is noted that all three methods gener-
ate sequences of weight coefficients of the same rank, but by different values.

Table 15-4 Average Rough Criteria Matrix of Cluster Pairs

Criteria C1 C2 C3 C4

C1 [0.4, 3.411] [1.691, 4.675] [0.159, 0.231] [0.4, 3.411]
C2 [1, 1] [1.727, 5.992] [0.249, 2.039] [1, 1]
C3 [0.238, 0.777] [1, 1] [0.126, 0.159] [0.238, 0.777]
C4 [1.468, 6.535] [6.385, 8.165] [1, 1] [1.468, 6.535]
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15.4.3 Weighted Linear Combination Aggregation

The WLC method was used in the map aggregation process. In addition, it is compensatory,
meaning that low scores in one criterion can be compensated for by high scores in another,
which is desired for this particular decision problem. For these reasons, WLC was selected as
the method of aggregation. The WLC method multiplies each fuzzy standardized criteria
map (i.e., each raster cell size of 20 m 3 20 m) with the weights of the criteria obtained as a
result of the AHP method and then sums the results. The mathematical equation for calcu-
lating the similarity index in WLC is represented by Eq. (15-20):

S5
X

wixi (15-20)

Table 15-5 Normalized Matrix of Cluster Weight Coefficients

Criteria C1 C2 C3 C4

C1 [0.075, 0.148] [0.034, 1.099] [0.085, 0.433] [0.046, 0.150]
C2 [0.066, 0.759] [0.085, 0.322] [0.087, 0.555] [0.073, 1.330]
C3 [0.023, 0.115] [0.020, 0.250] [0.050, 0.093] [0.037, 0.104]
C4 [0.343, 0.949] [0.125, 2.104] [0.322, 0.756] [0.292, 0.652]

Table 15-6 Weighting Coefficients of Clusters/Criteria

Cluster/Criteria

Weight Coefficient

Rough AHP Rank Fuzzy AHP Rank Crisp AHP Rank

Meteorological (C1) [0.048, 0.366] 3 (0.024, 0.104,0.183) 3 0.2182 3

Wind power (C11) [0.013, 0.106] 9 (0.024, 0.096,0.167) 9 0.0358 9
Annual temperature (C12) [0.031, 0.303] 4 (0.088, 0.152,0.17) 4 0.1178 4
Rainfall (C13) [0.023, 0.177] 7 (0.082, 0.109,0.136) 7 0.0645 7

Topography (C2) [0.062, 0.593] 2 (0.036, 0.145,0.255) 2 0.2573 2

Altitude (C21) [0.023, 0.224] 6 (0.024, 0.116,0.207) 6 0.0715 6
Slope (C22) [0.110, 0.736] 1 (0.226, 0.25,0.443) 1 0.2156 1
Aspect (C23) [0.012, 0.074] 10 (0.065, 0.089,0.124) 10 0.0213 10
Plan curvature (C24) [0.048, 0.251] 5 (0.099, 0.124,0.148) 5 0.0943 5
TWI (C25) [0.032, 0.036] 12 (0.036, 0.079,0.122) 12 0.0140 12

Social (C3) [0.026, 0.112] 4 (0.024, 0.081,0.137) 4 0.4012 4

Distance from roads (C31) [0.023, 0.051] 11 (0.036, 0.092,0.149) 11 0.0190 11
Distance from urban areas (C32) [0.023, 0.153] 8 (0.061, 0.11,0.147) 8 0.0448 8

Environmental (C4) [0.216, 0.892] 1 (0.036, 0.167,0.298) 1 0.2394 1

Soil type (C41) [0.034, 0.331] 3 (0.107, 0.141,0.175) 3 0.1278 3
Distance from river (C42) [0.029, 0.036] 13 (0.032, 0.054,0.057) 13 0.0051 13
NDVI (C43) [0.071, 0.523] 2 (0.156, 0.186,0.22) 2 0.1381 2

AHP, Analytical hierarchy process; TWI, topographic wetness index; NDVI, normalized difference vegetation index.
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where S is the suitability index, wi is the normalized value of the factor weight, and xi is the
criterion score of factor i.

According to the adopted criteria and the determination of their weights, according to the
three scenarios described in the previous step, using the WLC an aggregation of map criteria
was created into the final forest fire susceptibility maps, which were coordinated in the same
fuzzy value range from 0 to 1. Finally, differentiated alternatives (cells) compared to their
likelihood of forest fires, these values are defuzzified to five levels of forest fire susceptibility
using an equal interval classification method.

Finally, the zonation map of potential fire susceptibility in the study area was provided in
five classes using the Raster Calculator command in ArcGis 10.4. The first class is values
from 0.8 to 1 which have the very high forest fire susceptibility. The second class represents
high wildfire susceptibility with values from 0.6 to 0.8. Furthermore, the third class assembles
values from 0.4 to 0.6, which represent moderate forest fire susceptibility. The low wildfire
susceptibility is presented by the fourth class, with values from 0.2 to 0.4. And finally, the
fifth class assembles values from 0 to 0.2 and represents areas with very low forest fire sus-
ceptibility (Table 15-7). In addition, for each class in Table 15-7 are given obtained areas in
hectares using crisp AHP, fuzzy AHP, and interval rough AHP methods.

Based on this, each cell is classified into five categories and receives a new value from
very low, low, moderate, high, and very high, representing the forest fire susceptibility. The
results of the forest fire susceptibility assessment using the crisp AHP method are given in
Fig. 15-7. In general, the very low value is the areas with the least probability of forest fire
occurrence, while the very high value represents areas with the highest probability of forest
fire susceptibility.

Using the reclassify tool in Spatial Analyst Tools of ArcGIS 10.4 software, each cell of the
final map is classified into five categories (very low, low, moderate, high, and very high,
respectively), representing forest fire susceptibility. The obtained results of the forest fire sus-
ceptibility assessment using the fuzzy AHP model are given in Fig. 15-8.

Table 15-7 Classification of Forest Fire Susceptibility Using Crisp AHP, Fuzzy AHP, and
Interval Rough AHP Methods, With the Value and Size of Each Zone

Class

Forest Fire
Susceptibility
Classes

Final Value for
Each Pixel

Crisp AHP
Method Area
(ha)

Fuzzy AHP
Method Area (ha)

Interval Rough AHP
Method Area (ha)

1 Very high 0.8�1 7166.18 6059.27 6152.80
2 High 0.6�0.8 7473.12 7135.55 7383.70
3 Moderate 0.4�0.6 7837.76 10,454.92 8671.48
4 Low 0.2�0.4 11,687.75 16,614.67 15,135.38
5 Very low 0�0.2 32,796.04 26,701.54 29,622.61

AHP, Analytical hierarchy process.
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FIGURE 15-7 Forest fire susceptibility map using crisp AHP method. AHP, Analytical hierarchy process.

FIGURE 15-8 Forest fire susceptibility map using the fuzzy AHP method. AHP, Analytical hierarchy process.
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The achieved results of the forest fire susceptibility assessment using the interval rough
AHP method are given in Fig. 15-9.

15.4.4 Validation and Final Results

A graphical representation using a diagram of the couple (true positive rate and false positive
rate) for the numerous possible threshold values corresponds to an ROC curve. The ROC
curves for crisp AHP, fuzzy AHP, and interval rough AHP methods are shown in Fig. 15-10
and Table 15-8.

According to the validation of results, all three forest fire susceptibility maps are consid-
ered to have the most acceptable and representable appearance (AUC. 0.9). Also,
both visual assessment and quantitative validation, using an ROC curve, agreed on crisp
AHP, fuzzy AHP, and interval rough AHP methods being excellent performing model
approaches with AUC values shown in Table 15-8.

The kappa coefficient evaluated the final map obtained from the research with the map
of fires that had occurred in past years. The total accuracy of the kappa coefficient indicates
the accuracy of the zoning, which should be more than 85%. In this study, IDRISI Selva soft-
ware was used to evaluate this accuracy. According to Table 15-8, the three models had a
kappa coefficient .0.9. Therefore, it indicated that the described models presented a reason-
able and good accuracy for forest fire mapping in the study area.

FIGURE 15-9 Forest fire susceptibility map using the interval rough AHP method. AHP, Analytical hierarchy process.
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15.5 Discussion
The traditional crisp AHP method calculates weight coefficients using crisp numbers.
Thereby, it does not take into account the uncertainties that exist in the group decision-
making process (Li et al., 2016). In contrast, FAHP and IR’AHP represent coefficient weight
using interval numbers with different interval sizes. Different interval sizes are the result of
different mechanisms for treating uncertainty and imprecision (Beer, Ferson, & Kreinovich,
2013). While the FAHP model treats uncertainties with fuzzy sets having fixed boundaries
and depends on the type of membership function, in RNs, the interval boundaries are flexi-
ble and adapted to the imprecisions that govern the data. However, the predefined interval

FIGURE 15-10 ROC curves for crisp AHP, fuzzy AHP, and interval rough AHP methods. ROC, Receiver operating
characteristics; AHP, analytical hierarchy process.

Table 15-8 Area Under the Curve

Models Area Standard Error Kappa Coefficient

Asymptotic 95% Confidence
Interval

Lower Bound Upper Bound

Crisp AHP 0.915 0.035 0.932 0.880 0.944
Fuzzy AHP 0.924 0.033 0.945 0.889 0.951
Interval rough AHP 0.931 0.030 0.958 0.899 0.958

AHP, Analytical hierarchy process.
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boundaries in the FAHP further increase the subjectivity that prevails in group decision mak-
ing. This can further affect the degree of uncertainty that is expressed by the size of the inter-
val, that is, the size of the uncertainty, which is not the case with IR’AHP (Bell, 1999). Thus,
the proposed IR’AHP model can efficiently measure inaccuracies in the process of evaluating
criteria and more objectively reflect the perceptions of the DM.

According to the importance determination of different used factors for forest fire suscep-
tibility, the results of the current study showed that the most important conditioning factors
for forest fire modeling are slope angle, followed by NDVI, soil type, and average annual
temperature. Namely, the fire is usually easier able to climb uphill, than descend downhill.
The higher inclination means that the fire will spread faster.

In addition, fire conditions vary dramatically according to aspect. In the northern hemi-
sphere, southern exposures suffer the greatest solar and wind influences, consequently dry-
ing both the soil and the vegetation, while northern slopes receive less sunlight (Sharma,
Fernandes, & Pokharel, 2015). Generally, the eastern aspects get more ultraviolet sunlight
and receive early heating from the sun and early slope winds, while the western aspects
receive late heating and transitional wind flows. In another research, Suryabhagavan, Alemu,
and Balakrishnan (2015) stated that the aspect has an influence on the rate at which fuels
dry and consequently affect fire behavior. The gradients facing the east and west receive
more heat during the day time. As a consequence, the east and the west aspects are drier
than aspects facing north and south. Furthermore, some authors (Suryabhagavan et al.,
2015; Xu et al., 2006) have confirmed that aspect also has a role in species distribution, as
certain vegetation types are found on certain aspects.

On the other hand, the TWI and distance from rivers had the lowest importance in forest
fire occurrence. Hong, Naghibi, Dashtpagerdi, Pourghasemi, and Chen (2017) reported that
slope, NDVI, and average annual temperature had higher importance in forest fire occur-
rence, which is consistent with the results of the current study. Also, Pourtaghi,
Pourghasemi, Aretano, and Semeraro (2016) confirmed that NDVI, land use, soil type, and
annual temperature have a greater influence on forest fire. Furthermore, Bui et al. (2016)
found that NDVI, distance from urban areas, and the distance from roads have the highest
predictive values, indicating reasonable results for forest fire susceptibility mapping. Also,
Prasad, Badarinath, and Eaturu (2008) indicated that average annual temperature had the
strongest influence on forest fires. In another research, Motazeh, Ashtiani, Baniasadi, and
Choobar (2013) stated that, based on expert opinion, vegetation cover had the greatest
weight in wildfire prediction.

In order to assessing the performance of the used AHP models, the defined wildfire sus-
ceptibility zones are compared with 126 historical locations of forest fire events. For evalua-
tion of the models, the AUC method was used and prediction rate curves were calculated.
The capabilities of IR’AHP, FAHP, and (crisp) AHP were evaluated using a nondependent
threshold approach: the ROC curve. Based on overall estimates, the proposed approaches
have shown the most acceptable results for mapping the forest fire susceptibility map in the
study area. The obtained results showed that the IR’AHP model is better than the FAHP and
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(crisp) AHP model in prediction (Gigović et al., 2017). Other studies (Kant Sharma, Kanga,
Singh Nathawat, Sinha, & Chandra Pandey, 2012; Mahdavi, Shamsi, & Nazari, 2012;
Mohammadi, Shabanian, Pourhashemi, & Fatehi, 2010; Pourghasemi et al., 2016; Sharifi
Hashjin, Hoseinpoor Milaghardan, Esmaeily, Mojaradi, & Naseri, 2012) have confirmed bet-
ter results of fuzzy AHP than the traditional crisp AHP method. The GIS-IR’AHP MCDA
approach has not been used so far for wildfire susceptibility mapping. Thereby, this research
has made a contribution through a new approach to improve the methodology for evaluating
wildfire susceptibility maps dealing with uncertainty. The results favor the GIS-IR’AHP
MCDA model compared to the models that used the traditional and fuzzy AHP models with
GIS to evaluate the risk of forest fires.

The validation of results indicated that the IR’AHP model is the most consistent with the
history of forest fires. Based on these indicators, the authors suggest the original approach
for determining the weight of the criteria using the new IR’AHP model. This approach
proved to be the most relevant and most objective in the group decision-making process
with the evident presence of uncertainty, and uncertainty among the decision-makers.

15.6 Conclusion
This study presents evidence of the importance and reliability of the application of the com-
bination of GIS and MCDA techniques for assessing phenomena that require expert opinion
and manipulation with a large amount of data from different sources. The existing problem
is considered by the new GIS-IR’AHP methodology, which creates the basis for further theo-
retical and practical upgrading.

This research examines the application of the GIS-AHP modified forest fire susceptibility
zoning in the Tara National Park, Republic of Serbia, and represents a model that can be
applied in other locations with similar characteristics. The connection of these tools is pro-
vided within the ESRI ArcGIS Advanced 10.4 software environment. The model considers 13
factors that are relevant to the susceptibility of forest fires: altitude, slope degree, aspect, cur-
vature plan, TWI index, annual rainfall, wind power, maximum annual temperature, distance
from river, soil type, NDVI, distance from road, and distance from urban areas. The process
of comparing and determining the severity of the criteria included three scenarios using IR
numbers, fuzzy numbers, and crisp values within the AHP method. The final maps of the for-
est fire susceptibility by different scenarios were obtained using the WLC algorithm.
Validation of the results was conducted based on a comparison of past events in the study
area with defined susceptibility zones in the final forest fires map.

The application of GIS-IR’AHP in defining the forest fires zone proved to be justified. The
result is the development of a forest fires susceptibility map for the study area of the Tara
National Park, which represents the first step in the preparation of forest fire risk manage-
ment plans and the identification of areas which could be significant fire risk areas with
harmful effects on human health, environment, economic activities, and cultural heritage.
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Based on this validation, it turned out that the IR’AHP model objectively examines the
uncertainties that arise in group decision-making, which is one of the contributions of this
research. The second contribution to this work is the GIS-IR’AHP MCDA model that ratio-
nally exploits uncertainties in group decision-making and objectively presents forest fire sus-
ceptibility maps. The third contribution of this work is to improve the methodology for
evaluating the wildfire risk through a new approach to dealing with uncertainty.

Based on the obtained accuracy assessment results, all models had a most satisfactory
performance and could be utilized for forest fire susceptibility mapping. As a final conclu-
sion, these maps can provide very useful information for fire managers, DMs, and foresters
to spatially locate potential fire danger areas, so that they can timely and successfully act in
fire prevention operations in Serbian National Park Tara. Moreover, in national parks where
the absolute priority is the preservation of natural features and endemic species, this kind of
prevention from forest fires is justified and very necessary.
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16.1 Introduction
The watershed is an ideal unit for natural resources management and for adjusting the
influence of natural hazards on sustainable development (Khan, Gupta, & Moharana, 2001).
The prioritization of watersheds is a classification of subwatersheds based on the conditions
of existing resources and the intensity of erosions and floods, which ultimately leads to the
conservation and management of watershed operations in sensitive subwatersheds (Suresh,
Sudhakar, Tiwari, & Chawdary, 2005). Identifying potential flooding in subwatersheds is
fundamental to decreasing the effects of natural hazards. The physical characteristics of a
watershed are some of the most effective factors on natural hazards occurrence, and meteo-
rological, hydrological, and water and soil conservation issues are directly and indirectly
related to it (Dovonce, 2000). The morphometric characteristics of a watershed can be used
to describe its hydrologic behavior (Angillieri, 2012). Because a large area of the Maharloo
watershed is in Fars Province and has economic and executive limitations, its restoration
from the point of view of flood control in a single project is not only practicable, but they
may have the reverse effects. Because water and soil resources development programs are
executive and mainly implemented in watersheds, priority watersheds need proper planning
and management of natural resources so that sustainable development can be maintained
(Aher, Adinarayana, & Gorantiwar, 2014). Morphometric analysis is an important tool for

371Spatial Modeling in GIS and R for Earth and Environmental Sciences. DOI: https://doi.org/10.1016/B978-0-12-815226-3.00016-8
© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-815226-3.00016-8


prioritizing subwatersheds, even without considering soil maps (Biswas, Sudhakar, & Desai,
2002). Morphometric analysis of the catchment plays an important role in collecting incom-
plete data and helps analyze the hydrologic behavior of the catchment. Therefore, morpho-
metric studies include assessing the parameters of streams by measuring the characteristics
of different types of streams (Kumar, Kumar, Lohani, Nema, & Singh, 2000). Flooding occurs
not only in developing countries, but it is the most common natural hazard throughout the
world (Leskens, Brugnach, Hoekstra, & Schuurmans, 2014). Some causes of flooding include
heavy rainfall and its type and time of occurrence, melting snow, breaking dams, landslides,
high waves, closed channels, previous river conditions, and drainage basin status. The source
of rivers is set (Kolawole, Olayami, & Ajayi, 2011; Tingsanchali, 2012), therefore, the selection
of priority areas for flood control projects is a fundamental decision that must be confirmed
by studying the physical, social, and economic conditions of the area and estimating the
effects of the programs (Djrodjetive & Bruck, 1989). There are several methods for prioritiz-
ing watersheds, including the analytical hierarchy process (AHP) (Chowdary et al., 2013).
The application of socioeconomic aspects is important (Jang, Vellidis, Hyman, Brook, &
Kurkalova, 2011). One method for prioritizing subwatersheds is morphometric analysis of
the watershed in the form of the geography information system (GIS). The application of the
morphometric analysis method in areas facing data deficits is very useful (Melton, 1958). In
the morphometric analysis method, the physiographic and morphological characteristics of
the watershed are analyzed based on the DEM (digital elevation model); eventually, priority
is given to subfields (Grohmann, 2004). Multicriteria decision-making (MCDM) methods
have been widely used in engineering and management since the 1980s in areas of compre-
hensive watershed management (Duckstein, 1980), water resources integration planning
(Benedini, 1988), and water resources management (Stewart & Scott, 1995). In this research,
features of subwatersheds are known as parameters effective in the occurrence of floods as
criteria. The technique for order of preference by similarity to the ideal solution (TOPSIS)
technique is defined as an option which has the furthest state from the negative ideal and
the closest to the positive ideal (Jun, Chung, Kim, & Kim, 2013).

16.1.1 Background Research

In the comprehensive management of watersheds and the implementation of management
and conservation programs, the prioritization of regions is important. Several studies have
been conducted to prioritize subwatersheds based on morphometric analysis (Khan et al.,
2001; Kumar et al., 2000). Biswas et al. (2002) performed morphometric analysis using para-
meters such as bifurcation ratio, drainage density, stream frequency, texture ratio, shape
coefficient, circularity ratio, and elongation ratio in the Midnapur watershed in western
India. Thakkar and Dhiman (2007) considered morphometric characteristics of the eight
Gujarati subwatersheds in India, using GIS and RS. Their results showed characteristics
related to the coefficient of the negative relationship, while other parameters, such as bifur-
cation coefficient, soil texture, drainage density, and stream frequency had a positive rela-
tionship with runoff and soil erosion. Sharma, Tignath, and Mishra (2008) used
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morphometric parameters to prioritize the five subwatersheds of the Yasarfa Shahdel River
based on the GIS technique. Javed, Khanday, and Ahmed (2009) prioritized watersheds
based on morphometric parameters and land use using the GIS technique in the Kanera
watershed. They also computed different morphometric parameters linearly and formally for
each subwatershed and ultimately prioritized them with land-use change parameters.
Avinash, Jayappa, and Deepika (2011) prioritized the potential of groundwater storage using
satellite imaging, topographic maps, morphometric parameters, and the GIS in Gurpur
watersheds in India. Aher et al. (2014) quantitatively characterized the morphometric charac-
teristics and prioritized management planning in arid and semiarid regions of India using a
hybrid approach to remote sensing and GIS. They concluded that 51.66% of the subwater-
sheds were located in areas with moderate to high sensitivity, indicating the need for conser-
vation plans in these areas. Chandrashekara, Lokeshb, Sameenac, Roopad, and Rangannae
(2015) used 24 morphometric parameters and GIS to compare erosion levels and peak runoff
in two sub-basins of the Arkawati River. They stated that application of satellite imagery with
high spatial resolution is very important for water resources management and also better
understanding land-use changes and its effect on soil erosion and runoff. Jee Omar (2015)
used GIS, RS, and STRM images to determine the drainage characteristics of the Kishipra
River in India. Omar prioritized 43 subwatersheds to identify critical subwatersheds and allo-
cate soil and water conservation management plans using morphometric parameters. His
results showed that GIS plays an important role in water and land conservation programs
and natural resources management. Adhami and Sadeghi (2016) assessed subdomain priori-
ties based on the sediment yield in Qare-Sou watersheds in Golestan province. They priori-
tized subwatersheds of the area in a study based on the Fallback bargaining and Borda
Scoring algorithms, selected based on the total weighting for each variable. Arab Ameri,
Pourghasemi, and Cerda (2017) prioritized the erosivity of subwatersheds in Qaemshahr
using morphometric parameters analysis. They compared the maps of the decision models,
and their results showed that in the CF (compound factor) model, there was a classification
in terms of sensitivity to erosion; however, in the TOPSIS and VIKOR models, there were
four classes (low, medium, high, and very high), and for the SAW (simple additive weighing)
model, there were three classes (medium, high, and very high) of sensitivity. With morpho-
metric parameters, areas prone to erosion are identified with higher efficiency, and with the
VIKOR precision method, there is better prediction than with TOPSIS, SAW, or CF models.
Kadam, Karnewar, Umrikar, and Sankhua (2018) reported hydrological reactions based on
prioritization of the western Indian watershed using frequency ratio, fuzzy logic, and AHP
methods. Validation of results using area under the curve (AUC) revealed a reasonable accu-
racy for FR (AUC5 89%) which was better than AHP (AUC5 77%) and fuzzy logic
(AUC5 76%) models, respectively. Therefore, the current study proposed to determine the
subregions with critical conditions in order to control flooding in the region and to accelerate
and reduce the costs of carrying out projects of watershed management and control. In this
study, the morphometric analysis method lacked extensive data; the AHP MCDM method
was used to prioritize morphometric parameters, and the TOPSIS MCDM model was used to
prioritize critical subwatersheds in the Maharloo watershed.
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16.2 Material and Methods
16.2.1 Case Study

The area of Maharloo watershed is 4274 square kilometers. It has an average altitude of 1500 m
above sea level and is located in the southwestern part of Iran, among the Zagros Mountains.
Geographically, the study area is located at latitudes 29�10 to 29�580 N and 53�120 to 53�280 E.
Fig. 16-1 shows a map of the study area and the 53 subareas associated with it. Also, a flowchart
methodology prioritizing flood inundation in the study area is given in Fig. 16-2.

16.2.2 Research Methodology

The Maharloo watershed was selected for this study. This watershed is divided into 53 sub-
watersheds. The importance of effective morphometric factors in flood events was classified,

FIGURE 16-1 Geographical location of Maharloo watershed.
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and the morphometric parameters were determined. A DEM was obtained from ASTER
images, version 2 (with a resolution of 30 m), using ArcGIS 10.0 and SAGA-GIS v.3.0.0 soft-
ware. Then, the watershed boundaries were merged. Morphometric analysis is an effective
method for prioritizing subwatersheds; it can express the condition of the drainage network
in the area (Javed et al., 2009). Moreover, this factor is an important tool for prioritizing sub-
basins without having to study the soil map of the region (Pandey, Chawdary, & Mal, 2007).
The shape of the watershed expresses the flood pattern and the time focus. Drainage indi-
cates the geological status and type of soil in the area (Javed et al., 2009). In the present
study, the parameters that had a greater impact on the priority and flood situation in the
study area were selected, their values were then calculated. Morphometric characteristics
were divided into linear and shape parameters (Javed et al., 2009). The basis of extraction of
14 effective parameters consisted of the following six linear morphometric parameters: drain-
age density (Dd), stream length (LS), drainage texture rate (Rt), constant of channel mainte-
nance (C), stream frequency (FS), and rainfall as a climatic parameter. The form/shape
parameters were the elongation ratio (Er), compactness coefficient (Cc), circularity ratio (Cr),
form factor (Ff), coefficient of shape, relief ratio (Rh), ruggedness number (Rn), and mean

Input data for prioritizing sub-watersheds and morphometric parameters and rainfall using AHP and 

Prioritizing the Maharlou sub-watersheds 

Sub-watershed 1, 2, 3, ...,  

TOPSIS model 

53 

Prioritize 
Flooding in  
Maharlou 

sub-
watersheds 

TOPSIS models

Linear 
parameter

Shape 
parameters 

AHP model  

Factors influencing flood priority 

Drainage density (Dd), Stream  
length (LS), Drainage texture 
rate (Rt), Constant of channel 
maintenance (C), Stream 
frequency (FS), mean rainfall 

Elongation ratio (Er), 
Compactness coefficient (Cc), 
Circularity ratio (Cr), Form 
factor (Ff), coefficient of shape, 
Relief ratio (Rh), Ruggedness  
number (Rn) and mean slope  
(Sm)

FIGURE 16-2 Flowchart methodology prioritizing flood inundation in the study area.
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slope (Sm). Calculations of the morphometric parameters are shown in Table 16-1. After
determining and computing the effective values of the morphometric parameters, prioritiza-
tion was done using the AHP and the TOPSIS MCDM models. Flood prioritization takes
effect over 53 subwatersheds of Maharloo.

16.2.2.1 AHP Model
In the present study, two-by-two (pair-wise) comparisons were made using an AHP method
to determine the weight of the parameters. The AHP method is a multi-index decision-mak-
ing model. It was suggested by Saaty in 1988. In fact, such comparisons provide a basis for
calculating the importance and weight of the criteria (Görener, Toker, & Uluçay, 2012) and

Table 16-1 How to Calculate Morphometric Parameters

Row
Morphometric
Parameter Mathematical Equation Description References

1 Drainage density Dd 5
Pi51

i5n Li=A Li: total length of the streams (km),
A: area of watershed (km2)

Horton (1954); Schumn
(1956)

2 Stream length � The total length of the streams is
calculated in km for each
subwatershed

3 Drainage texture
rate

Rt5Nu/P Nu: the number of different
streams, P: perimeter of
watershed (km)

Pike (2000); Srivastava
(2003)

4 Constant of
channel
maintenance

C5A=
Pi51

i5n Li A: area of watershed (km2), Li: total
length of the streams (km)

Strahler (1984)

5 Stream
frequency

FS5N/A N: number of available streams, A:
area of watershed (km2)

Jang et al. (2011)

6 Average rain � Average rain in each sub watershed �
7 Elongation ratio Re5 2

ffiffiffiffiffiffiffiffiffi
A=π

p� �� �
=L A: area of watershed (km2), L:

watershed length (km)
Srivastava (2003)

8 Compactness
coefficient

Cc 5 0:283 P=
ffiffiffiffi
A

p� �
P: perimeter of watershed (km), A:

area of watershed (km2)
Sharma et al. (2008)

9 Circularity ratio RC 5 12:563 A=P2
� �

P: perimeter of watershed (km), A:
area of watershed (km2)

Jang et al. (2011)

10 Form factor Ff 5A= Lbð Þ2� �
A: area of watershed (km2), Lb:

watershed length (km)
Melton (1956)

11 Coefficient of
shape

Ff 5A=Lb A: area of watershed (km2), Lb:
watershed length (km)

Nautiyal (1994)

12 Relief ratio Rh5ΔH/Lb ΔH: difference level watershed
(km), Lb: watershed length (km)

Sharma et al. (2008)

13 Ruggedness
number

Rn5ΔH3Dd ΔH: difference level watershed
(km), Dd: drainage density

Ozdemir and Bird (2009)

14 Mean slope Sm5ΔH=A ΔH: difference level watershed
(km), A: area of watershed (km2)

Pike (2000)
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illustrating how the relative importance of a set of activities on MCDM issues can be deter-
mined in MCDM processes. This process can be applied to a wide range of decision-making
areas that can be integrated. It makes use of judgments based on qualitative criteria along
with intangible quantitative criteria (Badri, 2001). The AHP method is based on the follow-
ing: (1) hierarchical tree drawing, (2) compilation and determining prioritization, and (3) log-
ical compatibility of judgments. The AHP is used widely for solving many complex decision
problems (Chan & Kumar, 2007; Dagdeviren & Yüksel, 2008). Saaty defined the AHP steps as
follows (Saaty, 1988, 1985):

1. Defining the problem and specifying its objectives;
2. Creating a hierarchical structure from the top (target decision makers) to the

intermediate levels (decision-making criteria) and to the lowest level of the problem that
is usually the set of alternatives;

3. Formatting the matrix of the double comparison (at n3 n) for each of the lower levels of
the question, with a matrix for each of its high-level elements, with the help of the
relative measurements considered in Table 16-2. Dual comparisons by means of
mastering (in the mastery method, two alternatives are compared, and each one is
chosen to be superior to the other);

4. To improve the matrix set of Step 3, n (n2 1) requires a judgment that is mutually
obtained automatically in each of the double comparisons;

5. Weighing the special vectors using a hierarchical combination. For this purpose,
weighing operations are carried out with the help of weights of the standard and the sum
of all weights of special vectors entering the next level of the hierarchy;

6. Performing all binary comparisons in order to determine compatibility with the help of
the largest special value of the pairwise comparison matrix (λmax). The compatibility
index is calculated as follows:

CI5λmax 2n = n2 1 (16-1)

where n represents the number of rows or columns of the comparison matrix (number of
criteria).

Table 16-2 Scale 9 Quantitative for Binary Comparison of Options

The Degree of
Importance Definition Description

1 The same importance The two elements have the same importance
3 Relatively better An element has preference relative to the other element
5 High preference An element has much preference over the other element
7 Much preference An element has more preference than another element
9 Extremely high preference An element has an extraordinary preference over another element
2, 4, 6, and 8 Intermediate values in judgments For states where the degree of importance between values is high
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If the adjustment coefficient is equal to or less than 0.1, then the compatibility is neces-
sary in judgments (Malczewski, 1999). The coefficient in the present study was less than 0.1
(0.05) and was acceptable.

16.2.2.2 Technique for Order of Preference by Similarity to the Ideal Solution Model
One of the most well-known decision-making models, TOPSIS, was suggested by Wang and
Yon in 1981. The basis of this technique is that the choice option should be the least distance
from the ideal solution (the best mode), and the furthest distance from the ideal is negative
(worst case) (Wang & Yoon, 1981). Indicators have only a positive or negative side. An indi-
cator that has a positive aspect is the profit, and one that has a negative aspect is the
expense. Therefore, it is easy to identify the ideal solution. In this way, the best value is from
a positive ideal indicator positive ideal solution, and the worst value will be the negative
ideal solution (Chu & Lin, 2009). The result of these two distances is expressed in terms of a
closeness coefficient, which is based on the fact that the option with a numerical value of a
larger coefficient of attraction is known as the preferred option (Chu & Lin, 2009).

Algorithm steps for TOPSIS are described below:
The TOPSIS model has eight stages. To use this model, the following steps should be

taken (Ozdemir & Bird, 2009):

1. Formation of data matrix based on the m option and n index:

Aij 5

a11 a12 . . . a1n
a21 a22 . . . a2n
: : :
: : :

am1 am2 . . . amn

2
66664

3
77775

amn is the numeric value obtained from the m option with the n index. In this matrix, an
index that has a uniformly positive (positive aspect) desirability index is a benefit
indicator; in contrast, an index that has a decreasing consistently negative (negative
aspect), is known as the cost indicator. In addition, any result stated in the decision
matrix which is a parameter needs to be quantitated, and since the indexes do not matter
to the decision maker, the representation (DM) of the set of weights is made by the
decision maker. For simplicity, it is arranged that the TOPSIS method is represented by a
series of successive steps.

2. Standardizing data and preparing a normalized matrix (R matrix):
This process tries for nonscaling in decision matrix. Each of the values on the vector

size is divided by the same index. Each matrix RIJ is obtained from the normalized
decision matrix R in Eq. (16-2).

RIJ 5
aijffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i51

aij2

s (16-2)
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Rij 5

r11 r12 . . . r1n
r21 r22 . . . r2n
: : :
: : :

rm1 rm2 . . . rmn

2
66664

3
77775

3. Determining the weight of each indicator (wj):
At this stage, the matrix of the normalized decision becomes weighted. The

normalized weighted Vij is obtained in Eq. (16-3):

RIJVij 5Wi� (16-3)

where RIJ is a normalized matrix and Wi is the weight of the criteria that is calculated
with AHP.

The process of hierarchical analysis was used. With this method, pairwise
comparisons are usually made (Saaty, 1988). In fact, these comparisons provide the basis
for calculating the importance and weight of the criteria (Görener et al., 2012) and
indicate how the relative importance of a set of activities can be determined in MCDM
issues. One of the advantages of the AHP is the possibility of examining the compatibility
of the judgments made to determine the importance of the criteria and subcriteria,
because when the importance of each criterion is compared to the others, the probability
of inconsistency in judgments exists. A value of the fitting coefficient equal to or less than
0.1 indicates that there is compliance with the judgments (Malczewski, 1999). This
coefficient in the present study was less than 0.1 (0.05) and was acceptable.

4. Multiplying each value of the standardized Vij matrix in its corresponding weight (Wi):
In order to equalize the values of the matrices of the R matrix, the total weights of the

WJ parameter were similarly multiplied in the columns of this matrix. The resulting
matrix of this process is a normalized and weighted matrix, which is represented with the
sign V [Eq. (16-4)].

Vij 5RijUWn3n 5

v11;...v1j;...v1n
:::
:::

vm1;...vmj;...vmn

2
664

3
775 (16-4)

5. Determining the solution of the ideal position (A 1 ) and the negative position (A2 )
through Eqs. (16-5) and (16-6):

A1 5 maxVijjjAJ
� �

; minVijjjAJ 0
� �ji5 1; 2; . . .m

� �
5 V1

1 ;V1
2 ; . . . ;V1

j ; . . . ;V1
n

n o
(16-5)

A2 5 minVijjjAJ
� �

; maxVijjjAJ 0
� �ji5 1; 2; . . .m

� �
5 V2

1 ;V2
2 ; . . . ;V2

j ; . . . ;V2
n

n o
(16-6)
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6. Calculating the distance of each option from the positive and negative ideal according to
Eqs. (16-7) and (16-8):

di15Distancing i option from ideal positive5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j51

Vij2V1
n

� �2vuut ; i5 1; 2; . . . ;m (16-7)

di2 5Distancing i option from ideal negative5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j51

Vij2V2
j

� �2

vuut ; i5 1; 2; . . . ;m (16-8)

7. Calculating the relative closeness of i (Ai) to the ideal solution using (16-9):

cli1 5
di2

di1 1di2
; 0# cli1 # 1; i5 1; 2; . . . ;m (16-9)

It should be considered that if Ai5A1, then di
15 1 and cli

25 0, and if Ai5A2, then
di

15 1 and cli
25 0. Therefore, since the Ai option is closer to the ideal solution, the

value of cli
1 will be closer to the unit.

8. Ranking options: Based on the descending order of cli
1 the existing options can be

ranked. In other words, each option with a larger cli
1 has a better rating.

16.2.2.3 R Statistical Packages
In the current research, RSAGA (Brenning, Bangs, & Becker, 2018) and AHP (https://cran.
r-project.org/web/packages/ahp/index.html) packages were used for calculation of some
morphometric parameters and AHP approach in R statistical software. Details can be seen in
Brenning and Bangs (2015) and Necula and Niculita (2017).

16.3 Results and Discussion
This study aimed to prioritize 53 Maharloo subwatersheds. First, the parameters related to
each of the subwatersheds, i.e., drainage density (Dd), stream length (LS), drainage texture
rate (Rt), constant of channel maintenance (C), stream frequency (FS), climatic parameter,
rainfall, elongation ratio (Er), compactness coefficient (Cc), circularity ratio (Cr), form factor
(Ff), coefficient of shape, relief ratio (Rh), ruggedness number (Rn), and mean slope (Sm)
were calculated; the results are presented in Table 16-3.

Linear parameters including drainage density (Dd), stream length (LS), drainage texture
rate (Rt), constant of channel maintenance (C), stream frequency (FS), climatic parameter,
rainfall, direct relation to flood and erosion, and shape parameters such as elongation ratio
(Er), compactness coefficient (Cc), circularity ratio (Cr), form factor (Ff), coefficient of shape,
relief ratio (Rh), ruggedness number (Rn), and mean slope (Sm) had an inverse relationship
with erosion and flooding, meaning that higher values for linear parameters indicate higher
flooding and erosion rates in the watershed, and lower parameters of shape indicate a
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Table 16-3 The Values of Morphometric and Rainfall Parameters for Each Maharlo Subwatershed

Subwatershed Aa B C D E F G H I J K L M N

1 10.700 1.846 244.915 1.591 0.541 2.473 1.699 0.618 1.261 0.010 0.923 0.005 0.087 0.541
2 7.118 1.803 244.005 1.867 0.554 2.367 1.713 0.405 1.558 0.010 0.901 0.006172815 0.088 0.554
3 7.502 1.866 238.618 1.627 0.535 1.710 1.941 0.282 1.867 0.011 0.933 0.005 0.086 0.535
4 11.615 1.560 239.759 1.548 0.640 1.772 2.075 0.157 2.501 0.008 0.780 0.003 0.070 0.640
5 7.201 1.888 237.419 1.698 0.529 2.753 2.058 0.609 1.270 0.010 0.944 0.005 0.081 0.529
6 9.588 1.749 233.405 1.485 0.571 2.148 2.379 0.274 1.892 0.008 0.874 0.003 0.065 0.571
7 10.204 1.758 226.514 1.906 0.568 2.383 2.303 0.485 1.423 0.018 0.879 0.008 0.101 0.568
8 11.417 1.183 264.622 1.283 0.844 1.755 1.124 0.486 1.422 0.016 0.591 0.014 0.137 0.844
9 8.701 1.753 246.2 1.641 0.570 4.078 2.45 0.639 1.240 0.006 0.876 0.002 0.058 0.570
10 2.817 1.962 230.233 2.200 0.509 2.163 0.196 0.238 2.031 0.001 0.981 0.005 0.080 0.509
11 8.147 1.685 221.676 1.478 0.593 3.106 2.309 0.356 1.662 0.005 0.842 0.002 0.053 0.593
12 6.703 1.113 304.35 1.067 0.897 2.000 0.879 0.529 1.364 0.008 0.556 0.009 0.110 0.897
13 3.7906 1.577 248.142 2.356 0.633 3.903 0.678 0.571 1.312 0.004 0.788 0.006 0.092 0.633
14 9.070 1.003 214.776 2.102 0.997 0.940 0.330 0.377 1.614 0.049 0.501 0.149 0.436 0.997
15 8.962 1.298 265.97 1.489 0.770 4.308 1.661 0.671 1.210 0.006 0.649 0.003 0.069 0.770
16 9.858 1.662 216.121 1.625 0.601 3.019 1.629 0.429 1.514 0.005 0.831 0.003 0.067 0.601
17 9.771 1.256 309.899 0.763 0.795 1.094 1.105 0.437 1.499 0.011 0.628 0.010 0.116 0.795
18 11.108 1.214 289.455 0.869 0.823 1.468 1.456 0.510 1.389 0.014 0.607 0.009 0.110 0.823
19 9.696 1.751 217.2 1.894 0.570 2.431 1.926 0.380 1.608 0.011 0.875 0.005 0.087 0.570
20 8.891 1.916 221.251 1.666 0.521 2.314 2.415 0.433 1.506 0.011 0.958 0.004 0.078 0.521
21 10.001 1.677 233.219 1.615 0.596 3.328 2.163 0.506 1.393 0.007 0.838 0.003 0.065 0.596
22 16.356 1.163 318.587 1.069 0.859 1.704 1.512 0.631 1.248 0.022 0.581 0.014 0.136 0.859
23 10.5547 1.096 296.847 0.966 0.911 2.088 1.21 0.556 1.330 0.009 0.548 0.007 0.100 0.911
24 12.915 1.530 251.274 1.633 0.653 2.931 1.499 0.600 1.280 0.009 0.765 0.006 0.0897 0.653
25 12.562 1.175 261.541 1.312 0.850 1.957 0.999 0.643 1.237 0.016 0.587 0.016 0.145 0.850
26 12.76 1.211 258.95 1.509 0.825 1.901 1.247 0.435 1.502 0.018 0.605 0.014 0.137 0.825
27 12.913 1.236 278.091 1.112 0.808 1.905 1.533 0.330 1.725 0.008 0.618 0.005 0.086 0.808
28 12.166 0.905 253.817 0.993 1.104 1.296 0.679 0.4087 1.552 0.015 0.452 0.023 0.172 1.104
29 8.750 0.973 315.818 1.063 1.027 3.3 1.382 0.598 1.282 0.006 0.486 0.005 0.080 1.027
30 10.823 1.171 252.389 1.424 0.853 1.783 1.206 0.355 1.665 0.015 0.585 0.013 0.129 0.853
31 1.913 1.240 266.479 1.669 0.806 4.352 0.086 0.330 1.725 0.000 0.620 0.002 0.056 0.806
32 6.4398 1.018 336.905 1.215 0.981 2.286 1.099 0.409 1.551 0.009 0.509 0.008 0.106 0.981
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Table 16-3 (Continued)

Subwatershed Aa B C D E F G H I J K L M N

33 12.100 1.040 253.623 1.199 0.960 1.480 0.624 0.364 1.643 0.010 0.520 0.0175 0.149 0.960
34 2.901 0.755 318.029 1.021 1.322 1.550 0.204 0.301 1.806 0.003 0.377 0.018 0.152 1.322
35 13.417 1.137 345.512 0.983 0.879 1.727 1.126 0.551 1.335 0.012 0.568 0.011 0.118 0.879
36 7.703 1.164 349.035 1.176 0.858 1.097 1.059 0.217 2.125 0.015 0.582 0.014 0.136 0.858
37 9.517 1.244 355.86 1.300 0.803 1.356 0.833 0.378 1.613 0.014 0.622 0.017 0.150 0.803
38 6.620 1.159 349.332 1.402 0.862 1.341 1.344 0.244 2.007 0.021 0.579 0.015 0.141 0.862
39 13.027 1.098 333.029 1.180 0.910 2.337 1.328 0.358 1.656 0.008 0.549 0.006 0.087 0.910
40 4.2933 1.013 337.094 1.210 0.986 2.851 1.165 0.340 1.701 0.005 0.506 0.004 0.077 0.986
41 11.904 1.115 366.115 1.207 0.896 1.871 1.137 0.520 1.376 0.015 0.557 0.013 0.132 0.896
42 19.048 1.124 380.773 0.949 0.889 0.475 1.191 0.332 1.721 0.099 0.562 0.083 0.325 0.889
43 15.758 1.276 362.306 1.341 0.783 1.926 1.570 0.445 1.486 0.016 0.638 0.010 0.115 0.783
44 11.775 1.043 347.733 1.132 0.957 1.658 1.023 0.406 1.556 0.0141 0.521 0.013 0.132 0.957
45 5.627 1.204 360.1 1.313 0.830 1.543 1.180 0.373 1.624 0.017 0.602 0.014 0.137 0.830
46 15.149 1.167 379.133 1.143 0.856 2.121 1.598 0.307 1.790 0.008 0.583 0.005 0.081 0.856
47 10.316 1.542 380.773 1.179 0.648 1.899 2.267 0.548 1.339 0.016 0.771 0.007 0.095 0.648
48 9.356 1.219 352.228 1.130 0.819 1.820 1.000 0.233 2.055 0.004 0.609 0.004 0.078 0.819
49 13.858 1.226 395.518 1.381 0.815 1.582 1.325 0.421 1.527 0.022 0.613 0.016 0.147 0.815
50 6.096 1.157 381.989 1.124 0.864 1.930 0.694 0.347 1.684 0.004 0.578 0.006 0.094 0.864
51 9.989 1.124 402.548 0.966 0.889 1.698 0.753 0.624 1.255 0.009 0.562 0.012 0.127 0.889
52 11.431 1.119 407.724 1.256 0.893 1.963 0.861 0.631 1.248 0.014 0.559 0.016 0.144 0.893
53 15.694 0.940 407.758 0.835 1.062 0.600 0.517 0.386 1.596 0.034 0.470 0.067 0.293 1.062

Criteria
Type Negative Positive Positive Positive Positive Positive Negative Negative Negative Negative Positive Negative Negative Negative

Weight of
criteria

0.206 0.165 0.134 0.108 0.086 0.069 0.056 0.045 0.036 0.029 0.022 0.018 0.015 0.012

aA, Slope; B, drainage density; C, rainfall; D, stream frequency; E, constant of channel maintenance; F, drainage texture rate; G, ruggedness number; H, circularity ratio; I,
compactness coefficient; J, relief ratio; K, stream length; L, form factor; M, elongation ratio; N, coefficient of shape.



greater degree of flooding and erosion. As can be seen in Table 16-3, the shape parameters
such as elongation ratio (Er), compactness coefficient (Cc), circularity ratio (Cr), form factor
(Ff), coefficient of shape, relief ratio (Rh), ruggedness number (Rn), and mean slope (Sm)
were in the domains of 31, 14, 4, 15, 31, 31, 9, and 10, respectively. On the other hand, the
values of linear parameters such as drainage density (Dd), stream length (LS), drainage tex-
ture rate (Rt), constant of channel maintenance (C), stream frequency (FS), climatic para-
meters, and rainfall were in the areas of 10, 53, 13, 34, 31, and 10, respectively. Therefore,
the maximum amount is the highest in terms of flooding and erosion, which is consistent
with the results of Moore, Grayson, and Ladson (1991) and Javed et al. (2009).

Based on the parameter weights that were presented by experts and specialists and
shown in Table 16-3, the gradient, drainage density, and climatic parameter of rainfall with
the AHP values of 0.206, 0.165, and 0.134, respectively, had the highest weights, and have
the most effect on flood events in the study area. These results are consistent with those of
Liou and Wang (1992) and Van Westen, Rengers, Terline and Soeters (1997), while the coeffi-
cient of shape, elongation coefficient, and form coefficient had the lowest impact on flood
events, with weights of 0.122, 0.015, and 0.018, respectively, which corresponds with the
results of Liou and Wang (1992). Furthermore, abundance of drainage, holding constant,
drainage tissue, number of roughness, coarse bending coefficient, compressive coefficient,
roughness ratio, and length of flow ranked from four to eight, respectively. The rate of
incompatibility for each matrix of the paired comparison of criteria was less than 0.1 (0.05),
which indicates that the decisions were consistent in the AHP. The results of the importance
of the parameters are shown in Fig. 16-3.
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FIGURE 16-3 The priority and relative weight of the pairwise comparison of 14 parameters.
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The TOPSIS decision-making model was used to prioritize the Maharloo watershed. To
obtain the distance between each of the options (subfields) from the positive ideal,
Eq. (16-7) was used to normalize Eq. (16-8). Finally, by using the relation number in
Eq. (16-9), the subfields were ranked, and the results are presented in Table 16-4. In
addition, the results of flood prioritization and its mapping using the TOPSIS model are
given in Fig. 16-4.

Table 16-4 Distance Values From Positive and Negative Ideals With Final Weights and
Subfield Rankings

Subwatersheds Di
1 Di

2 cli1
Ranking Subwatersheds Based on the
TOPSIS Decision-Making Model

1 0.009 0.010 0.523 41
2 0.007 0.011 0.606 17
3 0.007 0.011 0.608 16
4 0.008 0.010 0.532 38
5 0.008 0.011 0.590 21
6 0.008 0.010 0.564 27
7 0.009 0.009 0.520 42
8 0.007 0.010 0.566 26
9 0.008 0.010 0.544 34
10 0.007 0.014 0.673 10
11 0.007 0.011 0.593 20
12 0.005 0.012 0.714 5
13 0.007 0.013 0.648 11
14 0.008 0.010 0.563 28
15 0.008 0.010 0.576 23
16 0.008 0.010 0.559 30
17 0.006 0.011 0.634 12
18 0.007 0.010 0.585 21
19 0.008 0.010 0.547 32
20 0.008 0.010 0.556 31
21 0.008 0.010 0.538 37
22 0.011 0.008 0.436 51
23 0.007 0.010 0.599 19
24 0.009 0.009 0.482 46
25 0.008 0.009 0.529 40
26 0.008 0.009 0.515 45
27 0.008 0.009 0.529 39
28 0.008 0.010 0.575 24
29 0.006 0.011 0.623 14
30 0.007 0.010 0.582 22
31 0.005 0.015 0.726 3
32 0.005 0.012 0.703 7
33 0.007 0.010 0.572 25

(Continued)
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The ranking subwatersheds based on the TOPSIS model showed that subwatersheds 34,
40, and 12 were, respectively, the least distant from the positive ideal (0.0040, 0.0048,
0.00560), subwatersheds 42, 43, and 22 with the greatest distances from the negative ideal
(0.0077, 0.0084, 0.0087), and subareas of 34, 40, and 31 with the highest scores (0.7931,
0.7411, and 0.7269) ranked first to third. Due to the high values of the linear morphometric
parameters and low values of morphometric parameters, they are more sensitive to erosion
and flooding, and the intensity of flooding is higher than those of other subwatersheds. In
watershed management designs, these should be given more attention. In contrast, subwa-
tersheds 42, 22, and 53, respectively, with the greatest distance from the positive ideal
(0.0141, 0.0112, and 0.0111), and subwatersheds 42, 43, and 22 with the least distance from
the negative ideal (0.0077, 0.0084, and 0.0087) and the lowest scores (0.353, 0.431, and
0.436), were ranked last in priority of flooding. Because of their low linear morphometric
parameter values and high morphometric parameter values, they have less sensitivity to ero-
sion and flooding, and watershed management activities have a low priority (Table 16-4).
The subwatersheds with the highest value of the coefficient of shape are circular and subwa-
tersheds with the lowest values of the coefficient of shape are elongated, which is consistent
with the results of Ahmed and Srinivasa (2015) and Chandrashekara et al. (2015). The circu-
larity ratio of the subwatersheds is greater than that of water catchment areas, and they have
a moderate to high elevation and surface permeability, which is consistent with the results of

Table 16-4 (Continued)

Subwatersheds Di
1 Di

2 cli1
Ranking Subwatersheds Based on the
TOPSIS Decision-Making Model

34 0.004 0.015 0.793 1
35 0.009 0.009 0.516 44
36 0.005 0.012 0.679 9
37 0.006 0.010 0.615 15
38 0.005 0.012 0.687 8
39 0.009 0.009 0.519 43
40 0.004 0.013 0.741 2
41 0.008 0.009 0.541 36
42 0.014 0.007 0.353 53
43 0.011 0.008 0.431 52
44 0.008 0.010 0.560 29
45 0.005 0.012 0.713 6
46 0.010 0.009 0.462 48
47 0.008 0.010 0.543 35
48 0.006 0.011 0.630 13
49 0.009 0.008 0.6471 47
50 0.005 0.013 0.716 4
51 0.007 0.011 0.603 18
52 0.008 0.010 0.545 50
53 0.011 0.009 0.458 49

TOPSIS, Technique for order of preference by similarity to the ideal solution.

Chapter 16 • Prioritization of Flood Inundation of Maharloo Watershed in Iran 385



Altaf, Meraj, and Romshoo (2014). The elongation ratio depends on the type of climate and
geological conditions (Dar, Chandra, & Romshoo, 2013). Drainage texture is closely related
to the penetrability and hydrological processes of the basin (Aher et al., 2014), and, as a
result, it is effective in flooding. High levels of drainage density indicate low permeability,
low vegetation density, and topography of mountainous and mountainous hills (Strahler,
1984). Stream frequency has a significant relationship with hydrological processes in the
watershed (Horton, 1932). The ruggedness number reflects the topographic and hydrological
characteristics of the region and has a direct relation with flooding (Aher et al., 2014). The
relief ratio, which is directly related to the slope of the waterways and the Earth’s surface,
affects hydrological processes and the erosion of the basin (Thakkar & Dhiman, 2007). The
constant of channel maintenance index reflects the penetrability and control of the flow
transmission to the watershed outlet (Thakkar & Dhiman, 2007). The form factor describing
the shape of the basin has a direct effect on the time of concentration and the rate of flow
transmission to the basin outlet (Aher et al., 2014; Dar et al., 2013; Horton, 1932). Also, in

FIGURE 16-4 Flood prioritization zoning using the TOPSIS model in the Maharloo watershed. TOPSIS, Technique for
order of preference by similarity to the ideal solution.
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areas where the climatic parameter (rainfall) and average slope are higher, there is a rela-
tively high flood function, in spheres where the flow length is high, the spill is more consis-
tent with the research results (Javed et al., 2009). Moreover, the compression coefficient of
the domain has an inverse relationship with flood waters in the catchment area, which is
consistent with the research results (Javed et al., 2009).

16.4 Conclusion
Each year, natural disasters such as landslides, earthquakes, and floods cause great financial
losses throughout the world. Flooding is one of the most severe natural phenomena that
threaten humankind (Du et al., 2013). Considering the great influence of morphometric
parameters on hydrological behavior and the flooding of sub-basins in this study, using these
parameters, priority was given to sub-basins/subwatersheds of the Maharloo watershed. The
morphometric parameters of watersheds/basins and the constant physiographic and mor-
phometric conditions, which are always accessible and reliable, make it possible to prioritize
the sub-basins of a watershed. In the present study, morphometric parameters and climatic
parameters of rainfall were used to prioritize flooding of the Maharloo watershed. The mor-
phometric parameters used in this study were gradient density, drainage density, drainage
frequency, storage capacity, drainage structure, number of roughness, rounding coefficient,
compression coefficient, ripeness ratio, flow length, form factor, elongation coefficient, and
coefficient of shape, and the one climatic parameter of rain. In prioritizing flooding with the
above-mentioned parameters from the AHP model and prioritizing the 53 subwatersheds of
the Maharloo Basin using the TOPSIS model, the results using the AHP analysis model
showed that the morphometric parameters of gradient (shape parameter) (0.206), drainage
density (linear parameter) (0.165), and the climatic parameter of precipitation (linear param-
eter) (0.134) had the highest ranks, respectively. In prioritizing flooding, these morphometric
factors were placed in the highest priority. Conversely, morphometric parameters such as
shape coefficient (0.122), elongation (0.015), and form (0.018) for prioritizing flooding were
in the final level or lowest importance. Furthermore, the results of the current study showed
that subwatersheds 34, 40, and 31 received the highest scores and were ranked first to third
in priority for the performance of management plans. The method of subwatershed prioriti-
zation using morphometric parameters was applied to identify areas of erosion sensitivity.
Also, the use of morphometric parameters in nonstatistical areas is a very accurate and
appropriate method.
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17.1 Introduction
Climate change during recent decades has been related to temperature rise, desertification,
etc., as well as with extreme events such as severe storms, floods, landslides, and soil ero-
sion, threatening human life and infrastructure. Flooding is the most devastating and serious
of natural disasters and affects more than 75 million people worldwide annually (Smith,
2001). In extreme flood events, it is important to quickly manage the magnitude of their
impact and uses of water-covered land (Wang, 2004). Flood modeling and mapping are use-
ful tools for improving the short-term and long-term relief in the affected areas immediately
after the occurrence of this phenomenon. Flood risk assessment can be implemented on
various scales, from global to local. In this context, a brief literature review of the recent
research in this topic is given. Modern geo-technologies, such as geoinformatics and its
branches [e.g., geographical information systems (GIS) and remote sensing (RS)] play a
crucial role in this ongoing endeavor. The study of these phenomena has been stable over
the last decades and, as mentioned above, has shown growth (Smith & Petley, 2009). To
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properly manage their impacts, the composition of risk and hazard maps for natural and arti-
ficial environments is of great importance (Maantay & Maroko, 2009; Smith, 2014). During
the last two decades, many free software packages have been developed and distributed,
huge global digital data repositories have been created, and various research projects have
taken place.

The evolution of GIS-based spatial analysis approaches was the main reason for the
changes to flood modeling over the last few decades. In relation to this, Weng (2001) devel-
oped a methodology to relate urban growth studies to distributed hydrological models using
an integrated approach of RS and GIS. Following a similar concept, Fortin et al. (2001) pro-
posed HYDROTEL, a distributed watershed hydrological model compatible with RS and GIS.
One year later, Lacroix, Martz, Kite, and Garbrecht (2002) used GIS to extract physiographic
and hydrological characteristics using the hydrologic model “SLURP.” Another model that
was developed in the 1990s and earned the attention of researchers was the Soil and Water
Assessment Tool (SWAT) (Neitsch, Arnold, Kiniry, Srinivasan, & Williams, 2002). Many stud-
ies subsequently took place using SWAT for a variety of goals in the following years
(Abbaspour et al., 2007; Arnold & Fohrer, 2005; Kalogeropoulos & Chalkias, 2013;
Kalogeropoulos, Chalkias, Pissias, & Karalis, 2011; Olivera et al., 2006; Pissias, Psarogiannis,
& Kalogeropoulos, 2013).

One of the models that has been tested in many different applications is HEC-HMS. This
model was implemented in Catalonia, Spain, to simulate a rapid rainfall phenomenon, giving
very good results and sensitivity control (Amengual, Romero, Gomez, Martin, & Alonso,
2007). In the same year, a very interesting model, namely HEC-HMS, was introduced for the
creation of an improved land-use support system. This was done by incorporating a land use
model, developed in a GIS environment, with a hydrological model (McColl & Aggett, 2007).
Ranaee, Mahmoodian, and Quchani (2009) combined HEC-HMS with the MIKE11 model to
simulate a flood in two river streams and validated the results with in situ measurements.
while Paparrizos and Maris (2017) also used MIKE software (especially, MIKE SHE), in order
to simulate the direct and basic flow of the Sperchios River basin, in Greece, with satisfactory
results. In the same river, a novel integrated modeling procedure was used by Stamou et al.
(2018) combining hydrologic, hydrodynamic, and habitat modeling [3H-environmental man-
agement classes (EMC)] with the use of EMCs.

A combination of the HEC-HMS hydrological model with the hydraulic model HEC-RAS
was made by Gul, Harmancioglu, and Gul (2010), to control the efficiency of flood manage-
ment. A similar effort in the same year, with a combination of both models (HEC-HMS and
HEC-RAS), was made by Popescu, Jonoski, Van Andel, Onyari, and Moya Quiroga (2010)
with a view to assessing the management system for mitigating flood risks in Romania.
Another interesting application of this period is simulation of the rainfall�runoff process
conducted in India using the HEC-HMS model by Choudhari, Panigrahi, and Chandra
(2014), with very good results. A year later, researchers from India similarly simulated the
Tapi basin (Rathod, Borse, & Manekar, 2015). Another interesting implementation, with an
operational objective, is the work of Mendes and Maia (2016), who tried to calibrate the
HEC-HMS hydrological model for part of Portugal’s largest basin (the Mondego River basin)
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to be used for operational forecasting of flood events. Finally, Al-Zahrani, Al-Areeq, and
Sharif (2017) attempted a different implementation of the HEC-HMS and HEC-RAS models,
trying to approach the possibility of a flood in urban areas near the exit of a “dry” basin in
Saudi Arabia. At the same time, the RS-based approaches aiming at hydrological—environ-
mental modeling are vital. Knebl, Yang, Hutchison, and Maidment (2005) integrated
NEXRAD Level III rainfall, GIS, and hydrological model HEC-HMS/RAS on the San Antonio
River basin in central Texas, USA, for the modeling of storm events. A methodology applied
for rainfall�runoff and groundwater recharge computations relied on observations, extracted
by a wide range of global RS datasets (TRMM, SSM/I, Landsat TM, AVHRR, AMSR-E, and
ASTER), and the “Bridge Event and Continuous Hydrological” model (Sheikh, Visser, &
Stroosnijder, 2009). Wolski, Savenije, Murray-Hudson, and Gumbricht (2006) used a hybrid
reservoir-GIS semidistributed and semiconceptual model to model flooding in the Okavango
Delta, Botswana. Melesse and Graham (2004) suggested a GIS-based model to calculate the
routing time. They considered the flow within the basin into two major types of flow: the
flow into the main river channel and the overland flow. This model was a fixed-time spatially
distributed direct hydrograph approach. Du, Xie, Hu, Xu, and Xu (2009) proposed a time-
variant spatially distributed direct hydrograph similar with to the model of Melesse and
Graham (2004). This model also incorporated the rainfall losses by using the curve number
methodology (Soil Conservation Service; Chow, Maidment, & Mays, 1988). The same
approach was used by Kalogeropoulos et al. (2013) to model floods in Vouraikos R., Greece,
by Gioti, Riga, Kalogeropoulos, and Chalkias (2013) to model floods in the Kladeos River
basin, Greece, next to Ancient Olympia, and it is also explained in detail using a variety of
rainfall entry data in Chalkias, Stathopoulos, Kalogeropoulos, and Karymbalis (2016).
Furthermore, Chen, Hill, and Urbano (2009) developed a methodology for regional estimates
of potential floodwater retention under floodplain inundation, by coupling RS and GIS tech-
nologies with spatial hydrological modeling. Similarly, Rozalis, Morin, Yair, and Price (2010)
used an uncalibrated hydrological model and radar rainfall data for flash flood prediction in
a Mediterranean watershed. Also, in 2010, Kourgialas, Karatzas, and Nikolaidis (2010) pro-
posed an integrated framework for the hydrological simulation of a complex geomorphologi-
cal river basin that included a two-part Maillet Karstic model, a GIS-based Energy Budget
Snow Melt model, an empirical karstic channel model, and the Hydrological Simulation
Program—FORTRAN model. Kia et al. (2012) developed a GIS-based multicriteria model in
combination with artificial neural networks (ANN) techniques, to simulate flood-prone areas
in the southern part of peninsular Malaysia. During the same year, Sarhadi, Soltani, and
Modarres (2012) linked GIS-RS processes (HEC-GeoRAS, IRS-P6 satellite images, etc.) with
frequency analysis, aiming at probabilistic flood inundation mapping of ungauged rivers in
southeastern Iran. Concerning flood susceptibility mapping, Pradhan (2009) applied logistic
regression analysis to delimit risk areas and produce flood susceptibility maps in Malaysia,
while Formetta, Antonello, Franceschi, David, and Rigon (2014) defined the structure of
JGrass-NewAge: a system for hydrological forecasting and modeling of water resources at a
basin scale. Mahmoud (2014) introduced the Potential Runoff Coefficient based on the area’s
hydrologic soil group, land use, slope, and determined the runoff volume.
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Recently, geomorphological analysis combined with RS data and GIS techniques were
used to provide a flood risk management for the Xirolaki Torrent in Greece (Tsanakas et al.,
2016). Furthermore, SENTINEL-1 satellite imagery, GIS, and high spatial analysis land cover/
use data, were used to assess the devastating effects of a prolonged period of intense and
continuous rainfall and consequent severe floods, which occurred in Sperchios River valley
(Stathopoulos et al., 2017). Moreover, a coupling of various technologies and techniques was
introduced by Stamellou, Kalogeropoulos, Stathopoulos, Chalkias, and Katsafados (2017), in
which flood events (SENTINEL-1 products) were analyzed using the Analytic Hierarchy
Process model and the urban sprawl model SLEUTH to define future flood-susceptible areas.
Finally, Stathopoulos et al. (2018) introduced the “Flood Susceptibility Index,” which is based
on the use of RS data (the flood inventory was extracted from Sentinel-1 imagery), GIS
modeling, and geostatistical analysis. This approach was used to produce flood susceptibility
maps of the Sperchios River basin in central Greece.

In this chapter, we introduce an integrated framework [RS�spatial modeling�RS (R-M-R)]
for flood hazard assessment based on the idea of using contemporary technologies, tools, and
free or low-cost datasets. This framework incorporates RS, GIS, and spatial modeling techni-
ques. The proposed approach aims to produce satisfactory results and to constitute an efficient
platform for operational research. A description of the framework is presented below through
empirical analysis in the Sperchios River basin in central Greece for an extreme flood event.

17.2 Study Area
The hydrological basin of Sperchios River (Fig. 17-1) is in eastern central Greece and is sur-
rounded by Timfristos, Orthris, Vardousia, Oiti, and Kallidromo mountains, while in the east
it is open towards the sea in the Maliakos Gulf. Its extent is 2030 km2 and the altitude of the
area ranges between 0 and 2295 m above sea level with an average of 607 m. Sperchios
River, which is the main hydrographic branch that dominates the valley, is the drainage
receiver of all the other smaller rivers and streams of permanent and seasonal flow. With a
total flow distance of B80 km, this river flows from the eastern sides of Timfristos mountain
and runs from the west to the east crossing south of Makrakomi, Lianokladi, and through
Lamia’s plain, reaching its estuary in the Maliakos Gulf, north of Thermopiles (Fig. 17-1).
The drainage basin of Sperchios River is about 1650 km2 and its hydrographic network is
extensive and of dendritic type.

In about two-thirds of its length, Sperchios valley has intense slopes, giving the river
mountainous/torrential characteristics, with high flood peaks and very intense sediment
yield. In contrast, during the last third of its journey, Sperchios, gradually turns into a low-
land river and often causes significant floods.

The geographical location and morphology of the basin contribute to its climatic variety:
from a marine Mediterranean to mountainous climate. The decisive factor in shaping the cli-
mate of the Sperchios River basin is the water body in the east (Maliakos Gulf), as well as
the surrounding mountains. The average rainfall for the 1980/81�2009/10 hydrological years
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was estimated at about 788 mm (HCMR(Hellenic Centre for Marine Research), 2015) and it
can be assumed that there is an upward trend since the average rainfall for the period
1970�92 was 558.2 mm (Georgiou, 1996). Rain-days range from 50 to 100 per year. The
annual average temperature varies from 11�C to 18�C, depending on the altitude and the
distance from the sea (Koutsoyiannis, 2003).

The geological formations of the study area are mainly limestones, dolomites, ophiolites,
marbles, schist, flysch, and flysch-shaped formations. The plains and valleys are covered by
Neogen, Pleistocene, and Holocaine sediments (Koutsoyiannis, 2003). The study area is
highly tectonized. These formations have different hydrological behaviors, mainly due to
lithological composition, porosity, and water permeability. Based on these characteristics,
the geological formations are separated into four hydro-litholological categories: (1) perme-
able (e.g., marbles), (2) semipermeable to permeable (e.g., ophiolites), (3) semipermeable
(e.g., sediments), and (4) nonpermeable (e.g., flysch) (Kakavas, 1984).

In Sperchios River basin the dominant land cover is “natural lands,” as forest (broad-
leaved, coniferous, and mixed), transitional (between forests and shrubs) ,and areas with
hard-leaved vegetation cover about 60%�65% of its surface. In general, one-third of the
basin (30%�35%) and mainly part of the river valley are exploited for agricultural activities
(arable land, olive cultivation, vineyards, etc.). Urban areas cover about 1%�2% of the total
area of the basin.

FIGURE 17-1 Hydrological basin of Sperchios River.
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Sperchios is characterized by its floods, which in many cases cause disasters mainly in
riparian irrigation areas. For this reason, most of the works that have been constructed in
the riverbed (mainly in the lower part) are for flood protection and drainage purposes
(Koutsoyiannis, 2003). The most important flood defense project is the so-called “Sperchios
diversion,” which was constructed during 1957�58. It is a relief channel (a so-called “new
riverbed”) with a nearly straight length riverbed of 10 km (Daoulas, 1995). The natural (old)
and new riverbed are connected via a technical intersection, where a divider regulates the
flow by diverting part of the volume to the new riverbed when needed (e.g., when high run-
off volumes occur in the natural riverbed, to prevent overflow). This technical work has cre-
ated a second outlet for the river in Maliakos Gulf, inaddition to the primary one through its
natural riverbed.

The flood event under investigation occurred between January 23 and February 15, 2015.
This was a period of extreme rainfall, both in terms of duration and intensity of rain, mainly
at its peaks. The most severe rainfall peak occurred on January 31, 2015, with maximum
3-hour (cumulative) recordings at 7 mm (9�12:00 a.m.) and 5.4 mm (6�9 a.m.) in the mete-
orological stations at Makrakomi and Lamia, respectively. For the whole study period, the
two meteorological stations recorded 101.6 and 45.2 mm of rainfall, respectively (data source:
National Observatory of Athens (NOA), 2016). The following charts (Fig. 17-2) show the fluc-
tuation of rainfall over the entire research period. It is noted that during 11�15 February no
rainfall was recorded by the stations and therefore it is not included in the charts.

Although in Sperchios River basin floods occur very often, the event under investigation
is one of the very rare extreme events that have occurred in the area. The effects of this phe-
nomenon were devastating for the region’s crops, but also for infrastructure, as many areas
were flooded for a long time and a great deal of damage was recorded in the transportation
network (roads, bridges, etc.).

17.3 Data—Methodology
17.3.1 Data

The rainfall satellite data that was acquired by EUMETSAT (PR-OBS-5 dataset) concerned
the accumulated rainfall on the ground, produced by a mixture of microwave “MW” and
infrared “IR” data. These data are derived from rainfall products generated by merging MW
images from operational sun-synchronous satellites and IR images from geostationary satel-
lites (i.e., by PR-OBS-3 and PR-OBS-4 products). In this study, we used these datasets with
high temporal resolution (3 hours) for the period of the flood.

The spatial distribution of the flooded areas was identified by analyzing satellite images
from the SENTINEL-1 program. This mission consists of a formation of two polar-trajectory
satellites, which capture images day and night. The satellite receiver is a C-band synthetic
aperture radar, enabling it to capture images regardless of weather conditions. This is a very
useful characteristic for flood modeling applications.
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For the current project, six SENTINEL-1 products were available for the study period and
study area, which are three pairs of images (02�03, 08�09 and 14�15 February). The two
images of each pair relate to the satellite’s passing (upward, downward) from the study area
during the same reception period. The type of products is SENTINEL-1A, Level 1 GRD, IW,
HR, Dual Polarization, with a spatial resolution of 10 m 3 10 m pixel size.

Concerning the background datasets, most were obtained by relevant organizations and
the others produced via digitization. The digital elevation model (DEM) was acquired by
National Cadaster & Mapping Agency (NCMA; this was chosen due to its high spatial resolu-
tion, i.e., pixel size 5 m 3 5 m). The hydrographic network was digitized using Google Earth
images and orthophoto maps (acquired by NCMA) as backgrounds. The hydrolithology layer
was created by grouping the geological formations, which were primarily digitized from the
corresponding geological maps of the Institute of Geology & Mineral Exploration (scale
1:50,000), based on hydrogeological characteristics. Finally, the land cover/use layer was
obtained by the Payment and Control Agency for Guidance and Guarantee Community Aid
—OPEKEPE (also chosen due to its high detail, scale 1:5000).

FIGURE 17-2 Rainfall fluctuation during the study period at the meteorological stations of Makrakomi and Lamia.
Data source: National Observatory of Athens (NOA) (2016).
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The complete dataset is presented in Table 17-1.
The preparation, processing, and analysis of spatial data, as well as the hydrologic and

hydraulic simulations performed, were carried out using various software packages, toolkits,
and models (see Table 17-2).

Table 17-1 Primary Research Data

Data Type Characteristics Source

SAR satellite
images

Sentinel-1A, Level 1 GRD, IW,
HR, Dual Polarization, zip file

Raster spatial resolution
10 m 3 10 m

ESA—Copernicus database
https://scihub.copernicus.eu

Satellite rainfall
data

PR OBS 5—H05, GPIB2 Raster satellite’s sampling
B 5 km

H-SAF database (hsaf.meteoam.it)

DEM Raster grid Raster spatial resolution NCMA
5 m 3 5 m

Hydrographic
network

Vector shapefile Polyline NCMA orthophoto maps and
Google Earth images
(digitization)

Hydrolithology Vector shapefile Polygon IGME
Land use/land

cover
Vector shapefile Polygon OPEKEPE

SAR, Synthetic aperture radar; DEM, digital elevation model; NCMA, National Cadaster & Mapping Agency; IGME, Institute of Geology
& Mineral Exploration.

Table 17-2 Software for Data Analysis and Simulation Models

Name
Provider/
Manufacturer Type Use

SNAP ESA Software Analysis and processing of sentinel satellite
images

ENVI Exelis Software Analysis and processing of satellite images
ArcGIS ESRI Software package Analysis and processing of spatial data
R R Foundation Language and environment Analysis and processing of spatial data/RS

outputs
ArcHydro tools ESRI Extension tools on ArcMap Hydrological analysis and processing of

spatial data
HEC-GeoHMS US Army Corps

of Engineers HEC
Extension tools on ArcMap Hydrological analysis and processing of

spatial data for creating the input
geo-database for HEC-HMS

HEC-GeoRAS US Army Corps of
Engineers HEC

Extension tools on ArcMap Hydrological analysis and processing of
spatial data for creating the input geo-
database for HEC-RAS

HEC-HMS US Army Corps of
Engineers HEC

Software�hydrologic model Hydrological modeling of drainage basins

HEC-RAS US Army Corps of
Engineers HEC

Software�hydraulic model Hydraulic simulation of hydrographic
network

HEC-GridUtil US Army Corps of
Engineers HEC

Software Visualization, processing, and analysis of
grid data

HEC�DSSVue US Army Corps of
Engineers HEC

Software Visualization, management, and processing
of HEC-DSS database

HEC, Hydrologic Engineering Center; SNAP, Sentinel Application Platform.
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17.3.2 Methodology

The R-M-R framework, which stands for “RS�spatial modeling�RS” relies on the idea of a
cyclical process (Fig. 17-3). Rainfall data are drawn by RS datasets and after proper proces-
sing are used as inputs to the hydrological model. Subsequently, the outputs of this model
are used as inputs to the hydraulic model. Finally, other RS data, which capture the flooded
areas, are used for validating the results and recalibrating the models if needed. In brief, RS
data processing is the first, hydrological-hydraulic modeling is the intermediate, and again,
RS data processing, in combination with the outputs of the model, is the final step of the
framework.

For the implementation of the proposed R-M-R approach, EUMETSAT rainfall data are
used as inputs, HEC tools and models are used for the hydrologic and hydraulic modeling of
the phenomenon, and finally Sentinel 1 images are used for validating the results and recali-
brating the model. Both RS data and HEC modeling software are available free of charge.
Furthermore, GIS & RS software packages were used for data analysis, model structuring,
and other processes. These packages can be either free [e.g., QGIS, Sentinel Application
Platform (SNAP), and R] or commercial (e.g., ArcGIS and ENVI), depending on the research-
er’s needs and preferences. The flowchart of the methodology is presented in Fig. 17-4.

During the first stage of the methodology, the primary EUMETSAT rainfall data are con-
verted from their original format (GRIB2 format) into ASCII format that GIS software can
process (Fig. 17-5A). In the next step, the rainfall data are transformed from point values to

FIGURE 17-3 Cyclical process of the R-M-R framework. R-M-R, Remote sensing�spatial modeling�remote sensing.
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spatial grids and afterwards are used as inputs for the HEC-GridUtil and HEC-DSSVue soft-
ware for the meteorological model to be created (Fig. 17-5B).

At the beginning of the second stage, the hydrological analysis of the study basin took
place, via GIS software and the HEC-GeoHMS extension toolkit, to extract the proper variable
values and structural features of the hydrologic model (Fig. 17-6A). Once the model structure
was imported and properly adjusted into the HEC-HMS modeling software (Fig. 17-6B), the
simulation standards and parameters were selected. Finally, the meteorological model (cre-
ated in the previous step) was imported in the hydrologic model enabling the beginning of
the simulation for the flood under investigation.

The third stage concerns the hydraulic simulation of the basin. Within the GIS environ-
ment, in coupling with the HEC-GeoRAS toolkit, the geometry of the hydraulic model was
prepared (Fig. 17-7A). It was then imported and properly adjusted into the HEC-RAS model-
ing software (Fig. 17-7B) along with the flow rate values calculated by the hydrologic model.

FIGURE 17-4 Flowchart of the methodology of the R-M-R framework. R-M-R, Remote sensing�spatial
modeling�remote sensing.
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The fourth stage concludes the methodology and refers to the validation of the results of
the hydraulic model. This was accomplished by analyzing Sentinel-1 satellite images
(Fig. 17-8A) to extract the flooded areas recorded by the satellite for the specific dates
(Fig. 17-8B). This step was implemented through SNAP software coupled with R-based
processing.

FIGURE 17-5 (A) EUMESAT 3-hour rainfall in ASCII format (left), (B) 3-hour rainfall in the meteorological model (right).

FIGURE 17-6 (A) Part of the hydrologic model’s structural features created via GIS analysis (left), (B) part of the
final hydrologic model in HEC-HMS (right). GIS, Geographical information systems.

Chapter 17 • A Robust Remote Sensing�Spatial Modeling�Remote Sensing 401



The first steps of this analysis were implemented on ESAs SNAP version 2.0 beta-07 64-
bit. These steps include preprocessing (calibration and speckle filtering), binarization, and
post-processing (geometric correction). The outputs of this analysis were binarized (water/
nonwater) images. For the creation of each image in this set a different threshold value was

FIGURE 17-7 (A) Part of the hydraulic model’s geometry created via GIS analysis (left), (B) part of the final hydraulic
model in HEC-RAS (right). GIS, Geographical information systems.

FIGURE 17-8 (A) Part of primary unprocessed Sentinel-1 image (left), (B) part of the extracted flooded areas via
SNAP�R procedure (right). SNAP, Sentinel Application Platform.
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used after the analysis of the histogram of the filtered backscatter coefficient (see http://
www.un-spider.org/advisory-support/recommended-practices/recommended-practice-flood-
mapping/step-by-step for details). These images/scenarios were compared with interpreta-
tions of the flooded areas in R software package to select the proper image (according to the
proper threshold). For the selection of the best threshold, each binarized image was com-
pared with the validation dataset, producing a data frame with evaluations for each point
and for each image. A logistic regression model was then applied between the validation
vector (water or nonwater) and each threshold vector (contained or not). Selecting the model
with the highest McFadden’s pseudo r-squared gives the best threshold among those
selected from the backscatter coefficient histogram. The following R code is a part of a sim-
ple reproducible example of this procedure. In this example the evaluation of five different
thresholds with the use of 13 control points, leads to the selection of Threshold1 as the opti-
mal one.

validation.points ,- c(1,1,1,1,1,1,1,0,0,0,0,0,0)
thres1 ,- c(1,1,1,1,1,1,0,0,0,0,1,0,0)
thres2 ,- c(0,0,0,1,1,0,0,0,1,0,0,0,0)
sam.ple ,- c(0,1)
thres3 ,- sample(sam.ple, 13, replace5T)
thres4 ,- sample(sam.ple, 13, replace5T)
thres5 ,- sample(sam.ple, 13, replace5T)
df ,- data.frame(cbind(validation.points,thres1,thres2,thres3,thres4,thres5))
df
## validation.points thres1 thres2 thres3 thres4 thres5
## 1 1 1 0 0 0 1
## 2 1 1 0 1 1 1
## 3 1 1 0 1 1 0
## 4 1 1 1 1 0 0
## 5 1 1 1 0 1 0
## 6 1 1 0 0 1 0
## 7 1 0 0 1 1 0
## 8 0 0 0 1 1 1
## 9 0 0 1 0 0 0
## 10 0 0 0 0 0 1
## 11 0 1 0 0 1 0
## 12 0 0 0 0 1 0
## 13 0 0 0 1 0 0
glms ,- lapply(df[21], function(x){glm(validation.points B x, family5binomial,
df)})
library(pscl) # from Political Science Computational Laboratory Department of
Political Science Stanford University, Simon Jackman, hurdle and zeroinfl functions by
Achim Zeileis.
Result ,- lapply(glms, function(x){(pR2(x))})
mc.fad ,- lapply(Result, function(x){x[4]} )
which.max(mc.fad)
## thres1
## 1
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Afterwards, the produced flooded areas by the satellite images are used as a validation
dataset for the flooded areas simulated by the hydraulic model.

17.4 Results and Discussion
The meteorological model was based on RS products (EUMETSAT images) of accumulated
rainfall. These data, according to the provider’s specifications, show an accuracy of
40%�50%. In this application, the rainfall values recorded by the meteorological stations
“Makrakomi” and “Lamia” of the National Observatory of Athens were compared with the
corresponding values of the meteorological model. The values refer to 3-hour accumulated
rainfall and cover the study period until February 10. This analysis revealed that the model
approaches satisfactory for the distribution of measurements from the meteorological
stations, following the same spatiotemporal pattern. At the same time, the model seems to
overestimate the amount and the peaks of the rainfall.

As shown in Fig. 17-9, the model overestimates the rainfall volume at the sites of
Makrakomi and Lamia stations by about 20%�25% and 50%, respectively. This finding may
suggest that EUMETSAT rainfall data and consequently the meteorological model is more
accurate in high altitudes (e.g., around Makrakomi station).

Since the hydrologic and hydraulic simulations were carried out with rainfall data by the
meteorological model (EUMETSAT data), it is expected that there will be overestimations in
the modeling results. Moreover, the day and time of the maximum simulated floods are not
identical to the time of reception of the Sentinel-1 satellite imagery. This means that (1) if
the flood peak is preceded by the reception, the satellite image will capture a smaller flood
area than the area estimated by the simulation, as some water volume will have already
drained or filtered into the subsoil and (2) if the satellite image reception is before the high-
est water volume peak there will again be a smaller flooded area captured, as the maximum

FIGURE 17-9 Rainfall volume comparison between model and ground stations: total rainfall (left), highest peak
(right).
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flood extent will not have yet been reached. However, it should be stressed that the satellite
capturing of the flooded areas follows the progress of the phenomenon as described in the
measurements of the meteorological stations. Thus, alternative simulation scenarios were
designed and carried out. These scenarios concerned alternative values in the hydraulic
model’s geometry (length and morphology of the cut-lines), in the water’s flow conditions
(subcritical, critical, and supercritical flow), in the diverted water volumes through the
divider to the new riverbed (e.g., 300, 150 m3/s, etc.), and finally in the three Sentinel 1 imag-
ery reception periods (comparison and comparative analysis of the simulated flood peak of
each period with the satellite capture of the flooded areas for the corresponding period).
Accordingly, the results of each scenario helped to validate and recalibrate the model.

The best fit (B90%) between the simulation results and the satellite imagery is presented
in Fig. 17-10 and concerns flood simulation for (1) a model’s geometry of 500 m cut-lines in
each side of Sperchios River, (2) subcritical flow, (3) 150 m3/s diversion rate, and (4) for the
first period of Sentinel-1 reception (from the beginning of the extreme rainfall phenomenon
up to the 3rd of January). The flooded areas exported from the satellite image analysis are
marked in red and the flooded areas extracted from the hydraulic model with tones of blue.

The application of the R-M-R framework in this empirical study produced satisfactory
results. Through this processing, the overestimation of the input EUMETSAT rainfall data
was detected, while at the same time the areas to be flooded if the modeled EUMETSAT
rainfall estimation occurred were identified. Furthermore, the water flow conditions of

FIGURE 17-10 Flood extents simulated by the calibrated hydraulic model (blue areas) vs flood extents extracted by
Sentinel-1 images (red areas).
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Sperchios River in the flooding zone, namely the existence of subcritical flow, were esti-
mated. In addition, the option to test various scenarios led to the effective design of the
hydraulic model’s geometry. Accordingly, the outputs of different scenarios led to the detec-
tion of small existing infrastructures or manmade interventions like the so-called “German
moat,” which is a parallel to Sperchios River. It should be noted that these elements were
not considered as input entities in the construction of the models. Finally, the water flow
rate that was diverted through the divider to the new riverbed, namely 150 m3/s, was calcu-
lated accurately through the empirical analysis. The empirical analysis showed that the main
advantages of the R-M-R framework are:

• High temporal resolution of satellite rainfall data (EUMESAT);
• High spatial resolution of satellite data (EUMETSAT & SENTINEL);
• Free software/low-cost methodology (optional use of commercial packages);
• Field data are not required, especially if they are not available—limited field work

involvement;
• Fast processing (after the construction of the models).

At the same time the main limitations/restrictions are:
• Low acquisition frequency of satellite images for flood capturing (SENTINEL);
• Overestimation in satellite rainfall data (EUMETSAT);
• Difficulties in transformation of raw satellite rainfall data (GRIB);
• Need for fine design of the study area’s geometry for optimum hydraulic simulation.

Concerning the elements of the R-M-R process, it must be noted that radar satellite pro-
jects (like Sentinel) are evolving worldwide and new versions are expected to appear in the
coming years. When the Sentinel-1 project started there was one radar satellite orbiting,
whereas now there are two working as a constellation (thus decreasing the image acquisition
time by half). The continuous improvements of the radar-based RS technology ensures the
future improvement of image acquisition times.

Moreover, as the EUMETSAT organization states, most of the involved countries have
either finished, started, or are going to start working with the organization in calibrating its
products, by supplying ground measurements from their meteorological stations (e.g., rain-
fall, temperature, etc.) reducing the errors in the remotely sensed datasets. To our knowl-
edge, Greece has not yet become involved in this interaction and that is why high error rates
were found in this application. On the other hand, the proposed framework can be deployed
by using rainfall satellite products by other providers other than EUMETSAT.

In addition, new decoders of GRIB files are constantly being developed. Although we tried
to develop such a decoder in R package we did not manage to finalize this procedure in time
for the writing of this chapter. Our future work will focus on this issue as well as on the
implementation of hydrological analysis in R. Furthermore, new software (e.g., GIS and RS
analysis software) include tools for GRIB formats. Finally, the detail of the geometry of the
hydraulic model, and therefore the effort needed to construct it, depends on the level of
accuracy that the researcher wants to get in the simulation results. The creation of high-
resolution DEMs in the future (cell size ,2 m) can help significantly in this issue.
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17.5 Conclusions
The proposed R-M-R framework is evaluated as particularly effective and efficient for the
description, analysis, simulation, and management of flood events. It can constitute a very
useful tool for optimum management of flood phenomena, which are constantly rising
worldwide due to extreme weather events caused by climate change, and the reduction of
their adverse impacts. The contemporary key point of the framework is the use of two differ-
ent sources of free satellite RS products (both by EU projects and organizations) combined
with noncommercial models and software.

Future work on the proposed framework includes automating the post processing (e.g.,
creating a GIS model for hydrological analysis, a model for extracting flooded areas from sat-
ellite images, etc.), thus leading to further acceleration of the analysis. Furthermore, concern-
ing applications in Greece, a calibration of the EUMETSAT rainfall data with meteorological
station measurements will take place at a basin scale. In parallel, to have long-term optimum
results for operational purposes, historical events should also be simulated and tested.
Finally, another step in the development of an operational flood assessment tool should be
to use rainfall data from a predictive model (the primary database, based on which the
model will calculate predictive values, which could be satellite rainfall data) in order to pre-
dict both the probability and the extent of a potential flood.
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Prioritization of Effective Factors on
Zataria multiflora Habitat Suitability
and its Spatial Modeling
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ENVIRONMENTAL ENGINEERING, COLLEGE OF AGRICULTURE, SHIRAZ UNIVERSITY,
SHIRAZ, IRAN

18.1 Introduction
Zataria is a genus of flowering plant in the Lamiaceae family, first described in 1876. It
contains only one known species, Zataria multiflora, native to southwestern Asia in Iran,
Afghanistan, Pakistan, and Kashmir (Manikandan, Chandrasekar, & Srivastava, 2012).
Z. multiflora Boiss. (ZM) (synonyms: Zataria bracteata Boiss; Z. multiflora var. elatior Boiss)
is a thyme-like plant belonging to the Lamiaceae family that geographically grows wild only
in central and southern Iran, Pakistan, and Afghanistan (Hosseinzadeh, Ramezani, &
Salmani, 2000). The term Zataria is used for a group of plants belonging to the Labiatae fam-
ily including 200 genera and 3300 species (Zargooy, 1991; Bakht, 2000). The Zataria genus
has a particular species called multiflora. This plant has limited distribution around the
world (Zade & Oregan, 1995). Thyme grows in the form of bushes in the dry slopes and
between boulders of different Mediterranean regions (McGimpsey, Douglas, Van Klink,
Beauregard, & Perry, 1994), but in Iran this cultivar grows.

In Iranian traditional medicine, Z. multiflora, with the traditional name of “Satar” or
“Zatar,” is popular as a strong and efficient plant for the treatment of many infectious dis-
eases (Zargari, 1995). The Z. multiflora plant as a traditional Iranian medicine has various
antioxidative components, such as thymol and carvacrol (Saei-Dehkordi, Tajik, Moradi, &
Khalighi-Sigaroodi, 2010). However, these days, its natural habitats are being destroyed and
its populations have become isolated from each other by human interventions and changes
in land cover. Future climate changes could be the main threat to the species while consider-
ing its limited distribution in disparate areas. A suite of qualitative and quantitative models
have been used to predict habitat and species distributions. Landscape ecologists are also
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aware of the power of computer-based modeling to predict other ecological processes.
Model developments to predict ecological processes in space and time were started in the
early 1990s (Drew, Wiersma, & Huettmann, 2010). It is essential for rare plant conservation
to incorporate habitat assessment in development planning to minimize the destruction of
their habitats and maximize the effectiveness of mitigation efforts (Cuperus, Canters, de
Haes, & Friedman, 1999; Dale, King, Mann, Washington-Allen, & McCord, 1998). In gen-
eral, three phases seem to have marked the history of species distribution models (SDMs)
(S. Ferrier, personal communication): (1) nonspatial statistical quantification of the spe-
cies�environment relationship based on empirical data; (2) expert-based (nonstatistical,
nonempirical) spatial modeling of species distribution; and (3) spatially explicit statistical
and empirical modeling of species distribution. The earliest species distribution modeling
in literature was niche-based spatial predictions of crop species (Nix, McMahon, &
Mackenzie, 1977). SDM tools are becoming increasingly popular in ecology (Peterson,
2006), because these models established relationship between occurrences of species and
different biophysical and environmental conditions in each area. With the increasing
emphasis on the use of geographic information system (GIS) and remote sensing, many
researchers have applied heuristic, deterministic, statistic, and soft computing models to
assess habitat suitability in different areas. Indeed, the potential of a model to predict the
distribution of species is crucially related to the model’s ability, meanwhile, evaluating
these models with the presence/absence of data is challenging (Elith & Burgman, 2003;
Fielding & Bell, 1997; Manel, Williams, & Ormerod, 2001; Pearce & Ferrier, 2000).
Therefore, in order to rehabilitate the threatened species in terrestrial ecosystems, detailed
knowledge on the distribution of their potential habitats is very vital. Therefore, habitat dis-
tribution modeling helps to identify the specific potential areas for species reintroduction,
and in developing effective species conservation measures (Baruah, Borthakur, & Tanti,
2016; Deka, Borthakur, & Tanti, 2017). The main goal of this study was spatial modeling
and considering effective factors on Z. multiflora habitat suitability as a rare species in Fars
Province, Iran.

18.2 Materials and Methods
18.2.1 Study Area

The study area is in Fars Province, located in the southwest of Iran (Fig. 18-1). The study
area is located between longitudes of 27.32�31.08 dd (decimal degree), and latitudes of
54.90�52.16 dd and covers an area of 59,781.98 km2. In general, Fars Province is composed
of different habitats. Z. multiflora grows in some of these habitats, in the following counties:
Arsanjan, Estahban, Larestan, Farashband, Fasa, Firoozabad, Qir and Karzin, Zarghan,
Khonj, Nayriz, and Darab. In the study area, the annual average temperature and rainfall are
16.80�C and 650 mm, respectively (Sajed, Sahebkar, & Iranshahi, 2013). The elevation of the
study area varies from 500 to 3500 m with an average of 1750 m (Sajed et al., 2013). The
slope angles vary from 0 to 60 degrees in the described area.

412 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



18.3 Methodology
The methodological process of the current study is presented in Fig. 18-2. As shown, the
flowchart is comprised of three main steps including: (1) data preparation; (2) modeling pro-
cess; and (3) performance analysis of the built model for habitat suitability of Z. multiflora.

18.3.1 Dataset Preparation for Habitat Suitability Modeling

A number of factors were used for thyme habitat suitability modeling in Fars Province, Iran.
These factors are elevation, slope degree, aspect, soil physical characteristics (sand, silt, and
clay percentage), soil chemical properties (Electrical Conductivity (EC) and pH), mean
annual rainfall, mean annual temperature, distance to roads, distance to rivers, and plan cur-
vature. The topographic factors, such as slope degree, aspect, and elevation, were extracted
from a digital elevation model (DEM)-Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) with a resolution of 30 m in ArcGIS 10.2.2. Also, the plan

FIGURE 18-1 Hillshade map of Iran with the location of the study area in Fars Province.
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curvature map as a secondary attribute from DEM was prepared in 30 m spatial resolution.
For preparing physical and chemical properties of soil, the silt percentage, clay percentage,
sand percentage, pH, and EC, sampling points were taken for the study area. Then, the soil
physical characteristics, including sand, silt, and clay percentage were measured through a
hydrometer device (Wang, Huang, & Long, 2016). Also, the EC of soil samples was measured
through a conductivity-meter device, and the pH was measured through a pH-meter device
(Husson et al., 2018). Finally, these properties (silt, clay, sand, EC, and pH) were mapped by
IDW (inverse distance weight) in ArcGIS 10.2.2. Mean annual rainfall and temperature maps
were constructed from the Fars meteorological data and the maps were also prepared using
the IDW method. The distances to roads and rivers were based on a topographical
map in 1:50,000 scale and mapped by distance tools in ArcGIS 10.2.2. Finally, all thematic

Habitat suitability mapping of Zataria multiflora 

Data preparation

Slope degree

Plan curvature

Distance to roads

Aspect

Distance to rivers

Annual mean rainfall Annual mean temperature

Soil chemical (EC)

Soil chemical (PH)

Soil physical (silt)

Soil physical (sand)

Soil physical (clay)

Elevation

Modeling process

Radial basic function (RBF)Support vector machine (SVM)

Performance analysis

AUC indexValidation of model using ROC curve  

FIGURE 18-2 Flowchart of the methodology used in the current study.
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FIGURE 18-3 Thematic maps of the study area: (A) elevation; (B) slope degree; (C) aspect; (E, F, D) soil physical
characteristics (sand, silt, and clay); (G, H) soil chemical properties (EC and pH); (I) annual mean rainfall; (J) annual
mean temperature; (K) distance to roads; (L) distance to rivers; (M) plan curvature.
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FIGURE 18-3 (Continued).
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FIGURE 18-3 (Continued).
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maps/layers (Fig. 18-3A�M) were converted into a raster format with the same resolution of
30 m for future analyses.

18.3.2 Collinearity Test of Effective Factors

The variance inflation factor (VIF) and tolerance are both widely used to measure the degree
of multicollinearity of the i-th independent variable with the other independent variables in
a regression model (O’brien, 2007). In general, a tolerance of less than 0.20 or 0.10 and/or a
VIF of 5 or 10 and above indicates a multicollinearity problem (O’brien, 2007).

18.3.3 Modeling of Habitat Suitability of Zataria multiflora Using the
Support Vector Machine Model

The support vector machine (SVM) method is developed from statistical learning theory,
which minimizes the error involved with sample size and narrows the upper limit of the
error involved in model generalization to solve the problems of over-learning, nonlinearity,
and the curse of dimensionality during modeling (Fielding & Bell, 1997; Howley & Madden,
2005; Huang & Wang, 2006). SVM modeling is based mainly on two principal ideas. One is
the construction of an optimum linear space that separates a hyperplane that separates data

FIGURE 18-3 (Continued).
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patterns. The other is the conversion of the original nonlinear data patterns into a format
that is linearly separable in a high-dimensional feature space using kernel functions (Vapnik,
1995; Xu, Dai, Xu, & Lee, 2012a,b). All the advantages previously mentioned enable the SVM
method to effectively overcome a high-dimensional problem (Chapelle & Vapnik, 2000;
Chapelle, Vapnik, Bousquet, & Mukherjee, 2002). SVM, by employing a learning algorithm
relying on statistical learning theory and optimization theory, enables the computer to learn
how to implement classification and regression tasks, increase prediction accuracy, and also
avoid overfitting drawbacks (Guo et al., 2005). SVM is popular for its better empirical perfor-
mance compared to sophisticated neural network functions, easy training process, avoiding
local minima, relatively suitable mathematics for high-dimensional data, and finding the best
trade-off between complexity (overgeneralization) and error (overfitting) (Brown et al., 2000;
Joachims, 1998). A key parameter in SVM is the type of RBF (radial basic function) to use. In
this chapter, Gaussian RBF kernel is applied (Chen, Pourghasemi, Kornejady, & Zhang, 2017;
Pourghasemi, Jirandeh, Pradhan, Xu, & Gokceoglu, 2013; Sun, Li, & Wang, 2009) in the train-
ing phase to find the optimal SVM solution.

In this study, for running SVM-RBF in order to model the habitat suitability of thyme
used from “ksvm” package in R 3.3.3 (https://www.rdocumentation.org/packages/kernlab/
versions/0.9-25/topics/ksvm).

18.3.4 Application of the Boruta Algorithm for Considering
Variable Importance

One of the most important points in the current research is determining the importance of
variables for habitat suitability spatial modeling. By knowing the most important factors, the
best management decision can be made; so, with this aim a Boruta algorithm was selected.
Boruta algorithms perform shuffling of predictors’ values and join them with the original pre-
dictors and then build a random forest on the merged dataset, finally making a comparison
of the original variables with the randomized variables to measure the variable importance
(https://www.datasciencecentral.com/profiles/blogs/select-important-variables-using-boru-
ta-algorithm). According to Kursa and Rudnicki (2010), “Boruta is based on the same idea
which forms the foundation of the random forest classifier, namely, that by adding random-
ness to the system and collecting results from the ensemble of randomized samples one can
reduce the misleading impact of random actuations and correlations” (Kursa & Rudnicki,
2010).

18.3.5 Accuracy Assessment

The receiver operating characteristic (ROC) curve approach and Z. multiflora locations of
validation dataset (30%) were used to determine the accuracy of the final habitat suitability
map. The ROC curve can be considered as a graphical representation of the trade-off
between the false-positive rate on the X-axis and the true-positive on the Y-axis rate for every
possible cutoff value (Pourghasemi et al., 2013). The area under the estimated ROC curve
(AUC) represents the prediction accuracy of the model (Table 18-1).
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18.4 Results and Discussion
18.4.1 Considering Results of Collinearity

Collinearity tests of different effective factors are given in Table 18-2. According to
Table 18-2, the smallest tolerance and highest VIF were 0.255 and 3.921, respectively.
Therefore, there is no multicollinearity among the independent factors in the current study.

18.4.2 Results of Variable Importance of Effective Factors

Determining the importance of different effective factors on habitat suitability of Z. multi-
flora is an important function. For this aim, the Boruta algorithm was used in this study.
The results of variable importance (mean importance) showed that mean annual tempera-
ture, % silt, aspect, and distance to road, had the highest importance, with values of
16.65%, 12.37%, 11.02%, and 10.70%, respectively (Table 18-3). In contrast, the results in
Table 18-3 show that the pH factor is not important in the mentioned modeling and could
even be removed from the final analyses. In general, some factors may affect rare plan

Table 18-1 ROC Curve Classification (Yesilnacar, 2005)

Poor Moderate Good Very Good Excellent

0.5�0.6 0.6�0.7 0.7�0.8 0.8�0.9 0.9�1

ROC, Receiver operating characteristic.

Table 18-2 Collinearity Test of Effective Factors

Factors

Collinearity Statistics

Tolerance VIF

Aspect 0.882 1.134
% Clay 0.263 3.795
Elevation 0.255 3.921
EC 0.417 2.399
Ph 0.521 1.921
Plan curvature 0.963 1.038
Annual mean rainfall (mm) 0.746 1.341
Distance from river (m) 0.727 1.376
Distance from road (m) 0.733 1.364
Annual mean temperature (�C) 0.281 3.561
Slope degree 0.801 1.249
% Sand 0.273 3.664
% Silt 0.545 1.478

VIF, Variance inflation factor.
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populations, so it is important to identify and consider different environmental variables
for habitat suitability of different species in each area (McIntyre, 1995; Smeins & Wu,
1998). Wu and Smeins (2000) reported that topography, soil texture, and soil structure can
improve habitat suitability.

18.4.3 Habitat Suitability Using the S V M Model

SVM is a classification system derived from statistical learning theory that can be used for
both classification and regression (Vapnik, 1995; Christianini and Shawe-Taylor, 2000). In
this research, a SVM-RBF RBF was used in R 3.3.3 for habitat suitability of Z. multiflora and
its mapping in the study area. According to SVM-RBF, pixel values for the entire study area
were calculated and, finally, the habitat suitability of the Z. multiflora map was prepared and
reclassified into four susceptibility classes: high, moderate, low, and very low (Fig. 18-4),
based on the natural break classification technique (Mohammady, Pourghasemi, & Pradhan,
2012; Naghibi, Pourghasemi, & Abbaspour, 2018; Ozdemir, 2011; Pourghasemi, Pradhan, &
Gokceoglu, 2012; Pourghasemi & Rahmati, 2018; Pourghasemi, Yousefi, Kornejady, & Cerdà,
2017; Termeh, Kornejady, Pourghasemi, & Keesstra, 2018; Zabihi et al., 2018). The percent-
age of suitability classes within the model is summarized in Fig. 18-5. The low suitability
class in the SVM model gained the highest percentage (41.52%), while the very high suitabil-
ity class had the lowest percentage in the model (9.06%). The other classes had 17.98% and
31.44% suitability for high and moderate classes, respectively.

In this study, the SVM model shows a high accuracy of habitat suitability modeling, which
is also reported by other researchers in different cases (Chen et al., 2017; Pourghasemi et al.,
2013; Sun et al., 2009).

Table 18-3 Considering the Importance of Variables by Boruta Algorithm

Factors
Mean
Importance

Median
Importance

Minimum
Importance

Maximum
Importance Decision

Aspect 11.02 11.09 9.22 13.26 Confirmed
% Clay 6.99 7.02 4.73 8.78 Confirmed
Elevation (m) 8.41 8.47 5.32 10.69 Confirmed
EC (µmho/cm) 9.36 9.25 7.38 11.55 Confirmed
pH 1.99 1.99 2 1.01 4.63 Rejected
Plan curvature 6.44 6.42 3.99 9.08 Confirmed
Mean annual rainfall (mm) 8.18 8.17 6.43 10.02 Confirmed
Distance to river (km) 6.06 6.08 3.87 8.13 Confirmed
Distance to road (km) 10.70 10.81 8.36 12.81 Confirmed
Mean annual temperature (�C) 16.65 16.66 14.35 18.66 Confirmed
Slope degree (�) 9.01 8.93 6.77 11.03 Confirmed
% Silt 12.37 12.44 9.51 14.20 Confirmed
% Sand 5.69 5.74 3.25 7.39 Confirmed
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FIGURE 18-4 Habitat suitability of Zataria multiflora map based on the SVM-RBF model. SVM, Support vector
machine; RBF, radial basic function.

FIGURE 18-5 Percentages of different habitat suitability classes.
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18.4.4 Validation of Habitat Suitability Map of Zataria multiflora

Validation of the model was carried out by ROC curve and considering its AUC-ROC
(Fig. 18-6 and Table 18-4). The results indicated that the SVM model presented an excellent
performance with an AUC value of 96.50%. It can be concluded that the model utilized in
this study showed reasonably good accuracy for predicting habitat suitability of Z. multiflora
in the study area.

FIGURE 18-6 ROC curve for habitat suitability map of Zataria multiflora map produced by the SVM-RBF model in
the study area. ROC, Receiver operating characteristic; SVM, support vector machine; RBF, radial basic function.

Table 18-4 The Area Under the Curve

AUC Standard Error Asymptotic Significant

Asymptotic 95% Confidence
Interval

Lower Bound Upper Bound

0.965 0.017 0.000 0.933 0.997
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18.5 Conclusion
There is an urgent need for rare plant habitat assessment as an important component in
conservation and development planning at multiple spatial scales. It is challenging, however,
due to the scarcity and lack of synthesis of information on the ecology of rare plants, lack of
effective approaches for habitat assessment at different spatial scales, and also the lack of
spatial data for relevant environmental attributes and scales. According to the points
described above, this study has considered the habitat suitability of a type of thyme (Z. mul-
tiflora) in Fars Province, Iran. For this aim, a SVM-RBF data-mining model was applied
within a GIS environment in the study area. Also, the Boruta algorithm as a novel random
forest-based feature selection method was tested for assessing the importance of variables.
The ROC index was used to evaluate the performance of the final model. The results showed
that the SVM model had excellent accuracy for habitat suitability mapping of Z. multiflora.
Overall, the processes of model development and application help to identify knowledge and
data gaps to guide future research and provide a framework for improving habitat assess-
ment with new knowledge gained in the future.
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19.1 Introduction
Soil organic carbon (SOC) plays an important role in agronomic sustainability, carbon seques-
tration potential, and reservoirs in global C cycle (Reeves, 1997; Somarathna, Malone, &
Minasny, 2016; Yang et al., 2016). This reservoir contains more C (approximately 75% of total
carbon) than atmospheric and biotic pools (Lal, 2004; Schlesinger, 1997). The role of the SOC
pool is considered as a potential sink of greenhouse gases in view of global environmental
change (Bellamy, Loveland, Radley, Lark, & Kirk, 2005; Gal, Vyn, Michli, Kladivko, & McFrr,
2007; Wiesmeier et al., 2012). Carbon sequestration is seen as the best solution to reduce atmo-
spheric carbon where both agriculture and the environment benefit (Somarathna et al., 2016).

Sustainable land-use practices and management, as well as environmental modeling and
risk assessment, require reliable information about spatial distribution of soil properties,
which affects both landscape processes and services (Forkuor, Hounkpatin, Welp, & Thiel,
2017). SOC is a key component for sustainable soil fertility and productivity. However, SOC
maps are of strong interest for agricultural management practices and environmental
research related to terrestrial sequestration of atmospheric carbon (Kumar, Velmurugan,
Hamm, & Dadhwal, 2018; Liu et al., 2014).

The conventional approach for soil surveys and predicting spatial distribution of SOC
stocks is carried out by calculating the mean SOC measurements within each map unit
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according to the soil type, soil unit, and land-use management (Batjes, 1996; Lettens,
Orshoven, Wesemael, Muys, & Perrin, 2005; Wu, Guo, & Peng, 2003; Yang, Mohammat,
Feng, Zhou, & Fang, 2007). However, this method may lead to a less reliable estimation due
to spatial heterogenetics within each map unit, environmental variables, and error of
assigned average SOC values from limited SOC data (Kumar et al., 2018; Meersmans, De
Ridder, Canters, De Baets, & Van Molle, 2008; Rasmussen, 2006; Yang et al., 2011, 2016). To
overcome this problem, digital soil mapping (DSM) is deemed as an appropriate and useful
technique to produce detailed information regarding SOC stocks from auxiliary environmen-
tal covariates (McBratney, Mendonc, Santos, & Minasny, 2003; Yang et al., 2016).

The amount of SOC stock present in soil can vary according to landscape type and enclo-
sure over time, depending on climatic variables, slope gradient, soil type, vegetation charac-
teristics, farming practice methods, land management, and soil nutrient content (Chen,
West, Kissel, Clark, & Adkins, 2008; Neigh, Bolton, Diabate, Williams, & Carvalhais, 2014).
The SOC can be assessed and predicted using different vegetation indices, such as the nor-
malized difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI).
Modified SAVI (MSAVI) and renormalized difference vegetation index (RDVI), and com-
pound topographical index are parameters for models with the help of band-rationing algo-
rithm of satellite images and field surveyed data (Bhunia, Shit, & Pourghasemi, 2017; Gupta
et al., 2014; Hengl et al., 2017; Kumar et al., 2016, 2018; Kurgat, Golicha, Giese, Kuria, &
Asch, 2014; Nawar, Buddenbaum, & Hill, 2015; Pandey, Tate, & Balzter, 2014; Yang et al.,
2016). However, geospatial techniques have emerged as a powerful tool that provide a cost-
effective, synoptic view, highly correlated secondary data, and can be utilized for predicting
SOC through model building (Bhunia et al., 2017; Dewitte, Jones, Elbelrhiti, Horion, &
Montanarella, 2012; Hengl et al., 2017; Kumar, Sajjadi, Tripathy, Ahmedi, & Mandal, 2017;
Kumar et al., 2018; Mulder, de Bruin, Schaepman, & Mayr, 2011; Nawar et al., 2015; Yang
et al., 2016). R is an environment incorporating an implementation of the S programming
language, which is powerful and flexible and has excellent graphical facilities (R
Development Core Team, 2009), and it is widely used for DSM (Malone, Minasny, &
McBratney, 2017). Therefore, the present study provides an integrated approach using
remote sensing (RS) data, laboratory tests, and field data in R software and geographical
information system (GIS) platform for digital SOC mapping (DSOCM) in the Dulung river
basin in West Bengal (India), which has been found to be cost-effective and less time-
consuming compared to traditional soil mapping approaches.

19.2 Materials and Methods
19.2.1 Study Area

The study area is located in the Dulung river basin, between 22�10047v N�22�37004v N and
86�37053v E�87�08058v E, in part of Chotonagpur plateau fringe area (Fig. 19-1). The
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elevation of the study area ranges between 11 and 343 m above sea level. The geology of the
Dulung river basin is mainly Cenozoic cover sediments (northern part) and red soil (Patel &
Sarkar, 2010). This region belongs to the part of the Chotonagpur plateau fringe area and
undulating lateritic area that ascends to a low altitude to the southeast of the basin, and has
a humid-subtropical climate. The area experiences very hot summers, with temperatures
reaching up to 45�C in May and June (Sarkar & Patel, 2012). The annual average rainfall dur-
ing the monsoon season varies between 997.3 and 1354.7 mm, and 85% of the rainfall occurs
during the monsoon season from June to October (Bhunia, Shit, & Maiti, 2016). The domi-
nant forest type is “sal” (Shorea robusta). In the upper part of the basin area moderately
dense to open forest covers are found. The soil is mainly a sandy loam type and the average
land slope varies between 6% and 12%. The study site is largely controlled by the Dulung
river along with its tributaries. About 45% of the area is occupied by “sal”-dominated forest
land and paddy crops cover about 40% of the area, while about 15% of the land is minimally
used (Bera & Bandyopadhyay, 2012).

FIGURE 19-1 Location of the study area of Dulung river basin (West Bengal, India) and 48 soil sampling sites.
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19.2.2 Soil Organic Carbon Analysis From Field Data

A field survey was performed to collect soil samples from November 20 to December 24,
2017. Soil samples were collected randomly from five soil cores (sampler radius of 3.8 cm,
and sample volume of 220.42 cm3) of undisturbed topsoil samples at depths ranging from 0
to 15 cm (Shit, Bhunia, & Maiti, 2016). In total, 48 samples were collected from different
land-use/land-cover categories in the study area for testing and validating dataset (Fig. 19-1
and Table 19-1). A portable global positioning system was used to collect the spatial location
of each sample site. Soil samples were air dried and placed through a 2-mm sieve for textural
laboratory analysis (Schnitzer, 1982). The organic carbon concentration was determined by
the Walkely�Black Wet oxidation method (Nelson, Sommers, & Sumner, 1996). Bulk density
was calculated using Eq. (19-1) (Vagen & Winowiecki, 2013) and SOC (Kumar et al., 2017)
was calculated using Eq. (19-2):

Bulk Density
g

cm3

� �
5

Mass of Oven Dried Soil

Total Volume
(19-1)

Soil Carbon
t

ph

� �
5 Soil Depth3Carbon contentð%Þ (19-2)

Table 19-1 Summary of Field Sampling in the Dulung River Basin

Sampling
Unit

Geographical Location
Soil
Weight (g)

Bulk Density
(g/m3)

SOC
(g/m2)

SOC
(t/ha)

SOC
(%)Latitude (N) Longitude (E)

1 22�34035.715v 86�52035.319v 320 1.5871 1941.2364 19.4124 2.54
2 22�33036.609v 86�48014.911v 350 1.3245 2059.5145 20.5951 2.73
3 22�33013.481v 86�5401.836v 314 1.3645 1542.2314 15.4223 2.31
4 22�30027.554v 86�55029.713v 326 1.3954 1487.3549 14.8735 2.14
5 22�33019.363v 86�41033.048v 381 1.5642 1290.7412 12.9074 1.82
6 22�28011.199v 86�47046.529v 345 1.2058 1451.5387 14.5154 1.97
7 22�27017.233v 86�51041.239v 310 1.2364 1652.8918 16.5289 2.26
8 22�2609.887v 86�55022.860v 364 1.5642 1256.0235 12.5602 1.87
9 22�25024.161v 86�48022.506v 324 1.2569 1654.3021 16.5430 2.34
10 22�24038.058v 86�59017.912v 325 1.3214 1534.2909 15.3429 2.42
11 22�22017.891v 86�51020.012v 341 1.5647 1574.7894 15.7479 1.99
12 22� 2304.106v 87�3055.915v 301 1.4562 1730.0542 17.3005 2.47
13 22�2205.950v 86�56014.180v 358 1.3654 2010.3214 20.1032 2.69
14 22�17046.941v 86�59016.728v 394 1.2654 1970.2561 19.7026 2.58
15 22�19045.495v 87�503.739v 372 1.5426 1771.6541 17.7165 2.33
16 22�17025.784v 87�708.809v 378 1.2689 1105.2453 11.0525 1.54
17 22�1502.301v 87�301.415v 367 1.4203 1303.1253 13.0313 1.78
18 22�1907.783v 86�5201.587v 322 1.5021 1065.2541 10.6525 1.56
19 22�22045.672v 86�58031.998v 356 1.6012 1101.6524 11.0165 1.34
20 22�15033.337v 87�6027.172v 355 1.5521 1008.0245 10.0802 1.25

(Continued)
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19.2.3 Data Collection and Processing

The training data set of SOCs was collected during field observations from November 20 to
December 24, 2017, and the measurement of organic concentrations was done through field
surveys. A Landsat 8 Operational Land Imager (OLI) (Path/Row: 139/44; Date of Pass: 12/09/
2017) was used to estimate soil carbon. This satellite image for the month indirectly provides
information on soil properties of specific sites (Peng et al., 2015). Survey of India topographi-
cal sheets (1:50,000 scale) were used to rectify satellite data using ERDAS Imagine v9.0 soft-
ware (Leica Geosystems GIS and Mapping, LLC, Atlanta, GA, USA). The image to map
rectification was applied to correct geometrically the Landsat image. The rectification was
performed on the Universal Transverse Mercator projection system, with World Geodetic
System 84 Datum, and nearest-neighbor algorithm. The total root-mean-square error

Table 19-1 (Continued)

Sampling
Unit

Geographical Location
Soil
Weight (g)

Bulk Density
(g/m3)

SOC
(g/m2)

SOC
(t/ha)

SOC
(%)Latitude (N) Longitude (E)

21 22�22051.072v 86�48012.216v 340 1.3245 1072.2145 10.7221 1.29
22 22�25057.569v 86�44052.638v 305 1.4125 1194.3654 11.9437 1.52
23 22�2809.914v 86�43040.469v 373 1.3256 1184.3219 11.8432 1.48
24 22�3403.221v 86�40021.779v 363 1.3457 945.1254 9.4513 1.33
25 22�31050.390v 86�4508.171v 351 1.6091 1219.2543 12.1925 1.68
26 22�35019.973v 86�43059.699v 332 1.4561 1345.2018 13.4520 1.72
27 22�35053.666v 86�5100.236v 383 1.3651 1223.5841 12.2358 1.66
28 22�17027.239v 87�3025.058v 391 1.3321 1230.6841 12.3068 1.59
29 22�16046.550v 86�57023.227v 382 1.4452 1100.2541 11.0025 1.41
30 22�28036.897v 86�5409.432v 303 1.4521 1023.0456 10.2305 1.61
31 22�37029.606v 86�46037.258v 338 1.3542 1010.2314 10.1023 0.89
32 22�35039.104v 86�4908.877v 306 1.5642 986.8451 9.8685 1.12
33 22�3201.526v 86�50055.096v 377 1.5102 1107.2984 11.0730 1.08
34 22�30054.711v 86�48014.054v 318 1.3425 864.6570 8.6466 0.87
35 22�31055.073v 86�42024.445v 300 1.4251 784.2356 7.8424 0.75
36 22�19051.984v 86�54050.167v 303 1.4455 856.4580 8.5646 0.94
37 22�15048.729v 87�0031.252v 307 1.3443 1101.7531 11.0175 1.17
38 22�22053.642v 86�45054.474v 309 1.4141 684.2341 6.8423 0.83
39 22�13033.755v 87�5021.727v 338 1.5423 556.8493 5.5685 0.67
40 22�21021.313v 87�2015.692v 334 1.3056 861.2594 8.6126 0.95
41 22�33050.886v 86�44014.776v 336 1.3654 421.3561 4.2136 0.45
42 22�29057.889v 86�41028.937v 333 1.5642 398.6512 3.9865 0.37
43 22�25027.587v 86�46033.717v 308 1.3654 426.9512 4.2695 0.56
44 22�34045.994v 86�4902.881v 321 1.4362 358.3649 3.5836 0.42
45 22�18013.495v 87�506.822v 346 1.5321 534.2612 5.3426 0.32
46 22�37017.614v 86�4908.020v 359 1.6123 258.2304 2.5823 0.24
47 22�26010.572v 86�57058.419v 357 1.4789 209.6142 2.0961 0.31
48 22�21037.185v 86�53051.981v 342 1.4617 186.2642 1.8626 0.21

SOC, Soil organic carbon.
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(RMSE) for the rectification was 0.234 pixel. The linear contrast stretch function was used to
increase the contrast and clarity of the described image. The flowchart of procedures
involved for preparing the digital SOC map is presented in Fig. 19-2.

19.2.4 The Predicted Variables (NDVI, MSAVI, RDVI, and MNLI)

For DSM of SOC stocks, the important environmental covariates like vegetation characteris-
tics, topography, soil, and climatic characters are vital (Kumar et al., 2018). A diagram

Satellite dataField 
observatory 

Remote 
sensing 

Predictor 

Statistical 
analysis

Threshold value 
demarcation

Regression analysis & 
modeling using R software

Residuals plot

Predictive component 
of Individual indices 

Spatial prediction: 
Regression models

Predictive digital 
SOC outputModel calibration 

Final output

FIGURE 19-2 Flowchart of the used methodology.
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representing the method of generation of the different predictor variables is shown in
Fig. 19-2. The predictor variables were exhaustively measured data that could be used in
regression analysis to predict the response variables (SOC). In this study, a total of four vari-
ables (vegetation indices) were used to predict the spatial distribution of the SOC map.
These details are presented in Table 19-2. Vegetation indices have been investigated for their
correlation with the SOC (Kumar et al., 2018). In general, NDVI, RDVI, MSAVI, and modified
nonlinear vegetation index (MNLI) (details given in Table 19-2) were derived using blue,
green, red, and near-infrared bands of satellite data to assess the biophysical parameters
above the ground biomass of surrounding soil (Bhunia et al., 2017; Kumar et al., 2016, 2018;
Tomar, Kumar, Rani, Gupta, & Singh, 2013). The NDVI is an uncertain graphical sign that
can be employed to outline the greenness, relative density, and healthiness of vegetation
(Powell et al., 2010). RDVI is commonly used to investigate plants at the growth stage and
the amount of greenness present in the vegetation (Xue & Su, 2017). The MSAVI is a SAVI
that seeks to address some of the limitations of NDVI when applied to areas with a high
degree of exposed soil surface (Baratia, Rayegania, Saati, Sharific, & Nasri, 2011). The prob-
lem with the original SAVI is that it required specifying the soil-brightness correction factor
(L) through trial and error, based on the amount of vegetation in the study area. The details
of the vegetation indices are given in Table 19-2.

Table 19-2 Details of the Predicted Variables

Indices Equation Values Description References

MSAVI MSAVI5
pNIR � pRed

pNIR 1 pRed 1 L
11 Lð Þ Hybrid vegetation

index, limited
range: 1 ,

MSAVI , 1

Iso-vegetation crosses the soil
line at different point. Soil
line has arbitrary slope and
passes through origin range
21 to 11

Qi, Chehbouni,
Huete, Kerr, and
Sorooshian
(1994)

L5 slope of soil line

NDVI NDVI5 NIR2Rð Þ= NIR1 Rð Þ Ratio-based index,
0 , NDVI , 1,
sensitive to
atmospheric
noise

The index NDVI was initially
used to evaluate the
biomass and vegetation
primary production, as NDVI
shows positive values for
vegetation, values close to
zero for bare soil and
negative values for water

Rouse, Haas,
Schell, and
Deering (1973)
and Tucker
(1979)

RDVI RDVI5 ρNIR� ρRð Þ= ρ2NIR1ρR
� �1=2 Nonlinear

vegetation index
RDVI linearizes relationships
with surface parameter that
tend to be nonlinear

Roujean and Breon
(1995)

MNLI MNLI5 ρ2NIR� ρR
� �

11 Lð Þ=
ρ2NIR1 ρR1 L
� � Nonlinear index,

L5 0.5 may
applicable for a
wider range of
leaf area index

An improved version of NLI,
and is also consider merit of
SAVI

Gong, Pu, Biging,
and Larrieu
(2003)

MSAVI, Modified soil-adjusted vegetation index; MNLI, modified nonlinear vegetation index; RDVI, renormalized difference vegetation
index; NDVI, normalized difference vegetation index; SAVI, soil-adjusted vegetation index.
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19.2.5 Statistical Analysis and Digital Soil Mapping

The descriptive statistics values were analyzed using R “gstat” package version 1.1-5 (R Core
Team, 2017). In R, several classical statistical models can be implemented using one func-
tion: lm (for linear model). The lm function can be used for simple and multivariate regres-
sion (MR) models (Malone et al., 2017). Stepwise linear regression was conducted using the
step function of the “gstat” package in R statistical software to examine potential relation-
ships between observed SOC and vegetation indices. The relationship between four explana-
tory variables (NDVI, RDVI, MSAVI, and MNLI) and an independent variable (SOC) are
considered by calculating the Pearson’s correlation coefficient. Student’s t-test (two-tailed)
was employed to measure the significance between variables. Simple linear regression and
MR models were applied to estimate SOC concentration. A goodness-of-fit test was used to
determine significant differences between observed and predicted SOC at P # .05. The sim-
ple linear regression (lm) analysis was performed to identify the predicted SOC with each
vegetation indices. The R2 values of different indices were evaluated. The MR model was
evaluated using the coefficient of determination (R2) and the residual plot. Parameter estima-
tions were calculated by least squares and R2 values to appraise goodness-of-fit of the built
model. For constructing a digital SOC map, the formula of MR analysis was accomplished in
ArcGIS software v9.0 by a raster calculator tool. MR analysis was accomplished to regulate
substantial interpreter variables that shake the dissemination of organic carbon in soil.

19.2.6 Model Validation

Residuals were estimated from the difference between predicted and observed SOC values.
The residual needs to be normally distributed as a prerequisite for a regression model. The
field-measured SOC was taken as the observed variable and the SOC extracted for satellite
data as the predictors. The R2 value was validated by three indices [Eqs. (19-3)�(19-5)]
including RMSE, NRMSE (normalized RMSE), and MAPE (mean absolute percentage error)
(Hengenius, Gribskov, Rundell, & Umulis, 2014):

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i51 ðXobsi2Xmodeli Þ2

n

s
(19-3)

NRMSE5
RMSE

Xobsmax 2Xobsmin

(19-4)

MAPE5

Pn
i51 jXobsi 2Xmodeli j=Xobs

n
3 100 (19-5)

where Xobs and Xmodel are observed and predicted SOC stocks, respectively; n is the number
of samples. The model with the lowest RMSE and highest R2 values was considered to be the
most applicable or ideal model (Jaber, Lant, & Al-Qinna, 2012). The NRMSE is a nondimen-
sional form of RMSE, where lower values indicate less residual variance and vice versa.
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MAPE leads to a superior statistical approach which can be interpreted in terms of geometric
mean. It is usually expressed as a percentage (Jachner, van den Boogaart, & Petzoldt, 2007).

19.3 Results
19.3.1 Analysis of Soil Organic Carbon Using Field Data

A summary of soil carbon stocks for the entire study area is shown in Table 19-1. The SOC
value of the study area varies from 1.86 to 20.59 t/ha, with a mean value of 11.18 t/ha. The
highest value of SOC is observed in dense forest areas and the lower value of SOC is found
in bare ground and upland areas of the river basin. The distribution of SOC is negatively
skewed. The highest value of NDVI is recorded as 0.47 and the lower value is calculated as
20.12. The negative value of NDVI indicates the possibility of a negative distribution. The
average NDVI value of the study area is calculated as 0.17 (6 0.01). The value of NDVI shows
the negative excess kurtosis (e.g., the distribution is more clustered around the mean). The
mean RDVI value of the study area is calculated as 31.78 with a standard deviation of
6 28.70. The RDVI value showed the kurtosis value to be a large positive. The maximum
and minimum values of MSAVI are recorded as 20.28 and 0.64, respectively. The average
value of MSAVI of the study area is calculated as 0.18 6 0.02. The value beyond 0.2 indi-
cated diminishing of soil brightness (Tomar et al., 2014). The maximum value of MNLI is
recorded as 0.70, with a standard deviation of 6 0.26 and showed the large positive kurtosis
value of all the indices (Table 19-3).

19.3.2 Predictor Variables

SOC is observed in soil as a component of several organic complexes. Hence, SOC having such
organic complexes cannot be hauled out from the RS data. To predict the SOC through RS data,
the terrestrial surface reflectance was correlated with the SOC value. NDVI (Fig. 19-3B) for the
study area ranges from 20.12 to 0.47. Features such as dense vegetation have NDVI values of
0.3�0.47, whereas bare land and upland areas represented very low NDVI values (less than
0.1). Similarly, RDVI (Fig. 19-3C), MSAVI (Fig. 19-3A), and MNLI (Fig. 19-3D) are used to assess
vegetation brightness, stages of growth, and soil adjustment factors, respectively. MSAVI values

Table 19-3 Descriptive Statistics of All Predictor Variables

Variables Minimum Maximum Mean Standard Deviation Standard Error Kurtosis Skewness

SOC (t/ha) 1.86 20.59 11.18 4.87 0.70 2 0.48 2 0.06
NDVI 2 0.12 0.47 0.17 0.17 0.01 2 0.39 2 0.28
RDVI 2 17.64 81.20 31.78 28.70 1.79 2 1.00 0.19
MSAVI 2 0.28 0.64 0.18 0.27 0.02 2 0.58 2 0.13
MNLI 2 0.19 0.70 0.26 0.26 0.02 2 0.78 0.13

SOC, Soil organic carbon; NDVI, normalized difference vegetation index; RDVI, renormalized difference vegetation index; MSAVI,
modified soil-adjusted vegetation index; MNLI, modified nonlinear vegetation index.
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vary from 20.28 to 0.64 of the study area. The value above 0.25 indicated diminishing soil
brightness (Kumar, 2013; Tomar et al., 2014). RDVI ranges from 217.64 to 81.20, whereas the
value of MNLI ranges between 20.19 and 0.70, with mean values of 31.78 and 0.26, respec-
tively. The descriptive statistics of the predictor variables are illustrated in Table 19-3. All of the
predictor variables were similar in terms of mean and median values, thereby indicating that
the dataset of the predictor variables was evenly and normally distributed.
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FIGURE 19-3 Mapping of predictor variables using remote sensing data: (A) MSAVI, (B) NDVI, (C) RDVI, and (D)
MNLI. MSAVI, Modified soil-adjusted vegetation index; NDVI, normalized difference vegetation index; RDVI,
renormalized difference vegetation index; MNLI, modified nonlinear vegetation index.
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The spatial distribution of vegetation indices showed that smaller patches of healthier
vegetation is better around the central and the northern parts of the study area. However,
the upper and lower catchments of the Dulung river basin are mainly characterized by agri-
cultural land. Consequently, dense vegetation has the maximum carbon content, followed by
agricultural land, and fallow lands. Built-up areas have the lowest carbon stocks. The lowest
values are observed around the south and southwest of the river basin.

19.3.3 Analysis of Predictor Variables and Soil Organic Carbon
Relationship

The Pearson’s correlation coefficient (r value) was calculated to measure the degree of rela-
tion between SOC and predictor variables. The greater R value of the correlation coefficient
is better and more useful in the regression variables. In the present study, the correlation
matrix of different predictor variables indicated a high degree of correlation between SOC
and various predictor variables (Table 19-4). NDVI has a high degree of correlation with
most of the variables, whereas RDVI, MSAVI, and MNLI exhibited good correlation among
themselves. NDVI produced the best correlation with observed SOC, because it reflects the
vegetation conditions and its distribution in the study area.

A regression investigation was accomplished between the SOC and vegetation indices to
explore their relationship. The results of a simple regression analysis between all four predic-
tor variables was individually calculated with a significance of P5 .05 (Fig. 19-4). Fig. 19-4
represents the scatterplots with regression analysis between observed SOC and predictor
variables derived through different vegetation indices (Table 19-5).

The statistical relationship between predicted SOC and observed SOC values was evalu-
ated by regression analysis and the co-efficient of correlation (R2). Therefore, using the lm
correlation between observed SOC values and predicted SOC was optimized. Fig. 19-4 shows
the relationship between SOC (t/ha) and the vegetation indices (RDVI, NDVI, MSAVI, and
MNLI). The model was evaluated using the goodness-of-fit criterion determined by R2,
where the maximum value of R2 indicated the best fit of the model for the provided dataset.
The SOC had a high positive correlation with NDVI (R25 0.68, P , .05), demonstrating that
as NDVI increases, SOCs will also increase. A similar trend was also observed in the

Table 19-4 Correlation Matrix of Predictor Variables

SOC (t/ha) RDVI NDVI MSAVI MNLI

SOC (t/ha) 1
RDVI 0.81 1
NDVI 0.82 0.82 1
MSAVI 0.82 0.91 0.92 1
MNLI 0.80 0.94 0.89 0.98 1

SOC, Soil organic carbon; NDVI, normalized difference vegetation index; RDVI, renormalized difference vegetation index; MSAVI,
modified soil-adjusted vegetation index; MNLI, modified nonlinear vegetation index.
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relationship between SOC and other indices such as RDVI (R25 0.66, P , .05), MSAVI
(R25 0.67, P , .05), and MNLI (R25 0.64, P , .05).

MR analysis between all predictor variables and SOC was performed to estimate the com-
bined effect of predictor variables on the response variable. The predictor variables were
positively correlated with SOC (r5 0.82, P , .001). The R2 value showed that 76% of varia-
tion in a dependent variable was explained by the regression model (P , .0019). The results
of the multiple regression analysis indicated that NDVI had the largest standardized coeffi-
cient value (114.00) of the four different predictor variables for the future analysis.
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FIGURE 19-4 Scatterplots with regression analysis between observed SOC and predictor variables derived through
satellite data (A) NDVI, (B) RDVI (C) MSAVI, and (D) MNLI. NDVI, Normalized difference vegetation index; RDVI,
renormalized difference vegetation index; MSAVI, modified soil-adjusted vegetation index; MNLI, modified
nonlinear vegetation index.
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19.3.4 Spatial Prediction of Soil Organic Carbon Stocks

The simple linear regression model was used to derive the spatial distribution of SOC using
satellite data (Fig. 19-5, Table 19-6). The predicted SOC value derived through NDVI ranged
between 1.75 and 18.89 t/ha with a mean value of 11.51 t/ha (6 3.81). The mean predicted
SOC was recorded as 11.28 t/ha (range 1.94�19.54 t/ha) in regards to RDVI data. The pre-
dicted SOC through MSAVI and MNLI ranged between 1.71�18.35 and 1.73�18.88 t/ha,
respectively. It was observed that the predicted SOC was higher in the dense vegetation-
covered areas and low values were included in barren land in the study area. The scatter-
plots distribution of the SOC stock and predicted SOC value derived according to different
vegetation indices are given in Fig. 19-6. The mean SOC values derived based on RDVI and
MNLI are very close to the observed SOC in the study area.

The study area chosen is relatively heterogeneous in land cover and in SOC densities, as
shown in Fig. 19-7. The range of SOC stock varies from 0.74 to 37.44 t/ha (mean 6 standard
deviation: 19.09 6 10.66) in the entire studied area. The coefficient of variations is calcu-
lated as 1.31 at a 95% confidence level, suggesting a weak variability of SOC properties. The
highest carbon stock is observed mostly in the central and northern parts of the study area,
while very low stock of SOC is observed mostly in the south and southwest. The major irri-
gated areas (lower part of the basin), where generally multiple crops were cultivated, have
SOC densities of 5�8 t/ha. In contrast, the barren and upland areas had lower SOC stock.

19.3.4.1 Validation of Results
The regression residuals were obtained from the multiple regression analysis of predictor
and observed variables. After spatial analysis accusation, the final output was exposed to
validation through 48 samples. The predicted SOC density was equated against the
field-estimated SOC density. Afterward, RMSE, NRMSE, and MAPE were computed from
differences between predicted and measured values to determine the accuracy and bias of
the predictions. The SOC model prediction performance is summarized in Table 19-6. The
values of NRMSE for all prediction models are close to 0, which indicates a small tendency

Table 19-5 Correlation Coefficient Matrix of Different Predictor Variables (All
Together) With Observed SOC

Variables
Beta (β)
Values

95% Confidence
Interval (CI) (Lower)

95%Confidence
Interval (CI) (Upper) P Value

Intercept 3.02 28.56 4.47 .05
RDVI 0.21 20.15 0.78 .02
NDVI 114.00 2 328.70 163.86 .05
MSAVI 65.94 2 118.67 166.24 .02
MNLI 55.27 2 66.64 172.18 .04

NDVI, Normalized difference vegetation index; RDVI, renormalized difference vegetation index; MSAVI, modified soil-adjusted
vegetation index; MNLI, modified nonlinear vegetation index.
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for overestimation or underestimation. Consequently, the low RMSE and MAPE values pre-
dict the target values with a high degree of accuracy. However, differences in RMSEs of the
linear regression model are slightly higher than the MR model (Fig. 19-5, Table 19-7). The
residual plot between the observed and predicted SOC was illustrated and the results portray
that all samples were randomly scattered (Fig. 19-8).
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FIGURE 19-5 Spatial distribution of soil organic carbon stocks using simple linear regression model: (A) MNLI, (B)
MSADVI, (C) NDVI, and (D) RDVI. MNLI, Modified nonlinear vegetation index; MSAVI, modified soil-adjusted
vegetation index; NDVI, normalized difference vegetation index; RDVI, renormalized difference vegetation index.
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Table 19-6 Comparative Assessment Between Observed and Predicted SOC in
Different Predictor Variables

Variables Minimum Maximum Mean
Standard
Deviation

Standard
Error Kurtosis Skewness

P
Value

Observed SOC 1.86 20.59 11.18 4.87 0.70 2 0.48 2 0.06 .05
Predicted SOC
through NDVI

1.75 18.89 11.51 3.81 0.55 0.50 0.01 .01

Predicted SOC
through RDVI

1.94 19.54 11.28 4.02 0.58 0.66 0.15 .02

Predicted SOC
through MSAVI

1.71 18.35 11.47 3.75 0.54 0.53 0.08 .03

Predicted SOC
through MNLI

1.73 18.88 11.29 3.87 0.59 2 0.58 0.066 .05

SOC, Soil organic carbon; NDVI, normalized difference vegetation index; RDVI, renormalized difference vegetation index; MSAVI,
modified soil-adjusted vegetation index; MNLI, modified nonlinear vegetation index.
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19.4 Discussion
SOC is an indicator of soil productivity and is spatially variable (Wang, Zhang, Song, Liu, &
Ren, 2010). In the present study, the spatial distribution of SOC stocks of the Dulung river
basin has been studied. The spatial distribution of SOC was significantly and positively corre-
lated with NDVI. The findings are consistent with the results of earlier studies (Bhunia et al.,
2017). The outcome of the described study indicated that dense vegetation cover has higher
SOC densities (Kumar et al., 2018). As per the results obtained, 17% of the study catchment
has an SOC of more than 14 t/ha. The small pockets of the north and the extreme north of
the river basin have values of 8212 t/ha. The upper and lower catchment areas have
medium to low (3�5 t/ha) concentrations of SOC. This may be due to the spatial heteroge-
neity of land use/land cover, topography, and soil characteristics. Vegetation has a higher

FIGURE 19-7 Predicted soil organic stocks using a multivariate regression model.
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stock of SOC because of healthy vegetation that provides a consistent supply of organic mat-
ter to stock after decomposition. The degraded and open forest areas have little vegetation,
so these regions have higher stock of SOC than bare upland and settlement areas. The accu-
mulation and decay of organic matter in croplands affects the SOC.

Positive correlations are proven between SOC and vegetation indices (NDVI, MSAVI,
RDVI, and MNLI). This is elucidated by the fact that vegetation indices have a direct
bond with photosynthetic activities in green plants. This suggests that the forest ecosys-
tem has a high carbon density and is considered to have a considerable potential as

Table 19-7 Best-Fit Model and Prediction Accuracy; RMSE, NRMSE, and MAPE of Soil
Organic Carbon Stocks (t/ha) Evaluated

Predicted Model R2 Equation RMSE NRMSE MAPE

SOC and MNLI 0.64 (P , .05) SOC52 0:169951 ð47:325673MNLIÞ 0.301 0.042 3.83
SOC and MSAVI 0.67 (P , .05) SOC52 1:23661 ð46:328033MSAVIÞ 0.296 0.034 3.62
SOC and NDVI 0.68 (P , .05) SOC5 0:468821 ð68:65073NDVIÞ 0.298 0.045 3.72
SOC and RDVI 0.66 (P , .05) SOC52 0:7661 ð0:511833 RDVIÞ 0.309 0.032 3.31
Multivariate regression 0.71 (P , .001) SOC5 ð2 2:048971 f0:31573

RDVIg1 f2 2:42043NDVIg1 f23:78
1173MSAVIg1 f52:77043MNLIgÞ

0.244 0.025 2.11

MNLI, Modified nonlinear vegetation index; MSADVI, modified soil-adjusted vegetation index; NDVI, normalized vegetation index,
RDVI, renormalized difference vegetation index; NRMSE, normalized root-mean-square error; RMSE, root-mean-square error; MAPE,
mean absolute percentage error; SOC, soil organic carbon.
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carbon sink. This study is in line with the results of Mondal et al. (2017) and Vargas,
Allen, and Allen (2008).

This study describes the use of Landsat 8 OLI image for assessing SOC in dissimilar
subtropical forests. The extraordinary positive relationship between the projected SOC
directly from field parameters and the observed SOC from multispectral band information
establishes the fact that vegetation indices can be measured as an operative spectral veg-
etation index to guesstimate SOC. Also, Clerici, Rubiano, Abd-Elrahman, Hoestettler, and
Escobedo (2016) and Bhunia et al. (2017) suggested that an lm is the ideal model for
generating a digital carbon map based on biomass. Hence, the models rely on the
unspecified parameters to control the forecast variables. The traditional approaches of
obtaining data in the field are time-consuming and require massive investment. Thus, it
can be seen that spectral indices derived through RS data, along with GIS and field sur-
veys, are now providing new opportunities utensils for soil measurements in terms of
organic carbon.

19.5 Conclusions
This study predicted DSOCM using satellite images and field surveys data of the Dulung river
basin in India. The distribution of SOC stock was modeled by MR based on Landsat 8 OLI
images and field data. The predictor variables show strong correlations (. 0.71) with SOC
and advocate the use of predictor variables derived from exhaustive satellite images in SOC
prediction. The findings also suggest that vegetation indices (NDVI, RDVI, MSAVI, and
MNLI) estimated through Landsat 8 OLI data are good predictors of SOC. The SOC varied
from 0.34 to 37.44 t/ha in the study area. The spatial distribution of SOC displays that the
forest has the maximum concentration, followed by cultivated land; meanwhile, built-up
areas had the lowest concentration. The spatial prediction of a SOC map can be used for
SOC management in agricultural areas for better crop planning and monitoring forest health
in different geographical regions at various scales.
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20.1 Introduction
Landslides represent one of the main risk sources associated with territories in the vicinity of
inhabited areas, transport, and production infrastructures, which affect the activity of the
human component at the spatial level, also having a strong impact on economic and social
activities (Armaş, 2011; Barra et al., 2017; Corominas, 2008; Fell et al., 2008; Micu &
Bălteanu, 2009; Petrea, Bilaşco, Roşca, Vescan, & Fodorean, 2014; Roşca et al., 2015; Roşca,
Bilaşco, Petrea, Vescan, & Fodorean, 2016). Due to the complex conditions which lead to
landslides, as well as their rapid development dynamic and their major impact in the terri-
tory, the temporal analysis and monitoring of the landslide process is absolutely necessary in
order to reduce its risk in an area.

Considering the major impact that landslides have in the territory, the need to monitor
the process is current in order to reduce the negative potential effects. The monitoring of the
landslide direction and the development of landslide dynamics involves the use of several
specific methods and techniques: monitoring based on landmarks (Szalai, Prácser, Szokoli, &
Tóth, 2017), monitoring based on detailed topographic measurements (Mazzanti et al., 2017),
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monitoring using remote-sensing techniques (Ardizzone et al., 2013; Barra et al., 2017), and
lately monitoring based on the analysis of databases obtained using unmanned aerial vehicle
(UAV) equipment (Yaprak, Yildirim, Susam, Inyurt, & Oguz, 2018). The use of UAVs has
proven to be useful in various applications for assessing the hazards and risks associated
with the territory, starting with flood assessment (Izumida, Uchiyama, & Sugai, 2017; Sohn,
Heo, Yoo, Kim, & Cho, 2008; Tokarczyk, Leitao, Rieckermann, Schindler, & Blumensaat,
2015), the evaluation of areas affected by earthquakes (Boccardo, Chiabrando, Dutto,
Tonolo, & Lingua, 2015; Hirose et al., 2015), and realization of the detailed topographical
measurements with the identification and mapping of landslides (Niculiţă, 2016; Van Den
Eeckhaut et al., 2007; Yoon, Jeong, & Kim, 2002).

The temporal monitoring of the spatial dynamics of landslides through classical methods
is consuming numerous human and technical resources in the field (identification, detailed
measurements) and in the office (mapping, spatial identification of dynamics), which is why
we are looking for new methods based on modern techniques by means of a fast-developing
apparatus. In this context the benefits brought by the implementation of UAV techniques
and methods for the realization of databases on the three-dimensional (3D) structure of the
field in the analyzed area make it possible to reduce the time and costs necessary for the
field stage (Turner, Lucieer, & de Jong, 2015), while also increasing the precision and accu-
racy of the digital databases used in the geographic information system (GIS) spatial analysis
to identify the impact and risk to the territory.

This study shows the main stages in the process of temporal monitoring of landslide evo-
lution based on UAV technology and on spatial analysis and digital databases.

20.2 Study Area
A case study was used to by monitoring a landslide in the vicinity of a residential complex
exposed to a landslide risk in the administrative territorial unit of the city of Dej, Cluj
County, in the Transylvania depression, Romania (Fig. 20-1).

The landslide developed on a geological substratum formed of clay, sandstone with coal,
marl, marly schist, Miocene tuff, and intercalated diapiric structures (Irimuş, 1998; Vancea,
1960), which all led to an increase in the dynamic potential of the territory, especially due to
the overloading of the slope and an increase in the humidity of the deposits (Fell et al.,
2008). In this study, the upper sector of Torok Hill was affected by the expansion of the built-
up area and the storage of a significant volume of solid materials (gravel, soil, and building
materials) resulting from an urban planning project (the building of collective car parks). In
addition to this, a large amount of water was stored in the soil due to high and long-lasting
cumulated precipitation (76.19 mm) between February 29 and March 7. On March 7, these
led to the triggering of a landslide, displacing 5180.16 m3 and an initial dynamics of 104.5 m,
determining a major risk to the built-up area consisting of 10 houses, the Torok Balneary
Park, and adjacent constructions including its expansion project.
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20.3 Methodology
The ability to equip UAV devices with various photogrammetric sensors correlated with
high-precision global positioning system (GPS) measurements increases significantly the pre-
cision and accuracy of the digital database from the review images and brings a degree of
high detail to the digital data thus obtained (Cook, 2017; Gilvear & Bryant, 2003; Hugenholtz
et al., 2013; Rusnák, Sládek, Buša, & Greif, 2016; Turner et al., 2015).

The main databases used to analyze and identify the areas with increased landslide
dynamics can be divided into three categories according to the method of acquisition: data-
bases acquired through direct measurements in the study area [coordinates of the points
measured with the differential GPS, coordinates used both as ground control points (GCPs)
and as validation and identification points for georeference errors], databases created using
UAV flights (represented by high-resolution photographs) and derived databases created
through the processing of aerial images [digital surface model (DSM) and digital elevation
model (DEM)].

The methodological endeavor is based on achieving the objectives in order to finalize
the research on using UAV technology for the spatiotemporal monitoring of landslide
dynamics. Thus, the study was performed in three main stages: (1) preparation, performing
the drone flight, and the acquisition of aerial photographs; (2) processing of the databases
generated by the flight; and (3) spatial analysis and interpretation of results. These stages
will be presented in detail according to their chronological integration in the research
(Fig. 20-2).

FIGURE 20-1 Geographical position of the study area.
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In order to capture the dynamics in the evolution of the landslide from the study area,
two flights using the Phantom 3 Advanced drone (DJI Company) were performed on differ-
ent days: the first flight took place on May 2, 2015, immediately after the triggering of the
landslide, and the second flight was performed on May 8, 2017, thus capturing the areas
which had presented and are currently presenting elevated dynamics.

20.3.1 Aerial Image Acquisition Using Unmanned Aerial Vehicle
Technology

Aerial images represent the main database which is used in the 3D reconstruction of landslides
and in the identification of their dynamics. The UAV techniques enable the acquisition of these
data due to the relatively low costs required for the necessary equipment (drone, camera) and
determine the high quality of the derived databases compared to the classical techniques of
analysis (low-resolution satellite images, monitoring of landslides using landmarks).

The acquisition of aerial images implies two stages: the first stage takes place inside,
including the identification of the study area, the development of a flight plan, and the iden-
tification of the camera calibration coefficients.

Flight plan

Case study identification
Overlapping (%)
Fly altitude (m)
Fly tracking
(geographic coordinates)

UAV flight

Ground control
points acquisition

Aerial images
acquisition

Images
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Georeferencing
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FIGURE 20-2 Conceptual scheme.
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The flight plan depends on the requirements for the quality of the databases used in the
spatial analysis process. In order to obtain high-quality databases derived from aerial
photographs, a double flight plan was developed with the help of the Pix4Dcapture appli-
cation (Car, Jurić Kaćunić, & Kovačević, 2016). The selected parameters for the flight are:
flight altitude of 50 m (a relatively low altitude for creating a DEM with high resolution and
accuracy), medium flight speed (dependent on the autonomy of the drone battery; the
flight speed has also been reduced for greater camera stability when taking pictures), a
camera angle of 90 degrees (relative to the normal position of the gimbal to obtain perpen-
dicular images on the analyzed surface in relation to the landslide configuration), and the
degree of overlaying successive adjacent images is 80%, which provides a good imagine
acquisition based on a double mission flight (Fig. 20-3). Both flights were performed using
the same flight plan.

The field stage corresponding to the two flight missions consisted mainly of the identifica-
tion of four control points (GCPs) in the first mission (May 2, 2015). These points were used
for calibrating and georeferencing the UAV images (Table 20-1). The GCPs were measured
using the real time kinematic (RTK) method (Reference station, Cluj-Napoca) with a differ-
ential GPS (GeoMax Zenith 35 Pro), in a stereographic 1970 coordinate system (Table 20-1),
with a tolerance of 0.04 m (X, Y) and 0.05 (Z). The points were signaled by two different
marks: colorful spray marking for vegetation-free areas and bicolor marks for vegetation-
covered areas (Fig. 20-4).

In the case of the second flight mission from May 8, 2017, the same four GCPs were used
after being identified in the field using the previous coordinates. Their position has a toler-
ance of 0.04 m, equal to their initial measurement tolerance.

The aerial images from both flight missions were acquired using the Phantom 3
Advanced drone, a Full HD: FC300S_3.6_40003 3000 (RGB) camera, with 12 megapixel

FIGURE 20-3 The flight plan.
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resolution, which was mounted on a gimbal stabilized on three axes. The flights produced
862 photographs, 431 for each flight mission, covering a surface of 4.24 ha, during
17 minutes of flight.

20.3.2 The Processing Stage of Aerial Images

The processing of the aerial images represents the second methodological stage in the com-
plex process of landslide monitoring using UAV techniques. By processing the images previ-
ously acquired using specialized software (Agisoft PhotoScan, Pix4D, etc.) the databases are
generated (point cloud, DSM, and DEM) and used in the GIS spatial analysis for the

Table 20-1 The GCP Coordinates Measured by the RTK Method (Based on
Stereographic 1970 Coordinate System)

No X (N) Y (E) Altitude Flight 1 Altitude Flight 2

1 414,228.771 626,355.464 264.997 264.997
2 414,131.217 626,402.420 239.92 237.84
3 413,968.137 626,297.977 236.81 234.59
4 413,939.127 626,263.411 238.963 238.963

GCP, Ground control point.

FIGURE 20-4 Marking ground control points.
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identification of the temporal evolution and the main morphometric and morphographic
parameters of the landslide (slope angle, slope aspect, elevation, and volume).

The resulting database is a point cloud database, used for finalizing the DEMs. The qual-
ity of the point cloud depends on the quality of the images acquired during the UAV flights
(contrast, texture, and sharpness) (Bemis, Micklethwaite, & Turner, 2014; Westoby,
Brasington, Glasser, Hambrey, & Reynolds, 2012) and the correct calibration of the camera.

The images used in this study are of high quality as the camera mounted on the drone
has a resolution of 12 megapixel and the low flight altitude (50 m) enabled a large represen-
tation scale of the images (1:0.013).

The processing of the aerial images for the generation of a DEM was performed using the
AgiSoft PhotoScan software which enables the automatic calibration of images in the prepro-
cessing stage by introducing the calibration parameters of the analyzed images in order to
generate highly qualitative databases. The initial calibration parameters of the camera had
been determined using the module Agisoft Lens based on the Brown model (Brown, 1966),
the calibration parameters being the same for the whole surface under analysis (Harwin &
Lucieer, 2012; Remondino, Menna, Koutsoudis, Chamzas, & El-Hakim, 2013) and the process
of calibration was performed by analyzing five images taken from the same distance and
from different angles (fx5 3771.46, fy5 3771.46, cx5 18.29, cy5 31.67, k15 0.33, k2522.11,
k35 5.07, k4524.27, p15 0.0018, p2520.000028). Considering the purpose of this study,
the comparison of 3D results using two flight missions performed at two different moments,
it is important to consider both the quality of the representation (database accuracy),
depending on the image quality, and the correct processing of the images using specialized
software, and the precision of the representation.

The latter is the essential factor which determines the finalization of a spatial analysis
model with data acquired using UAV, with valid field results, considering the fact that the
GPS installed on these types of devices has a relatively small locating precision (approxi-
mately 5 m). In order to solve this problem, the UAV images were georeferenced using four
GCPs, and distributed points in the studied territory. Using four points with known coordi-
nates (Table 20-1) the images resulting from the two flight missions were georeferenced
using Agisoft (Arko, Steven, & Darren, 2014). The georeference errors considered were smal-
ler than the RTK measuring tolerance of the four GCPs considered. Thus, the maximum
errors were 0.026 m Y, 0.012 m X, and 0.095 m Z for the first flight and 0.008 m Y, 0.015 m X,
and 0.008 m Z for the second flight (Table 20-2).

The processing of the aerial images includes in the first stage the acquisition of the point
cloud for the 3D reconstruction of the visible ground surface. The point cloud was generated
using the preprocessed and georeferenced aerial images and the resulting point cloud data-
base includes 41,635,885 recordings, 344 points/m2, on a total area of 0.0987 km2. Starting
from the point cloud, various databases were generated for the analysis and visual interpre-
tation (DSM, Mesh, Orthophoto plan) of the landslide and for the comparison of the
two flights.

The database used in spatial analysis models to identify the temporal and spatial dynam-
ics of landslides is the DEM generated through the processing of the point cloud. In order to
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obtain a DEM with a high accuracy of the 3D representation it is necessary to classify the
point cloud using the main territorial components. In this case, the point cloud (Fig. 20-5)
was classified into two main components: tall vegetation (trees, plants taller than 0.05 m)
and elements of territorial infrastructure in the close vicinity of the landslide.

The DEM used in the case of the spatial analysis model for the identification of the land-
slide dynamics was generated using the point cloud from which the interpolation process
excluded the points classified as vegetation and infrastructure elements (Fig. 20-6).

Thus, two raster databases (.tif) were generated for each flight mission representing 3D
models of the territory, with a spatial resolution of 0.053 m in stereographic 1970 coordinate
systems. The high resolution highlights both the accuracy of the representation and the pre-
cision of the results from the spatial analysis stage, taking into consideration the fact that the

Table 20-2 Errors in the Georeference Process

No. East Error North Error Altitude Error

Flight 1 (May 2, 2015)

1 0.028 20.015 0.001
2 2 0.035 20.002 2 0.011
3 0.024 0.016 0.011
4 2 0.007 0.011 0.009
Total error 0.026 0.012 0.095

Flight 2 (May 8, 2017)

1 2 0.006 20.005 2 0.012
2 0.009 0.003 0.001
3 2 0.006 0.027 2 0.010
4 0.009 20.012 2 0.004
Total error 0.008 0.015 0.008

FIGURE 20-5 Classified point cloud where (A) tall vegetation, (B) plants taller than 0.05 m, (C) elements of
territorial infrastructure.
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resolution is almost equal to the tolerance value set in the stage of acquiring the coordinates
of the GCPs.

20.4 Results
It is important to identify the elements of landslides by higher precision in the analysis and
the monitoring of landslide dynamics and this level of precision depends on the characteris-
tics of the databases used (van Western, Van Asch, & Soetern, 2006). Thus, a digital database
with high resolution will capture better the landslide process and enable an evaluation of the
hazards and risks generated in the area. These evaluations can be included as input data-
bases in complex quantitative, qualitative, or expert knowledge models (Guzzetti, Carrara,
Cardinali, & Reichenbach, 1999).

Using the DEMs (Fig. 20-6) created in the image processing stage, all the elements which
define the landslide and describe the dynamics analysis were identified (Fig. 20-7).

FIGURE 20-6 Digital elevation model.
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By analyzing the two DEMs one notices that the landslide has reduced dynamics, its cal-
culated movement rate being 2.93 m/year, the length from crown to toe was 104.5 m in 2015
and extended to 110.36 m in 2017. In the case of the width of the convex part (Wx), a lateral
evolution of 5.58 m was calculated, generally due to the reorganization through compaction
of the landslide body. The morphometric characteristics of the landslide are highlighted by
relatively moderate slope angles of between 5 and 12 degrees, ranging over a difference of
82.64 degrees in the interval 82.64�0.0061 degrees.

The integrated spatial analysis of the two databases (DEMs) identifies the spatial dynam-
ics of the landslide in what concerns the direction and orientation of movement, the volume
of the displaced material (eroded), and the volume of the deposited material (accumulated)
between the two successive flight missions (Fig. 20-8).

The identification of the areas with volume change and, therefore, the identification of
the landslide dynamics, were performed using the ArcGIS (Arc Map 10.1 version), and the
Geomorphic Change Detection add-in. The dynamics is identified by comparing the differ-
ence between the DEMs seen as two successive measurements of the same geomorphologic
process. The result of this comparative analysis is a digital database which represents an esti-
mation of the net volume change over time (Leary, Hensleigh, Wheaton, & DeMeurichy,
2012).

In this study, this analysis highlights the moderate dynamics of the landslide. Areas with
high rates of erosion are identified, 0.43 up to 1.63 m, in the upper sector of the main crown,
which points to regressive erosion and therefore a regressive development of the landslide
toward the infrastructure elements which are at imminent risk (Fig. 20-8). The main territo-
rial structure which is exposed to landslide risk is represented by the car park which is being
built near the landslide, the building of this structure being also the main external factor trig-
gering the landslide. The regressive development of the landslide also affects the residential
area with its close vicinity as well as the facilities of the Torok Balneary Park.

In what concerns the frontal development of the landslide body one can notice massive
accumulation in the toe, from approximately 0.41 to 1.32 m (Fig. 20-8), as a consequence of
the eroded and displaced material being gravitationally deposited in the frontal area. This
highlights the spatial movement of the landslide body on a distance of approximately 4.2 m,
which determines a low risk in the territory, limited to the land use.

FIGURE 20-7 The main descriptive landslide parameters based on the digital database generated by the 2015 and
2017 flights.
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On most of the landslide body there are low levels of erosion mainly caused by the reorgani-
zation of the displaced material in the landslide process as radial and transversal cracks were
spatially reorganized and there were processes of compaction and accumulation on both lateral
sides of the landslide, especially on the left one in correspondence to the general slope angle.

The analysis of the movement direction for the landslide body highlights a very low rota-
tional characteristic, a difference of approximately 2 degrees between the central axes of the
two landslides which moved from an orientation of 332 degrees from the north reference in
the case of the first measurement to 334 degrees in the second one, highlighting a general
orientation on the northwest direction, tending to develop toward the north.

The quantitative values resulting from the spatial analysis aimed at detecting the temporal
evolution of the landslide highlight a total eroded volume of 514 m3 from a total area of
1148 m2, a volume which was deposited on a surface of 4031 m2. These results indicate that
approximately 87.38% of the analyzed surface suffered various changes which characterize
the dynamics of the studied landslide.

The analysis of landslide elements and their dynamics is performed through measure-
ments in the field and the analysis of those measurements back at the desk, all these work
stages requiring a large amount of time. Considering the short time available for measure-
ments and analysis and due to the increased dynamics of these slope processes, modern
techniques are nowadays more frequently employed, especially UAV. These perform indirect
measurements and generate digital spatial databases which can be integrated in complex
models of spatial analysis in a GIS environment, with the purpose to identify territorial
changes and to evaluate landslide dynamics.

FIGURE 20-8 Landslide dynamics from 2015 to 2017.
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The generation of digital databases for landslides at different time intervals, mainly con-
sisting of raster databases representing the DEM, is one of the modern preoccupations, con-
sidering their large utility in the process of tracking the spatial tendency and in predicting
the potential risk induced in the territory. As a result of the finalization of the research, there
were identified in the territory elements exposed to the risk caused by the analyzed landslide
classified according to their utility in the following categories: public utility elements (access
infrastructure, Tibles Street, leisure infrastructure, Torok Balneary Park), built elements (for
about 10 houses and their annexes), as well as landscape elements (degradation of pasture
in the proximity of the landslide due to its high dynamics).

20.5 Conclusions
The evaluation and anticipation of the landslide risk in the studied area represents one of
the main priorities of public authorities from local to national levels, considering the increas-
ingly aggressive development of inhabited infrastructure and its annexes in the territory (on
surfaces with high slope angles, various geologic substratum, slopes with frail stability, and
erosion-prone areas). Their main purpose is to reduce or even stop material and human life
losses as consequences of the spatial evolution of landslides.

The use of UAV techniques in the process of creating digital databases for the 3D model-
ing of landslides and for tracking their spatial evolution reduces the time needed for the field
measurement stage and increases the precision/accuracy of the final databases.

Depending on the equipment used to acquire the aerial images, databases with very large
spatial resolution (centimeters) are provided. Once integrated into complex spatial analysis
models, these databases can enable the detection of the smallest changes in the spatial evo-
lution of the analyzed process.

The final results of the implementation of UAV techniques are reflected in the two main
digital databases: the orthomosaic image of the analyzed territory, based on which high-
precision measurements can be made so that the classified cloud point results in a DEM
with high resolution. The DEM represents the support database for deriving the main para-
meters which characterize the geomorphologic process.

By integrating the digital databases in the models of spatial analysis one can identify with
great precision and accuracy the areas suffering changes in the morphometry of the landslide
body. The analysis of the territorial surfaces with erosion (regressive dynamics) and accumu-
lation (frontal and lateral dynamics) enables easier identification of landslide dynamics,
while the spatial identification of areas exposed to risk and landslide risk evaluation are per-
formed with very high precision.

The integration of UAV techniques with the methods and models of spatial analysis in a
GIS environment for evaluating and identifying landslide risk and analyzing landslide
dynamics leads to a reduction of the time necessary for evaluation and produces correct
evaluation results. In addition it generates analog and digital spatial databases which can be
used as input databases in other spatial analyses and landslide impact evaluation models.
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21.1 Introduction
Landslides have a devastating effect on the environment, causing economic damage, human
losses, and significant changes in local topography, among other issues, worldwide (Nicu,
2018). Landslide susceptibility mapping is able to predict landslide-prone zones; therefore, it
is important for landslide prevention works (Ba, Chen, Deng, Yang, & Li, 2018). Therefore, in
recent years, many researchers have applied various methods to map landslide susceptibility.
The reliability of landslide susceptibility maps mostly depends on the quantity and quality of
available data, the working scale, and selection of the appropriate methodology of analysis
and modeling (Ayalew & Yamagishi, 2005). There are two approaches that may be involved,
qualitative or quantitative, in the process to create landslide susceptibility maps. The qualita-
tive methods rely on the survey data to identify sites with similar geological and geomorpho-
logical properties, and this method is less objective, because it more relies on people’s
viewpoints (Guru, Veerappan, Sangma, & Bera, 2017). As for the quantitative methods, they
rely on obtaining the quantitative probability of sliding (Guru et al., 2017). The quantitative
methods include statistical methods, which can be bivariate or multivariate approaches, and
machine learning methods (Li et al., 2017).
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Statistical methods are one of the most widely used techniques with the use of geographi-
cal information systems for landslide susceptibility mapping, such as frequency ratio (Li
et al., 2017), weights of evidence (Razavizadeh, Solaimani, Massironi, & Kavian, 2017), evi-
dential belief function (Ding, Chen, & Hong, 2017), and logistic regression (Tsangaratos, Ilia,
Hong, Chen, & Xu, 2017).

In addition to the above-mentioned traditional statistical methods, various machine
learning methods have been applied for landslide susceptibility mapping in recent years,
such as artificial neural networks model (Pham, Tien Bui, Prakash, & Dholakia, 2017),
neuro-fuzzy (Nasiri Aghdam, Pradhan, & Panahi, 2017), support vector machines (Pham,
Bui, Prakash, Long, & Dholakia, 2017; Tien Bui, Nguyen, Hoang, & Klempe, 2017), alternat-
ing decision trees (Pham, Tien Bui, & Prakash, 2017), multivariate adaptive regression splines
(Conoscenti et al., 2015; Pourghasemi & Rahmati, 2018), and classification and regression
trees (Youssef, Pourghasemi, Pourtaghi, & Al-Katheeri, 2016; Chen, Xie et al., 2017).
However, landslide researchers have yet not reached a consensus on the most
suitable model for studying landslide susceptibility.

Therefore, many more methods and techniques must be investigated to acquire an ade-
quate background to reach reasonable conclusions for landslide susceptibility mapping. This
study aims to evaluate and compare the performance of the functional data analysis (FDA)
and generalized linear models (GLMs) for landslide susceptibility mapping in the Nanzheng
Area, Shaanxi Province, China. The computational processes were conducted using ArcGIS
10.2 and R statistical software.

21.2 Study Area
The study area lies between latitudes of 32�24031v�33�07000v and longitudes of
106�30000v�107�22021v, covering an area of about 2823 km2 (Fig. 21-1). The study area is
located in the north�south climate transition zone of China, which presents a subsubtropical
monsoon climate, with the characteristics of distinct seasons, abundant rainfall, adequate
heat, mild, and humid. The spatial distribution of temperature is affected by the topography,
with low temperatures in the mountainous area and high temperatures in the plain and val-
ley areas (http://www.cma.gov.cn/). The average annual temperature is 14.2�C, the extreme
maximum temperature is 38.5�C, and the extreme minimum temperature is 28�C. The aver-
age annual rainfall is 909.8 mm, with the least rainfall in January and February and most
rainfall in July. The rainfall is mainly concentrated in July to September, accounting for 53%
of the annual rainfall (http://www.cma.gov.cn/).

21.3 Materials and Methods
21.3.1 Landslide Inventory Mapping

A landslide inventory map is a preparation of the landslide locations that have occurred in
the past and their characteristics (Pham, Tien Bui, Pourghasemi, Indra, & Dholakia, 2017). In
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FIGURE 21-1 Geographical position and landslide inventory map of study area.
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the current study, a detailed landslide inventory map was obtained by historical landslides
obtained from the local bureau of land resources, interpretation of multitemporal Google
Earth data, and extensive field surveys by global positioning system. Finally, a total of 202
landslides were mapped in the study area (Fig. 21-1), of which, 141 (70%) landslides were
randomly selected (Arabameri, Pourghasemi, & Yamani, 2017; Pourghasemi & Rossi, 2017)
as training samples and the other 61 (30%) were considered as validation samples.

21.3.2 Landslide Conditioning Factors

Twelve landslide conditioning factors were involved to describe the landslide susceptibility
map of the present study, including slope aspect, altitude, slope angle, plan curvature, topo-
graphic wetness index (TWI), distance to river, distance to road, distance to fault, lithology,
land use, normalized difference vegetation index (NDVI), and soil type, respectively.

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global
Digital Elevation Model (GDEM) data (which are available at http://www.gscloud.cn) with a
spatial resolution of 30 m were used in this study to extract topographical factors including
slope aspect, altitude, plan curvature, slope angle, and TWI. Distance to river and distance to
road maps were extracted from topographical maps at 1:50,000 scale. NDVI map was
extracted using LANDSAT-8 satellite images (Path/Row: 128/37; date: July 24, 2015; Product
ID: LC81280372015205LGN00) (which is available at http://www.gscloud.cn) with a spatial
resolution of 30 m. The land-use map was also extracted from LANDSAT-8 satellite images
(July 24, 2015) through the supervised classification method and maximum likelihood algo-
rithm (Naghibi & Pourghasemi, 2015), and was reclassified into six classes, namely farmland,
forest, grass, water, residential area, and bare land. The soil map was extracted from
soil-type maps at 1:1,000,000 scale, and was reclassified into nine classes (cumulic anthrosol,
dystric cambisol, eutric cambisol, calcaric fluvisol, haplic luvisol, chromic luvisol, eutric pla-
nosol, calcaric regosol, eutric regosol) (Table 21-1) (http://www.isric.org/). Distance to fault
and lithology maps were extracted from geological maps (obtained from the local bureau of

Table 21-1 Soil Types of the Study Area

Number Soil Types

1 ATc
2 CMd
3 CMe
4 FLc
5 LVh
6 LVx
7 PLe
8 RGc
9 RGe

ATc, Cumulic anthrosol; CMd, dystric cambisol; CMe, eutric cambisol;
FLc, calcaric fluvisol; LVh, haplic luvisol; LVx, chromic luvisol; PLe, eutric
planosol; RGc, calcaric regosol; RGe, eutric regosol.

470 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES

http://www.gscloud.cn
http://www.gscloud.cn
http://www.isric.org/


land resources) at 1:1,000,000 scale, and the lithological formations were reclassified into 12
classes according to the geological age and lithological facies (Table 21-2). Finally, 12 land-
slide conditioning factor maps were converted to the same scale (30 m3 30 m) for further
analyses (Fig. 21-2).

21.3.3 Landslide Susceptibility Modeling

21.3.3.1 Functional Data Analysis
The FDA approach, which is suitable for the observation data consisting of a series of real
functions, was proposed by Ramsay and Dalzell (1991). Compared to traditional analysis
methods, FDA is efficient in solving the problem that some key data points may be omitted
or deleted. In addition, with the data described as function forms, some dynamic

Table 21-2 Lithology of the Study Area

Name Lithology
Geological
Age

Group 1 Gravel, sand, sand and sandy clay, loess interbedded with ancient soil, clay, silty clay, silt,
and gravel

Quaternary

Group 2 Sandstone interbedded with conglomerate, sandy mudstone, conglomerate interbedded
with sandstone

Jurassic

Group 3 Limestone, argillaceous limestone, argillaceous dolomite, dolomite, shale, purplish shale
interbedded with clastic limestone, marl, and karst breccia

Triassic

Group 4 Black shale interbedded with clayey rock, coal and sandstone, limestone interbedded
with flint nodule and shale, carbonaceous slate, siliceous slate interbedded with
marlstone

Permian

Group 5 Lower: carbonaceous phyllite; middle: siltstone and gray-green phyllite; upper: medium-
thin layer limestone

Carboniferous

Group 6 Calcareous silty mudstone, siltstone interbedded with sandstone, limestone Silurian
Group 7 Carbonaceous (siliceous) shale, silicalite interbedded with marl or calcareous

conglomerate; yellow-green shale; mudstone (shale) interbedded with argillaceous
siltstone, sandstone; calcareous sandy shale, shale; limestone

Ordovician

Group 8 Shale intercalated limestone and sandstone; chert gravel, sandstone and shale; sandy
mudstone, dolomitic siltstone, sandy dolomite and dolomite; shale intercalated
limestone, siltstone and mudstone

Cambrian

Group 9 Dolomite intercalated limestone, shale, sandstone and phosphate rock; metamorphic
sandstone, phyllite, crystalline limestone

Sinian

Group 10 Dolomitic marble intercalated siliceous slate, plagioclasite-hornblende schist, biotite-
plagioclasite schist, cordierite schist, biotite quartz schist, metamorphic sandstone,
glutenite, dolomitic marble, metamorphic fine clastic rocks, volcanic rocks, pyroclastic
rocks, carbonate rocks

Proterozoic

Group 11 Black mica (amphibole) plagioclase migmatite, basalts, rhyolite, marble, amphibolite Archean
Group 12 Monzogranite, plagiogranite, quartz porphyry, rhyolite porphyry, gabbro, quartz diorite,

diabase, sillite, intermediate-acid volcanic clastic intercalated tuffaceous slate, and
andesitic basalt

Proterozoic,
Paleozoic
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FIGURE 21-2 Landslide conditioning factors: (A) slope aspect; (B) altitude; (C) slope angle; (D) plan curvature; (E)
TWI; (F) distance to rivers; (G) distance to roads; (H) distance to faults; (I) lithology; (J) landuse; (K) NDVI; (L) soil.
TWI, Topographic wetness index; NDVI, normalized difference vegetation index.
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FIGURE 21-2 (Continued).
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information hidden in data sets can be analyzed by derivation and dimension reduction. The
main idea of FDA is to consider all data of an observation object containing functional prop-
erties as an integral instead of a sequence of observed values (Battista, Fortuna, & Maturo,
2016; Wagner-Muns, Guardiola, Samaranayke, & Kayani, 2018).

FDA has been widely employed in the problem of classification (Cho, Kim, & Park,
2016; Seifi Majdar & Ghassemian, 2017; Song, Deng, Lee, & Kwon, 2008). The basic
analysis objects of FDA are a sequence of observations expressed as functions. The basic
steps to apply FDA with machine learning methods in classification problems include:
(1) selecting training and testing data sets and implementing functional data representa-
tion; (2) extracting function data features using functional principal component analysis
or other methodologies; (3) classifying data features via machine learning methods; and
(4) verifying the validation of the classification model by testing data sets. In this case,
the FDA approach was employed to construct the landslide susceptibility assessment
model based on existing methodologies and theories according to species distribution
modeling (SDM) package in R (Naimi & Araújo, 2016).

21.3.3.2 Generalized Linear Model
Formally, GLM is the extension of the classic linear regression model (Guisan, Edwards, &
Hastie, 2002). Contrasted with the normal linear model, the response variables of GLM are
not confined to normal distribution, and these response variables can also obey binomial
or Poisson distributions. In addition, the link function is introduced into GLM to establish
the relationship between the expectation of the response variable and the linear combina-
tion of explanatory variables (Kéry & Royle, 2016; Soch, Meyer, Haynes, & Allefeld, 2017).
Therefore, GLM has a better applicability when solving nonlinear problems and multiclass
problems.

According to the fundamental principle of GLM (Ahmedou, Marion, & Pumo, 2016;
Venables & Dichmont, 2004), the expectations and variances of the response variables can
be calculated by Eqs. (21-1) and (21-2):

μi 5E Yi½ �5 g21
X
j

Xijβj 1 ξi

 !
(21-1)

var Yi½ �5 φV ðμiÞ
ωi

(21-2)

where Yi is the vector of response variables, Xij is the matrix of explanatory variables, βj is
the vector of pending parameters, ξi is the interference terms, gðxÞ is the corresponding link
function, V ðxÞ is the variance function, φ is the dispersion parameter of V ðxÞ, and ωi is the
weight of the i-th observed value.

In this study, suppose Y is the response variable, which represents where landslides have
happened in a raster. And xi is the i-th landslide conditioning factor. So, the occurrence
probability of event Y can be expressed as Eq. (21-3):
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(21-3)

where P is the occurrence probability of event Y, and α0;α1; . . .;αi are logistic regression
coefficients.

By logistic transformation, the link function g(yi) is shown as Eq. (21-4):

gðyiÞ5α0 1
X

αixi 1 εi (21-4)

where εi is the residual errors.
For running GLM, the SDM package (Naimi and Araújo, 2016) was used in the current

study using R 3.3.3.

21.4 Results
21.4.1 Variable Importance

The importance of 12 landslide conditioning factors was evaluated based on the correlation
attributes evaluation (CAE) method using Weka software (Witten, Frank, & Mark, 2011),
which was ranked by average merit (AM) (Fig. 21-3). It could be observed that the highest

FIGURE 21-3 Variable importance using correlation attributes evaluation method.
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AM is for altitude (0.341), followed by NDVI (0.259), distance to road (0.250), land use
(0.176), slope angle (0.116), lithology (0.102), slope aspect (0.083), distance to fault (0.072),
plan curvature (0.038), TWI (0.028), distance to river (0.025), and soil type (0.013).

21.4.2 Application of Functional Data Analysis

Using the training dataset, the FDA model was constructed to obtain the landslide suscepti-
bility index (LSI). Subsequently, the LSI was calculated for the whole study area, and it was
in the range of 0.000�0.987. Additionally, all calculated LSI pixels of the study area were
applied to prepare the landslide susceptibility map using the ArcGIS 10.5 software. The land-
slide susceptibility map was finally divided into five classes based on the natural break
method scheme (Nicu, 2018): very low (0.000�0.134), low (0.134�0.293), moderate
(0.293�0.484), high (0.484�0.713), and very high (0.713�0.987) (Fig. 21-4). The low class

FIGURE 21-4 Landslide susceptibility map using FDA model. FDA, Functional data analysis.
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has the largest area percentage (22.91%), followed by the high (21.51%), very low (21.27%),
very high (20.96%), and moderate classes (16.66%) (Fig. 21-5).

21.4.3 Application of Generalized Linear Model

Similar to the FDA model, the GLM model was constructed using the aforementioned train-
ing dataset with a cross-validation method. The constructed GLM model was applied to cal-
culate landslide susceptibility indices for all pixels in the study area. The LSI was in the
range of 0.000 and 0.988. The landslide susceptibility map was finally divided into five classes
based on the natural break method scheme (Mandal & Mandal, 2018): very low
(0.000�0.107), low (0.107�0.248), moderate (0.248�0.432), high (0.432�0.672), and very
high (0.672�0.988) (Fig. 21-6). The very high class has the largest area percentage (23.03%),
followed by the high (22.26%), low (21.00%), very low (20.60%), and moderate classes
(16.42%) (Fig. 21-5).

21.4.4 Validation of Landslide Susceptibility Models

The receiver operating characteristics (ROC) curve is a commonly used method to visualize
the performance of the binary classifier. The ROC curve was designed based on the sensitiv-
ity (Y-axis) versus 1 2 specificity (X-axis) (Pham, Bui, et al., 2017). The accuracy of a model
is measured based on the area under the ROC curve (AUC). The value of AUC ranges
between 0.5 and 1.0, and 1 indicates a perfect model (Mandal & Mandal, 2018). In the pres-
ent study, the two models were validated using the validation dataset, which was not used
during the modeling process. The prediction rate of the two models was also evaluated using
the standard error (std. error), confidence interval (CI) at 95%, and significant P value. The
results of the prediction rates are shown in Fig. 21-7 and Table 21-3. The FDA model showed
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FIGURE 21-5 Area percentages of landslide susceptibility classes.
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the better performance, with the AUC value of 0.722, a std. error of 0.048, a CI of
0.627�0.816, and a significance level P of .000, whereas the GLM model has slightly lower
values for all above-mentioned criteria than the FDA model. The value of the AUC, std. error,
CI at 95%, and significant P values are .718, .048, .624�.812, and .000, respectively. Overall,
using the validation dataset, the FDA model performed better than the GLM model.

21.5 Discussion
In this study, FDA and GLM models were employed to generate landslide susceptibility
maps of Nanzheng County, China. For building landslide susceptibility models, 12

FIGURE 21-6 Landslide susceptibility map using the GLM model. GLM, Generalized linear model.
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conditioning factors were selected, namely, slope aspect, altitude, distance to fault, land
use, lithology, NDVI, plan curvature, distance to river, distance to road, slope angle, soil
type, and TWI.

To confirm that all the conditioning factors have impacts on landslide occurrence, the
CAE method was adopted. Then the AM value of each conditioning factor was figured out. It
is conventionally considered that the importance of factors rises by increasing AM values.
Accordingly, altitude has the highest AM value of 0.341, which indicates that landslide occur-
rence is more sensitive to altitude. The AM values of NDVI and distance to roads are 0.259
and 0.250. It can be inferred that vegetation and road constructions may have approximate

FIGURE 21-7 ROC curves for the two models. ROC, Receiver operating characteristics.

Table 21-3 AUC Values for the Two Models

Models Area Std. Error Asymptotic Significance

Asymptotic 95% Confidence
Interval

Lower Bound Upper Bound

FDA 0.722 0.048 0.000 0.627 0.816
GLM 0.718 0.048 0.000 0.624 0.812

AUC, Area under the curve; FDA, functional data analysis; GLM, generalized linear model.
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effects on landslide events in the study area. Moreover, the AM values of landuse, slope
angle, and lithology are 0.176, 0.116, and 0.102, respectively. For the other conditioning fac-
tors, such as slope aspect (0.083), distance to fault (0.072), plan curvature (0.038), TWI
(0.028), distance to river (0.025), and soil type (0.013), the AM values are less than 0.100,
which implies a significant reduction of their influence on landslide occurrence.
Nevertheless, it should be noted that the importance order of conditioning factors may be
only suitable for Nanzheng County, and the order generally varies with different study areas
(Bijukchhen, Kayastha, & Dhital, 2013; Wang, Li, Wu, Pei, & Xie, 2016).

Compared with the other conditioning factors, altitude has the highest predictive ability,
and this result is in agreement with some existing researches (Chen, Xie et al., 2017; Chen,
Shirzadi et al., 2017; Chen, Pourghasemi, et al., 2017; Tien Bui, Tuan, Klempe, Pradhan, &
Revhaug, 2016). Generally, the freeze�thaw action is more drastic with increasing altitude
(Gruber & Haeberli, 2007). In terms of distance to road, there is no doubt that road construc-
tions can cause a loss of toe support, which may lead to failure of slopes (Nasiri Aghdam,
Varzandeh, & Pradhan, 2016). For NDVI, Teresa Carone, Gioia, Ferretti, and Marincioni
(2015) proved that landslide occurrence is related to vegetation patterns and coverage.
Meanwhile, other researchers have also confirmed that there indeed exists a relationship
between vegetation development and landslide occurrence (Ermokhina, 2014; Gonzalez-
Ollauri & Mickovski, 2017; Yang, Qi, & Zhou, 2018). In the case of land use, the types of land
have firm connections with slope characteristics and vegetation (Reichenbach, Busca,
Mondini, & Rossi, 2014). Slope angle has a significant effect on the slope stability (Ayalew &
Yamagishi, 2005). It has been reported that landslide susceptibility varies dramatically with
different lithology (Gassner, Petschko, Bell, & Glade, 2012). In addition, for those factors of
which the AM values are less than 0.100, their relationships with landslide occurrence have
been studied by many researchers (Chen, Pourghasemi, et al., 2017; Lepore, Kamal,
Shanahan, & Bras, 2012; Yesilnacar & Topal, 2005), and they should not be ignored when
mapping landslide susceptibility.

Furthermore, to quantitatively assess the performance of two models, the corresponding
AUC values were computed with validation data. According to the results, the AUC value of
FDA (0.722) approximates that of GLM (0.718), and the standard errors of two models are
both 0.048. The asymptotic 95% CI of FDA is 0.627�0.816, while that of GLM is 0.624�0.812.
Therefore, in terms of the study area, FDA and GLM both have good performance on land-
slide susceptibility mapping.

When modeling with FDA, the functional relations between landslide occurrence and
each conditioning factor were constructed. Therefore, FDA is efficient to analyze the datasets
which contain deleted or noisy samples. However, it has to be admitted that the computa-
tional complexity of FDA may cause extremely high analyzing costs (Burfield, Neumann, &
Saunders, 2015). In terms of GLM, as the extension of the general linear model, GLM has a
prominent performance on the sophisticated scales data with nonlinearity and nonunifor-
mity observations (Guisan et al., 2002). Nevertheless, it is stated that the problems of
noisy data and missing values could bring about lower prediction accuracy (Pourghasemi &
Rossi, 2017).
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Consequently, the achievements in this study are meaningful to landslide prediction in
Nanzheng County. In addition, there still exists an improvement space to get more excellent
prediction accuracy by using other machine learning and ensemble learning models.

21.6 Conclusions
The current research evaluated the performance of FDA and the GLM for landslide suscepti-
bility mapping in the Nanzheng area, Shaanxi Province, China. In this study, 202 landslide
locations were identified, 12 landslide conditioning factors including slope aspect, digital ele-
vation model altitude, distance to fault, land use, lithology, NDVI, plan curvature, distance to
river, distance to road, slope angle, soil, and TWI were selected for analysis. Consequently,
two landslide susceptibility maps were obtained from FDA and GLM models. The validation
results showed that the FDA model, with an AUC value of 0.722, std. error of 0.048, CI of
0.627�0.816, and significance level P of .000, is slightly better than the GLM model. In sum-
mary, the results obtained in this study confirmed that two approaches can be suitable for
landslide susceptibility mapping and land-use planning at the regional scale.
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22.1 Introduction
Population growth increases the need for food and water, resulting in an increase in water
demand around the world. In arid and semiarid regions, where the surface water resources
are limited due to climatic conditions, the water demand is provided through groundwater
(Oh, Kim, Choi, Park, & Lee, 2011; Wada et al., 2010). Groundwater is one of the main
sources of consumption in different aspects of human needs, especially in arid and semiarid
regions (Mukherjee, Singh, & Mukherjee, 2012). Limited availability of surface water
resources in these areas will result in a higher utilization rate than recharge, which increases
the level of stress on the aquifers (Gleeson et al., 2010). Therefore, it is important to investi-
gate the relationship between groundwater and freshwater sources and revitalized waters to
meet water demand and supply needs (Chowdhury, Jha, & Chowdary, 2010; Kundzewicz
et al., 2008).

In recent years, the high dependence of agriculture and industry on groundwater
resources has caused an imbalance between recharge and exploitation followed by destruc-
tion of these resources (Prasad & Rao, 2018). Groundwater plays an important role in man-
aging the different sectors such as agriculture, industry, and domestic in arid and semiarid
regions and must be predicted properly for effective water resources management strategies
(Choubin & Malekian, 2017).
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Recent studies have used different methods to produce the groundwater potentiality
map. Multiple studies have used multicriteria decision-making techniques, such as the
analytic hierarchy process (Adiat, Nawawi, & Abdullah, 2012; Chowdhury et al., 2010), to
produce groundwater potential map. Several studies have used statistical models such as fre-
quency ratio (Moghaddam, Rezaei, Pourghasemi, Pourtaghie, & Pradhan, 2015; Oh et al.,
2011; Razandi, Pourghasemi, Neisani, & Rahmati, 2015), statistical index (SI) (Falah,
Ghorbani Nejad, Rahmati, Daneshfar, & Zeinivand, 2017), logistic regression method
(Ozdemir, 2011), and generalized additive model (Falah et al., 2017) to predict the ground-
water potential map. Recently, machine learning models have been used to assess the
groundwater potentiality (i.e., Haghizadeh, Moghaddam, & Pourghasemi, 2017; Lee, Song,
Kim, & Park, 2012; Nampak, Pradhan, & Manap, 2014; Zabihi, Pourghasemi, Pourtaghi, &
Behzadfar, 2016). Lee et al. (2012) applied an artificial neural network model for regional
groundwater mapping in Pohang City, Republic of Korea, and found that the model has
proper accuracy. Nampak et al. (2014), used the evidential belief function model and
geographic information system (GIS) technique to produce the spatial prediction map of
groundwater in Langat Basin, Malaysia. Zabihi et al. (2016) used multivariate adaptive
regression spline (MARS) and random forest (RF) to delineate groundwater potential zones
in North Khorasan, Iran. They found that the MARS and RF models are suitable for ground-
water potential modeling. Haghizadeh et al. (2017) investigated application of SI and
Dempster�Shafer theory (DST) for groundwater potential mapping in the Broujerd region of
Iran. The results demonstrated that the SI model has superior performance to the DST
model. However, to the authors’ knowledge, classification and regression trees (CARTs) as a
machine learning method, have not been applied for groundwater potential mapping.
Hence, this study aimed to use the CART algorithm to predict groundwater potential in a
semiarid region.

22.2 Study Area
Firoozeh watershed, located in North Khorasan Province, northeast Iran, has a drainage area
of 1279 km2 (Fig. 22-1). The watershed elevation varies significantly from about 875 to
2968 m above sea level. Winters are cool and dry with an average January temperature of
23.2�C while July temperature in summer averages about 29.6�C (IDWRM, 2015). The mean
annual precipitation for the region is about 343.5 mm, which decreases from 500 mm in the
west with high elevation to about 174 mm in the northeast (Zabihi et al., 2016).

22.3 Methodology
The main steps in the methodology includes: (1) description of the data, (2) introduction to
the model (i.e., CARTs) used for predict groundwater potential mapping, and (3) sensitivity
analysis (SA) and assessment of the model performance. Fig. 22-2 shows a flowchart of the
methodology in this study.
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FIGURE 22-1 Location of the study area.

FIGURE 22-2 A flowchart of the used methodology.
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22.3.1 Data

22.3.1.1 Groundwater Spring Inventory Map
The location of the springs obtained from the Iranian Department of Water Resource
Management (IDWRM) in January 2017 is presented in Fig. 22-1. There are 351 springs in
the study area which were considered for modeling groundwater potential. In this study,
springs were randomly divided into two groups, including training and validating datasets,
70% and 30%, respectively.

22.3.1.2 Groundwater Conditioning Factors
A total of 11 condition factors, including topographic wetness index (TWI), distance to river,
slope percent, drainage density, aspect, elevation, land use, lithology, distance from fault, rel-
ative slope position (RSP), and topographic position index (TPI) were applied. The number
of conditioning factors highly depends on the availability of the data in the study area
(Choubin, Solaimani, Roshan, & Malekian, 2017; Razandi et al., 2015). Also, there is no
agreement on which factors should be applied in groundwater potentiality analysis (Rahmati
& Melesse, 2016). A brief description of conditioning factors is given below.

WATER-RELATED FACTORS
TWI, distance to rivers, and drainage density play important roles in hydrogeological
systems (Ghorbani Nejad, Falah, Daneshfar, Haghizadeh, & Rahmati, 2017). Based on the
literature (Moghaddam et al., 2015; Zabihi et al., 2016), the TWI plays a decisive role in
determining the groundwater flow pattern. Beven and Kirkby (1979) developed TWI as a
secondary topographic factor within a runoff model. It is a well-accepted indicator reflect-
ing soil moisture distribution at different positions for surface runoff generation
(Conoscenti et al., 2014; Pourghasemi et al., 2012). TWI (Fig. 22-3A) is calculated using the
following equation:

TWI5 ln
As

tan β

� �
(22-1)

where As is the area of a given watershed (m2/m), and β is the slope (in degree). The TWI
map was created in a system for automated geoscientific analyses (SAGA-GIS).

Distance to rivers was extracted by applying the Euclidean Distance Tool in ArcGIS 10.3
(Fig. 22-3B). Drainage density is another important parameter for evaluating the groundwa-
ter zone, which is an inverse function of permeability and areas having high drainage density
indicate low groundwater potential zone (Dinesh Kumar, Gopinath, & Seralathan, 2007). By
using the Line Density Tool in ArcGIS, the drainage density map of the study area was
prepared (Fig. 22-3C).

TOPOGRAPHIC FACTORS
Elevation, slope aspect, slope percent, RSP, and TPI can be considered as surface indicators
for assessing groundwater potential zone (Razandi et al., 2015). A digital elevation model
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FIGURE 22-3 Groundwater conditioning factors: (A) TWI, (B) distance to river, (C) drainage density, (D) slope, (E)
aspect, (F) elevation, (G) topographic position index, (H) relative slope position, (I) lithology, (J) distance from fault,
and (K) land use. TWI, Topographic wetness index.
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FIGURE 22-3 (Continued).
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with 30-m 3 30-m grid cell size was firstly generated from a 1:25,000 scale topographic
map. Slope percent (Fig. 22-3D), aspect (Fig. 22-3E), and elevation (Fig. 22-3F) were then
created in ArcGIS.

TPI measures the difference between elevation of each cell (Z0) and the mean elevation
of a specified neighborhood around that cell ðZÞ within a predetermined radius (R) (De Reu
et al., 2013). The TPI map was created in SAGA-GIS using the following equation:

TPI5Z02Z (22-2)

Positive TPI values indicate locations that have higher elevations than the average of their
surroundings, while negative TPI values indicate locations that have lower elevations than
their surroundings (Fig. 22-3G).

RSP is used to identify topographic characteristics such as flat surfaces, ridge tops, valleys,
mid-slopes, upper-slopes, and foot-slopes. In this study, RSP (Fig. 22-3H) was generated
using the SAGA-GIS. The value for RSP ranges from 0 (valleys and flat surface) to 1 (ridge
tops and upper-slopes) (Münch & Conrad, 2007).

GEOLOGICAL FACTORS
Geological structures can significantly influence the porosity and permeability of aquifer
materials as well as groundwater movement and accumulation in the surface and subsurface
(Ayazi et al., 2010; Ghorbani Nejad et al., 2017). It is important to consider such factors in
groundwater studies. In this study, the lithology map (1:100,000 scale) was collected from
the Iranian Department of Geological Survey (Fig. 22-3I). According to Fig. 22-3I and
Table 22-1, the lithology of the study area is mainly covered by pale red argillaceous lime-
stone, sandstone and conglomerate (Jurassic�Cretaceous), ammonite-bearing shale with
interaction of orbit Olin limestone (Early Cretaceous), and low-level pediment fan and valley
terrace deposits (Quaternary). The distance from faults was mapped to discover any relation
between faults and groundwater and created by Euclidean distance (Fig. 22-3J).

Table 22-1 Types of Geological Formation of the Study Area

Geology (Group) Formation Lithology

C Aitamir Olive green glauconitic sandstone and shale
EC Sarcheshmeh Ammonite-bearing shale with interaction of orbitolin limestone
JC Shurijeh Pale red argillaceous limestone, sandstone, and conglomerate
M Upper red Red marl, gypsiferous marl, sandstone, and conglomerate
Q � Low-level pediment fan and valley terrace deposits
S Niur Coral limestone and dolomite, shale, sandstone
TJ Shemshak Subordinate sandy limestone, dark gray shale, and sandstone

C, Cretaceous; EC, Early Cretaceous; JC, Jurassic�Cretaceous; M, Miocene; Q, quaternary; S, Silurian; TJ, Triassic�Jurassic.
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LAND USE
Recent studies have also emphasized the role of land use in the hydrologic processes as well
as development of groundwater resources (e.g., infiltration process) (Alilou, Nia, Keshtkar,
Han, & Bray, 2018; Devkota et al., 2013; Shaban, Khawlie, & Abdallah, 2006). The land-use
map (1:100,000 scale) of 2015 (Fig. 22-3K) was obtained from the IDWRM. The current land
use of the study area consists of four classes including residential, agriculture, forest, and
rangeland.

22.3.2 Spatial Prediction of Groundwater Potential in R Software
Environment

In this study the species distribution modeling R-package (Naimi & Araújo, 2016) was used
for spatial prediction of groundwater potential. The CART algorithm from this package was
considered to produce a groundwater potential map in the study area. The CART is a classifi-
cation method that employs historical data to construct decision trees. The CART can be
built based on the available information about the dataset. In this recursive algorithm, which
is based on the dependent variable, the classification tree classifies the space defined by the
independent variables (Fakiola et al., 2010; Singh, Wagener, Crane, Mann, & Ning, 2014). On
the other hand, the regression tree predicts the value of a dependent variable based on
several independent variables.

22.3.3 Sensitivity Analysis and Model Performance

Relative operating characteristic (ROC) curve analysis, which is commonly used for the accu-
racy of a diagnostic test, was employed in this study (Egan, 1975; Pourghasemi, Pradhan,
Gokceoglu, Mohammadi, & Moradi, 2013). The area under the ROC curves (AUC) was calcu-
lated to evaluate the prediction performance. AUC is a qualified indicator for evaluating the
prediction performance, which has been widely employed by several recent studies (Falah
et al., 2017; Moghaddam et al., 2015). The value of the AUC ranges from 0.5 to 1 and AUC
close to 1 indicates better prediction performance.

In the present study, a SA was applied to provide a robust estimate of uncertainties associ-
ated with the model input layers as well as examining the effects of removing any of the condi-
tioning factors on the groundwater potentiality map (Rahmati, Pourghasemi, & Melesse, 2016).
To achieve this goal, a Jackknife test was conducted to access the factors contribution to the
modeling. Therefore, the percentage of relative decrease (PRD) of the AUC was calculated
using the following equation (Park, Kim, & Lee, 2014):

PRD5
ðAUCall 2AUCiÞ

AUCall
3 100 (22-3)

where AUCall is the AUC values computed from prediction using all conditioning factors; and
AUCi is the prediction when the i-th conditioning factor has been excluded.
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22.4 Results and Discussion
22.4.1 Application of the Classification and Regression Tree Model for

Groundwater Potentiality Mapping

After preparing the groundwater conditioning factors and groundwater spring inventory,
model calibration was conducted based on the random partition (70% of data). Then, the
groundwater potential map was produced by the CART model. According to previous studies
(i.e., Rahmati & Melesse, 2016; Razandi et al., 2015) the quantile classification scheme was
selected as a classification method to classify the groundwater potential map into four classes
of low, medium, high, and very high (Fig. 22-4). The groundwater potential map produced
by the CART model indicates that “high” and “very high” classes are distributed in the water-
shed area, mostly around the river systems. This result is in agreement with the study con-
ducted by Rahmati and Melesse (2016). As shown in Fig. 22-4, the groundwater potential is
decreased with increasing distance from river and faults (Fig. 22-3B and J). Variation of the
groundwater potential is related to RSP, with RSP closer to 1 (Fig. 22-3H) indicating ridge
tops and upper-slopes (Münch & Conrad, 2007) which have low groundwater potential.

FIGURE 22-4 Groundwater potential map by the CART model. CART, Classification and regression tree.
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22.4.2 Validation of Groundwater Potential Map

The AUC was considered to assess the groundwater potential map produced by the CART
model. The results of the AUC values for calibrating and validating datasets are 92.8% and
88.4%, respectively (Fig. 22-5). According to Yesilnacar (2005), the CART model indicates
excellent and very good performance for calibrating and validating datasets, respectively.

The main advantages of the CART model are (1) CART does not have any assumptions
about the data distribution, (2) it uses both classification and regression methods to achieve
the goal, and (3) it is not sensitive to autocorrelated and outliers data (Choubin, Darabi,
Rahmati, Sajedi-Hosseini, & Kløve, 2018; Choubin, Zehtabian et al., 2018). According to the
aformentioned reasons and validation results, it can be stated that the CART model is able to
express the relationship between environmental layers and groundwater occurrences.

22.4.3 Sensitivity Analysis

SA is a simple way to find the relative influence of each input parameter on model results.
The Jackknife test was used to assess the sensitivity of groundwater conditioning factors.
Each factor was intentionally excluded, in turn, and the groundwater potential map was
modeled by the remaining factors. Then, the performance of the model was compared with
the groundwater potential map produced by all factors. Table 22-2 and Fig. 22-6 illustrate
the results of this approach. The results indicate that RSP and aspect have the most and least
effect on the AUC value, respectively, when each factor is excluded in groundwater potential
modeling (Table 22-2). Comparing the AUC obtained from excluding each factor and the

FIGURE 22-5 ROC curve for the groundwater potential map produced by the CART model. CART, Classification and
regression tree; ROC, relative operating characteristic.
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AUC obtained from all of the factors, it is revealed that the most sensitive factors are RSP,
lithology, distance from fault, and distance to river (Fig. 22-6). These variables have the larg-
est PRD in the AUC (Table 22-2 and Fig. 22-6). The results are in agreement with Rahmati
et al. (2016), which indicated lithology is one of the most important factors for groundwater
potential mapping.

On the other hand, some of the factors have a weak contribution to groundwater poten-
tial mapping, namely aspect (PRD5 1.14), land use (PRD5 1.25), TWI (PRD5 2.45), and
slope (PRD5 2.86). These results are in agreement with those of Rahmati et al. (2016).

Table 22-2 Jackknife Test Results When Each Factor is Excluded in the Groundwater
Potential Modeling

Variables Decrease of AUC Value PRD of AUC

Aspect 0.010 1.14
Elevation 0.051 5.84
Distance from fault 0.090 10.25
RSP 0.280 31.82
Slope 0.025 2.84
Drainage density 0.031 3.48
Distance to river 0.080 9.09
TPI 0.072 8.14
TWI 0.022 2.45
Land use 0.011 1.25
Lithology 0.120 13.66

TWI, Topographic wetness index; RSP, relative slope position; TPI, topographic position index; AUC, area under the curve; PRD,
percentage of relative decrease.
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FIGURE 22-6 Sensitivity analysis of conditioning factors.
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22.5 Conclusions
Groundwater is one of the most important sources of drinking water, especially in arid and
semiarid regions. The ultimate goal of this study is to use a state-of-the-art approach for
modeling the groundwater by several factors, including TWI, distance to river, slope percent,
drainage density, aspect, elevation, land use, lithology, distance from fault, RSP, and TPI. In
this study, the CART model was successfully used to predict the groundwater potential map
and to determine the most affecting factors in the groundwater potentiality analysis. The
results of this study revealed that the groundwater potential is mostly controlled by the RSP,
lithology, and distance from fault and river. The PRD of AUC indicated that about 32% AUC
is decreased when RSP is excluded. The validation of results of groundwater modeling indi-
cated that the AUC value for the CART model was 88%. The findings of the current research
can be helpful for decision-makers and managers for environmental and water resource
management, sustainable planning, irrigation, and town water supply purposes to meet
water supply and demand needs.
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23
Comparative Evaluation of Decision-
Forest Algorithms in Object-Based
Land Use and Land Cover Mapping

Ismail Colkesen, Taskin Kavzoglu
DEPARTMENT OF GEOMATICS ENGINEERING, GEBZE TECHNICAL UNIVERSITY,

GEBZE, TURKEY

23.1 Introduction
Remote-sensing technologies allow users to acquire detailed information about the Earth’s
surface at different scales in a synoptic and temporal manner (Wulder, 1998). These technol-
ogies are currently experiencing a technical revolution with the rapid development in sensor
design. As a result of this technical revolution, very high spatial resolution (VHSR) imagery
having metric and submetric pixel resolutions are becoming increasingly available
(Benediktsson, Chanussot, & Moon, 2013). The need for VHSR satellite imagery has grown in
parallel with these technological advances and, currently, it offers new opportunities for
many studies requiring land use and land cover (LU/LC) information about the Earth’s sur-
face features. Therefore, advanced image processing methods are required to fully exploit all
the potentials of the VHRS (Benediktsson, Chanussot, & Moon, 2012). Object-based image
analysis (OBIA) has become a popular tool for extracting detailed LU/LC information from
VHSR imagery in recent years. Compared to traditional pixel-based classification, OBIA first
groups image pixels into relatively homogeneous image objects using a specific segmentation
method and then assigns LU/LC classes to the individual image objects considering their
spectral, textural, contextual, and geometrical features by means of suitable classification
algorithms. Although OBIA generally has been found to be superior to pixel-based approach,
there exist some challenging issues including the segmentation process (e.g., scale parameter
selection and segmentation quality assessment), training sample size selection, feature selec-
tion, and accuracy assessment in object-based classification (Belgiu & Drăgut, 2014; Ma,
Cheng, Li, Liu, & Ma, 2015; Ma et al., 2017).

One of the main advantages of the OBIA is that a variety of image object features includ-
ing spectral, spatial, and textural features can be extracted for the segmented objects and
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used in the subsequent classification process. However, using a large number of features not
only increases the required computational time and results in a decrease in classification
accuracy, it also requires a large number of ground reference samples, which are unavailable
in most cases. In addition, the use of several object features poses distinct challenges
because the high-dimensional dataset may not meet distribution assumptions required for
the traditional parametric classifiers (Maxwell, Warner, Strager, & Pal, 2014). Although the
nearest neighbor (NN) method has been widely used as a conventional classifier in the
OBIA, the classifier may be less effective in the presence of high-dimensional data due to
problems related to feature correlation (Aguilar, Saldana, & Aguilar, 2013; Maxwell, Warner,
Strager, Conley, & Sharp, 2015; Platt & Rapoza, 2008). To minimize these limitations and
increase object-based classification accuracy, the use of advanced classifiers has become a
popular research interest in remote sensing. Advanced nonparametric classifiers (i.e.,
machine learning algorithms) have emerged as an alternative to parametric classifiers and
have been shown to be more accurate, especially for datasets with complex spectral features,
multidimensional, and large volumes of data (Hansen & Reed, 2000; Maxwell et al., 2014).

More recently, ensemble frameworks, especially tree-based classifier ensemble methods,
such as random forest (RF) and rotation forest (RotFor), have received much attention in the
context of OBIA due to their capabilities to improve the prediction performance as well as
handling complex and high dimensional data for classification (Rokach, 2010; Colkesen &
Kavzoglu, 2017a; Kavzoglu, Colkesen, & Yomralioglu, 2015; Li, Ma, Blaschke, Cheng, &
Tiede, 2016). Within this context, canonical correlation forest (CCF) was recently introduced
as a novel ensemble learning algorithm by Rainforth and Wood (2015). The main philosophy
behind this method is to construct a decision forest that consists of multiple canonical corre-
lation trees (CCTs) (i.e., oblique trees) using canonical correlation components for hyper-
plane splitting. Although the CCF has limited use for pattern classification purposes, its
performance was found to be superior or comparable to those of well-known tree-based
classifier ensemble methods. For example, Rainforth and Wood (2015) compared the classifi-
cation performances of CCF with RF and RotFor methods using 37 datasets taken from the
UC Irvine Machine Learning Repository database and reached some important conclusions.
First, while the accuracy of RF decreased with increasing degree of correlation in datasets,
CCF and RotFor showed superior performances on the highly correlated datasets. On the
other hand, CCF showed better performances than the RotFor at incorporating class-
dependent and localized correlations. Second, CCF constructed with a smaller ensemble size
was found to be accurate and fast compared to RF using a larger ensemble size. Thirdly,
RotFor was found to be more computationally expensive than the RF and CCF, especially for
the dataset containing a relatively modest number of features. Also, CCF has been recently
applied for the classification of remotely sensed imagery. For example, Xia, Yokoya, and
Iwasaki (2017) explored the performance of CCF in classifying hyperspectral imagery. Three
kinds of spatial classification approaches were integrated into CCF frameworks and classifica-
tion performance was compared with RF and the RotFor algorithms. More recently,
Colkesen and Kavzoglu (2017b) evaluated the performance of the CCF algorithm for LU/LC
classification using Sentinel-2 and Landsat Operational Land Imager (OLI) imagery and its
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performance was compared to RF and the RotFor algorithms. Reporting the effectiveness of
the CCF algorithm and proposed as a good alternative due to its simplicity and effectiveness,
the above-mentioned studies were applied for pixel-based classification using medium-
resolution hyperspectral and multispectral satellite images. However, in the literature, perfor-
mance of the CCF has not been tested for the classification of VHSR images using OBIA.

The main goal of this study was to analyze the performance of the CCF ensemble learning
algorithm in the context of OBIA using VHSR WorldView-2 (WV-2) imagery of an agricultur-
ally intense site. The standard NN and the widely used RF algorithms were applied as a
benchmark for comparison of the classification performance of the CCF. To assess the classi-
fication performances, an area-based error matrix with each reference object weighted by its
area, as suggested by Radoux, Bogaert, Fasbender, and Defourny (2011), was used and accu-
racy measures [i.e., overall accuracy (OA) and kappa coefficient] were estimated. Moreover,
a nonparametric statistical test (i.e., McNemar’s test) was performed to evaluate the statisti-
cal significance of differences in classification performances produced with CCF, RF, and
NN. To further evaluate the performances of CCF and RF, kappa-error diagrams showing the
relationship between individual accuracy and diversity for the ensemble methods were plot-
ted and analyzed.

23.2 Study Area and Data
The study area covers about 17 km2 of agricultural land located in Ferizli District of
Sakarya Province, Turkey (Fig. 23-1). The Sakarya is located at the intersection of all impor-
tant roads (i.e., D-100 and Trans-European Motorway (TEM)) and railways connecting
Istanbul to Anatolia. Due to its geographical location, it is one of the most important indus-
trial cities in Turkey and has textile, automotive, and defense-related industries.
Agriculture is an important part of the city’s economy, especially the production of hazel-
nuts and corn. According to crop production statistics in 2015, Sakarya is fourth for hazel-
nut and eighth for corn production among the cities of Turkey (www.tuik.gov.tr). The six
major LU/LC classes considered were forest, agriculture, soil, water body, barren, and
impervious surfaces. The study area covers about 500 ha of deciduous forested land
and approximately 400 ha of agricultural land dominated by two crop types, namely, corn
and hazelnut. For this reason, agricultural lands are considered in three subclasses,
namely, corn, hazelnut, and agriculture that represents alfalfa, sugar beet, and bean-
cultivated lands. In addition, impervious surfaces were categorized into three subclasses
according to their construction materials as buildings representing red clay tile roofs, con-
crete representing asbestos-cement surfaces, and road representing asphalt roads.

A standard level 2 (LV2A) WV-2 imagery acquired on July 25, 2013 was used as the main
data source for the OBIA. The WV-2 image has eight spectral bands with 2-m spatial resolu-
tion and one panchromatic band with 0.5-m spatial resolution. Available pan-sharpened
eight multispectral bands with 0.5-m spatial resolution produced by applying the
Gram�Schmidt technique (Laben & Brower, 2000) were employed in OBIA in this study.
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FIGURE 23-1 Location of the study area, Ferizli District of Sakarya Province, Turkey.
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23.3 Methodology
In this study, OBIA is performed in two main processing steps: (1) image segmentation and
(2) classification of segmented image objects. The first step includes the production of rela-
tively homogeneous groups of pixels by applying multiresolution image segmentation and
computation of spectral, geometrical, and textural attributes of segmented image objects.
The second consists of definition of LU/LC types of the study area, determination of training
and validation samples, selection of relevant object features using a correlation-based feature
selection (CFS) method, and classification of image objects using NN, RF, and CCF algo-
rithms and performance evaluations. The main processing steps of OBIA considered in this
study are shown as a flowchart diagram in Fig. 23-2 and details of the steps are given in the
following subsections.

23.3.1 Creation of Image Objects

Image segmentation, dividing the image into regions by grouping similar pixels, is the first
and major step in the OBIA. In this study, the segmentation process was performed using a
popular multiresolution segmentation (MRS) algorithm in the eCognition Developer 9.0 soft-
ware package (Trimble Germany GmbH, Munich, Germany). The main philosophy behind
the segmentation algorithm is to iteratively merge image pixels depending on homogeneity
criterion controlled by three specific parameters manipulated by users, namely scale, shape,
and compactness. Within these parameters, the scale parameter that determines the relative
size of image objects is considered to be one of the most important for the application of
MRS (Blaschke, 2010; Drăgut, Csillik, Eisank, & Tiede, 2014; Myint, Gober, Brazel, Grossman-
Clarke, & Weng, 2011). In this study, estimation of the scale parameter (ESP) tool proposed
by Drăgut, Tiede, and Levick (2010) was applied to select an appropriate scale parameter of
MRS algorithm. The ESP tool iteratively produces image objects at various scale levels and
computes the local variance (LV) as the mean standard deviation of the objects for each
scale level obtained through segmentation. The changes in LV from one scale level to
another are measured with the following equation proposed by Drăgut et al. (2010), known
as the rate of change (ROC):

ROC5
L2 L2 1ð Þ

L2 1

� �
3 100 (23-1)

where L5 LV at the target scale level and L2 15 L at next lower scale level. The first peak
points out the ROC-LV graph indicate the scale levels at which the image can be segmented
in the most appropriate manner, relative to the data properties at the scene level (Drăgut
et al., 2010). Based on the ROC-LV graph created for this study, the scale parameter was
selected considering the first peak point of the graph as 25. By using a trial-and-error strat-
egy, estimated values for color/shape and smoothness/compactness were 0.9/0.1 and 0.5/
0.5, respectively. It was noted that eight multispectral bands of WV-2 were weighted equally
for MRS and 276,656 image objects were created using the above setting for the parameters.
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FIGURE 23-2 Flowchart showing the OBIA methodology used in this study. OBIA, Object-based image analysis.
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In this study, a total of 128 image object features selected by recent articles were extracted
from WV-2 images (Johnson, 2013; Ma et al., 2017; Maxwell et al., 2015; Pu & Landry, 2012).
These include spectral features comprising of the following: eight means values of WV-2
spectral bands, standard deviations, maximum and minimum values of WV-2 bands (a total
of 32 spectral features), hue�saturation�intensity (HIS) indices calculated from bands 5, 3,
and 2 of WV-2 (a total of three HSI features), band ratio features of WV-2 bands (a total of
eight features), means of normalized difference vegetation indices (NDVIs) defined and con-
sidered by Pu and Landry (2012) (a total of five NDVI features). In addition, eight textural
features based on a gray-level co-occurrence matrix (GLCM) namely, homogeneity, contrast,
dissimilarity, entropy, angular second moment, mean, standard deviation, and correlation
were calculated from each of the spectral bands of WV-22 (a total of 64 GLCM features).
Apart from these spectral and textural features, a total of 16 geometrical/shape measures
including area, border length, length, ratio of length and width, volume, width, asymmetry,
border index, compactness, density, elliptic fit, main direction, rectangular fit, roundness,
shape index, and radius of the smallest enclosing ellipse were also considered as image
object features.

In order to apply CFS and to utilize supervised classification, training and testing samples
were determined considering the ground truth data by applying stratified random sampling.
As a result, a total of 1100 image objects (100 samples per class) were determined as training
and 825 objects (75 samples per class) were determined as testing.

23.3.2 Selection of the Most Effective Object Features

Although describing various spectral, textural, and geometrical features for each image object
is one of the most important advantages of OBIA, selection of relevant features and deter-
mining optimal feature subsets is a time-consuming or subjective process (Laliberte,
Browning, & Rango, 2012). In addition, most of the image object features are strongly corre-
lated and the use of high dimensional feature space also increases the classification model
complexity leading to Hughes phenomenon (Kavzoglu & Mather, 2002; Ma et al., 2015).
Therefore, the selection of relevant object features can be considered as one of the most
important processing steps in OBIA as in any other image classification process. In recent
years, several feature selection algorithms have been applied for the determination of rele-
vant image object features. In this study, the CFS algorithm was performed to measure the
quality of a subset of features. According to Hall (1998), the main hypothesis behind the CFS
algorithm is that a good feature subset contains features that are highly correlated with class,
but uncorrelated with each other. For this purpose, the algorithm uses a subset evaluation
heuristic (i.e., merit function) given in Eq. (23-2) to assign a score to subsets. A subset taking
a high score contains image object features that are highly correlated with the classes and
low intercorrelation with each other (Hall & Holmes, 2003). For this purpose, the CFS algo-
rithm constructs a relation matrix representing feature class and feature correlations and
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then searches the feature subset space using a best first strategy based on greedy hill-
climbing with a backtracking facility (Hall, 2000; Witten, Frank, & Hall, 2011):

Merit5
krcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 k k2 1ð Þrff
p (23-2)

where Merit is the total correlation between the features and the classes, k is the number of
features, f is the feature, c is the class, rcf is the average of the correlation between the fea-
tures and the classes, and rff is the average intercorrelation between features.

23.3.3 Nearest Neighbor Classifier

The NN classifier has long been used as a simplest nonparametric instance-based learner for
many classification problems, including pixel- and object-based image classification (Myint
et al., 2011; Poursanidis, Chrysoulakis, & Mitraka, 2015). The NN algorithm, based on a simple
mathematical principle, predicts a class label to an unknown sample by considering its closest
neighbor (Murty & Devi, 2011). Let there be n training samples, X1; θ1ð Þ; X2; θ2ð Þ; . . .; Xn; θnð Þ
where Xi is of dimension d and θi is the class label of the ith sample. If P is the test sample,
then the class value of this sample is calculated with following equation (Murty & Devi, 2011):

d P;Xkð Þ5min d P;Xið Þ� �
(23-3)

where i5 1; . . .;n. Sample P is assigned to the class θk associated with Xk.

23.3.4 Random Forest Classifier

RF, a popular classifier ensemble algorithm, has been effectively used for solving a variety of
pixel- and object-based classification problems due to its robustness, accuracy, and proces-
sing speed (Guan et al., 2013; Hayes, Miller, & Murphy, 2014; Kavzoglu & Colkesen, 2013;
Kavzoglu, 2017; Maxwell et al., 2015). The main idea behind the RF algorithm is to create a
decision forest consisting of a set of decision tree (DT) classifiers trained using a bootstrap
sample of the original training data (Breiman, 2001). For an unknown sample, the class label
is estimated by combining individual tree outputs using a majority voting principle. The clas-
sifier uses a majority voting principle to assign a class label for an unknown sample
(Breiman, 2001; Pal, 2005; Rokach, 2016). For the construction of an individual DT, about
two-thirds of the training data selected by bootstrapping technique are used and the remain-
ing third is used to estimate the out-of-bag error.

23.3.5 Canonical Correlation Forest Classifier

CCF, proposed by Rainforth and Wood (2015), is a relatively new classifier ensemble algo-
rithm applied for classification problems. The main algorithmic steps of the CCF classifier
are summarized and given in Table 23-1. The main principle of the algorithm is to construct
a decision forest consisting of a set of DTs that are trained by canonical correlation compo-
nents. For this reason, each member of the CCF is named as CCTs that are oblique DTs.
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Canonical correlation analysis (CCA) is a useful statistical technique to identify and summa-
rize linear relations between two sets of variables. The main difference with the traditional
DT is that by applying CCA for the training stage of each DT classifier, the correlation
between the features and the class labels is maximized while the correlations between the
features are minimized, and then the best split is selected in this projected space (Rainforth
& Wood, 2015; Xia et al., 2017). The majority voting rule is used to make the final prediction
of the ensemble model about the unknown class label of a given sample. One of the main
advantages of the CCF algorithm is that it produces competitive and superior results with
smaller ensemble size compared to other DT-based algorithms (e.g., RF). In addition,
although the number of trees or ensemble size is a user-defined parameter of the algorithm,
CCF with no parameter tuning outperformed all tested ensemble classifiers based on calcu-
lated metrics considered in previous studies (Colkesen & Kavzoglu, 2017b; Rainforth &
Wood, 2015; Xia et al., 2017).

Table 23-1 Algorithmic Steps of CCF (Rainforth & Wood, 2015; Xia et al., 2017)

CCF Algorithm

Input: X ; y
� �

: training samples. D: Number of spectral bands. K: Ensemble size. M: Number of sampling features,
bA true; falseð Þ: whether to projection bootstrap

Training:

Output: CCF T 5 tif gi51;...;K

1: Centering X with zero mean and unit variance
2: If M,D then
3: ! b5 true
4: else
5: ! b5 false
6: End If
7: for i5 1:K do
8: If b then
9: X 0; y 0

� �
’bootstrap sampling from X ; y

� �
10: else
11: X 0; y 0

� �
’ X ; y

� �
12: End If
13: S;κ½ �5GROWNTREE X 0; y 0;D;M; bð Þ
14: ti 5 S;κf g
15: end for
16: return T 5 tif gi51;...;K

Output: ensemble model based on CCFs classifier T 5 tif gi51;...;K

Classification:

Input: The ensemble T 5 tif gi51;...;K . A new sample x�
Output: class label y�

1: get the output ensemble using T 5 tif gi51;...;K

2: p y � jx�ð Þ5 1=K
� �PK

j51 p y � jx � :tj
� �

3: y � 5 argmaxhA 1;2;...;Hf g
PK

j:tj x�ð Þ5h 1

CCF, Canonical correlation forest.
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23.3.6 Performance Evaluation

To compare object-based classification performances of the CCF, RF, and NN classifiers with
respect to dimensionality of input features, two datasets consisting of selected object features
and all object features were used for the classification process. Accuracy assessment was
performed using an area-based error matrix in which each reference object is weighted by
its area, as suggested by Radoux et al. (2011). Considering the calculated error matrix, several
accuracy metrics including OA and kappa coefficient were calculated. To further analyze the
results, a nonparametric McNemar’s test was also applied to assess statistical significance of
the differences between classifier performances. The test statistic was calculated using the
following equation (Foody, 2004):

χ2 5
f122f21ð Þ2
f12 1 f21

(23-4)

where fij indicates the frequency of allocations lying in element i, j of the 2 3 2 confusion
matrix. If the calculated statistic is greater than the critical table value (i.e., χ2 5 3:84 at a
95% level of confidence), two classifications are considered to be statistically different
(Foody, 2004).

In order to further evaluate the CCF and RF ensemble models, a kappa-error diagram, as
proposed by Margineantu and Dietterich (2003), was utilized. The diagram is a kind of scat-
terplot consisting of L L2 1ð Þ=2 points (where L represents the ensemble size) and each point
of the diagram shows a pair of classifiers. The value of the x-axis of the diagram represents
the estimated kappa value (i.e., pairwise diversity) for the two classifiers and the y-axis gives
the average of their error rates. Theoretically, if the point cloud is located to the bottom left
corner of the scatterplot, it can be said that the ensemble algorithm is preferable (i.e., high
diversity and low error rate) (Kuncheva, 2013).

23.4 Results and Discussion
In order to reduce the dimensionality by selecting relevant features from the input dataset
with 128 object features, the CFS algorithm was applied to the training dataset. As a result of
the CFS, it was found that the number of features or best feature subset size was 42 and the
estimated merit value was 0.855. The resulting feature subset including the relevant object
features, taking high scores by the CFS algorithm, is shown in Table 23-2. It was obvious that
the CFS algorithm was found to be effective for reducing the dimension of the dataset and
the reduction rate reached 67%. From this table, the best feature subset was composed of 23
spectral, seven band indices, eight textural, and four shape/geometry features. In other
words, about 55% of selected object features in the best feature subset consist of basic
spectral features. Among the spectral features, the majority were means, ratio, standard
deviations, and minimum values of WV-2 bands.
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Table 23-2 Image Object Features Used in This Study. Note That Check Marks (ü)
Show the Features Selected by the CFS Algorithm

1. Basic Spectral Features

Object features B1 B2 B3 B4 B5 B6 B7 B8

Mean pixel value ü � ü � ü ü ü �
Maximum pixel value � � � ü � � � �
Minimum pixel value ü ü ü ü � ü ü �
Standard deviation ü � � � ü � ü ü
Ratio � ü ü ü ü ü ü ü

2. Band Indices and Transforms

NDVI1 ü
NDVI2 ü

NDVI3 �
NDVI4 ü
NDVI5 ü
Hue ü

Saturation ü
Intensity ü

3. Texture Features

B1 B2 B3 B4 B5 B6 B7 B8

Homogeneity � ü � � � � � �
Contrast � � � � � � ü ü

Dissimilarity � � � � ü � � �
Entropy � � � � � � � �
Angular second moment � � � � � � � �
Mean � ü � � � � ü �
Standard deviation � � � � � ü � �
Correlation � � � � � ü � �
4. Shape and Geometry

Area �
Border length ü

Length ü
Ratio of length and width �
Volume �
Width ü
Asymmetry �
Border index �
Compactness �
Density �
Elliptic fit �
Main direction ü

Rectangular fit �

(Continued)
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On the other hand, only minimum pixel values of the yellow band of WV-2 (B4) were
included in the best feature subset. From Table 23-2, it was clear that all band indices except
for NDVI3 and three components of HIS transformation were selected as relevant features by
the CFS algorithm. When the results were analyzed in terms of texture features, only eight of
64 texture features were selected and included in the best feature subset by the CFS algo-
rithm. This result clearly showed that 87.5% of the texture features were found to be irrele-
vant, mainly due to high level of correlation between these features. In order to handle this
problem, image transformation, such as principal component analysis, can be used to gener-
ate an uncorrelated and reduced number of components from the original WV-2 bands.
Then, texture features are extracted from the components comprising more than 90% of
the total variability (Ghosh & Joshi, 2014). Among the texture features, the majority were
GLCM-based contrast values of two NIR bands and mean values of blue and NIR-1 bands of
WV-2. From Table 23-2, within the calculated 16 geometrical/shape measures, only border
length, length, width, and main direction features of segmented image objects were selected
as relevant features by the CFS.

To analyze the classification performances of the NN, RF, and CCF classifier, two datasets
with 42 features selected by CFS and all available features (i.e., 128 features) were used. All
classifications were performed using the R statistical software tool (http://www.r-project.org).
NN classification was performed using the kknn package in R (Schliep, Hechenbichler, &
Lizee, 2016), RF using the randomForest package (Liaw & Wiener, 2018), and CCF using the
ccf package (Dobler & Feuerriegel, 2016). Parameter optimization was performed to obtain
the accurate classification and to determine optimal input parameter combination of a
specific classifier. The RF algorithm requires settings of two main parameters from the user-
side, namely the number of trees (ntrees) and the number of input features considered at
each node (mtry). The number of trees was optimized separately for the two datasets using a
10-fold cross-validation strategy. As a result, the number of trees was estimated as 250 for
the 42-feature dataset and 350 for the 128-feature dataset. The

ffiffiffi
n

p
features at each split

(where n represents the number of object-features) were utilized for the estimation of the
number of input features (Gislason, Benediktsson, & Sveinsson, 2006). Consequently, the
number of features was calculated as 6 and 11 for 42- and 128-feature datasets, respectively.
Although the ensemble size or number of CCTs is another user-defined parameter for the
CCF algorithm, previous research has shown that the changes in ensemble size have little
impact on the classification accuracy of the algorithm, which can be regarded as the most

Table 23-2 (Continued)

Roundness �
Shape index �
Smallest Enclosing Ellipse �

CFS, Correlation-based feature selection; B1, coastal band; B2, blue band; B3, green band; B4, yellow band; B5, red band; B6, red-
edge band; B7, NIR-1 band; B8, NIR-2 band; NDVI1, (B72 B5)/(B71 B5); NDVI2, (B82 B6)/(B81 B6); NDVI3, (B82 B4)/(B81 B4);
NDVI4, (B62 B1)/(B61 B1); NDVI5, (B62 B5)/B61 B5).
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important advantage of the technique (Colkesen & Kavzoglu, 2017b; Rainforth & Wood,
2015; Xia et al., 2017). In this study, default parameter settings of the CCF algorithm, as
suggested by Rainforth and Wood (2015), were used and the number of trees was set to 200
for both datasets.

The optimized RF and CCF ensemble models created with the aforementioned parameter
settings were applied to test datasets that were formed in accordance with the selected
42 input features and all available features. As a result, the calculated overall accuracies and
kappa coefficients are given in Table 23-3. The lowest overall accuracies were calculated with
conventional NN classifiers as 87.79% (kappa coefficient of 0.866) and 85.62% (kappa coeffi-
cient of 0.840) for 42- and 128-feature datasets, respectively. However, the highest classifica-
tion accuracy was estimated by CCF as 91.67% (kappa coefficient of 0.907) and 90.18%
(kappa coefficient of 0.891) for 42- and 128-feature datasets, respectively, which is higher
than that of the RF (89.60% and kappa coefficient of 0.884) classifier. The results clearly con-
veyed that RF and CCF classifiers outperformed the NN algorithm for both datasets and the
improvement in accuracy reached 3% in terms of OA.

When the effects of the feature selection process on the classification accuracies were
analyzed, some important findings were revealed. First, the lower classification accuracies
were calculated with the use of all available image object features (i.e., 128 features) com-
pared to selected features. Second, the CFS process improved the classification performance
of NN and CCF classifiers (up to 2% in OA). Thus, it could be stated that classification perfor-
mances of NN and CCF were sensitive to the feature size of the input dataset and increasing
feature size could have some degree of negative influence on their performances. On the
other hand, the dimensionality reduction process had little impact on the performance of
the RF classifier. Therefore, no significant difference was obtained between the RF classifica-
tion results obtained by applying the CFS algorithm known as the prefiltering method, as
pointed out in Belgiu and Drăgut (2016).

In order to analyze the relationship between the CCF and RF algorithms with respect to
diversity and individual error rate, kappa-error diagrams were plotted for 42- and 128-
feature datasets (Fig. 23-3). The ensemble size was set to 100 (i.e., L 5 100) for the CCF and
RF ensemble models, therefore there are 4950 points i:e:; L L2 1ð Þ=25 4950

� �
in each

kappa-error diagram. For visual evaluation of the relative positions and the boundaries of
the point clouds, centroids and the bounds of the clouds are also given in Fig. 23-3. It should

Table 23-3 Performance of the NN, RF, and CCF Classifiers With Different Sizes of
Input Features Considering the OA, and Kappa Coefficient (Kappa)

Dataset Number of Features

NN RF CCF

OA (%) Kappa OA (%) Kappa OA (%) Kappa

CFS 42 87.79 0.866 89.60 0.884 91.67 0.907
All features 128 85.62 0.840 89.40 0.882 90.18 0.891

CCF, Canonical correlation forest; NN, nearest neighbor; RF, random forest; OA, overall accuracy.
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be noted that the CCF and RF ensemble models were constructed with the training datasets
and the kappa-error diagrams were plotted using the test datasets. It is clear that RF showed
the largest diversity for 42- and 128-feature datasets, but many DT classifiers in the RF ensem-
ble model have large individual error, especially for the 128-feature dataset (Fig. 23-3B).

On the other hand, estimated individual accuracies of the CCF and the RF ensemble
models were similar, especially for the 42-feature dataset (Fig. 23-3A), but estimated average
error rates of the CCF were the lowest considering the position of the point clouds on the

FIGURE 23-3 Kappa-error diagrams for RF and CCF algorithms using (A) 42-feature and (B) 128-feature datasets. RF,
Random forest; CCF, canonical correlation forest.
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y-axis for the both datasets. Another important finding is that the feature selection process or
the use of selected image object features significantly reduced the estimated individual error
rates for the RF ensemble model, while the error rates slightly changed for the CCF model.
To sum up, it can be said that the classification performances of the RF and CCF methods
increased by means of the feature selection process, leading to reduced average individual
error rates of the ensemble models.

To further analyze the classifier performances, the nonparametric McNemar’s test was
employed to determine the statistically significant difference in the ensemble performances
and the calculated statistics are shown in Table 23-4. Note that the estimated statistic is
above the critical table value (3.84 at 95% confidence interval) indicating that the difference
between the classifier performances is significant. Pairwise statistical test results showed that
the differences in classification accuracies were statistically significant for the NN, RF, and
CCF classifiers for 42- and 128-feature datasets. Therefore, it can be said that the RF and
CCF classifiers outperformed the conventional NN classifier for both datasets. In addition,
the statistical pairwise comparisons of the classification performances indicated that the CCF
classifier, a new ensemble learning framework, outperformed the RF classifier for both cases.

The NN, RF, and CCF ensemble models were also applied to whole datasets to produce a
thematic map of the study area. As an example of these maps, the map with the highest OA
produced by the CCF for the 42-feature dataset is given in Fig. 23-4A. To visually interpret the
improvements in map accuracy, the thematic map produced by the NN algorithm for the
128-feature dataset is also shown in Fig. 23-4B. Visual interpretation of the thematic maps reveals
that it is difficult to recognize class boundaries from the classification result of the NN algorithm
due to high misclassification error, particularly between barren and soil classes. However, the
CCF algorithm produced more uniform classification results with more clear class boundaries,
especially for manmade surfaces and soil classes. The use of ensemble learning algorithms with
feature selection had a significant effect on the efficiency of the LU/LC classification process,
especially distinguishing the spectrally similar classes (e.g., forest and hazelnut classes).

23.5 Conclusions
Several conclusions can be drawn from the experimental results of this study. First, the
ensemble learning algorithms RF and CCF outperformed the traditional NN classifier and

Table 23-4 Statistical Pairwise Comparison of Classifiers Using
the McNemar’s Test for the 42- and 128-Feature Datasets

Pairwise Comparison 42-Feature Dataset 128-Feature Dataset

RF vs NN 8.37 34.00
CCF vs NN 45.95 55.75
CCF vs RF 24.80 4.12

NN, Nearest neighbor; RF, random forest; CCF, canonical correlation forest.
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FIGURE 23-4 Thematic maps of the study area produced by (A) the CCF classifier with a 42-feature dataset and (B)
the NN classifier with a 128-feature dataset. CCF, Canonical correlation forest; NN, nearest neighbor.
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the improvements in classification performance varied up to 4% for the use of selected
features and 5% for the use of all object features regarding estimated overall accuracies. This
level of difference in accuracies was found to be statistically significant at a 95% confidence
interval considering the McNemar’s test results. Second, the CCF classifier produced the
highest OA with a 42-feature dataset as 91.67%, whilst the estimated OA of the RF classifier
was quite similar to the CCF for a 128-feature dataset. Although, the classification perfor-
mance of the CCF classifier was slightly better than the RF for a 128-feature dataset, the dif-
ference in performances was found to be statistically significant at 95% confidence interval.
Third, RF produced the largest diversity, but most of the individual classifiers (i.e., DT) have
large errors compared to the CCF algorithm in terms of the kappa-error diagram. Moreover,
filtering-based CFS was found to be an efficient algorithm for selecting relevant image object
features and determining the best feature subset, thus reducing the dimensions of the input
feature space by about two-thirds. Hence, the CCF classifier provided the highest OA for 42-
and 128-feature datasets, the RF classifier was the most stable classification algorithm with
and without feature selection, while NN and CCF were influenced by feature selection. To
sum up, the results of this study showed that the CCF is an effective and powerful ensemble
learning algorithm for OBIA, especially compared to NN and RF for VHSR imagery. Further
investigations and experiments are required to verify the strong and weak sides of the CCF
classifier for different types of datasets.
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24
Statistical Modeling of Landslides:
Landslide Susceptibility and Beyond

Stefan Steger, Christian Kofler
INSTITUTE FOR EARTH OBSERVATION, EURAC RESEARCH, BOLZANO-BOZEN, ITALY

24.1 Introduction
Gravitational mass movements are common in undulating and mountainous landscapes of
the world and frequently impact people, their belongings, and infrastructure (Nadim,
Kjekstad, Peduzzi, Herold, & Jaedicke, 2006; Petley, 2012; Petley, Dunning, & Rosser, 2005).
Especially in the context of growing population densities and increasing values at risk in
many hillslope areas, a balanced combination of structural and nonstructural mitigation
measures appears promising to reduce the undesirable effects of upcoming mass move-
ments, such as landslides (Alcántara-Ayala, 2002; Turner & Schuster, 1996). In order to
lessen or even avoid damage due to first-time slope movements, a consideration of
models that enable an identification of landslide-prone zones appears promising. Thus,
the assessment of landslide susceptibility is often regarded as key toward an efficacious
spatial planning and risk management in mountainous areas (Fressard, Thiery, & Maquaire,
2014; Guillard & Zêzere, 2012; Oliveira, Zêzere, Guillard-Gonçalves, Garcia, & Pereira, 2017;
Petschko, Brenning, Bell, Goetz, & Glade, 2014; Zêzere, Pereira, Melo, Oliveira, & Garcia,
2017).

A statistics-driven landslide susceptibility assessment seeks to estimate the spatial likeli-
hood or relative spatial probability of units (e.g., pixels) to coincide with (future) landslide
occurrence. The subsequent map enables a visualization of locations where a landslide is
more or less likely to take place (Brabb, 1984; Guzzetti, 2006). Within a geographic informa-
tion system (GIS), landslide susceptibility can be assessed by applying expert-based, physi-
cally based, or statistical procedures (Corominas et al., 2013; van Westen, Rengers, &
Soeters, 2003).

In theory, GIS implementations of sophisticated physically based models are of highest
utility for the evaluation of cause-and-effect and to investigate the impact of environmental
changes on slope stability (Cascini, 2008; Mergili, Marchesini, Rossi, Guzzetti, & Fellin,
2014). Under real-world conditions, however, unavailability of spatially differentiated geo-
technical information frequently hinders their practical applicability and explanatory power
(Kuriakose, van Beek, & van Westen, 2009). Especially the parameterization of regional
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physically based slope stability models is regularly affected by uncertainties. Thus, extensive
investments (e.g., laboratory analysis) combined with empirical parameter adjustments (i.e.,
calibration) are often required to enable results that are consistent with ground-truth land-
slide data (Cascini, 2008; Deb & El-Kadi, 2009; Seefelder, de, Koide, & Mergili, 2016).

Expert-based and statistical approaches are less dependent on predefined and challeng-
ing to derive spatial input data. Their lower demand on specific spatial information might be
a major reason for their widespread application at a regional or supraregional level. Expert-
based landslide susceptibility models are founded on a detailed knowledge of local interac-
tions between landsliding and its controlling factors and allow accounting for difficult to
quantify process understanding. However, these heuristic models are of qualitative nature
and lack objectivity and reproducibility (Ruff & Czurda, 2008; van Westen et al., 2003).

Acceptable data demands, the quantitative modeling output, a high cost effectiveness, as
well as regularly achieved high model performances may have contributed to the great popu-
larity of statistical landslide susceptibility analyses (Cascini, 2008; Frattini, Crosta, & Carrara,
2010; Guzzetti, Carrara, Cardinali, & Reichenbach, 1999). Comparative research suggests that
at a regional scale, statistical approaches frequently outclass their physically based equals to
identify model-independent landslide observations (Cervi et al., 2010; Frattini et al., 2010;
Seefelder et al., 2016). Well-performing statistical models are not only utilized for spatial
planning purposes, but also as a direct input for analyses that go beyond the pure spatial
mapping of landslide-prone zones. Statistical procedures are also applied to gain insights
into underlying landslide controls (Vorpahl, Elsenbeer, Märker, & Schröder, 2012), to estab-
lish regional-scale early warning systems (Bell, Cepeda, & Devoli, 2014) or to evaluate land-
slide hazard and risk (Remondo, Bonachea, & Cendrero, 2005). The observed increasing
number of researches (Fig. 24-1) further indicates a steadily growing quantity of statistics-
driven landslide susceptibility assessments (Wu, Chen, Zhan, & Hong, 2015).

For several years, the joint utilization of GIS and statistical software tools has offered vast
opportunities to analyze the spatial distribution of landslide processes. Particularly, the
release of software that builds a bridge between popular GIS and R, such as rgrass7 (Bivand,
Krug, Neteler, & Jeworutzki, 2016), RPyGeo (Brenning, 2011), RQGIS (Muenchow, Schratz, &
Brenning, 2017), or RSAGA (Brenning, 2007), facilitates the quantitative spatial assessment of
environmental processes. The practical realization of a statistical susceptibility model is fur-
ther simplified by the release of problem-specific software tools (e.g., LAND-SE; Rossi &
Reichenbach, 2016) as well as an increasing accessibility of environmental data, such as digi-
tal terrain models (DTMs) (Clerici, Perego, Tellini, & Vescovi, 2006; Jiménez-Perálvarez,
Irigaray, Hamdouni, & Chacón, 2008; Rossi & Reichenbach, 2016). However, the apparently
simple task of creating a meaningful data-driven statistical model becomes a challenging
task when realizing that input data are often biased and the modeling decision should not
be driven by numerical results alone (Steger, Brenning, Bell, Petschko, & Glade, 2016).

This chapter aims to introduce and review the multifaceted topic of statistical landside
susceptibility modeling by highlighting the theoretical background, common practices, and
approaches that go beyond, respectively built-upon, a statistics-driven landslide susceptibility
mapping. This contribution may provide guidance and assistance to avoid stumbling into
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some common pitfalls. From a process point of view, particular emphasis is placed on debris
and earth slides, which formally relate to the downward propagation of a more (earth) or
less (debris) coherent mass along a curved or planar sliding surface (Cruden & Varnes, 1996;
Hungr, Leroueil, & Picarelli, 2013).

24.2 Methodology: How to Create a Statistical Landslide
Susceptibility Model

24.2.1 Theoretical Background and Practical Implementation

As with every model, also a statistical landslide susceptibility model is a drastic abstraction
of reality (Box & Draper, 1987). The high level of generalization with respect to the complex-
ity of the phenomenon (i.e., landsliding), as well as the underlying assumptions, have to be
kept in mind during model construction and interpretation, but also when communicating

FIGURE 24-1 Number of articles, conference proceedings, and reviews related to “statistical landslide susceptibility”
published between 1991 and 2017 (bar chart). The shown word cloud, generated using the R package
“wordcloud,” depicts frequently used key and title terms. Data relate to a bibliometric analysis of 1136 Scopus
entries (query: January 29, 2018).
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the results to decision makers and the public (Oreskes, Shrader-Frechette, & Belitz, 1994;
Steger, 2017).

Formally, statistical landslide susceptibility models are empirical models, because their
outcome directly originates from empirical observations (Thompson, 2011). The general
approach behind modeling landslide susceptibility is based on methodological uniformitari-
anism, which states that natural laws are invariable in time and that each phenomenon can
be attributed to specific causes (Gould, 1965; Hutton, 1788; Slaymaker, 2013). Using statisti-
cal procedures, the location of upcoming landslide phenomena can therefore be foreseen
(i.e., spatially predicted), ultimately because (1) the causes of past landsliding are assumed
to be observable, (2) only causes that did not change in time are considered (i.e., static pre-
disposing variables), and (3) future landslides are expected to be affected by similar causes
(Guzzetti et al., 1999; Hutton, 1788; Steger, 2017). The steady-state assumption is strong, but
allows relating landslides of known location, but unknown temporal incidence, to landslide
controlling factors represented by maps of environmental conditions. In fact, the imposed
static perspective neglects the presence (or influence) of environmental changes and there-
fore entails that the final map is also meaningful in the future (Steger, 2017; van Westen,
Castellanos, & Kuriakose, 2008). Fig. 24-2 visualizes the methodical framework behind creat-
ing and evaluating a statistical landslide susceptibility model.

The application of a supervised classification algorithm enables to link a calibration sam-
ple of the binary response variable (i.e., landslide presence and absence observations) to

FIGURE 24-2 Methodical framework to build a statistical landslide susceptibility model. After the preparation of
input data, a landslide susceptibility model/map is constructed on the basis of a calibration sample applying a
supervised binary classification algorithm. Ensuing modeling results can be evaluated from several perspectives.
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multiple environmental explanatory variables (i.e., predisposing conditions). At best, the
derived empirical rule is able to differentiate between predisposing conditions that are typi-
cal for past landsliding and those archetypal for landslide-free zones. The spatial transfer of
the derived association to each location that comprises information on the explanatory vari-
ables enables a cartographic visualization of landslide susceptibility. In more technical terms,
the above-mentioned supervised two-class classification problem is tackled via a multiple
variable soft classification algorithm that permits assigning the likelihood of class member-
ship to spatial entities, such as pixels or slope units (Brenning, 2005; Steger, 2017; van Den
Eeckhaut et al., 2006). Necessary model evaluations typically quantify the degree to which
the derived spatial prediction is in line with internal or out-of-sample ground-truth informa-
tion (Beguería, 2006; Brenning, 2005; Chung & Fabbri, 2003; Frattini et al., 2010; Remondo
et al., 2003; Steger, Brenning, Bell, Petschko, et al., 2016).

24.2.2 Preparation and Selection of Spatial Data

GIS plays a pivotal role in preparing and manipulating spatial data for statistical landslide
susceptibility modeling. The derivation of a specific set of topographic variables or the cho-
sen representation of the environment (e.g., mapping unit type, raster resolution) can greatly
impact ensuing modeling outcomes (Arnone, Francipane, Scarbaci, Puglisi, & Noto, 2016;
Catani, Lagomarsino, Segoni, & Tofani, 2013; Hussin et al., 2016; Zêzere et al., 2017).

Comprehensive reviews conducted by Malamud, Reichenbach, Rossi, and Mihir (2014)
and Reichenbach, Rossi, Malamud, Mihir, and Guzzetti (2018) display that over four-fifths of
published landslide susceptibility studies focus on a pixel-based terrain representation.
Opting for a pixel-based modeling procedure goes hand in hand with the requirement to
define a suitable modeling resolution and to select a strategy on how to represent a mapped
landslide location. The chosen pixel size is known to affect the appearance of the final map
as well as the estimated effect size of explanatory variables (Catani et al., 2013). At a regional
level, pixel sizes between 10 and 50 m are common, while higher resolutions do not neces-
sarily ensure better performing or more plausible landslide susceptibility models (Arnone
et al., 2016; Paudel, Oguchi, & Hayakawa, 2016; Reichenbach et al., 2018; Steger, 2017;
Steger, Brenning, Bell, & Glade, 2016). Polygon-based alternatives, such as slope units
(Alvioli et al., 2016), are conceptually different. Even though they do not allow to represent
morphological details, their application is often considered more meaningful from a physical
point of view (e.g., they are identifiable in the field) and in the presence of spatially inaccu-
rate landslide information (Alvioli et al., 2016; Schlögel et al., 2018; Steger, Brenning, Bell, &
Glade, 2016; Zêzere et al., 2017). Conceptual considerations, the scope of a study, the envis-
aged spatial scale, data availability, and data quality should play a critical role when opting
for a specific mapping unit type. Indeed, pixel-based as well as polygon-based approaches
have their advantages and shortcomings (Alvioli et al., 2016; Guzzetti et al., 1999; Schlögel
et al., 2018; Zêzere et al., 2017).

High-quality landslide inventory maps are fundamental for modeling landslide suscepti-
bility, because they depict the spatial distribution of past sliding locations (i.e., the presence
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information of the binary response; Fig. 24-3). Landslide inventories are indispensable for
the calibration of statistical models and to estimate their goodness-of-fit and prediction skill
(Beguería, 2006; Colombo, Lanteri, Ramasco, & Troisi, 2005; Guzzetti et al., 2012; Petschko,
Bell, & Glade, 2016; Remondo et al., 2003; Steger, Brenning, Bell, Petschko, et al., 2016).
Before including a specific landslide dataset into a classification algorithm, researchers are
advised to scrutinize whether the respective observations are explainable by a common set
of explanatory variables. In this context, several authors emphasize that inventories belong-
ing to different movement types (e.g., falls versus slides) should not be modeled jointly
(Regmi, Giardino, McDonald, & Vitek, 2014; Zêzere, 2002).

The method selected to compile landslide data impacts the characteristics of subsequent
landslide information (e.g., accuracy, completeness) and therefore the final modeling results
as well (Steger, Brenning, Bell, & Glade, 2016, 2017). For larger territories, an expert-based
interpretation of high-resolution remote sensing data, such as shaded relief images, ortho-
photos, or stereoscopic aerial photographs, is common to identify and map morphological
landslide signatures within a GIS (Fiorucci et al., 2018; Galli, Ardizzone, Cardinali, Guzzetti,

FIGURE 24-3 Polygon-based landslide inventory underlain by a high-resolution slope angle map (A) and
corresponding point-based landslide scarp inventory underlain by a point density map (B). The respective excerpts
depict a high-resolution shaded relief image of two mapped shallow landslides. Inventory data based on Schmaltz,
E. M., Steger, S., & Glade, T. (2017). The influence of forest cover on landslide occurrence explored with spatio-
temporal information. Geomorphology. Retrieved April 18, 2017, from ,http://www.sciencedirect.com/science/
article/pii/S0169555X1631..
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& Reichenbach, 2008; Guzzetti et al., 2012; Petschko et al., 2016). Another widespread option
relates to the collection of landslide data by compiling and georeferencing public information
(e.g., reports) or historical data (e.g., archives) (Guzzetti et al., 2012; Salvati, Balducci,
Bianchi, Guzzetti, & Tonelli, 2009; Steger, Brenning, Bell, Petschko, et al., 2016). For specific
areas and landslide types, object-oriented procedures can also be expedient to automatically
map past landslide events (Behling, Roessner, Kaufmann, & Kleinschmit, 2014; Golovko,
Roessner, Behling, Wetzel, & Kleinschmit, 2017; Metternicht, Hurni, & Gogu, 2005).

The application of a pixel-based approach requires the additional definition of locations
(i.e., pixels) that represent the respective landslide events. A mapped landslide can be repre-
sented by one or multiple pixels that either belong to the initiation zone (i.e., the scarp area)
or the landslide body (Fig. 24-4) (Hussin et al., 2016; Rossi & Reichenbach, 2016). In general,
a one-cell strategy might be beneficial during preceding GIS-based landslide inventorying,
because the mapping of one point per landslide (Fig. 24-3B) saves resources and can reduce
uncertainties related to the precise mapping of landslide boundaries (Petschko et al., 2016).

FIGURE 24-4 Common strategies to represent a landslide location within a pixel-based statistical landslide
susceptibility model. The underlain high-resolution shaded relief image portrays the geomorphic footprint of two
shallow landslides (top left). The black raster cells refer to commonly applied landslide sampling strategies. Basic
data: © Land Vorarlberg.
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At first sight, a multiple-cell approach, based on a detailed delineation of landslide borders
(Fig. 24-3A), may be perceived as superior due to the associated greater amount of informa-
tion per landslide observation. However, opting for multiple observations per landslide not
only affects the meaningfulness of estimated parameter confidences, but the computational
burden as well. Sampling numerous locations per landslide also reinforces undesired effects
of landslide size (i.e., larger landslides are represented by a higher number of raster cells;
Fig. 24-4) and spatial autocorrelation (Heckmann, Gegg, Gegg, & Becht, 2014; Hussin et al.,
2016; Regmi et al., 2014).

The literature suggests that so far, researchers have paid comparably little attention to the
sampling of typical landslide-free zones (i.e., the absence information). Usually, each map-
ping unit that contains a low portion of landslide-affected surface area (i.e., polygon) or each
unit (i.e., pixel) that does not contain mapped landslide information is considered a potential
landslide absence candidate. However, such approaches ignore that erosion, anthropogenic
interventions, or the application of a specific landslide mapping strategy may have hampered
the identification and mapping of past slope instabilities (Bell, Petschko, Röhrs, & Dix, 2012;
Brardinoni, Slaymaker, & Hassan, 2003; Guzzetti et al., 2012). Landslide absence within
polygon-based approaches is frequently defined on the basis of arbitrary area thresholds
(e.g., absence when .91.5% of the area is landslide-free) (Guzzetti et al., 1999; Schlögel
et al., 2018). Within a pixel-based approach, landslide absence data frequently refer to all
pixels or a random sample of pixels situated outside mapped landslide boundaries (Blahut,
van Westen, & Sterlacchini, 2010; Goetz, Brenning, Petschko, & Leopold, 2015). Most algo-
rithms that do not depend on an explicit nonlandslide sampling strategy (i.e., presence-only
models), such as maximum entropy, still rely on some background data, that is, pseudo-
absences (Elith et al., 2011; Felicísimo, Cuartero, Remondo, & Quirós, 2013; Lombardo,
Bachofer, Cama, Märker, & Rotigliano, 2016).

Manifold combinations of explanatory variables (also entitled predictors, covariates, or
features) have been proposed to model landslide susceptibility for large areas (Pourghasemi,
Teimoori Yansari, Panagos, & Pradhan, 2018; Reichenbach et al., 2018). Ideally, the chosen
explanatory variables spatially characterize those static environmental factors that enable a
data-driven discrimination between landslide-affected zones and stable areas. Besides physi-
cally motivated factors, such as slope inclination, the utilization of proxies is common prac-
tice in statistical landslide susceptibility modeling (Malamud et al., 2014; Pourghasemi et al.,
2018; van Westen et al., 2008). For example, land cover maps are frequently employed to
represent the spatial variation of (de)stabilizing hydrological and mechanical factors related
to vegetation cover, whereas the distance to roads or rivers may describe the influence of
anthropogenic or fluvial-induced slope undercutting (Tien Bui, Lofman, Revhaug, & Dick,
2011; van Westen et al., 2008). In most cases, topographic and thematic environmental fac-
tors are included in combination to estimate landslide susceptibility (Pourghasemi et al.,
2018; Reichenbach et al., 2018). Popular topographic explanatory variables entail slope angle,
aspect, curvature, elevation, or more complex DTM derivatives, such as the topographic wet-
ness index or the upslope contributing area. Lithology, land cover, soil types, or the distance
to rivers, faults, or roads are frequent thematic variables (Malamud et al., 2014; Pourghasemi

526 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



et al., 2018; Reichenbach et al., 2018). In many cases, it is reasonable to convert and prepro-
cess explanatory variables. For instance, within R, the conversion of categorically scaled vari-
ables (e.g., lithology) to factors might be required to ensure correct modeling results
(Crawley, 2013). The application of a cut-off threshold can be expedient for frequently used
proximity variables, because the influence of linear or point-based features (e.g., roads or
springs) on landslide susceptibility is usually restricted in space (Brenning, 2012a). The cate-
gorization of the aspect variable into “independent” categorical classes can also be evaded
by taking advantage of its circular nature, that is, by computing its sine and cosine
(Brenning, 2012a; Steger, Brenning, Bell, & Glade, 2016).

Once a set of potential explanatory variables is prepared, a suitable combination of input
data has to be selected. Purely heuristic selections leave the choice to a domain expert while
semiquantitative approaches are based on a combination of both, expert knowledge and
numerical results (e.g., predictive performance) (Steger, Brenning, Bell, Petschko, et al.,
2016). Quantitative procedures explicitly ignore nonquantifiable knowledge and seek to find
an ideal numerical solution (Costanzo, Rotigliano, Irigaray, Jiménez-Perálvarez, & Chacón,
2012; Dou et al., 2015). Popular stepwise selections operationalize the problem-solving law
of parsimony. Simply speaking, in the case of likewise performing models, the one with the
fewest parameters is given priority (Crawley, 2013). A stepwise automated selection seeks to
find a numerical compromise between model performance and its complexity (i.e., number
of variables) (Budimir, Atkinson, & Lewis, 2015; Petschko et al., 2014; Vorpahl et al., 2012).

24.2.3 Modeling Algorithms

The wealth of published comparative studies delivers evidence that no algorithm assures
success under each framework situation. The environmental conditions, data availability,
and quality, as well as model interpretability and flexibility, influence how well a particular
algorithm fits the purpose of the respective research (Brenning, 2005; Goetz, Brenning, et al.,
2015; Guzzetti et al., 1999; Pourghasemi & Rahmati, 2018; Steger, Brenning, Bell, Petschko,
et al., 2016).

The literature provides evidence that statistical as well as machine learning techniques
are widespread to map landslide susceptibility at a regional scale. Statistical-oriented
approaches tend to put more emphasis on parameter estimation, structural assumptions,
model transparency and parameter inference, whereas machine learning algorithms are con-
sidered more flexible, less reliant on statistical assumptions and, in many cases, more effec-
tive to maximize predictive performances (Brenning, 2012a; Goetz, Brenning, et al., 2015;
Hand, Mannila, & Smyth, 2001; Hastie, Tibshirani, & Friedman, 2011; Pourghasemi &
Rahmati, 2018; Steger, 2017; Steger, Brenning, Bell, Petschko, et al., 2016). Tuning of hyper-
parameters using model-independent observations is recommended for most machine learn-
ing techniques in order to ensure an adequate model generalization. A spatially explicit
tuning of hyperparameters may be beneficial to avoid model overfitting (see Section 24.3)
and to enhance the utility of machine learning in data-driven landslide susceptibility model-
ing (Schratz, Muenchow, Richter, & Brenning, 2018; Steger, 2017).
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Within the R software environment, a wealth of ready-to-use algorithms are available to
construct a quantitative relationship between the binary response and environmental vari-
ables. Popular examples include (R package name and related reference in brackets): logistic
regression (stats or MASS; R. Core Team, 2014; Ripley et al., 2013), linear and quadratic dis-
criminant analysis (MASS; Ripley et al., 2013), weights of evidence (klaR; Weihs, Ligges,
Luebke, & Raabe, 2005), generalized additive models (gam; Hastie, 2013), multiple adaptive
regression splines (earth; Milborrow, Hastie, Tibshirani, Miller, & Lumley, 2015), classifica-
tion trees (partykit or rpart; Hothorn, Hornik, & Zeileis, 2006; Therneau, Atkinson, Ripley, &
Ripley, 2015), random forest (randomForest; Liaw & Wiener, 2002), support vector machine
(kernlab or e1071; Karatzoglou, Smola, Hornik, & Zeileis, 2004; Meyer et al., 2017) and neural
networks (nnet; Venables & Ripley, 2002). Novel multilevel models (lme4; Bates, Maechler,
Bolker, & Walker, 2014), such as generalized linear mixed models or generalized additive
mixed models, have the potential to tackle the problem of systematically incomplete land-
slide information and to account for the effect that associations between an explanatory vari-
able (e.g., slope inclination) and the binary response differs between larger spatial units (e.g.,
geological units) (Steger et al., 2017; Steger, 2017; Zuur, Ieno, Walker, Saveliev, & Smith,
2009).

Relationships between environmental phenomena are not always linear. Since this also
applies for landslide processes, an application of algorithms that allow to account for nonli-
nearities can be beneficial (Felicísimo et al., 2013; Pourghasemi & Rossi, 2016). For instance,
assuming a linear relationship between landsliding and slope angle within an area that con-
tains high portions of both, nearly flat terrain (i.e., low shear stresses) and vertical terrain
(i.e., no soil cover) might be inappropriate, because the chances of landslide occurrence
might be highest at medium-inclined slopes (Fig. 24-5).

FIGURE 24-5 Example of shallow landslide susceptibility maps based on just one explanatory variable (i.e., slope
angle) and a linear (left) and nonlinear (right) model structure. The linear model (i.e., logistic regression) reflects
the estimated positive relationship between landslide occurrence and slope angle by predicting the highest
landslide susceptibility within the steepest zones of the area (e.g., outcropping of geologic structures; no soil
coverage). The nonlinear model (i.e., generalized additive model) is able to account for the nonlinearity and thus
avoids the highest susceptibility values in nearly vertical terrain.
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It is endorsed that algorithm selection should be based on a variety of considerations,
such as model flexibility and interpretability, achieved predictive performances, and the
appearance of the final prediction surface. Without a doubt, the ultimate goal of a study
largely determines the suitability of an algorithm. The task to spatially predict susceptible ter-
rain might be accomplished by applying flexible, well-performing, but less
interpretable machine learning techniques. Tackling analytical tasks, such as the elaboration
of effect sizes or parameter uncertainties, might require an application of less complex, but
more transparent, algorithms, such as logistic regression or generalized additive models
(Brenning, Schwinn, Ruiz-Páez, & Muenchow, 2015; Goetz, Brenning, et al., 2015; Schmaltz,
Steger, & Glade, 2017).

24.3 Results: How to Evaluate a Statistical Landslide
Susceptibility Model

It is well accepted that a quantitative quality evaluation is indispensable in statistical land-
slide susceptibility modeling. Nevertheless, there exists published research that still avoids a
numerical cross-check with ground-truth information (Malamud et al., 2014; Reichenbach
et al., 2018). An assessment of the goodness-of-fit (also referred to as fitting performance)
relates to a quantitative comparison of a training sample with spatially predicted susceptibil-
ity scores. The goodness-of-fit provides an indication on how closely a model fits to a data
sample that was applied to calibrate a model. A confrontation of spatially transferred suscep-
tibility values with model-independent ground-truth information (i.e., test sample) delivers a
more meaningful indication of a model’s ability to foresee future landslide occurrence (i.e.,
predictive performance). Indeed, frequently cited research emphasizes that the estimation of
predictive performance is essential in statistical landslide susceptibility modeling (Beguería,
2006; Brenning, 2005; Chung & Fabbri, 2003; Frattini et al., 2010; Guzzetti, Reichenbach,
Ardizzone, Cardinali, & Galli, 2006; Remondo et al., 2003).

Threshold-independent performance metrics, such as the area under the receiver operat-
ing characteristics curve (AUROC; Swets, 1988), are able to summarize how well a training
sample or an “unseen” test sample spatially coincides with predicted susceptibilities.
In analogy to the AUROC, also the commonly applied area under the success rate (i.e.,
goodness-of-fit) and prediction rate curve (i.e., predictive performance) ranges between
0.5 (i.e., random model) and 1 (i.e., perfect model) (Chung & Fabbri, 2003; Frattini et al.,
2010; Zêzere et al., 2017).

In statistical landslide susceptibility modeling, several strategies have been tested to
divide an initial data sample into training and test data. A spatially random onefold splitting
of the initial binary response into one training (e.g., 80% of cases) and one test sample (the
remaining 20%) is presumably the most commonly applied partitioning strategy in statistical
landslide susceptibility modeling (Kohavi, 1995; Neuhäuser, Damm, & Terhorst, 2012). In
landslide literature, such holdout partitioning is frequently, and not quite correctly, referred
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to as cross-validation (CV) (Goetz, Guthrie, & Brenning, 2011). A spatially explicit partition-
ing leads to a modeling region, which refers to the training data, and a spatially independent
validation region (i.e., test data) (Lombardo, Cama, Maerker, & Rotigliano, 2014; Petschko
et al., 2014). The third option, namely a time-specific partitioning of training and test sam-
ples, is subject to the availability of temporal information (Chung & Fabbri, 2005; Remondo
et al., 2003; Zêzere, Garcia, Oliveira, & Reis, 2008).

A major downside of frequently applied onefold partitioning strategies, such as holdout
validation, is the necessity to find a reasonable balance between an adequate sample size for
model training and a sufficient number of observations for estimating the predictive perfor-
mance (Brenning, 2012a; Kohavi, 1995). State-of-the-art CV and novel spatial CV (SCV) over-
come this drawback and enable to utilize all data for model training and validation. In
summary, a multifold partitioning of the initial data into many separate training and test
samples is the basis for both, CV and SCV. Within each of the usually more than 100 itera-
tions, a training set is applied to predict landslide susceptibility scores, while the remaining
test observations are utilized to estimate a performance measure (e.g., one AUROC for each
iteration). The main difference between CV and SCV lies in the way the iterative splitting of
the training sample is performed. CV relates to a repeated nonspatial and SCV (Fig. 24-6) to
a repeated spatial splitting (i.e., based on k-means clustering) of training and test data
(Brenning, 2012b; Steger, Brenning, Bell, & Glade, 2016). A further benefit of applying a mul-
tifold spatial partitioning design is the possibility to analyze the precision and robustness of
obtained performance estimates and to test the nonspatial and spatial transferability of
modeling results (Goetz, Brenning, et al., 2015; Hastie et al., 2011; Lombardo et al., 2014;
Petschko et al., 2014; Schratz et al., 2018; Steger et al., 2017; Steger, 2017).

In the context of the growing popularity of highly flexible nonlinear modeling algorithms,
insights into the degree of model overfitting can be valuable, because a too flexible and over-
parameterized model may break down in explaining external data (Hand et al., 2001;
Hosmer, Lemeshow, & Sturdivant, 2013). In statistical landslide susceptibility modeling, a
confrontation of goodness-of-fit estimates with predictive performances can be indicative of
a poor model generalization. A concurrent presence of a very high goodness-of-fit and a sub-
stantially lower predictive performance points to a too close adjustment to training observa-
tions (Fig. 24-7).

Uncertainties in landslide susceptibility modeling are mainly approached by analyzing
the dispersion or confidence of model parameters and predictions or by focusing on the vari-
ance of obtained performance estimates (Brenning et al., 2015; Petschko et al., 2014; Rossi,
Guzzetti, Reichenbach, Mondini, & Peruccacci, 2010; Steger et al., 2017). The analysis of dif-
ferences between models that are based on a heterogeneous data quality can provide
insights into the effects of input data errors, such as inaccurate or biased landslide informa-
tion (Ardizzone, Cardinali, Carrara, Guzzetti, & Reichenbach, 2002; Fressard et al., 2014;
Galli et al., 2008; Steger, Brenning, Bell, Petschko, et al., 2016; Steger et al., 2017; Zêzere,
Henriques, Garcia, & Piedade, 2009).
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FIGURE 24-6 Maps that visualize the multifold spatial partitioning (i.e., SCV) of an initial dataset into training (black points) and test observations (gray
points). The example relates to two repetitions and fivefold per repetition, resulting in 10 performance estimates (i.e., AUROC values). For scientific
purposes, a substantially higher number of repetitions (e.g., n5100) is recommended. SCV using the metric AUROC can be performed using the R package
“sperrorest.” SCV, Spatial cross-validation.



24.4 Discussion
24.4.1 Challenges in Statistical Landslide Susceptibility Modeling

The discussion section of many statistical landslide susceptibility studies focuses on obtained
numerical results by, e.g., elaborating obtained fitting or predictive performances in response
to input data modifications. However, conceptual thoughts, the geomorphic plausibility of
the results, or the explanatory power of calculated validation results are rarely discussed
(Demoulin & Chung, 2007; Steger, 2017; Steger, Brenning, Bell, Petschko, et al., 2016).

A look at one of the most crucial assumptions behind statistical landslide susceptibility
modeling, namely the supposition of steady-state (static) environmental conditions (see
Section 24.2.1), reveals some major challenges, such as the danger of ignoring dynamic
causes that are critical for explaining the location of landslide occurrence. A consideration of
omnipresent geomorphic dynamics within mountainous landscapes (due to human impact
or climate change) may even raise the question of whether the assumption of time-
invariance can be considered valid for many frequently applied predisposing environmental

FIGURE 24-7 Two landslide susceptibility maps that visualize a varying degree of model overfitting. The decision
tree model (top) adapted itself too strongly to training observations (AUROC 0.96) and therefore to random
structures in the training data as well. The resulting model was substantially less performant (20.21) to predict
unseen observations (AUROC 0.75). The regression model (bottom), based on identical data, was able to generalize
observed associations and thus performed similarly well to explain training and test data (AUROC difference 0.02).
Data based on Steger, S. (2017). Spatial analysis and statistical modelling of landslide susceptibility—pitfalls and
solutions (Dissertation thesis). Vienna: University of Vienna. Retrieved February 22, 2018, from ,http://othes.univie.
ac.at/47980/..
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variables. Linking landslide observations of unknown age with actually nonstatic environ-
mental conditions, such as land cover, might open the door for distorted correlations and
misleading landslide susceptibility maps. Continuous landscape evolution has the
inevitable consequence that no environmental variable (e.g., slope angle, soil properties) can
be considered as eternally valid. For this reason, also each subsequent “static” model and
map exhibits a date of expiry (Steger, 2017).

In this context, it is worthwhile mentioning that the chosen explanatory variables also
control whether the produced model “solely” relates to past landslides (i.e., landslide detec-
tion approach) or additionally enables an approximation of future landslide locations. An
exclusive description of past slope movements can be avoided by disregarding explanatory
variables that specifically refer to the environmental remnants of past slope instabilities.
From this perspective, it can be questioned whether a consideration of local morphologies
derived from very high-resolution DTMs (e.g., roughness or curvature maps) or specific veg-
etation indices (e.g., normalized difference vegetation index) is appropriate to produce maps
that should indicate areas of “future” slope instability (van Den Eeckhaut et al., 2006).
Several researchers aimed to avoid a direct characterization of postfailure morphological
conditions (i.e., the topography after slope failure) by sampling landslide locations in prox-
imity to mapped landslide polygons or by estimating the prefailure slope gradient
(Dagdelenler, Nefeslioglu, & Gokceoglu, 2016; Nefeslioglu, Gokceoglu, & Sonmez, 2008;
Süzen & Doyuran, 2004; van Den Eeckhaut et al., 2006).

In practice, higher resolved remote sensing data (e.g., DTM derivatives) are frequently
used in conjunction with coarser scaled thematic information (e.g., land cover, lithology).
Obviously, the required GIS-based harmonization of input data (e.g., resampling data to a
uniform pixel size) does not change the original information content. Finding a balance
between an adequate topographical representation and coarse scaled thematic information
can be a challenging task. In fact, the appearance of the final maps as well as effect sizes of
explanatory variables are codetermined by the level of data detail (i.e., its original scale)
(Arnone et al., 2016; Fressard et al., 2014; Steger, Brenning, Bell, Petschko, et al., 2016).

Ideally, a statistical landslide susceptibility model should be based on a representative
and positionally accurate subsample of slope instabilities that ever occurred in an area.
Particularly for large areas, such unbiased landslide information is rarely available
(Brardinoni et al., 2003; Guzzetti et al., 2012; Steger et al., 2017). Published research indicates
that potential errors inherent in the underlying landslide data are often ignored and rarely
discussed. However, ignoring the likely presence of such input data flaws may pave the way
to unreasonable modeling and validation results (Ardizzone et al., 2002; Fressard et al.,
2014). From this perspective, it is important to note that an application of strongly generaliz-
ing algorithms or novel multilevel models can offer protection against a subsequent direct
error propagation (Steger, Brenning, Bell, & Glade, 2016; Steger et al., 2017).

Few publications have yet explored the effect of alternative strategies to sample
stable terrain (i.e., absence data), even though a stratified sampling of nonlandslides might
be beneficial to lessen common biases arising from erroneous landslide information
(Conoscenti et al., 2016; Lima et al., 2017; van Den Eeckhaut et al., 2012). The sampling of
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landslide absence information is usually based on a planar projection of the study area and
does not account for differences between the planar area and the topographically corrected
“true” surface area. The conventional random sampling of landslide absences may therefore
lead to another bias in the binary response, namely an underrepresentation of stable areas
in steep terrain. The consequent overrepresentation of landslide absences in flat terrain may
reinforce misleading modeling results and overoptimistic performance estimates (Steger &
Glade, 2017; Steger, 2017). In this context, recent studies also emphasize that the respective
study area definition (i.e., its delineation) determines the environmental characteristics
observed at (randomly sampled) nonlandslide locations and therefore the final modeling
and validation results as well (Gordo, Zêzere, & Marques, 2017; Steger & Glade, 2017).

Despite steady methodical advances, a quantification of the actual and “true” prediction
quality and uncertainty remains impossible, mainly due to limited quantitative information
on input data reliability, due to the absence of a perfect reference (i.e., the “truth”) and due
to the omnipresence of unquantifiable uncertainties (Oreskes et al., 1994). An iterative maxi-
mization of predictive performance, as common practice in statistical landslide susceptibility
modeling, might not always be expedient. In fact, the possibility to artificially inflate predic-
tive performances by including easy to classify terrain (e.g., flat zones) or by modeling with
error-describing explanatory variables highlights that obtained numerical validation results
should be interpreted with great care. Recent examples highlight that a purely quantitative
model selection might even reinforce implausible or even wrong modeling results (Steger,
Brenning, Bell, Petschko, et al., 2016; Steger et al., 2017). Especially in the frequent presence
of imperfect input data, the benefit of holistic quality checks, based on quantitative (e.g., pre-
dictive performance, uncertainties) and qualitative (e.g., geomorphic plausibility, prediction
pattern) perspectives, should not fall into oblivion (Demoulin & Chung, 2007; Guzzetti et al.,
1999; Steger, Brenning, Bell, Petschko, et al., 2016; Zêzere et al., 2017).

For decision makers, qualitative aspects like the general appearance of a landslide sus-
ceptibility map can be a decisive argument to favor a less performant model over the quanti-
tatively “best.” For instance, noisy-appearing classified landslide susceptibility maps, as
produced by algorithms that split continuously scaled explanatory variables into classes (e.g.,
tree-based models, weights of evidence), might be less applicable in spatial planning (e.g.,
Fig. 24-8A and B) (Goetz, Brenning, et al., 2015; Steger, Brenning, Bell, Petschko, et al.,
2016). The example of Lower Austria (a province of Austria) highlights that for spatial plan-
ning purposes, a generalized additive model was selected, not only due to its high predictive
performance, but also because of the algorithms’ high transparency (i.e., interpretability), its
ability to produce coherent prediction patterns, and its capability to account for linear and
nonlinear relationships (Petschko, 2014).

24.4.2 Beyond a Data-Driven Identification of Landslide-Prone Zones

Statistical modeling can also be exploited for applications that go beyond the “sole” identifi-
cation of landslide-prone areas, such as the evaluation of landslide controlling factors, the
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establishment of regional early warning systems or the assessment of landslide hazard and
risk (Bell et al., 2014; Remondo et al., 2005; Vorpahl et al., 2012).

In statistical landslide modeling, the a priori differentiation between spatial prediction
tasks (i.e., susceptibility mapping) and analytical tasks (e.g., identification of landslide

FIGURE 24-8 Example of unclassified (continuous scale) and classified (terciles; excerpts) landslide susceptibility
maps produced with identical input data, but different modeling algorithms (A�E). Note that the tree-based
models (A and B) produce an erratic spatial prediction surface of classified maps. The area under the curve (AUC)
illustrates the estimated predictive performance (i.e. AUROC) which is based on a 20% test sample (n5 1244). The
underlying data relate to Steger (2017) (A) and Steger, Brenning, Bell, Petschko, et al. (2016) (B�E).
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controls) is recommended as it affects the modeling design (Brenning, 2012a). Various stud-
ies highlight that statistical landslide models can be valuable to explore environmental con-
trols on landslide occurrence or associated geomorphic effects (Vorpahl et al., 2012). For
example, multiple variable models were adopted to explain the spatial variation of catchment
sediment yield (Broeckx et al., 2016), empirical relationships between landsliding and forest
harvesting (Goetz, Guthrie, & Brenning, 2015), or forest cover (Schmaltz et al., 2017) as well
as landslide initiation frequency along highways (Brenning et al., 2015). An attempt to pro-
vide insights into “black box” empirical predictive models might even be of benefit when
communicating spatial modeling results to critical decision makers (Brenning, 2012a;
Budimir et al., 2015).

Insights into landslide predisposing factors can be obtained by interpreting the results of
automated data selection procedures (Conoscenti et al., 2016), variable importance assess-
ments (Steger, Brenning, Bell, & Glade, 2016), model response curves (Vorpahl et al., 2012),
or by interpreting odds ratios of explanatory variables (Brenning et al., 2015; Goetz, Guthrie,
et al., 2015; Schmaltz et al., 2017). In many cases, an estimation of odds ratios can be
endorsed as this measure of association allows to express modeled relations while simulta-
neously accounting for other confounding variables (Hosmer et al., 2013; Steger, Brenning,
Bell, & Glade, 2016). However, it is important to consider that explanatory variables can also
be correlated with landslide observations because of systematic input data errors, due to spa-
tial associations between an explanatory variable and a hidden spatial confounder or simply
by chance (especially in the case of low sample size). The well-known phrase “correlation
does not imply causation” is of special relevance when analyzing statistical relationships
obtained from imperfect (and often biased) input data (Steger, Brenning, Bell, Petschko,
et al., 2016; Steger et al., 2017).

In some recent publications, examples can be found that use the terms landslide suscep-
tibility, landslide hazard, and landslide risk interchangeably, even though they relate to dis-
similar levels of information. A landslide hazard analysis integrates the three components of
a landslide event, namely its location (i.e., susceptibility), its timing, and its magnitude (or
intensity). A proper landslide hazard map should therefore depict the spatiotemporal proba-
bility that a landslide of a specific intensity occurs (Guzzetti, Reichenbach, Cardinali, Galli, &
Ardizzone, 2005).

Information on typical landslide sizes can be obtained from an inventory of mapped land-
slide polygons and visualized via area-frequency plots (Hovius, Stark, & Allen, 1997;
Malamud, Turcotte, Guzzetti, & Reichenbach, 2004; Rosi et al., 2018). Malamud et al. (2004)
confronted three substantially complete regional-scale landslide inventories and found that
the frequency for medium and large landslides can be approximated according an inverse
power law. Today, it is still under debate whether frequently calculated “rollover-effects”
(highest likelihood to observe medium-sized landslides) mainly describe the real-world land-
slide distribution or are a direct consequence of rather incomplete landslide information
(Golovko et al., 2017). A valuable GIS-based tool for the statistical estimation of landslide
sizes was made accessible by Rossi et al. (2012).
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The assessment of the temporal probability of landslides requires the availability of
detailed multitemporal information. Within a statistical-oriented landslide hazard assess-
ment, the temporal component is often deduced from recurrence intervals of estimated criti-
cal rainfall conditions or by elaborating the frequency of landsliding within larger spatial
units (Corominas & Moya, 2008; Glade, Anderson, & Crozier, 2005; Guzzetti et al., 2005;
Bogaard & Greco, 2018; Pereira, Garcia, Zêzere, Oliveira, & Silva, 2016). Most statistical haz-
ard assessments relate to polygon-based mapping units (e.g., slope units), also to facilitate a
spatially differentiated estimation of exceedance probabilities (Das, Stein, Kerle, & Dadhwal,
2011; Guzzetti et al., 2005; Jaiswal, van Westen, & Jetten, 2010). The assessment of landslide
hazard via statistical procedures is known to be affected by conceptual limitations and uncer-
tainties, such as the common neglection of magnitude�frequency relationships or the
assumption that spatial, temporal, and size probabilities are independent (Guzzetti et al.,
2005; Guzzetti, Galli, Reichenbach, Ardizzone, & Cardinali, 2006; Das et al., 2011; Jaiswal
et al., 2010).

The damage potential of slope movements, that is, the probability of losses caused by nat-
ural or human-induced hazards can be defined as landslide risk (European Commission,
2010) and expressed as the product of landslide hazard, the exposed elements at risk (e.g.,
buildings, agricultural land, population, economic activities) and their vulnerabilities (Glade
et al., 2005; Varnes, 1984). In other terms, a quantitative landslide risk assessment “takes the
outcomes of hazard mapping, and assesses the potential damage [. . .], accounting for tempo-
ral and spatial probability and vulnerability” (Fell et al., 2008, p. 86). The strong focus on the
spatial domain makes the application of GIS a natural choice in landslide risk assessment
(van Westen & Greiving, 2017). Indeed, static maps that depict the location and attributes of
elements at risk may be suited to represent immobile features, such as buildings or infra-
structure, whereas a dynamic perspective may be required for mobile elements, such as pop-
ulation (e.g., commuters, tourists). In this context, a GIS-based quantification of population
risks should be founded on dynamic spatial modeling, such as that presented by Renner
et al. (2018). Pereira et al. (2016) present an example of a statistics-oriented landslide risk
assessment using a vector data model and GIS. This case study illustrates the manifold steps
and some uncertainties involved in a statistics-driven landslide risk assessment. Even though
the quantitative assessment of landslide risk is often regarded as key toward an efficacious
risk management in mountainous areas, it should not be forgotten that each previous analy-
sis step (e.g., susceptibility, hazard, vulnerability) has its own limitations and that a propaga-
tion of uncertainties into each subsequent analysis is likely.

24.5 Conclusion: A Word of Caution
The currently available wealth of specialized GIS and statistical software may give rise to the
impression that a statistics-driven spatial analysis of landslides or their consequences might
be straightforward given a set of available input data. However, the conducted elaboration of
common pitfalls in statistical landslide susceptibility modeling highlighted many potential
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sources of errors and uncertainties. Under real-world conditions and particularly for large
areas, environmental spatial information will never be perfect. The fact that flawed input
data inevitably distorts subsequent empirical models poses a particular challenge in statisti-
cal landslide analysis. Not only landslide susceptibility maps, but also preceding automated
variable selections, variable importance assessments, or estimated effect sizes should there-
fore be viewed with utmost care and in the light of possible data errors. Also in statistical
landslide susceptibility modeling, data biases can propagate directly into modeling and vali-
dation results and cause modeled associations that are directly opposite to the truth. In
many cases, and particularly under data bias conditions, calculated prediction skills may not
be a great guide to model and variable choice. Thus, it is recommended not to adopt or
interpret obtained validation results as a kind of universal yardstick. The frequently observed
strict adherence to the credo “higher statistical performance equals a more appropriate
model” may actually pave the way to misleading modeling results. It is advised to put a
stronger effort in uncovering and eliminating input data errors and to adapt the modeling
design according noneliminable input data flaws. This is still easier said than done, but first
efforts are already available. A continuous multiperspective evaluation of modeling results
may be vital to assign meaning to the obtained empirical associations. Despite remarkable
technical advancements, qualitative considerations, plausibility checks, and geomorphic
expertise will remain vital to avoid inappropriate modeling results, particularly when model-
ing outcomes aim to guide political or economic activities.

It is fair to say that errors and uncertainties inherent in landslide susceptibility models
will also affect the reliability of each subsequent analysis. The impact of data and model
uncertainties can even be reinforced when combining different (uncertain) modeling results.
From this point of view, one may even question the practical usability or reliability of purely
number-based regional-scale landslide hazard and risk assessments.
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Broeckx, J., Vanmaercke, M., Bălteanu, D., Chendeş, V., Sima, M., Enciu, P., & Poesen, J. (2016). Linking land-
slide susceptibility to sediment yield at regional scale: Application to Romania. Geomorphology, 268,
222�232.

Budimir, M. E. A., Atkinson, P. M., & Lewis, H. G. (2015). A systematic review of landslide probability map-
ping using logistic regression. Landslides, 12(3), 419�436.

Cascini, L. (2008). Applicability of landslide susceptibility and hazard zoning at different scales. Engineering
Geology, 102(3�4), 164�177.

Chapter 24 • Statistical Modeling of Landslides: Landslide Susceptibility and Beyond 539

http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref6
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref6
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref6
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref7
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref7
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref7
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref7
https://cran.r-project.org/web/packages/rgrass7/index.html
https://cran.r-project.org/web/packages/rgrass7/index.html
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref9
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref9
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref9
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref9
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref10
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref10
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref10
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref10
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref11
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref11
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref12
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref12
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref12
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref12
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref13
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref13
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref13
https://cran.r-project.org/web/packages/RSAGA/index.html
https://cran.r-project.org/web/packages/RPyGeo/index.html
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref14
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref14
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref14
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref14
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6352393
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6352393
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6352393
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref15
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref15
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref15
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref15
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref16
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref16
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref16
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref16
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref16
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref16
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref17
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref17
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref17
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref18
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref18
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref18
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref18


Catani, F., Lagomarsino, D., Segoni, S., & Tofani, V. (2013). Landslide susceptibility estimation by random for-
ests technique: Sensitivity and scaling issues. Natural Hazards and Earth System Science, 13(11),
2815�2831.

Cervi, F., Berti, M., Borgatti, L., Ronchetti, F., Manenti, F., & Corsini, A. (2010). Comparing predictive capabil-
ity of statistical and deterministic methods for landslide susceptibility mapping: A case study in the north-
ern Apennines (Reggio Emilia Province, Italy). Landslides, 7(4), 433�444.

Chung, C. F., & Fabbri, A. G. (2005). Systematic procedures of landslide hazard mapping for risk assessment
using spatial prediction models. Landslide hazard and risk (pp. 139�177). New York: Wiley.

Chung, C. J., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping.
Natural Hazards, 30(3), 451�472.

Clerici, A., Perego, S., Tellini, C., & Vescovi, P. (2006). A GIS-based automated procedure for landslide suscep-
tibility mapping by the Conditional Analysis method: The Baganza valley case study (Italian Northern
Apennines). Environmental Geology, 50(7), 941�961.

Colombo, A., Lanteri, L., Ramasco, M., & Troisi, C. (2005). Systematic GIS-based landslide inventory as the
first step for effective landslide-hazard management. Landslides, 2(4), 291�301.

Conoscenti, C., Rotigliano, E., Cama, M., Caraballo-Arias, N. A., Lombardo, L., & Agnesi, V. (2016). Exploring
the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy.
Geomorphology, 261, 222�235.

Corominas, J., & Moya, J. (2008). A review of assessing landslide frequency for hazard zoning purposes.
Engineering Geology, 102(3�4), 193�213.

Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., Catani, F., et al. (2013).
Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the
Environment, 73(2), 209�263.

Costanzo, D., Rotigliano, E., Irigaray, C., Jiménez-Perálvarez, J. D., & Chacón, J. (2012). Factors selection in
landslide susceptibility modelling on large scale following the gis matrix method: Application to the river
Beiro basin (Spain). Natural Hazards and Earth System Sciences, 12(2), 327�340.

Crawley, M. J. (2013). The R book (2nd ed.). Chichester, West Sussex: Wiley.

Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. TRB special report. Landslides:
Investigation and mitigation (Vol. 247). Washington, DC: National Academy Press.

Dagdelenler, G., Nefeslioglu, H. A., & Gokceoglu, C. (2016). Modification of seed cell sampling strategy for
landslide susceptibility mapping: An application from the Eastern part of the Gallipoli Peninsula
(Canakkale, Turkey). Bulletin of Engineering Geology and the Environment, 75(2), 575�590.

Das, I., Stein, A., Kerle, N., & Dadhwal, V. K. (2011). Probabilistic landslide hazard assessment using homoge-
neous susceptible units (HSU) along a national highway corridor in the northern Himalayas, India.
Landslides, 8(3), 293�308.

Deb, S. K., & El-Kadi, A. I. (2009). Susceptibility assessment of shallow landslides on Oahu, Hawaii, under
extreme-rainfall events. Geomorphology, 108(3�4), 219�233.

Demoulin, A., & Chung, C.-J. F. (2007). Mapping landslide susceptibility from small datasets: A case study in
the Pays de Herve (E Belgium). Geomorphology, 89(3�4), 391�404.

Dou, J., Bui, D. T., Yunus, A. P., Jia, K., Song, X., Revhaug, I., Xia, H., et al. (2015). Optimization of causative
factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata,
Japan. PLoS One, 10(7), e0133262.

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of
MaxEnt for ecologists. Diversity and Distributions, 17(1), 43�57.

European Commission. (2010). Risk assessment and mapping guidelines for disaster management. European
Commission. Retrieved February 12, 2018, from ,https://ec.europa.eu/echo/files/about/
COMM_PDF_SEC_2010_1626_F_staff_working_document_en.pdf..

540 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES

http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref19
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref19
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref19
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref19
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref20
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref20
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref20
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref20
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref21
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref21
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref21
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref22
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref22
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref22
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref23
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref23
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref23
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref23
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref24
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref24
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref24
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref25
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref25
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref25
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref25
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref26
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref26
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref26
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref26
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref27
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref27
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref27
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref27
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref28
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref28
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref28
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref28
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref29
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref30
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref30
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref31
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref31
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref31
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref31
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref32
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref32
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref32
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref32
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref33
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref33
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref33
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref33
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref34
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref34
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref34
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref34
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref35
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref35
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref35
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref36
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref36
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref36
https://ec.europa.eu/echo/files/about/COMM_PDF_SEC_2010_1626_F_staff_working_document_en.pdf
https://ec.europa.eu/echo/files/about/COMM_PDF_SEC_2010_1626_F_staff_working_document_en.pdf


Felicísimo, Á. M., Cuartero, A., Remondo, J., & Quirós, E. (2013). Mapping landslide susceptibility with logistic
regression, multiple adaptive regression splines, classification and regression trees, and maximum
entropy methods: a comparative study. Landslides, 10(2), 175�189.

Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide sus-
ceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3�4), 85�98.

Fiorucci, F., Giordan, D., Santangelo, M., Dutto, F., Rossi, M., & Guzzetti, F. (2018). Criteria for the optimal
selection of remote sensing optical images to map event landslides. Natural Hazards and Earth System
Sciences, 18(1), 405�417.

Frattini, P., Crosta, G., & Carrara, A. (2010). Techniques for evaluating the performance of landslide suscepti-
bility models. Engineering Geology, 111(1�4), 62�72.

Fressard, M., Thiery, Y., & Maquaire, O. (2014). Which data for quantitative landslide susceptibility mapping
at operational scale? Case study of the Pays d’Auge plateau hillslopes (Normandy, France). Natural
Hazards and Earth System Science, 14(3), 569�588.

Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., & Reichenbach, P. (2008). Comparing landslide inventory
maps. Geomorphology, 94(3�4), 268�289.

Glade, T., Anderson, M., & Crozier, M. J. (Eds.), (2005). Landslide hazard and risk: Issues, concepts and
approach. Chichester: John Wiley.

Goetz, Guthrie, R. H., & Brenning, A. (2015). Forest harvesting is associated with increased landslide activity
during an extreme rainstorm on Vancouver Island, Canada. Natural Hazards and Earth System Science,
15(6), 1311�1330.

Goetz, J. N., Brenning, A., Petschko, H., & Leopold, P. (2015). Evaluating machine learning and statistical pre-
diction techniques for landslide susceptibility modeling. Computers & Geosciences, 81, 1�11.

Goetz, J. N., Guthrie, R. H., & Brenning, A. (2011). Integrating physical and empirical landslide susceptibility
models using generalized additive models. Geomorphology, 129(3), 376�386.

Golovko, D., Roessner, S., Behling, R., Wetzel, H.-U., & Kleinschmit, B. (2017). Evaluation of remote-sensing-
based landslide inventories for hazard assessment in Southern Kyrgyzstan. Remote Sensing, 9(9), 943.

Gordo, C., Zêzere, J. L., & Marques, R. (2017). Efeitos da delimitação da área de estudo nos resultados da
avaliação da suscetibili-dade à rotura de movimentos de vertente com recurso a métodos estatísticos. In
Actas do VIII Congresso Nacional de Geomorfologia, Porto, 6 e 7 de outubro (pp. 95�98).

Gould, S. J. (1965). Is uniformitarianism necessary? American Journal of Science, 263(3), 223�228.

Guillard, C., & Zêzere, J. (2012). Landslide susceptibility assessment and validation in the framework of
municipal planning in Portugal: The case of Loures municipality. Environmental Management, 50(4),
721�735.

Guzzetti, F. (2006). Landslide hazard and risk assessment (Dissertation thesis). Bonn: Rheinische Friedrich-
Wilhelms-Univestität. Retrieved December 15, 2017, from ,http://hss.ulb.uni-bonn.de/diss_online..

Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of
current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1),
181�216.

Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., & Cardinali, M. (2006). Landslide hazard assessment in
the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Science, 6(1), 115�131.

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.-T. (2012). Landslide
inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1�2), 42�66.

Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., & Galli, M. (2006). Estimating the quality of land-
slide susceptibility models. Geomorphology, 81(1), 166�184.

Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard
assessment at the basin scale. Geomorphology, 72(1�4), 272�299.

Chapter 24 • Statistical Modeling of Landslides: Landslide Susceptibility and Beyond 541

http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref37
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref37
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref37
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref37
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref38
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref38
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref38
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref38
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref39
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref39
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref39
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref39
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref40
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref40
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref40
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref40
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref41
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref41
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref41
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref41
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref42
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref42
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref42
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref42
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref43
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref43
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref44
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref44
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref44
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref44
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref45
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref45
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref45
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref46
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref46
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref46
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref47
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref47
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref48
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref48
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref49
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref49
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref49
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref49
http://hss.ulb.uni-bonn.de/diss_online
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref50
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref50
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref50
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref50
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref51
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref51
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref51
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref52
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref52
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref52
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref52
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref53
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref53
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref53
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref54
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref54
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref54
http://refhub.elsevier.com/B978-0-12-815226-3.00024-7/sbref54


Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining. Cambridge, MA: MIT Press.

Hastie, T. J. (2013). gam: Generalized additive models. R package. Retrieved June 29, 2017, from ,http://
cran.r-project.org/web/packages/gam/..

Hastie, T., Tibshirani, R., & Friedman, J. (2011). The elements of statistical learning: Data mining, inference,
and prediction, second edition. New York: Springer. (2nd ed. 2009. Corr. 7th printing 2013.).

Heckmann, T., Gegg, K., Gegg, A., & Becht, M. (2014). Sample size matters: Investigating the effect of sample
size on a logistic regression susceptibility model for debris flows. Natural Hazards and Earth System
Science, 14(2), 259�278.

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. Wiley series in probability
and statistics (3rd ed.). Hoboken, NJ: Wiley.

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference frame-
work. Journal of Computational and Graphical Statistics, 15(3), 651�674.

Hovius, N., Stark, C. P., & Allen, P. A. (1997). Sediment flux from a mountain belt derived by landslide map-
ping. Geology, 25(3), 231�234.

Hungr, O., Leroueil, S., & Picarelli, L. (2013). The Varnes classification of landslide types, an update.
Landslides, 11(2), 167�194.

Hussin, H. Y., Zumpano, V., Reichenbach, P., Sterlacchini, S., Micu, M., van Westen, C., & Bălteanu, D.
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25.1 Introduction
Groundwater has been diminishing due to the large demands as a consequence of rapid
population growth and global warming (Hashemi, 2015; Vörösmarty, Green, Salisbury, &
Lammers, 2000). Human activities, among others, have greatly disturbed the balance of
groundwater resources during the last half-century (e.g., Antonellini, Allen, Mollema, Capo,
& Greggio, 2015; Haj-Amor, Ritzema, Hashemi, & Bouri, 2018; Hashemi, Berndtsson,
Kompani-Zare, & Persson, 2013). In Iran, due to the shortage of surface water resources,
groundwater supplies the majority of water used in the agricultural sector (Alizadeh &
Keshavarz, 2005; Ghahari, Hashemi, & Berndtsson, 2014; Hashemi, Berndtsson, & Persson,
2015; Hashemi, Uvo, & Berndtsson, 2015; Mesgaran, Madani, Hashemi, & Azadi, 2017).
Moreover, the nationwide drawdown in groundwater levels and the negative balance in most
of the major aquifers in Iran have largely contributed to the present water and environmental
crisis in the country (Rahnema & Mirassi, 2014; Tizro, Voudouris, & Eini, 2007). Excessive
pumping over the past few decades has been disturbing the groundwater balance, causing a
substantial decrease in groundwater quantity as well as deterioration of groundwater quality
(e.g., Allen & Suchy, 2001; Custodio, 2018; Gholami et al., 2017; Motevalli, Moradi, & Javadi,
2018). This procedure has caused saltwater intrusion and salinization of groundwater
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reserves, particularly in the coastal aquifers (Gholami, Aghagoli, & Kalteh, 2015; Haj-Amor,
Hashemi, & Bouri, 2017).

To identify factors affecting the salinity of coastal aquifers and due to the complexity of
the aquifer system (Martín-Arias, Martínez-Santos, & Andreo, 2018), the index-based meth-
ods have been widely used as the most effective and developed tools relative to the numeri-
cal (e.g., Colombani, Mastrocicco, & Giambastiani, 2015; Jakovovic, Werner, & Simmons,
2011; Nakagawa, Momii, & Berndtsson, 2005) and experimental methods (e.g., Haj-Amor
et al., 2017; Jakovovic et al., 2012; Werner, Jakovovic, Barry, Simmons, & Zhang, 2012;
Werner, Jakovovic, & Simmons, 2009). The index-based models are commonly used across
the globe such as in the United States, Canada, Italy, Spain, Tunisia, Algeria, India, Malaysia,
and Iran (e.g., Djoudar/Hallal, Zahouani, & Khaldi, 2018; Gornitz, Daniels, White, &
Birdwell, 1994; Kazakis, Spiliotis, Voudouris, Pliakas, & Papadopoulos, 2018; Klassen & Allen,
2017; Motevalli, Moradi, et al., 2018; Santha Sophiya & Syed, 2013; Singaraja et al., 2015).

Despite the widespread use of the index-based models, there are deficiencies regarding
modeling of the vulnerability to salinity that need to be addressed. One of the most com-
monly encountered problems with these types of model is the personal rating and weight of
the considered factors in the evaluation of vulnerability to groundwater salinization (VGS).
These issues have been recently addressed by applying the data-mining techniques such as
artificial intelligence (Fijani, Nadiri, Asghari Moghaddam, Tsai, & Dixon, 2013) and ensemble
hybrid multiwavelet (Barzegar & Asghari Moghaddam, 2016) in the hydrogeological studies
and water quality evaluations, that is, nitrate contamination (Rodriguez-galiano, Paula,
Garcia-soldado, Chica-olmo, & Ribeiro, 2014).

It is assumed that considering a variety of factors, involved in the salinity mechanism,
combined with the data-mining techniques can increase the accuracy of the vulnerability
map on the coastlines (Luoma, Okkonen, & Korkka-Niemi, 2017) that are exposed to seawa-
ter intrusion and the offshore region located in the face of saltwater up-coning (Motevalli,
Moradi, et al., 2018). In this regard, this research used the data-mining models (DMMs)
including the generalized additive model (GAM), generalized linear model (GLM), and sup-
port vector machines (SVM) for spatial modeling of VGS of the Sari-Neka Aquifer in northern
Iran. In this research, in order to minimize the personal rate and weighting of the effecting
factors, hydrogeological factors were introduced to the DMMs as the main layer. To do this,
three steps were undertaken as follows:

• Modeling the aquifer salinity using three DMMs including GAM, GLM, and SVM;
• Assessing the accuracy of DMMs for vulnerability to groundwater salinization; and
• Ranking the effective factors in the modeling of vulnerability to groundwater salinization.

25.2 Materials and Methods
25.2.1 Study Area

The Sari-Neka Aquifer is located between 52�59014v and 53�24048v east longitude and
36�31036v and 36�49013v north latitude, occupying an area of 953 km2 in eastern Mazandaran
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Province, Iran (Fig. 25-1). The average annual precipitation for the studied area is 663 mm.
The geological unit of the region is almost homogeneous and includes Q2

CP2 covered by the
coastal plain deposits consisting of gravel and sand. The maximum thickness of the aquifer
is found in the Tajan and Neka River fans. In the case of salinization, saltwater moves into
the marine sediments, mainly through the above-mentioned river fans, and replaces the
freshwater [General Geophysical Company of Iran (GGCI), 1978].

25.2.2 Data Collection

The data used in this research consist of water well quality data [electrical conductivity (EC)],
groundwater level measured in the piezometric wells, geophysical investigation, and density
of pumping wells acquired from the Water Company of Mazandaran Province. The geophys-
ical investigation of the Sari-Neka Aquifer was conducted using 22 profiles and 147 electrical
soundings using a geoelectric method (GGCI, 1978) (Fig. 25-1). To assess the VGS, the qual-
ity data from 460 pumping wells were collected. The data were collected from September
2009 to June 2014. The acquired datasets of the Sari-Neka Plain for this study are presented
in Table 25-1.

FIGURE 25-1 The location of the Sari-Neka Aquifer in Mazandaran Province, Iran.
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25.2.3 Defining a Cutoff Value for Input Samples

In order to provide input data into the DMMs, the EC measured in study area’s pumping
wells were used. A cutoff value was chosen as the threshold. The amount of EC equal to or
higher than the selected cutoff value indicated the vulnerability of the groundwater to salin-
ity. To define the cutoff value, the salinity standard suggested by the Wilcox method was
used in relation to classifying the irrigation water quality (Wilcox, 1948, 1955). This method
describes an amount equal to or greater than 2250 µmho/cm as a very high salinity class
regarding classification of irrigation water for agriculture (Wilcox, 1948). Accordingly, the
EC$ 2250 µmho/cm was considered as the cutoff for the selection of the input dataset of the
Sari-Neka Aquifer to DMMs.

25.2.4 Methods

The flowchart for assessing the vulnerability of groundwater to salinization using geographic
information system (GIS)-based DMMs is shown in Fig. 25-2.

25.2.5 Definition of Hydrogeological Factors Involved in Vulnerability to
Groundwater Salinization

In this study, 11 hydrogeological factors were defined for evaluation of the VGS. These fac-
tors include groundwater occurrence, thickness of the aquifer, water level drop, groundwater
height above sea level, aquifer cross-resistance, hydraulic conductivity, distance from the
shore, bedrock topography, well density, the impact of sodium to chlorine and chlorine to
the sum of carbonate, and bicarbonate ion ratio. These factors are described below.

25.2.5.1 Groundwater Occurrence
An underground structure capable of transferring a unit volume of water under a hydraulic
gradient is called a groundwater occurrence (Kasenow, 2001). This factor in the aquifer sys-
tem determines the susceptibility of the aquifer to the salinity process (Vandenbohede &
Lebbe, 2006). Confined aquifers are more susceptible relative to unconfined and leaky
confined aquifers due to the greater cone of depression during pumping (Chachadi &

Table 25-1 Datasets Used in This Study

Study Area Data Source Reference

Sari-Neka Piezometric wells (67 wells) WCM
Digital elevation model (303 30 m) NCC
Agricultural wells (20,316 wells) WCM
Pumping test and hydrodynamic results coefficients WCM
Geophysical investigationand electrical sounding WCM
Well quality data (2009�14) WCM

NCC, National Cartographic Center; WCM, Water Company of Mazandaran Province.
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Lobo-Ferreira, 2001). More than 97% of the Sari-Neka Aquifer is unconfined and the rest is
considered as a leaky aquifer, which is mostly located on the coastline (Fig. 25-3A).

25.2.5.2 Thickness of the Aquifer
This factor represents the freshwater volume in an aquifer system (Cooper, 1959). A lower
thickness of the aquifer indicates that the aquifer is vulnerable to salinization (Chachadi &
Lobo-Ferreira, 2001; Motevalli, Moradi, et al., 2018). This information was collected from the
geophysical studies of the Sari-Neka Plain, which was carried out by the WCM in 2013
(Fig. 25-3B).

25.2.5.3 Groundwater Table Drawdown
This factor reflects the fluctuations in groundwater level between the recharge and the
pumping period of the aquifer (Ahmadi & Sedghamiz, 2007; Han, 2003; Motevalli, Moradi,
et al., 2018). The largest difference between the groundwater level during the aquifer’s
recharge/rest and the intense pumping period shows the highest susceptibility of groundwa-
ter to salinization. Therefore, the areas under intensive pumping are most vulnerable to
salinity processes (Ghyben, 1888; Herzberg, 1901; Jakovovic, Werner, de Louw, Post, &
Morgan, 2016; Robinson, Gibbes, & Li, 2006; Trabelsi, Triki, Hentati, & Zairi, 2016). This
information was extracted from the measured water table in the observation wells (WCM,
2014) during 2005�14 (Fig. 25-3C).

Assessing the 
vulnerability of 
groundwater to 

salinization (VGS)
using GIS-based 

data mining 
techniques

Distance from the shore, aquifer cross-resistance, thickness of aquifer, 
height of GW above sea level, bedrock topography, density of pumping 

wells, hydraulic conductivity, groundwater table drop, Na/Cl and 
Cl/CO3+HCO3

Definition of cutoff range for selection of qualitative wells sampling 
network was based on Wilcox method (EC≥2250 µmho/cm) 

Training samples (70%) Validation samples (30%)

Statistical 
criteria

AUC
COR
TSS
DEV

GLM GAM SVM

Accuracy 
assessment of GLM, 

GAM, SVM using 
ROC curve

Importance of factors
VGS mapping

Learning vector 
quantization (LVQ)

FIGURE 25-2 The flowchart of assessing the vulnerability of groundwater to salinization using GIS-based DMMs.
DMM, Data-mining model.
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FIGURE 25-3 Hydrogeological factors involved in the vulnerability of groundwater to salinity. (A) groundwater
occurrence, (B) Thickness of the aquifer, (C) groundwater table drop, (D) groundwater heights in front of sea
level, (E) aquifer cross resistance, (F) hydraulic conductivity, (G) distance from the shore, (H) bedrock topography,
(I) density of pumping well, (J) impact of NA/CL, and (K) impact of CACO31HCO3.
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FIGURE 25-3 (Continued).
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25.2.5.4 Groundwater Height Above Sea Level
This factor is important in the coastline and determines the height of the groundwater level
at the aquifer’s coastline relative to sea level (Chachadi, 2005; Melloul & Wollman, 2003).
The areas of the aquifer where the groundwater level is below sea level are more vulnerable
to seawater intrusion (Chachadi, 2005; Laattoe, Werner, & Simmons, 2013; Li, Barry,
Stagnitti, & Parlange, 1999; Sterr, 2008). Since the sea level of the Caspian Sea at the coastline
of Sari-Neka Plain is about 26�27 m below the mean sea level, the measured groundwater
level was deducted from sea level to obtain this layer (Fig. 25-3D).

25.2.5.5 Aquifer Cross-Resistance
The cross-resistance was obtained from multiplication of the thickness of the aquifer and
specific resistance (Motevalli, Moradi, et al., 2018). The specific resistance has been extracted
from the geoelectric studies (GGCI, 1978). The low cross-resistance shows the low quality of
groundwater and high dissolved solids in aquifer formation (Huntley, 1986; Mazáč, Kelly, &
Landa, 1985; Niwas & Singhal, 1981). These data were extracted from the results of the geo-
physical studies of GGCI, 1978 (Fig. 25-3E).

25.2.5.6 Hydraulic Conductivity
Hydraulic conductivity was calculated by dividing the transmissivity by the saturated thick-
ness of the aquifer (Antonellini et al., 2008; Klute & Dirksen, 1986; Van Genuchten, 1980).
The higher hydraulic conductivity shows the higher potential for solute transfer
(Chachadi, Raikar, Lobo-Ferreira, & Oliveira, 2001; Zghibi et al., 2016). This layer was
obtained from the results of geoelectric studies and a pumping test in Sari-Neka Plain
(WCM, 2014) (Fig. 25-3F).

25.2.5.7 Distance From the Shore
The distance from the shore is defined as the distance between the coastline of the aquifer
system and the shore. The higher distance between the aquifer coastline and the shore can
decrease the susceptibility of the aquifer to seawater intrusion (Ataie-Ashtiani, Volker, &
Lockington, 1999; Gholami, Yousefi, & Rostami, 2010; Hiroshiro, Jinno, & Berndtsson, 2006;
Laattoe et al., 2013) (Fig. 25-3G).

25.2.5.8 Bedrock Depth
This layer was obtained by subtracting the aquifer groundwater level and the thickness of
the aquifer (Harbaugh, Banta, Hill, & McDonald, 2000). The bedrock depth can represent the
distance between an aquifer with a bed of aquifer and fine dissolved solids in an aquifer bed-
rock (Henry, Bullock, Hogg, & Luba, 1985; Kim, Yun, Park, Joo, & Kim, 2014; Motevalli,
Moradi, et al., 2018; Subyani, 2005). Therefore, the lower bedrock topography of the aquifer
indicates greater susceptibility to saltwater up-coning (Karro, Marandi, & Vaikmäe, 2004;
McIntosh, Garven, & Hanor, 2011; Motevalli, Moradi, et al., 2018) (Fig. 25-3H).
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25.2.5.9 Density of Pumping Wells
The pumping well density in an aquifer may represent the amount of groundwater exploita-
tion (Klassen & Allen, 2017; Motevalli, Moradi, et al., 2018; Post & Abarca, 2010; Schmork &
Mercado, 1969). If the density of the pumping wells is higher, these areas may become more
vulnerable to salinity processes in the aquifer system (Cheng & Chen, 2001; Motevalli,
Moradi, et al., 2018; Voss & Souza, 1987). The well density was defined as the number of
pumping wells in a radius of 1250 m. This factor is shown in Fig. 25-3I.

25.2.5.10 Impact of Na/Cl
Salinization can be affected by a series of geochemical processes (Herczeg, Rattray, Dillon,
Pavelic, & Barry, 2004; Pandey, Singh, & Hasnain, 1999; Zghibi, Tarhouni, & Zouhri, 2013).
The sodium�chloride ratio is one of the geochemical processes that occur during saltwater
up-coning (Appelo & Postma, 2004; Datta & Tyagi, 1996; Post, 2005; Zghibi, Zouhri,
Tarhouni, & Kouzana, 2013). Therefore, the lower proportion of the Na�Cl ion ratio, the
greater the effect on the salinization of the aquifer (Lakshmanan, Kannan, & Kumar, 2003;
Werner, 2004; Werner et al., 2012).

25.2.5.11 Impact of Cl/CO31HCO3

Similar to Na�Cl ion ratio, Cl/CO31HCO3 ratio also affects the aquifer salinization process
(Miretzky, Conzonno, & Cirelli, 2001; Singaraja et al., 2015; Udayalaxmi, Himabindu, &
Ramadass, 2010). The high Cl/CO31HCO3 indicates higher vulnerability of the aquifer to
salinization (Aher, 2012; Kukul & Anaç, 2000).

25.2.6 Data Mining and Spatial Modeling of Vulnerability to
Groundwater Salinization

The measured EC in the Sari-Neka Plain indicated that the salinity in 160 sampling wells
(out of 460 wells) was higher than the chosen cutoff value at 2250 µmoh/cm. Regarding the
restrictions on the use of irrigation water for farming and for spatial modeling of VGS, 70% of
the dataset was randomly selected for training (112 wells) of the models and the rest 30%
was selected for validation of the models (48 wells). After preparing the layers of effective fac-
tors in groundwater salinity, the DMMs were applied to produce the VGS maps. The details
of the DMMs are described in the following sections.

25.2.6.1 Generalized Linear Model
The GLM is a parametric and linear model (McCullagh, 1984; Nelder & Baker, 1972). This
technique is widely used in the field of natural resources modeling (Goetz, Guthrie, &
Brenning, 2011; Katebikord, Khaledi Darvishan, & Alavi, 2017; Pourghasemi & Rossi, 2016)
and agricultural land contamination (Mishima, Takada, & Kitagawa, 2011). GLM is a linear
model by which the probability of response in case of the presence or absence of samples
(quality wells) is modeled based on the hydrogeological factors. Eq. (25-1) illustrates the
elements used in GLM model:
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Logit P Zð Þð Þ5 log
PðZÞ

12P Zð Þ

� �
Xγ (25-1)

where P Zð Þ is the probability of existence and Xγ is the linear predictor.

25.2.6.2 Generalized Additive Model
The GAM is a nonparametric model developed by Hastie and Tibshirani (1990). The GAM
provides a very suitable approach for analyzing the input variables and examining the rela-
tionship between independent and dependent variables (Guisan, Edwards, & Hastie, 2002;
Marra & Wood, 2012). GAM assumes that the response variable has exponential distribution
and the mean of this distribution (M) is obtained according to Eq. (25-2) (Schoeman &
Richardson, 2002; Walsh & Kleiber, 2001):

M 5 f ðRjXi; . . .; XpÞ (25-2)

where R is the response variable that connects through the link function (m) to the predictor
variable (Xj) according to Eq. (25-3) (Hastie & Tibshirani, 1990):

L mð Þ5 β1
Xp
j51

fj Xj

� �
(25-3)

In Eq. (25-3), fj is an undefined and smooth function and β is a constant (Hastie &
Tibshirani, 1990).

25.2.6.3 Support Vector Machine
The SVM was introduced and implemented by Vapnik (1995). This technique is typically used
in spatial modeling of natural hazards (Kalantar, Pradhan, Naghibi, Motevalli, & Mansor, 2018;
Marjanovic, Kovačević, Bajat, & Voženílek, 2011; Motevalli, Pourghasemi, & Zabihi, 2018;
Pourghasemi, Jirandeh, Biswajeet, Xu, & Gokceoglu, 2013; Wu, Ren, & Niu, 2014), groundwater
potential mapping, and water quality mapping (Barzegar, Asghari Moghaddam, Adamowski, &
Fijani, 2017; Naghibi, Ahmadi, & Daneshi, 2017). The SVM is an effective learning system that
uses the principle of inductive minimization of structural error to achieve optimal results (Liu,
Cui, & Luo, 2016; Vapnik, 1995). This method expresses the absence of the correct classifica-
tion as the numerical series and then calculates the minimum value (Vapnik, 1995). In this
research, The kernel radial basis function was used [Eq. (25-4)] for modeling of VGS (Nourani
& Mousavi, 2016; Zare, Pourghasemi, Vafakhah, & Pradhan, 2013). Linearization and classifica-
tion in this type of kernel are shown in Eq. (25-5):

f x;λ1; . . .;λLð Þ5 sign
XL
i51

λiyik xi; xð Þ1 b

 !
(25-4)
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K x; yð Þ5 expð2 β x2y
�� ���� ��2Þ (25-5)

where x and y are the input vectors, k is the kernel function, b is the boundary decision, xi
and λi are the training samples, λi is the support vector, and β is the kernel width in the
SVM algorithm.

25.2.6.4 Importance of Effective Layers in Groundwater Salinity
The importance of effective layers in groundwater salinity was evaluated by the Learning
Vector Quantization (LVQ) method. This method is a neural network technique with a super-
vised learning pattern, which is mainly used for solving pattern recognition and pattern rec-
ognition issues (Kohonen, 2003). This method is based on dividing the input space into a
number of distinct regions and assigning a vector code to each region (Kohonen, 1990).
Classification is carried out according to the proximity of the input vector to the vector code
(Motevalli, Pourghasemi, et al., 2018). The input vector belonging to the class will be the
nearest vector code (Kohonen, 1990, 2003).

25.3 Results
25.3.1 Training/Calibration of Data-Mining Models

Three DMMs were used to generate vulnerability maps for aquifer salinity. In order to check
the accuracy of the models during the training/calibration phase, two statistical criteria
including area under the curve (AUC) (Cortes & Mohri, 2004; Lobo, Jiménez, Valverde, &
Real, 2008) and true skill statistic (TSS) (Allouche, Tsoar, & Kadmon, 2006) were applied.
The results of these two criteria are presented in Table 25-2. According to the table, for the
AUC, the values of 0.825, 0.864, and 0.89 were obtained for the GAM, GLM, and SVM,
respectively. In the case of TSS, the GLM, GAM, and SVM were calculated as 0.54, 0.61, and
0.66, respectively. It can be stated that the SVM model has a higher accuracy than the other
two models (GLM and GAM) according to AUC and TSS criteria in the training/calibration
phase of the aquifer salinization modeling.

Table 25-2 Results of the Training/Calibration of DMMs Models
for Salinity Using Four Statistical Criteria

Models

Statistical Criteria

AUC TSS

GLM 0.825 0.54
GAM 0.864 0.61
SVM 0.89 0.66

DMM, Data-mining model; GAM, generalized additive model; GLM, generalized linear model; SVM,
support vector machine; AUC, area under the curve; TSS, true skill statistic.

Chapter 25 • Assessing the Vulnerability of Groundwater to Salinization 557



25.3.2 Vulnerability Map of Data-Mining Models

After training/calibrating of the above-mentioned DMM algorithms, vulnerability maps of
the aquifer salinity were prepared. Fig. 25-4 shows the results of the vulnerability map based
on the GLM model. According to this map, 31.1% and 32.7% of the Sari-Neka Aquifer were
identified as low- to medium-vulnerability (natural break method in four classes) areas to
salinity, respectively. In this method, 24.5% and 11.4% were identified as high- and very
high-vulnerability areas, respectively. In the GAM model, 31.4%, 29.8%, 24.2%, and 14.3% of
the Sari-Neka Aquifer were identified to have low, medium, high, and very high levels of vul-
nerability to groundwater salinity, respectively (Fig. 25-5). In the case of the SVM model, the
low, medium, high, and very high-vulnerability areas occupied 40%, 31%, 13%, and 14% of
the aquifer system, respectively (Fig. 25-6).

Fig. 25-7 shows the results of the distribution of vulnerability classes for groundwater
salinity in the Sari-Neka Aquifer. Similar results for vulnerability classes using the GLM and
GAM were achieved. The low-vulnerability class in the SVM model showed the highest

FIGURE 25-4 Vulnerability of groundwater to salinity map based on the GLM model in the Sari-Neka Aquifer. GLM,
Generalized linear model.
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percentage compared to the low-vulnerability class of the other two models. Additionally,
the trend of vulnerability classes to salinity in the SVM model was first decreased from low
to moderate VGS class and then increased from high to very high VGS classes.

25.3.3 Importance of Factors by Learning Vector Quantization

Fig. 25-8 shows the results of importance of the effective factors in identifying the groundwa-
ter vulnerability zones to salinization. According to Fig. 25-8, the impacts of Na/Cl and Cl/
CO31HCO3 on groundwater salinity were prioritized as the primary factors for salinization
with weights of 0.82 and 0.81, respectively. Distance from the shore, aquifer cross-resistance,
thickness of aquifer, height of groundwater above sea level, bedrock topography, density of
pumping wells, hydraulic conductivity, and groundwater table drop with weights of 0.69,
0.675, 0.655, 0.65, 0.64, 0.63, 0.57, and 0.555 were identified as the secondary factors affecting
the salinity of the Sari-Neka Aquifer, respectively.

FIGURE 25-5 Vulnerability of groundwater to salinity map based on the GAM model in the Sari-Neka Aquifer.
GAM, Generalized additive model.
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FIGURE 25-6 Vulnerability of groundwater to salinity map based on the SVM model in the Sari-Neka Aquifer. SVM,
Support vector machine.

FIGURE 25-7 Comparing the vulnerability of groundwater to salinity classes achieved by GLM, GAM, and SVM
algorithms. GAM, Generalized additive model; GLM, generalized linear model; SVM, support vector machine.

560 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



25.3.4 Validation Map of Data-Mining Models

In this step, the accuracies of the models, GLM, GAM, and SVM, during the validation phase
were assessed using the receiver operating characteristics (ROCs) curve method (Hanley &
McNeil, 1982). For validation, 30% of the sampling wells, which were excluded from the
entire dataset based on the assigned cutoff value (EC$ 2250) (Wilcox, 1948), were used to
evaluate the robustness of the DMMs in the training phase. According to Table 25-3, the
GLM model with 0.68 (AUC) has the highest accuracy according to the ROC criterion com-
pared to the SVM and GAM models.

Table 25-3 Validation of SVM, GLM, and GAM Models Using ROC Criterion

Models Area Standard Error Asymptotic Significant

Asymptotic 95%
Confidence Interval

Lower Bound Upper Bound

GLM 0.680 0.054 0.002 0.574 0.785
GAM 0.659 0.055 0.007 0.551 0.768
SVM 0.667 0.056 0.005 0.558 0.776

GAM, Generalized additive model; GLM, generalized linear model; SVM, support vector machine; ROC, receiver operating
characteristic.

FIGURE 25-8 The importance of the factors affecting the groundwater salinization in Sari-Neka Aquifer.
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25.4 Discussion
Proper management of groundwater resources plays an important role in securing water
availability (Werner et al., 2013) for the agricultural sector. Despite the great importance of
groundwater, these resources are not optimally managed and are often subject to excessive
use or contamination (Maliva & Missimer, 2012). Therefore, it is necessary to conduct
research regarding the management of groundwater resources based on the potential of the
aquifers (Dixon, 2005). In this study, three algorithms, including GLM, GAM, and SVM, were
applied to map the VGS in the Sari-Neka Aquifer in northern Iran. The results showed that
GLM, GAM, and SVM models have acceptable performance for the modeling of VGS accord-
ing to the calculated statistical criteria (AUC, Correlation (COR), TSS, and standard deviation
(DEV)). In the validation step, the ROC criterion was applied. The results showed that the
GLM model has a higher accuracy than the GAM and SVM models, with a ROC value of
0.678 in the validation phase.

In the next step, the importance of the effective factors on VGS was investigated using
LVQ algorithm. The results of ranking the importance of factors showed that three factors
including Na/Cl, Cl/CO31HCO3, and distance from the shore with values of 0.81, 0.8, and
0.69 were the most effective factors in VGS for Sari-Neka Aquifer, respectively.

It can be stated that the hydrogeochemical processes play a significant role in the VGS. Our
results are consistent with the results achieved by Jeen, Kim, Ko, Yum, and Chang (2001) and
Samsudin, Haryono, Hamzah, and Rafek (2008), who stated that the chemical composition of
groundwater with high chloride concentration and high changes in cation concentration due
to the cation exchange reaction between the aquifer and saltwater intrusion are the crucial fac-
tors in groundwater salinization. The results showed that the factors affecting the VGS are
interconnected. The development of pumping wells and the overextraction from the ground-
water reservoir caused the groundwater level to drop and consequently changed the hydro-
geochemical properties of the aquifer. It appears that the groundwater drawdown adjacent to
the coast led to seawater intrusion and saltwater up-coning in the studied aquifer (e.g.,
Cloutier, Lefebvre, Therrien, & Savard, 2008). Similarly, Singaraja et al. (2015) found that an
increase in Na�Cl ion ratio resulting from saltwater intrusion is the most effective factor for
VGS, using a total of 135 well samples, in the southeast coast of Tamil Nadu, India. Samsudin
et al. (2008) used Schoeller diagrams and geochemical analysis such as pH and total dissolved
solution (TDS) in three aquifers in northeastern peninsula, Malaysia, to detect the source of
salinity. They concluded that groundwater salinity may not occur through seawater intrusion,
but salinization is related to the upward flux of fossil saltwater underneath the freshwater res-
ervoir. In this regard, Motevalli, Moradi, et al. (2018) performed a comprehensive modeling of
aquifer salinity and concluded that saltwater up-coning is mainly due to the higher density of
pumping wells located at a distance from the shore (hydrogeochemical processes) relative to
seawater intrusion. In this study, salinity maps produced by GLM, GAM, and SVM algorithms
showed that the central and coastal areas of the Sari-Neka Aquifer are highly vulnerable to
groundwater salinization. It is suggested that hydrogeochemical analysis taking into account
various types of ions such as sodium, chlorine, and magnesium accompanied by multivariate
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and principal component analysis (PCA) as well as data-mining techniques should be applied
to the well samples in order to better identify the factors affecting VGS in the aquifer system. It
is suggested that a comprehensive and realistic water program such as groundwater artificial
recharge and flood water harvesting (Hashemi et al., 2013; Hashemi, Berndtsson, et al., 2015;
Hashemi, Uvo, et al., 2015) should be implemented in order to increase the groundwater
quantity and level in the aquifers vulnerable to saltwater intrusion.

Finally, water pricing strategy, prioritizing, and modifying costs (Nowlan, 2005; Venot &
Molle, 2008) in the vulnerable areas should be taken into account in order to properly man-
age pumping in these areas. Additionally, it is recommended that an efficient groundwater
extraction plan should be implemented to reduce the damaging effects of groundwater
salinization in hotspot areas.

25.5 Conclusions
Sustainable groundwater resources management requires early and immediate action to pre-
vent further groundwater depletion and deterioration. In this research, the factors affecting
groundwater salinization were identified and VGS were produced using the DMMs including
GAM, GLM, and SVM algorithms. The DMM modeling of VGS was conducted through train-
ing of the model using 70% of the sampling data (EC) and validating of the model using 30%
of the dataset, which was collected from the wells sampling network of the Sari-Neka
Aquifer. A cutoff value for the qualitative well samples was determined based on the Wilcox
method at EC$ 2250 µmho/cm. Hence, the sampling wells were identified for modeling of
VGS. For the modeling of vulnerability, the hydrogeologic factors impacting the groundwater
salinity mechanism were used, including Na/Cl and Cl/CO31HCO3 ratio, distance from the
shore, aquifer cross-resistance, thickness of aquifer, height of groundwater above sea level,
bedrock topography, density of pumping wells, hydraulic conductivity, and groundwater
table drop. The results of GAM, GLM, and SVM DMMs led to the classification of the Sari-
Neka Aquifer into high and very high VGS zones by 24.2% and 14.3%, 24.5% and 11.4%,
13.3% and 14.1%, respectively. It is noted that all measured EC in the sampling wells that
have values between 6950 and 10,999 µmho/cm were identified to be in the high- and very
high-vulnerability zones.

The results showed that GLM, GAM, and SVM models have acceptable performance in
the modeling of VGS according to the statistical criteria including AUC (0.825, 0.864, and
0.89, respectively) and TSS (0.54, 0.61, and 0.66, respectively), in the training phase of the
models. For the validation phase, according to the ROC criterion the GLM, GAM, and SVM
models yield 0.68, 0.66, and 0.677, respectively. Accordingly, the GLM model showed higher
accuracy than the GAM and SVM models.

Finally, the importance of the effective factors on VGS was investigated using the LVQ
algorithm. The results of ranking the importance of factors showed that three factors, includ-
ing Na/Cl, Cl/CO31HCO3, and distance from the shore with values of 0.81, 0.8, and 0.69
were the primary factors affecting the VGS in the Sari-Neka Aquifer. After prioritizing the
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vulnerability of the affected areas, it is recommended that the water demand should be prop-
erly managed in the identified vulnerable areas.
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26.1 Introduction
Due to the increasing demand for intelligent surveillance, the use of airborne unmanned
aerial vehicles (UAVs) for video capture has gained attention in recent years (Dold &
Groopman, 2017; Huang, Wu, Kao, Shih, & Chou, 2010). The high mobility and fast deploy-
ment of UAVs, as well as the large surveillance scope of UAV-mounted cameras offer a wide
range of applications such as moving object detection and tracking (Babenko, Yang, &
Belongie, 2011; Cao, Lan, Yan, & Li, 2012; Hu, Chen, Chen, Huang, & Wu, 2015; Tian, Feris,
Liu, Hampapur, & Sun, 2011; Xiao, Yang, Han, & Cheng, 2008; Zhou, Yang, & Yu, 2013),
video segmentation (Hu, Chen, Huang, & Ye, 2012; Lian, Lin, Kuo, & Jean, 2013), object
identification (Somasundaram, Sivalingam, Morellas, & Papanikolopoulos, 2013), behavior
understanding and description (Borges, Conci, & Cavallaro, 2013), and event detection
(Wang, Jiang, & Ngo, 2008). UAVs are relatively cheap and can fly at low altitudes. Their
deployment can be widespread, capturing quality footage at high spatial resolutions (Zhou,
Kong, Wei, Creighton, & Nahavandi, 2015). This allows vision-based systems to perform effi-
cient analysis for intelligent data interpretation (Ghouaiel & Lefèvre, 2016; Sun, Li, Ding, &
Guo, 2016).

Successfully detecting moving objects from UAVs requires dealing with two types of
motions, namely camera motion and object motion. In addition, the existence of multiple
moving objects with varying displacements, illumination conditions, and occlusion increase

573Spatial Modeling in GIS and R for Earth and Environmental Sciences. DOI: https://doi.org/10.1016/B978-0-12-815226-3.00026-0
© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-815226-3.00026-0


detection difficulty. Several approaches have been proposed in the literature, which can gen-
erally be divided into three categories: (1) optical flow (Bhaskar, Dias, Seneviratne, & Al-
Mualla, 2014; Bhattacharya, Idrees, Saleemi, Ali, & Shah, 2011; Rodríguez-Canosa, Thomas,
Del Cerro, Barrientos, & MacDonald, 2012; Zhou et al., 2015), (2) background-based
methods (Ingersoll, Niedfeldt, & Beard, 2015; Lee, Kim, Jeong, Park, & Paik, 2015; Miller,
Babenko, Hu, & Shah, 2008) and (3) registration-based methods (Ali & Shah, 2006;
Cao et al., 2012).

Moving objects detection using optical flow involves approximating local pixel move-
ments between consecutive frames. Optical flow-based methods however are sensitive to
changes in illumination and often only detect partial edges of moving objects (Lu, Wang,
Wu, & Yang, 2008). Alternatively, background-based methods can be used where foreground
objects are identified by comparing with a background model. One example is temporal
differencing where one or more frames can be treated as the background model. In three-
frame temporal differencing, for example (Fettke, Naylor, Sammut, & He, 2002), any pixel
intensity difference between the current frame and the previous two frames that is less than
a predefined threshold is assumed to be foreground motion. Alternatively, a sequence of
frames can be analyzed and their pixel distribution calculated to form the background
model. New frames can then be compared against this model where foreground objects are
detected if specific regions exhibit significant change (Fettke et al., 2002; Liu, Yuen, & Qiu,
2009). In the context of UAV videos, background-based methods are less suitable since they
assume stable and consistent background scenes and the camera position being fixed. If
these conditions are not met, scene changes can potentially be treated as moving objects.
Another issue is when the object stops moving, which causes temporal differencing methods
to fail. This is due to no difference being identified with previous frames, making objects no
longer detectable. A potential solution to background-based methods is image registration,
where frame pairs are geometrically overlaid (Jackson & Goshtasby, 2010). Here, feature cor-
respondences between frame pairs are discovered to perform matching. Traditional image
registration however is unsuitable for UAV videos since the distance-based grayscale similar-
ity measure that is commonly used cannot cater for dynamic spatiotemporal moving objects
and moving cameras. Moreover, registration methods cannot cater for object occlusion since
only frame pairs are considered at any given time. This is problematic when a trajectory
object abruptly disappears from the scene. Upon re-entry in a distant frame, its detection is
no longer possible.

The work in this chapter proposes a framework to address the issues mentioned above. A
two-step approach, which includes region matching and region labeling is presented.
Instead of considering only frame pairs, correspondence discovery is based on consideration
of multiple frames at a time. Each frame is firstly segmented into regions that eventually
form a region adjacency graph (RAG) representation. Correspondence between frame pairs
is hence discovered using multigraph matching based on geometrical constraints and
appearance similarity between both frames’ RAGs. Upon correspondence discovery, a label-
ing step (via graph coloring) assigns regions as being either a background or moving objects
(i.e., foreground). The objectives of this work are hence threefold: (1) to develop an image
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registration technique based on multigraph matching, (2) to detect occluded objects through
exploration of candidate object correspondences in longer frame sequences, and (3) to
develop a robust graph-coloring algorithm for multiple moving objects detection under dif-
ferent transformations.

26.2 Materials and Methods
26.2.1 Study Area and Dataset

Part of the study was performed at the Universiti Putra Malaysia main campus (latitude
1�240N�2�320N and longitude 102�420E�103�380E). Video footage was collected from this
study area, which is used to validate the proposed framework. Two datasets were used in
this study:

1. DARPA-VIVID (Collins, Zhou, & Teh, 2005): This is a public dataset meant mainly used
for the evaluation of objects tracking algorithms. The specific sequences that were chosen
from this datasets are EgTest01, EgTest02, EgTest03, EgTest04, and EgTest05. The
coverage area is B0.5 km2 with each frame having a 6403 480 color resolution at 30 fps.
Vehicles in all sequences appear moving on a runway with some speeding up and
passing others by. Scale changes can be observed as the camera circles the scene.
Occlusion can also be observed, i.e., vehicles by other vehicles or by trees. There also
exists illumination variation. Some frames are duplicated due to recording errors causing
zero motion followed by an abrupt discontinuity.

2. Self-captured: Two video sequences (Seq01 and Seq02) were captured on May 6, 2016
and December 10, 2016, respectively. Recording was done using a GoPro Hero4 Silver
camera (Fig. 26-1A) mounted on a hexa-rotor UAV (Fig. 26-1B). The camera’s focal
length is 5 mm with a frame rate of 30 fps. The RGB videos come with resolutions of

FIGURE 26-1 Experimental camera and UAV: (A) GoPro Hero4 Silver; (B) hexa-rotor UAV. UAV, Unmanned aerial
vehicle.
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12803 720 for Seq01 and 19203 1080 for Seq02. The UAV hovered at B45�100 m at a
velocity of B0.1 m/s (Seq01) and B1.8 m/s (Seq02). Both sequences included vehicles
traveling throughout the campus compound, which has appearance variations and
cluttered scenes. Fig. 26-2 shows sample frames from both datasets.

26.2.2 Motion Differences of Matched Region-Based Features
Framework

This section describes the analysis and assessment of the proposed multiple moving object
detection framework. The motion differences of matched region-based features (MDMRBF)
framework includes eight main steps, namely (1) super-pixels segmentation and region
merging, (2) RAG construction, (3) feature extraction, (4) region matching, (5) correspon-
dence discovery, (6) occlusion detection, (7) region labeling, and (8) moving object detec-
tion. The overall flow of these steps is shown in Fig. 26-3.

26.2.2.1 Segmentation and Region Merging
Firstly, each video frame undergoes a segmentation process. The simple linear iterative
clustering or SLIC algorithm by Achanta et al. (2012) was applied to generate small overseg-
mented yet uniform regions. We opted for super-pixels as we assume uniform regions
can be grouped into larger primitive units. Despite using SLIC, the total number of seg-
mented regions per frame is still large, which can reduce graph-matching efficiency.
Therefore, homogeneous regions are grouped together based on color. The MPEG-7 DCD
(dominant color descriptor) from Manjunath, Salembier, and Sikora (2002) was used to mea-
sure the homogeneity of color between neighboring regions (Kalantar, Mansor, Halin, Shafri,

FIGURE 26-2 Sample frames used in this study.
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& Zand, 2017). DCD was chosen since it provides a compact description of colors within
image regions. Resultantly, the similarity between two regions’ DCDs is determined by the
following metric, given by Yang, Chang, Kuo, and Li (2008):

S dcd1; dcd2ð Þ5
XD1

i51

XD2

j51

βi:jδi;j (26-1)

In Eq. (26-1), dcd1 and dcd2 are two adjacent region DCDs. D1 and D2 are the number of
dominant colors in the first and second regions, respectively. The value βi;j is the similarity
coefficient, and δi;j denotes the similarity score between the two different dominant colors.

26.2.2.2 Region Adjacency Graph Construction
Each segmented image is represented by individual RAGs. The vertices (nodes) correspond
to image regions, whereas edges encode the connection between adjacent regions, as shown
in Fig. 26-4. This graph representation allows the utilization of graph-matching algorithms in
order to find visual correspondences. In our context, two advantages exist when using RAGs:
(1) each frame’s spatial view is considered and (2) the neighborhood relationships between
the regions of each frame are leveraged into the model.

FIGURE 26-3 The overall flow of MDMRBF. MDMRBF, Motion differences of matched region-based features.
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26.2.2.3 Feature Extraction
Each of the RAG nodes is assigned a feature set consisting of the region’s DCD (as discussed
in Section 26.2.2.2), shape, and texture features. We opt to combine three methods for the
shape descriptor construction, namely the elliptic Fourier descriptor (EFD) from Comaniciu,
Meer, and Foran (1999), Hu’s invariant moments (Hu, 1962), and Tamura’s features
(Tamura, Mori, & Yamawaki, 1978). The constructed descriptor comprises 3 Tamura fea-
tures, 7 Hu invariant moments, and 32 (43 8) EFDs. This combination provides comprehen-
sive detail of the shape, which is invariant to scaling, rotation, and translation (Yang, Meer,
& Foran, 2007). Texture features provide added discriminatory power as they have an advan-
tage over the constraints posed by color and shape. Gabor features are used to model the
texture features, which is adopted from the works of Penatti, Valle, and Torres (2012) and
Zand, Doraisamy, Halin, and Mustaffa (2015).

26.2.2.4 Multigraph Matching
We expect that constant regions can better be discovered by analyzing multiple frames
instead of just pairs of frames at a time. With each RAG node having the feature descriptors
of DCD, texture, and shape, graph matching is performed to establish the correspondences.

Generally, each node is representative of a region and assigned the characteristic of the
region, whereas the edge attribute corresponds to the adjacency relationships between
nodes. In MDMRBF, the node and edge attributes are defined in two ways to incorporate
both the appearance similarity and the geometrical information into the multigraph match-
ing algorithm. Recently, Zhou and De la Torre (2016) proposed a deformable graph-
matching technique that incorporates geometric transformations into the graph-matching
process. Inspired by this work, two adaptive graph-matching algorithms are proposed for
matching the corresponding regions and estimating the accurate transformations in the
region trajectories. A RAG for a frame is basically a graph G5P;Q;G;H that has n nodes

FIGURE 26-4 Spatial views of region relationships. (A) Region partitioning and (B) region adjacency graph.
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and m edges (Fig. 26-5). PEℝdP 3n is the node feature, whereas QEℝdQ 3m denotes the
edge features. The topology of a graph is represented using matrices G and H ,
where G;HEf0; 1gn3m with gi;c 5 hj;c 5 1 for the cth edge beginning from node i and ending
at node j.

Hence, for successive frames I1 and I2, two RAGs are constructed, i.e., G1 5 fP1;Q1;G1;H1g
with n1 nodes and m1 edges and G2 5 fP2;Q2;G2;H2g with n2 nodes and m2 edges. The
appearance attributes for each node are the visual features of its corresponding region, which
was explained in the previous section. The region’s center of gravity coordinate is accordingly
defined as the geometrical attributes of the node representing the region. The edge attributes
are the Euclidean distances of the visual similarity and coordinate difference between neigh-
boring regions. The similarities in appearance are represented using two affinity matrices of
kpαEℝ

n1 3n2 and kqαEℝ
m1 3m2 for nodes and edges, respectively. Equivalently, kpβEℝ

n1 3n2 and
kqβEℝ

m1 3m2 represent the geometrical similarities of the node and edge, respectively. These
matrices can be encoded in the global affinity matrices KαEℝn1n2 3n1n2 and KβEℝn1n2 3n1n2 , such
that their elements are computed as follows (Kalantar et al., 2017):

Kα i1i2; j1j2ð Þ 5

( kpαði1; i2Þ ; if i1 5 j1 and i2 5 j2
kqαði1; i2Þ ; if i1 6¼ j1; i2 6¼ j2 and g1 i1 ;c1ð Þh1 j1 ;c1ð Þg2 i2 ;c2ð Þh2 j2 ;c2ð Þ 5 1

0 ;otherwise

Kβ i1i2; j1j2ð Þ 5

kpβ i1; i2ð Þ ; if i1 5 j1 and i2 5 j2

kqβði1; i2Þ ; if i1 6¼ j1; i2 6¼ j2 and g1 i1 ;c1ð Þh1 j1 ;c1ð Þg2 i2 ;c2ð Þh2 j2 ;c2ð Þ 5 1

0 ; otherwise

8><
>:

(26-2)

26.2.2.5 Correspondence Discovery
In this work, discovering correspondences is done through multigraph matching between
RAGs of consecutive video frames. The score JðX Þ is maximized to establish the correspon-
dence X between nodes in G1 and G2. This can be written as:

FIGURE 26-5 Consecutive frames’ RAGs being matched based on the node and edge attributes. RAGs, Region
adjacency graphs.
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J Xð Þ5 P
i1 ;i2

xi1 ;i2k
p
αði1; i2Þ1

P
i1 6¼ i2; j1 6¼ j2

g1 i1 ;c1ð Þh1 j1 ;c1ð Þ 5 1

g2 i2 ;c2ð Þh2 j2 ;c2ð Þ 5 1

xi1 ;i2xj1 ;j2k
q
αðc1; c2Þ

1
P

i1 ;i2
xi1 ;i2k

p
β i1; i2ð Þ1P

i1 6¼ i2; j1 6¼ j2
g1 i1 ;c1ð Þh1 j1 ;c1ð Þ 5 1

g2 i2 ;c2ð Þh2 j2 ;c2ð Þ 5 1

xi1 ;i2xj1 ;j2k
q
β c1; c2ð Þ (26-3)

where XEΠ and Π5 fX jXEf0; 1gn1 3n2 ;X1n2 # 1n1 ;X
T1n1 5 1n2g are partial permutation matri-

ces. This is so because X denotes a one-to-one matching. The quadratic form is therefore:

J Xð Þ5 vecðX ÞTKαvecðX Þ1 vecðX ÞTKβvecðX Þ (26-4)

with x5 vecðX Þ as an indicator vector. From Zhou and De la Torre (2016), we factorize Kα

and Kβ into smaller matrices:

Kα 5 d vec kpα
� �� �

1 G2⨂G1

� �
dðvec kqα

� �ÞðH2⨂H1ÞT

Kβ 5 d vec kpβ

� �� �
1 G2⨂G1

� �
dðvec kqβ

� �
ÞðH2⨂H1ÞT

(26-5)

where dðxÞ is a diagonal matrix with x being diagonal values. The term ⨂ operator denotes
a Kronecker product between the respective matrices. Resultantly, the graph structure (G1,
H1, G2, and H2) is decoupled from the similarity terms (kpα, k

q
α, k

p
β , and kqβ) allowing the geo-

metric constraints to be incorporated into the model.
Resultantly, the corresponding objective function is written as:

J Xð Þ5 tr kpα
TX

� �
1 tr kqα

TY
� �

1 tr kpβ
T
X

� �
1 tr kqβ

T
Y

� �
(26-6)

where tr XTX
� �

denotes the Frobenius or Euclidean norm and
Y 5 ðGT

1 XG2 3HT
1 XH2ÞEf0; 1gm1 3m2 encodes the edge’s correspondences. In other words,

yc1;c2 5 1 if the c1th edge in G1 is matched to the c2th edge in G2.

26.2.2.6 Occlusion Detection
In this work, occluded objects are detected by exploring correspondences within a longer
frame sequence. This is based on the assumption that objects can disappear from a scene,
but reappear at a later time in the same scene. Specifically, the inlier nodes (nonobject) can
be obtained, and hence the temporal correspondences between outlier nodes (potential
occluded object) could be ignored. However, the outliers may have correspondences in far-
ther frames. Intuitively, detection of these nodes helps in the discovery of occluded objects
in the sequence.

Our simple approach is to revisit each outlier node and find its correspondences between
all outliers from all graphs. All outlier nodes are firstly marked as matchable. If a particular
node does not match any matchable node, it is marked as unmatchable. The matching
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criteria are based on the node and edge similarities. More specifically, if two nodes share
similar appearance features, their geometrical similarities are also considered to label these
nodes as matchable.

26.2.2.7 Region Labeling
From the discovered correspondences, we construct a motion similarity graph (MSG).
Following a similar graphical structure, the MSG nodes are the image regions, whereas edges
between adjacent regions are weights based on spatial distances. If the corresponding edges
connecting two specific regions change beyond a predefined threshold in the graph
sequence, the new edge in the constructed graph is labeled as dissimilar. Otherwise, the
assigned label is similar. An illustration is shown in Fig. 26-6 of an MSG. This MSG is based
on five consecutive graphs.

26.2.2.8 Moving Object Detection
Although the MSGs can be used to obtain motion similarity, they cannot be used to detect
background or foreground objects. This is because neighboring regions sharing similar
motion characteristics can actually be moving object parts or even two background regions.
Therefore, to detect moving objects, we formulate the problem using graph partitioning,
where regions that correspond to graph nodes in the MSG are assigned to different compo-
nents. The partitioning is achieved through a proposed graph-coloring algorithm.
Specifically, colors will be automatically assigned to nodes such that connected nodes
belonging to different labels are assigned different colors. Note that existing graph-coloring
algorithms are not able to perform this since our approach only utilizes the minimum num-
ber of available colors. An instance of coloring is shown in Fig. 26-7. Here, the number of

FIGURE 26-6 An example of an MSG constructed from five graphs. MSG, Motion similarity graph.
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objects coincides with the minimum number of colors. The color spread over the graph is
selected as the background color since background regions cover a large area of the scene.
However, if discontinuities exist in the background regions, smaller regions are considered
as foreground objects. To avoid this, nodes sharing the same color are clustered or grouped.
Then, the difference in motion is taken into account in the new larger regions. Particularly,
attention is given to motions that undergo any rigid/nonrigid transformations. Therefore,
object boundary for oversegmented regions is preserved. This allows the integration of con-
nected regions (that have similar motion characteristics) to uncover moving objects.

26.3 Results and Discussion
26.3.1 Region Segmentation

For the super-pixel segmentation step, we tested with few values in order to determine the
best setup. Fig. 26-8 (left to right) illustrates 400, 300, and 200 super-pixels, respectively. We
discovered that if the number is too large, smaller segments are produced. An object, e.g.,
the red car in the figure, can hence be undesirably divided into many parts (Fig. 26-8A). In
the right-most image in the figure, the red car is combined with background features, which
is a result of having a small number of super-pixels (Fig. 26-8C). This causes many nonho-
mogeneous regions to be generated and one region may contain several objects. For our
work, we settled with 300 as the number of super-pixel segments, which generates the opti-
mal number of homogeneous regions (Fig. 26-8B).

26.3.2 Region Merging

Several threshold values were tested to perform region merging. Experimental results
showed that there is an inverse correlation between the similarity threshold and the number
of wrongly combined regions. In other words, there has been a decrease in the number of
wrongly combined regions when the threshold value increased. For this work, a similarity

FIGURE 26-7 Graph coloring by four colors.

582 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



threshold of two was utilized because it produced the most satisfactory results. With this set-
ting, between 20 and 50 regions were produced for each frame after the merging process
(Fig. 26-9).

26.3.3 Multigraph Matching

The number of frames being processed at a particular time is a very important factor for dis-
covering correspondences. Too large a number might result in good matching, however,
computational cost will increase. On the other hand, a small number might produce high
matching errors. Therefore, we tested with a few values and recorded the matching errors
for multigraph matching. This metric is adjusted from Torresani, Kolmogorov, and Rother
(2008).

FIGURE 26-8 SLIC segmentation with the number of the super pixels at (A) 400, (B) 300, and (C) 200 (from left to
right). SLIC, Simple linear iterative clustering.

FIGURE 26-9 (A) Oversegmented regions produced by SLIC for a sample from the UAV-captured video; (B) results
after the region merging process. SLIC, Simple linear iterative clustering; UAV, unmanned aerial vehicle.
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Fig. 26-10 illustrates the number of frames and the matching errors for different sequence
lengths for the video Seq01. Based on the chart, matching error decreases by increasing the
number of frames. The highest error is when only two frames are considered. We obtained a
satisfactory matching error of B0% when the sequence length was 10 frames. As expected,
there is a positive correlation between the number of frames considered and the matching
performance.

26.3.4 Occlusion Detection

Based on the dataset, we observed that when occlusion is present, it lasted for a maximum
30 frames (B1 second). Therefore, we set the frames to be processed at a time to be 30.
However, this large number will increase the computational cost for each frame’s RAG.
Therefore, a subset is considered instead in order to improve the computation time. We
finally opted for 15 frames, which is a safe number for occlusion detection (note that the
minimum number is 10 frames, as shown in Fig. 26-10). Moreover, since the original
sequences were at 30 fps, we do not expect detection performance to suffer.

26.3.5 Moving Object Detection

In this step, the weights for each connecting edge are calculated using the Euclidean dis-
tance. If the weight does not change more than a predefined threshold (i.e., 10 in our case)
through consecutive frames, the connected nodes are deemed to be the same object. Too
small a threshold value deems any small movement as a moving object (instead of, say,
noise). On the other hand, it is possible to consider the movement of a moving object as
noise if the threshold value is too large. The objective is to label graph nodes as background

FIGURE 26-10 Matching error for different numbers of frames.
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or foreground moving objects. The graph-coloring algorithm is applied on the MSG for this
purpose. Fig. 26-11 shows the sample frames for moving object detection using the
MDMRBF framework.

To evaluate moving object detection, precision and recall are calculated based on Hu
et al. (2015). Precision (P) is calculated as:

P5
TP

TP1 FP
(26-7)

where TP is true positives and FP is false positives. Recall, on the other hand, is the ratio of
correctly detected object pixels to the number of actual object pixels:

R5
TP

TP1 FN
(26-8)

where FN is the total number of false negatives.
MDMRBF is further compared with existing detection algorithms, namely with (1)

Rosenbaum, Leitloff, Kurz, Meynberg, and Reize (2010), (2) Cao, Wu, Lan, Yan, and Li
(2011), and (3) Alkanat, Tunali, and Öz (2015). Experimental results show that MDMRBF out-
performs these algorithms with precision and recall being 94% and 89%, respectively. We
postulate that the additional consideration of appearance and geometrical constraints plays a
large role during multigraph matching. Moreover, the consideration of multiple frames for
the longer trajectories and taking into account all the transformations also facilitate in detecting
occlusion (Table 26-1).

FIGURE 26-11 Multiple moving object detection using the MDMRBF framework. MDMRBF, Motion differences of
matched region-based features.
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26.4 Conclusion
This chapter presents the novel MDMRBF object detection framework that is able to detect
multiple moving objects from UAV videos. One key advantage of the framework is its robust-
ness to unknown transformations. The experimental results have shown high precision
(94%) and recall (89%), which were superior to selected state-of-the-art algorithms. The pro-
posed method aims to differ from image registration-based methods where MDMRBF con-
siders multiple consecutive frames for correspondence discovery instead of just frame pairs.
This allows for more robust background and foreground detection, with the added advantage
of occluded objects detection. The graph-based matching also makes the method more flexi-
ble and robust to unexpected transformations or scene changes. We envisage this framework
to be useful in applications such as border control, reconnaissance, or homeland security.
Numerous enhancements can be made for further implementation of the MDMRBF frame-
work, such as to include object tracking.
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27.1 Introduction
Post-fire soil erosion is a major concern because of the potential effects it has on soil and
water resources. This is particularly important in Galicia (NW Spain), because of the high
incidence of forest fires in the region and the potential importance of rainfall erosivity
(MMA, 2005). The soil erosion risk is higher in Galicia than in the rest of Spain (Cerdá &
Mataix-Solera, 2009). During the summer of 2013, a total area of almost 20,000 ha of forest-
land was burned by wildfires in Galicia, representing about 32% of the total area burned in
Spain in that same year (MAGRAMA, 2015). The area covered by forest land in Galicia repre-
sents around 7% of the total afforested area in Spain. Wildfire frequency and the area of land
burned are expected to increase under probable future climate scenarios in NW Spain (Vega,
Fernández, Jiménez, & Ruiz, 2009).

As a descriptor of the magnitude of the changes that occur in the soil, soil burn severity
is recognized as an important factor determining post-fire processes, including the hydro-
logical response, soil erosion (Fernández & Vega, 2016a; Moody, Shakesby, Robichaud,
Cannon, & Martin, 2013), and vegetation recovery (Fernández & Vega, 2016b; Fontúrbel
et al., 2011; Vega, Fernández, Pérez-Gorostiaga, & Fonturbel, 2010; Weiner, Strand, Bunting,
& Smith, 2016). In addition, the level of fire-induced damage to vegetation (vegetation burn
severity) also plays an important role in the hydrological response in burned areas. Thus,
evaluation of both vegetation burn severity and soil burn severity is essential for quantifying
the post-fire hydrological and erosive risk and for planning post-fire mitigation actions
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(Morgan et al., 2014). Vega, Fontúrbel, Fernández, et al. (2013) proposed a soil burn severity
classification, based on visual indicators. This classification accurately reflects the soil ero-
sion risk in the first year after fire in NW Spain (Fernández & Vega, 2016a) and is currently
used as an operational tool to help prioritize post-fire emergency stabilization measures in
the region (Vega, Fontúrbel, Merino, et al., 2013). Evaluation of burn severity is currently
based on the analysis of spectral images captured by a Landsat Thematic Mapper sensor (or
other remote platforms), before and after wildfire, and validated by an intensive field survey
during the weeks following the fire event. In addition, burn severity, determined from
remotely sensed data, has been widely used to evaluate the impact of fire in other studies.
The differenced normalized burn ratio (NBR) (dNBR), has been used because of the good
correlation with fire severity indices determined in field-based surveys, which include infor-
mation about both vegetation and soil burn severity, for example, the composite burning
index (CBI) (Arellano et al., 2017; Epting & Verbyla, 2005; Key & Benson, 2006; Lutes et al.,
2006; Miller, Safford, Crimmins, & Thode, 2009; Parks, Parisien, Miller, & Dobrowski, 2014;
Picotte & Robertson, 2011; Van Wagtendonk, Root, & Key, 2004). The CBI reflects the per-
centage of tree mortality or percentage of green vegetation (Birch et al., 2015; Miller &
Thode, 2007; Miller, Elliot, Billmire, Robichaud, & Endsley, 2016; Robichaud et al., 2007;
Smith et al., 2007; Van Wagtendonk et al., 2004) rather than soil burn severity (Hudak et al.,
2004, 2007; Kokaly, Rockwell, Haire, & King, 2007; Miller, MacDonald, Robichaud, & Elliot,
2011). A rapid system of mapping fire severity is required to enable efficient and economic
assessment of soil burn severity at landscape scale.

In post-fire management decision-making, it is important to be able to distinguish the
impacts of fire on vegetation and soil at the landscape scale, rather than combining fire
severity in a single index (Morgan et al., 2014). Both effects contribute differently to the sus-
ceptibility of burned areas to erosion, and relevant information is necessary to enable the
assessment of specific management objectives. Low levels of vegetation burn severity result
in partially or totally scorched forest canopies, and the soil can be protected through needle
casting (Cerdà & Doerr, 2008; Pannkuk & Robichaud, 2003). By contrast, high levels of vege-
tation burn severity generally indicate crown fire events and exposure of the underlying soils
to erosive agents as a result of the lack of the protective canopy layer. Thus, a tool enabling
rapid detection of the spatial pattern of different levels of soil burn severity is urgently
needed to complement assessment of the vegetation burn severity and to identify those areas
in which erosion is most likely to occur.

Improving the ability to predict potentially high soil burn severity levels (before wildfire
events occur) is an important challenge in this field. This would advance the understanding
of various factors determining fire severity (Morgan et al., 2014) and would guide strategic
fuel management actions. Some researchers have explored the possibility of predicting the
impact of burn severity on vegetation (Dillon et al., 2011; Fernández-Alonso, Vega, Jiménez,
Ruiz-González, & Álvarez-González, 2017; Holden, Morgan, & Evans, 2009; Kane et al., 2015)
and soil (Robichaud et al., 2007) using spatially explicit data. However, the environmental
factors determining burn severity are poorly understood and modeling future burn severity
remains challenging (Birch et al., 2015; Sikkink & Keane, 2012). Measurement of fire severity
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is complex because of the broad range of effects that fires have on the environment.
Improved knowledge of how pre-fire vegetation cover, fuel load, topography, and weather
affect soil burn severity will be very useful for strategic, pre-fire fuel management and for
planning post-fire mitigation actions.

The main aims of the present study are to use readily available spatial data to predict spa-
tially explicit soil burn severity patterns, with the aim of planning post-fire soil stabilization
measures, and to obtain further information about the drivers of soil burn severity. The
method was evaluated after being used to determine soil burn severity in a forest area
burned in the summer of 2013 in NW Spain.

27.2 Material and Methods
The followed methodology comprises four steps: study areas selection, field measurements,
data compilation and analysis, and predicted maps realization (Fig. 27-1).

FIGURE 27-1 Methodology flowchart. CNIG MDT25, Spanish National Center of Geographic Information digital
elevation model (25 m resolution); DEM, digital elevation model; TPI, topographic position index; TRI, topographic
ruggedness index; CTI, compound topographic index; SD, standard deviation; Flowacc, upstream contributing area;
NDWI, normalized difference water index; NDVI, normalized difference vegetation index; NDII, normalized
difference infrared index; NBR, normalized burn ratio; dNBR, differenced normalized burn ratio; RdNBR, relative
differenced normalized burn ratio; dNDVI, decadal normalized difference vegetation index.
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27.2.1 Study Area

An area on the coast of Galicia (NW Spain) affected by a large wildfire (area . 500 ha) was
selected for carrying out burn severity measurements (Fig. 27-2). The fire began on August 26,
2013 and burned for 2 days before being suppressed. The total area of land burned during
this event was 1810 ha. The fire occurred during conditions of high winds, with gusts of up to
60 km/h. The most recent precipitation had occurred 19 days before the fire. The Canadian
Forest Fire Weather index was within the 98th percentile of the values for the period 2006�12.
The Drought Code and Duff Moisture Code indices were within the 95th and 98th percentiles,
respectively, reflecting low moisture levels in the lower duff and surface soil.

The area affected by the fire is characterized by moderate to steep slopes, altitudes of
30�515 m above sea level, and a predominant southeast aspect. Pinus pinaster Ait. and
Eucalyptus globulus Labill. were the predominant overstorey species, whereas Ulex europaeus
L. and Pterospartum tridentatum (L.) Wilk. were the most common understorey species.

27.2.2 Field Sampling

In the weeks following the fire, circular sampling plots were established for field collection of
burn severity data. The location of the plots was determined by stratified random sampling

FIGURE 27-2 Location of the study area on a forest type map, in Galicia (NW Spain).
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(Bunce, Barr, Clarke, Howard, & Lane, 1996). The burned area was classified into four levels
of fire severity using the dNBR levels proposed by Key and Benson (2006), and homogeneous
areas were identified for each level (minimum size, 3 3 3 m pixels). A random algorithm
was used to assign sampling plots to each level of severity, projecting them in a geographic
information system (GIS) with the central coordinates. Each plot area was represented using
a buffer function with a distance equal to the radius of each plot (15 m). A total of 94 plots
were established.

Soil burn severity was assessed in 20 cm 3 20 cm quadrats located at 1 m intervals along
four transects in each plot. A numerical value was assigned to each quadrat following the
modification of the soil burn severity index proposed by Vega, Fontúrbel, Fernández, et al.
(2013): 0, unburnt soil; 1, burnt litter layer, (Oi layer) but limited duff consumption (Oe 1

Oa layers); 2, Oa layer totally charred and covering mineral soil, possibly some ash deposi-
tion; 3, soil organic layer (Oi 1 Oe 1 Oa) completely consumed (yielding bare soil) but soil
organic matter not consumed and surface soil intact, some ash deposition; 4, soil organic
layer completely consumed, soil organic matter in the Ah horizon partially consumed and
soil structure altered within a soil thickness less than 1 cm, with visible ash deposition; 5, as
4, but with the thickness of affected soil equal to or more than 1 cm; and 6, as 4 or 5 with
color altered (reddish).

27.2.3 Explanatory Variables

For each plot area, information from several layers, including the explanatory variables,
topography, weather, vegetation, and satellite-derived data, was clipped to produce the data-
base used in the analysis. Each group of explanatory variables is described below.

27.2.3.1 Topography
The following topographic and hydrological variables were derived from a digital elevation
model (DEM, resolution 25 m 3 25 m): slope (%), elevation, aspect, topographic position
index (Weiss, 2001), terrain ruggedness index (Riley, Degloria, & Elliot, 1999), topographic
wetness index or compound topographic index (Gessler, Moore, McKenzie, & Ryan, 1995),
standard deviation of elevation, and upstream contributing area (Flowacc). The potential
effect of solar radiation on the burn severity level was included by computing the total
amount of incoming solar insolation (direct and diffuse) received at each point, for three dif-
ferent periods: the entire year, the time elapsed since the last significant rainfall event, and
the time elapsed between the start of the fire and it being suppressed (26�28 August). The
DEM was obtained from the Spanish Geographic National Institute.

27.2.3.2 Weather
Wind fields during the different burning periods were modeled using WindNinja software
(Forthofer, 2007), the DEM and meteorological data. As the fire was wind-driven, the main
aim was to explore the potential relationship between the fire behavior, determined by wind
conditions, and the observed soil burn severity. WindNinja simulates spatially explicit grids
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of wind conditions, using computational flow dynamics to take local weather data and topog-
raphy into account. The necessary weather-related data (wind speed, wind direction, and
temperature) were from the two closest weather stations: Castro Vicaludo and Aloia
(Table 27-1). These weather stations belong to the regional meteorological department
network (http://www.meteogalicia.gal).

The wind simulations enabled vector files including the wind characteristics (speed and
direction) to be obtained for each burn event. Moreover, the alignment of wind and slope was
also evaluated as both factors determine the residence time of the fire front (Fernández-Alonso
et al., 2017), which may affect the degree of soil burn severity. The slope of the wind direction
and the angle between maximum slope and the wind vector were therefore considered.

27.2.3.3 Vegetation
Fuel structure characteristics, derived from several data sources, were also included in the
analysis given their potential effect on soil burn severity. The role of vegetation was first
accounted for by including Light Detection and Ranging (LiDAR) data. LiDAR technology
can be used to characterize large areas of forest at a high spatial resolution, which has
enabled the construction of thematic maps of key variables for fuel management and fire
effects. LiDAR data were acquired from National Aerial Ortophoto 2009 flights and processed
to yield the variables related to the distribution of height returns in each sampling plot.
FUSION software (McGaughey, 2009) was used to produce statistics of the laser height
returns (mean, minimum, maximum, median, mode, standard deviation, variance, inter-
quartile distance, skewness, kurtosis, and the percentiles). A threshold of 2 m was established
for computing the overstorey characteristics.

Spatially explicit estimates of stand and canopy variables were obtained for each plot on
the basis of LiDAR layers generated for the study area. Basal area (BA), canopy base height,
and canopy bulk density were obtained from models developed for P. pinaster in Galicia.
These variables are known to affect fire behavior and may also influence the degree of soil
burn severity.

The second source of vegetation data was the Spanish National Forest Map (SNFM,
1:25.000 scale), which is based on the Spanish Forest Inventory. Several vegetation variables
were added to the dataset: type of forest (evergreen/deciduous/mixed), predominant species
and strata, percentage of canopy cover, shrub type, height and cover, and standard fuel
model (Anderson, 1982).

Table 27-1 Weather Stations Where the Wind Simulation Data Were
Collected (MeteoGalicia, Xunta de Galicia)

Name of Weather Station Elevation a.s.l. (m) Distance From Fire Area (km)

Castro Vicaludo 440 4
Aloia 480 15
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Finally, indices based on remotely sensed data were also included in the analysis, given
the likely importance of the vegetation moisture content, fuel load, and health status
(Caccamo, Chisholm, Bradstock, Puotinen, & Pippen, 2012; Chuvieco et al., 2004;
Chuvieco, Riano, Aguado, & Cocero, 2002; Key & Benson, 2006; Miller & Thode, 2007).
Landsat 8 Operational Land Imager and Thermal Infrared Sensor imaging data correspond-
ing to the study area were obtained for the closest dates before (August 14, 2013) and after
(August 30, 2013) the fire event. The normalized difference water index (Gao, 1996), nor-
malized difference vegetation index (NDVI; Tucker, 1979), normalized difference infrared
index (Sriwongsitanon et al., 2015), and NBR (Key & Benson, 2006) were calculated, for the
pre-fire and post-fire situations. The dNBR (Miller & Thode, 2007), Relative differenced
NBR (RdNBR; Miller & Thode, 2007) and the decadal NDVI (Díaz-Delgado, Lloret, & Pons,
2003) were also included in the severity evaluation to account for the relative change
between the pre- and post-fire scenarios. Imaging data for this fire were processed with a
GIS to produce top of atmosphere reflectance values by the standard equations (Chander,
Markham, & Helder, 2009).

27.2.4 Statistical Analysis

The nonparametric random forests (RFs) technique was used to model the spatial pattern of
soil burn severity and to evaluate the importance of each explanatory variable in determining
the level. Two models were fitted: the first included all the explanatory variables except the
post-fire vegetation indices, and the second included the post-fire variables. The objective of
the model fitting was to evaluate the ability of the method to predict the occurrence of two
levels of soil burn severity (low/moderate and high/extreme) and the potential improvement
in the accuracy of prediction yielded by inclusion of the post-fire variables in the RF analysis.
According to the classification proposed by Vega, Fontúrbel, Fernández, et al. (2013), levels
1�3 indicate low to moderate degrees of soil burn severity, and levels 4 and 5 indicate high
degrees of soil burn severity.

The RF technique is an ensemble learning method for different tasks, including classifica-
tion (Breiman, 2001). The technique uses training data to construct multiple (n) decision
trees and indicates the modal class. RF analysis corrects overfitting to the training database
by randomly selecting two-thirds of the data to construct the model. The remaining data,
which are called out-of-bag observations, are used in the cross-validation process to produce
an estimate of the error rate (mean decrease accuracy, MDA). This ranking was preferred
due its robustness to potential within-prediction correlation (Nicodemus, 2011). The RFs
package for R version 3.3.2 (Liaw & Wiener, 2002) was used.

The process used to model the occurrence of the two levels of soil burn severity consid-
ered (low/moderate and high/extreme), was initiated by fitting an exploratory RF model to
all the explanatory variables. Pearson’s correlation coefficient was used to test the relation-
ship between the explanatory variables to assess potential problems related to multicollinear-
ity. A threshold of 0.75 was considered, following Oliveira, Oehler, San-Miguel-Ayanz,
Camia, and Pereira (2012). The subsequent steps consisted of the sequential adjustment of
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new RF models in which less important variables were dropped until the performance was
maximal. Final models were based on the fitting of 4000 classification trees, and three and
two explanatory variables were randomly selected at each tree node (m parameter) for the
pre-fire and post-fire scenarios, respectively. The balance between the overall accuracy of
the model and the accuracy for predicting each level of soil burn severity was ensured by ran-
domly selecting the same number of observations for each severity class. The Sampsize function
included in the RFs package (Liaw & Wiener, 2002) was used for this purpose due to the larger
number of low/moderate soil burn severity observations than of high soil burn severity observa-
tions, as the RF model may give priority to the more numerous observations. Confusion matri-
ces and variances plots were obtained for each RF model. The former provided an estimate of
the model error for each class and for the total, and the latter identified the most relevant vari-
ables for classifying levels of soil burn severity. Finally, Kruskal�Wallis one-way analysis of vari-
ance was used to determine any significant differences between the two categories of soil burn
severity for each of the most important variables in the RF models.

27.3 Results
The RF model based on pre-fire explanatory variables predicted the soil burn severity classes
with an accuracy of 73.4%; the inclusion of post-fire variables in the model improved the
performance slightly, yielding an accuracy of 76.6% (Table 27-2).

In general, both RF models tended to perform better for low/moderate soil burn severity
(for which the largest number of observations was available), than for high/extreme soil
burn severity. Observations of low/moderate levels of burn severity were adequately pre-
dicted with an error rate of 24.2% for pre-fire model and 18.2% for the post-fire model. The
predictive performance was poor for both the high and extreme soil burn severity levels,
with an accuracy of less than 70% (Fig. 27-3).

Table 27-2 Predictive Capacity of the Soil Burn Severity Models (OOB
Estimation of Error)

Pre-Fire Model Predicted

Low/Moderate High/Extreme Error (%)

Observed Low/Moderate 50 16 24.2
High/Extreme 9 19 32.1

OOB estimate 26.6

Post-Fire Model Predicted

Low/Moderate High/Extreme Error (%)

Observed Low/Moderate 54 12 18.2
High/Extreme 10 18 35.7

OOB estimate 23.4

OOB, Out-of-bag.
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Four variables were particularly important for predicting the soil burn severity classes for
the pre-fire model, with MDA greater than 15% (Fig. 27-3). Two of these variables, i.e., the
kurtosis and skewness of the LiDAR-derived height distribution, were related to the stand
structure, and the structure of the fuel complex, as characterized by LiDAR data. Shrub cover
was the second most important variable in determining the distribution of soil burn severity
and a satellite derived index, NBR, was the fourth most important variable. The kurtosis and
skewness of LiDAR elevation data indicated significant differences between low/moderate
and high/extreme levels of burn severity (Kruskal�Wallis, χ2 5 15.617, P , .001 and χ2 5

8.7115, P 5 .003, respectively). The kurtosis and skewness were lower for observations of
high/extreme levels of soil burn severity than for those of low/moderate burn severity, imply-
ing that the distribution of height pulses was closer to normal and the mean value was closer
to the mode.

Despite the low statistical significance (Kruskal�Wallis, χ2 5 3.7516, P 5 .053), the
values of the shrub cover were higher in the areas in which high/extreme levels of soil burn
severity were observed (45.4%) than in the areas where low/moderate levels of soil burn

FIGURE 27-3 Relative importance of variables in the pre-fire severity model. hLkur, LiDAR height L-moment kurtosis;
Shrub.cov, percent of shrub cover; hSkw, LiDAR height skewness; NBR, normalized burn ratio (pre-fire); ARAhmean,
number of LiDAR returns above the mean height/total first returns; Veg.type, type of vegetation (herbaceous/
shrub/trees); Str.type, forest structure type; Stand.type, predominant tree species; hmin, LiDAR height minimum
elevation; hAAD, LiDAR height average absolute deviation; Forest.type, type of stand (conifer/mixed/deciduous);
hLCV, LiDAR height L-moment coefficient of variation.
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severity occurred, with mean values of 27.9%. The values of pre-fire NBR, the fourth most
important variable in the RF model, were significantly higher in areas characterized by low/
moderate soil burn severity (677.9) than in the areas characterized by high/extreme soil burn
severity (618.5) (Kruskal�Wallis, χ2 5 9.2068, P 5 .002).

A greater number of important variables were included in the post-fire RF model
(Fig. 27-4) than in the pre-fire model for determining soil burn severity, and six of the vari-
ables had MDA values higher than 17.5. The most important variables were skewness, coeffi-
cient of variation, and minimum value of LiDAR height data, along with a satellite-derived
index (RdNBR) and two vegetation attributes derived from SNFM, shrub cover, and total
cover fraction. As in the pre-fire model, skewness was significantly higher for areas charac-
terized by low/moderate soil burn severity (Kruskal�Wallis χ2 5 18.768, df 5 1, P , .001).
The coefficient of variation of LiDAR pulse heights was significantly lower for areas charac-
terized by high/extreme soil burn severity (1.99 m) than for those characterized by low/mod-
erate soil burn severity (2.50 m). RdNBR was the second most important variable and it was

FIGURE 27-4 Relative importance of variables in the post-fire severity model. hSkw, LiDAR height skewness; RdNBR,
relative differenced normalized burn ratio; hCV, LiDAR height coefficient of variation; hmin, LiDAR height minimum
elevation; Shrub.cov, percent of shrub cover; Tot.cover, percent of total vegetation cover; NBR, normalized burn
ratio (pre-fire); h30r, LiDAR height 30th percentile; ARAhmean, number of LiDAR returns above the mean height/total
first returns; Str.type, forest structure type; Forest.type, type of stand (conifer/mixed/deciduous); Stand.type,
predominant tree species; NDVI, normalized difference vegetation index.
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significantly higher for moderate/extreme soil burn severity (900.8) than for low/moderate
soil burn severity (724.1) (Kruskal�Wallis χ2 5 11.212, df 5 1, P # .001).

The present methodology allowed obtaining maps with the predicted soil burn occur-
rence. The first map (Fig. 27-5) is based on the RF model fitted with pre-fire variables,
whereas the second was obtained from the RF model that includes pre- and post-fire
variables (Fig. 27-6).

27.4 Discussion
Soil burn severity mapping is essential for identifying areas at risk of suffering soil erosion
and for planning fuel management measures or urgent post-fire responses (Miller et al.,
2016; Robichaud et al., 2007). However, assessment of the degree of soil burn severity is
complex given the difficulty in capturing the spatial heterogeneity (Birch et al., 2015; Holden
et al., 2009; Lentile et al. 2006) and the effect of multiple drivers. Despite the complexity of
measuring soil burn severity, especially considering spatial measures, the results of the pres-
ent study indicate that the combination of GIS techniques and statistical modeling is

FIGURE 27-5 Predicted soil severity map based on the RF pre-fire model. RF, Random forest.
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potentially useful, providing an overall accuracy of more than 70% for predicting soil burn
severity. The accuracy in predicting high/extreme soil burn severity class was more “mod-
est,” at around 65%. Nonetheless, the RF pre-fire model could help in planning fuel manage-
ment work, and thus, in mitigating the occurrence of high-severity wildfires.

Several studies carried out to date have modeled burn severity spatially by using topo-
graphical, weather-related, or vegetation data as explanatory variables. Many of those studies
have relied on the assessment of burn severity by means of satellite-derived indexes, i.e.,
dNBR (Birch et al., 2015; Collins, Kelly, Wagtendonk, & Stephens, 2006; Dillon, Morgan, &
Holden, 2009; Kane et al., 2015; Román-Cuesta, Gracia, & Retana, 2009). The use of field
data to model burn severity is less common, and has generally addressed the relationship
between the CBI and remotely sensed explanatory variables (Arellano et al., 2017; Miller
et al., 2009; Van Wagtendonk et al., 2004; Van Wagtendonk et al., 2006). As far as the authors
are aware, the prediction of soil burn severity based only on variables measured prior to fire
occurrence has not been considered. Nonetheless, Barrett, Kasischke, McGuire, Turetsky,
and Kane (2010) quantified the reduction in the organic layer in a boreal forest and
Robichaud et al. (2007) proposed the use of post-fire hyperspectral imagery to classify soil

FIGURE 27-6 Predicted soil severity map based on the RF post-fire model. RF, Random forest.
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burn severity (although the latter would involve the use of expensive, complex technology,
and lengthy data processing).

Modeling soil burn severity by acquisition of LiDAR data or use of thematic maps has
indicated a predominant role of vegetation structure. Dispersion measures of the distribution
of LiDAR heights tend to be the most important variables, possibly indicating a link between
the spatial distribution of the vegetation and the burn severity. LiDAR height kurtosis, skew-
ness, and the coefficient of variation have been reported by other authors to be good predic-
tors of forest stand structure. Thus, Ozdemir and Donoghue (2013) observed that tree
diversity indices (height, diameter, crown length, and width) were related to kurtosis and
skewness. Vogeler, Yang, and Cohen (2016) used the coefficient of variation to classify the
presence of different levels of shrub cover in burned forests. Banskota, Wynne, Johnson, and
Emessiene (2011) found that kurtosis of the height distribution was one of the main variables
explaining the above-ground biomass in American hardwood forests. The influence of
understorey shrub cover on soil burn severity seems plausible, as the low height may favor
heat transfer to adjacent soil. Other authors have observed that LiDAR data are correlated
with specific components of surface and ground fuels, which may influence the occurrence
of high burning severity during the smoldering phase. Jakubowksi, Guo, Collins, Stephens,
and Kelly (2013) predicted standard fuel models and surface fuel components (shrub BA,
height and cover, total fuel load, 1000-hours fuel load and fuel depth) based on LiDAR data
and multispectral imagery. Bright et al. (2017) found that the kurtosis of the height distribu-
tion was also a good predictor for 1000-hour fuel load. By contrast, Pesonen, Maltamo,
Eerikäinen, and Packalèn (2008) predicted downed dead wood volume from LiDAR data and
observed that the standard deviation in LiDAR pulse height distribution was the most impor-
tant variable for predicting dead wood volume, with greater variation indicating larger
amounts of dead wood.

Although satellite-derived indices (e.g., dNBR) are considered sensitive to both vegetation
destruction and soil exposure and charring (Key & Benson, 2006; Lentile et al., 2006; Miller
et al., 2009), their ability to reflect soil burn severity has also been a subject of controversy
(French et al., 2008; Hudak et al., 2007; Kokaly et al., 2007; Robichaud et al., 2007). The
scarce or absent contribution of most remote sensing indices used in this study seems to
support previous results suggesting that these indices are more suitable for reflecting
changes in vegetation than changes in soil condition. Furthermore, the findings of the
present study are partly consistent with those of Barrett et al. (2010), who highlighted the
important role of geospatial and ancillary data in predicting soil burn severity.

Neither weather nor topography seemed to play an important role in soil burn severity
models, although other studies have shown that these factors are important. Thus, Dillon
et al. (2011) reported that the probability of occurrence of high burn severity, measured
using RdNBR as a proxy, was more strongly influenced by topography than by climate, even
in years when fires were widespread. Fernández-Alonso et al. (2017) identified simulated
wind as the main driver of fire severity. In both cases, the assessment of fire severity consid-
ered the impact of fire on the forest canopy. However, soil burn severity may be more closely
related to the factors driving the glowing combustion of a fire than those responsible for
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flaming, which would explain the important role of the structure of the vegetation and its
spatial variability.

The present study contributes useful data for mapping the occurrence of soil burn sever-
ity. Prediction of soil burn severity is essential for helping forest managers to prevent or miti-
gate the undesirable effects of fire, especially if used together with other prediction models
aimed at other components of the ecosystem (Fernández-Alonso et al., 2017; Vega,
Fontúrbel, Fernández, et al., 2013). This preliminary step must be expanded in future
research efforts. The integrated models may be valuable tools in forest management.

27.5 Conclusion
Soil burn severity assessment is a critical step for post-fire soil stabilization activities plan-
ning and, thus, the development of operational tools that help managers to carry out that
process is a research priority. The method presented here is based on the use of readily
available data, along with accessible software (GIS and R statistical package) so it can be eas-
ily used to develop that task. The research developed here is one of the few attempts for
modeling the spatial prediction of soil burn severity.

The predictions of soil burn severity distribution were made before and after fire events.
The relative importance of the explanatory variables provides useful information about the
factors determining soil burn severity. The vegetation structure was relatively more impor-
tant than other independent variables.

The method is flexible and can be applied to different local conditions. Use of the method
will help in the decision-making process related to fuel management in sensitive areas and
in planning emergency actions to mitigate erosion. That is possible by means of accurate
maps as products of the modeling process.
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28.1 Introduction
An accurate estimate of fire probability plays a vital role in reducing the negative effects of wild-
fires (Fischer et al., 2016; North et al., 2015; Parisien et al., 2012). There is evidence that
improvement in assessing wildfire probability, delimiting the landscape into different probabil-
ity levels, and identifying the effects of different landscape characteristics on wildfire occurrence
help inform managers and policymakers to adopt precautionary measures and policies for fire-
prone landscapes (Mhawej, Faour, Abdallah, & Adjizian-Gerard, 2016; Stephens et al., 2013).

The availability of spatially explicit information of the effects of different landscape char-
acteristics on wildfire occurrence is a significant step toward predicting fire probabilities and
developing predictive models to quantify the impact of climate changes, human activities,
and fire ignitions on terrestrial ecosystems. The wildfire causative factors are often catego-
rized into four main categories: topography, climate, vegetation, and human activities
(Ganteaume et al., 2013; Nami, Jaafari, Fallah, & Nabiuni, 2018; Parisien et al., 2012). The
effect of topographic factors (e.g., slope, aspect, and elevation) on fire ignition is largely indi-
rect (Jaafari, Gholami, & Zenner, 2017; Parisien et al., 2012) by influencing vegetation, local
climate, and human accessibility (Jaafari & Mafi Gholami, 2017; Nami et al., 2018). Climate
factors (e.g., rainfall, temperature, wind, and evapotranspiration) exert both direct and indi-
rect influences on wildfire occurrence (Jaafari, Gholami, et al., 2017; Nami et al., 2018;
Parisien et al., 2012). Vegetation (i.e., land cover) effects on fire ignition and spread through
fuel characteristics such as type, load, and moisture content (Adab, Kanniah, & Solaimani,
2013; Adab, Kanniah, Solaimani, & Sallehuddin, 2015; Nami et al., 2018). Humans affect the
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spatial pattern and frequency of fire occurrence by altering natural vegetation and providing
ignition sources in ways that may either promote or limit fire (Abdi, Kamkar, Shirvani,
Teixeira da Silva, & Buchroithner, 2018; Adab et al., 2013).

The determination of the relative importance of a given wildfire causative factor with
respect to other factors in relation to historical fire events is a highly subjective exercise that
usually involves the use of trial-and error procedures (Jaafari, Gholami, et al., 2017), applica-
tion of different methodologies (Pourtaghi, Pourghasemi, Aretano, & Semeraro, 2016), and
refers to expert knowledge (Pourghasemi, Beheshtirad, & Pradhan, 2016). However, over
large-extent landscapes and more typically in rugged terrains, there is almost always a short-
age of knowledge about the influence of every geo-environmental characteristic, which may
lead to low accuracy in the prediction of wildfires (Jaafari, Gholami, et al., 2017; Pourtaghi
et al., 2016). Therefore, the determination of the importance geo-environmental factors is a
recurrent challenge in the prediction of wildfires. At the same time, this challenge has
opened up an avenue for new analyses that can aid in planning more efficient field surveys
and the handling of large datasets, and in gaining a better understanding of the intrinsic
nature of the landscape characteristics.

This study was aimed at investigating the roles of different landscape characteristics on
wildfire occurrence and its spatial distribution over a fire-prone landscape in the Zagros
Mountains, Iran. In this study, the random forests (RFs) model was utilized to link historical
fire events to a set of wildfire causative factors to measure the importance of each factor on
fire ignition. In addition, a state-of-the-art data-mining model, that is, support vector
machines (SVMs), was employed to produce an accurate estimate of wildfire probability
across the study area. Finally, the receiver operating characteristic (ROC)�AUC method was
used for the assessment and validation of the results.

28.2 Study Area
The study area is the Chaharmahal�Bakhtiari Province, located in the Zagros Mountains
region of Iran (Fig. 28-1). The province has an area of 16,532 km2, where 77% of the territory
is covered with forests and rangelands (Jaafari, Zenner, & Pham, 2018). The local climate in
the study area is controlled by its rugged topography. The mean precipitation is 650 mm/
year, falling mostly as snow during autumn and winter, and rain during spring. The average
summer and winter temperatures are recorded as 24 and 10�C, respectively. In this province,
the fire season typically extends from June until October with a single modal seasonal distri-
bution that peaks in July and August (Jaafari, Gholami, et al., 2017).

28.3 Materials and Methods
To determine the relative importance of wildfire causative factors and to estimate the spatial var-
iability of wildfire probability in the study area, a three-step methodology was adopted as follows:
(1) data collection and processing, (2) factor analysis, and (3) spatial modeling and validation.
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28.3.1 Data Collection and Processing

To prepare the wildfire causative factors used in this study, the recommendations given in
the corresponding literature (e.g., Adab et al., 2013, 2015; Catry, Rego, Bação, & Moreira,
2009; Chen et al., 2015; Jaafari et al., 2018; Nami et al., 2018; Oliveira, Oehler, San-Miguel-
Ayanz, Camia, & Pereira, 2012; Pourtaghi et al., 2016; Tien Bui et al., 2017; Tien Bui, Le,
Nguyen, Le, & Revhaug, 2016) were followed. In the literature, the number of causative fac-
tors ranges from only a few (e.g., Leuenberger, Parente, Tonini, Pereira, & Kanevski, 2018) to
several (e.g., Adab et al., 2013, 2015; Jaafari et al., 2018; Pourtaghi et al., 2016), depending on
the scope of study, availability of data, and the relevance with respect to fire causes.
Although landscape characteristics act jointly and the exclusion of two or three variables

FIGURE 28-1 Location of study area and historical fire events.
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may lead to a decrease in the predictive accuracy (Jaafari, Gholami, et al., 2017), in a geo-
graphic information system (GIS)-based modeling study, the selected factors should be
operational, complete, nonuniform, measurable, and nonredundant (Jaafari, Najafi,
Pourghasemi, Rezaeian, & Sattarian, 2014). Thus, in this study, nine potential causative fac-
tors were selected: slope degree, aspect, altitude, mean annual temperature and rainfall,
wind effect, and proximity to settlements, rivers, and roads (Fig. 28-2). The map of all of
these factors was constructed in raster format with a pixel size of 50 3 50 m. Even though
a finer resolution could have been adopted, the spatial resolution was limited by the reso-
lution of topographic data and computational resources.

To perform a spatially explicit modeling of wildfire probability, an inventory map of fire
events that have occurred in the recent past was prepared. The inventory map of historical
fire locations was compiled using the moderate resolution imaging spectroradiometer
(MODIS) hot spot products (http://earthdata.nasa.gov/firms), the archive provided by the
administrative office of natural resources of the Chaharmahal�Bakhtiari Province, and multi-
ple field surveys. In total, 132 fire events were detected and mapped as geo-referenced poly-
gons from the period 2007�14. The fire events were then randomly divided into two groups:
the first group comprised 70% of the events (92 fires comprising 1096 fire grid cells) and was
used for the training of the probability model; the second group with 30% of the events (40
fires comprising 470 fire grid cells) was used for validation of the model (Nami et al., 2018;
Pourghasemi, 2016; Pourtaghi et al., 2016; Jaafari, Gholami, et al., 2017; Jaafari, Rezaeian, &
Omrani, 2017).

FIGURE 28-2 Wildfire causative factors used in this study.

610 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES

http://earthdata.nasa.gov/firms


28.3.2 Factor Analysis Using the Random Forest Model

The RF model, proposed by Breiman (2001), is an ensemble learning technique for classifi-
cation and regression. This model creates several decision trees that are aggregated to
perform a classification task, to select important variables, and to calculate the relative
importance of each variable (Breiman, Friedman, Stone, & Olshen, 1984). Each tree in the
forest is built on about two-thirds of the input data, while the remaining third of the data
[i.e., the OOB (out-of-bag) data] is retained for model validation. During the modeling
process, RF estimates the importance of factors using the Gini impurity criterion. Gini
importance is computed by randomly permuting the values of factor m in the OOB cases
and putting these cases down the tree, while keeping all others unchanged (Liaw &
Wiener, 2002). In the R statistical package, RF has two parameters that affect the perfor-
mance of the model, that is, the number of trees T and the number of environmental
covariates in each random subset M, which were found to be 1000 and 3, respectively, for
best performance in this study. The computational process was carried out using the free
“random-forest” package available in the R statistical software.

28.3.3 Probability Modeling Using the Support Vector Machine Model

The SVM model, proposed by Vapnik (1995), is one of the soft computing learning algo-
rithms which has been widely used in different fields of science (Pham, Jaafari, Prakash, &
Bui, 2018; Pourghasemi & Rahmati, 2018; Rodrigues & de la Riva, 2014; Tehrany, Pradhan,
Mansor, & Ahmad, 2015). This model uses a statistical learning theory and the structural
risk minimization principle to separate two classes (e.g., fire and nonfire) with a linear
hyperplane (Kavzoglu, Sahin, & Colkesen, 2014). This algorithm reshapes the nonlinear
world into the linear by generating a separating hyperplane (Tehrany et al., 2015). An opti-
mum separating hyperplane can be obtained by solving the following classification function
(Vapnik, 1995):

f ðνÞ5 sgn
Xn
i51

αiLiK ðv; vn1 Þ1 b

 !
(28-1)

where n denotes the number of explanatory variables, αi is the Lagrange multiplier, v and L
are, respectively, the vectors of explanatory variables (i.e., causative factors) and fire labels
(i.e., fire or nonfire), b is the constant value, and K(v,vi) is the kernel function that can be
selected as linear, polynomial, radial basis function (RBF), or sigmoid. In the case of the
binary classifications (e.g., fire modeling), the condition for solving Eq. (28-1) is assumed as
follows (Pham, Pradhan, Bui, Prakash, & Dholakia, 2016):

Li ωtϕðviÞ1 b
� �

$ 13
ωtϕðviÞ1 b$ 1; if Li 51 1ðfireÞ
ωtϕðviÞ1 b# 1; if Li 52 1ðnon-fireÞ

�
(28-2)
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where ϕðviÞ is a nonlinear function that divides the input space into higher dimension space,
and ϕ represents the weight vector.

In this study, the nonlinear RBF kernel function, which can effectively transform the non-
linear classes into a linear one in high dimensional space, was used (Pourghasemi, Yousefi,
Kornejady, & Cerdà, 2017). To fit the SVM model using the nonlinear kernel, the kernlab
package and the ksvm function of the R statistical software were employed (Karatzoglou
et al., 2007).

28.3.4 Probability Mapping and Validation

Following successful training of the SVM model, the model was used to estimate the value of
wildfire probability for each pixel in the study area. The values were then classified and
grouped using the natural breaks method (Hong et al., 2018; Pourtaghi et al., 2016) into the
relative levels of low, moderate, high, and very high probability of wildfire occurrence.

The produced probability map was evaluated by the area under the ROC curve, known as
the ROC�AUC method, which illustrated both the success rate and prediction rate curves
(Pourtaghi et al., 2015). The success rate that uses the training dataset indicates how well the
modeling results fit the training dataset. The prediction rate that uses the validation dataset
measures how well the model predicts future fires across the landscape (Jaafari, Rezaeian,
et al., 2017). Both success and prediction rates can range from 0 to 1 and values of ,0.6
indicate a poor, 0.6�0.7 a moderate, 0.7�0.8 a good, 0.8�0.9 a very good, and .0.9 an
excellent model performance (Hosmer, Lemeshow, & Sturdivant, 2013).

28.4 Results and Discussion
28.4.1 Factor Importance

The OOB rate derived from the RF model showed an accuracy rate of 70.11%, which indi-
cates a reasonably good model performance for classifying nonfire and fire pixels over the
study area (Pourghasemi & Kerle, 2016; Pourtaghi et al., 2016). The confusion matrix
(Table 28-1) that recorded the disagreement between model predictions and actual out-
comes of the training dataset showed that the RF model correctly classified 70.7% and 69.6%
of the nonfire and fire pixels, respectively.

The final outcome of the RF model was a rank of relative importance of wildfire causative
factors using two importance measure (i.e., mean decrease accuracy and mean decrease
Gini) (Fig. 28-3 and Table 28-2). Given that higher values of these measures indicate a higher

Table 28-1 Confusion Matrix From the RF Model (0 5 Nonfire,
1 5 Fire)

0 1 Overall Class Error

0 65 27 0.293
1 28 64 0.304

OOB estimate of error rate: 29.89%; model accuracy: 70.11%. OOB, Out-of-bag; RF, random forest.
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level of importance for a specific causative factor (Pourtaghi et al., 2016), proximity to human
settlements (accuracy 5 20.01; Gini 5 9.38), annual rainfall (accuracy 5 19.79; Gini 5 8.85),
altitude (accuracy 5 15.76; Gini 5 7.41), and proximity to roads (accuracy 5 15.52; Gini 5
7.40) were identified as the most important wildfire causative factors. These results clearly
show that the human-related factors (i.e., proximity to settlements, roads, and rivers) were
significantly stronger than climate- (i.e., rainfall, temperature, and wind effect) and
topographic-related (i.e., slope, aspect, and altitude) factors. Human-related factors jointly
accounted for 38.46 and 22.05 in terms of accuracy and Gini measures, respectively. This
result is in agreement with other findings that reported the significance of human activities
for fire occurrence (e.g., Achard, Eva, Mollicone, & Beuchle, 2008; Ganteaume et al., 2013;
Nami et al., 2018; Syphard et al., 2007; Yang, He, Shifley, & Gustafson, 2007). Further, the

FIGURE 28-3 Two measures of factor importance calculated by the RF model. RF, Random forest.

Table 28-2 Relative Importance of Wildfire Causative Factors Extracted by the RF
Model (0 5 Nonfire, 1 5 Fire)

0 1
Mean Decrease
Accuracy

Mean Decrease
Gini

Proximity to settlements 4.94 25.02 21.01 9.38
Rainfall 9.61 17.98 19.79 8.85
Altitude 1.27 18.41 15.76 7.41
Proximity to roads 2.42 18.47 15.52 7.40
Temperature 2 4.28 12.19 7.28 5.31
Wind effect 5.36 3.41 6.33 4.84
Slope degree 5.21 1.68 4.65 5.13
Proximity to rivers 2 1.99 4.37 1.94 5.27
Aspect 2 5.90 2 1.11 2 4.57 4.73

RF, Random forest.
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results demonstrated the significance of climate factors in spatial distribution of wildfire
probability across the study area. These results are supported by previous findings that
highlighted the strong influence of climate factors and ongoing climate changes on the inten-
sity and frequency of wildfires (e.g., Flannigan, Stocks, Turetsky, & Wotton, 2009; Gillett,
Weaver, Zwiers, & Flannigan, 2004; Stocks et al., 1998; Wu, He, Yang, Liu, & Liang, 2014).

28.4.2 Prediction Map

The application of the SVM model resulted in distribution maps that represent the different
levels of probabilities of fire ignition across the study area (Fig. 28-4). A comparison between the

FIGURE 28-4 Distribution map of wildfire probability produced using the SVM model. SVM, Support vector
machine.
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four probability levels delimited by the SVM model suggests that the high and very high proba-
bility levels cover almost 50% of the study area. Thus, fire-fighting efforts and resources/infra-
structure should be directed to roughly half of the area of Chaharmahal�Bakhtiari Province.

The validation process using the ROC�AUC method illustrated the success and predic-
tion rates of the SVM model (Figs. 28-5 and 28-6). The ROC curve revealed AUC values of
0.814 for success rate and 0.751 for prediction rate, indicating a reliable model performance
to estimate wildfire probability across the research landscape. More precisely, the SVM

FIGURE 28-5 Success rate curve of the SVM model. SVM, Support vector machine.

FIGURE 28-6 Prediction rate curve of the SVM model. SVM, Support vector machine.
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model was more successful in dealing with the training dataset and correctly classified
83.70% of fire pixels (5sensitivity) and 74.48% of nonfire pixels (5specificity). However, its
performance decreased slightly in the validation phase (i.e., predicting future fires) and cor-
rectly classified 75% of fire pixels (5sensitivity) and 72.5% of nonfire pixels (5specificity).

When the results of the SVM model are compared to what has been reported in previous
works, it can be seen that the results are quite different according to research areas. For
instance, while Tien Bui et al. (2016, 2017) reported AUC values of 0.88% for the prediction rate
of SVM in tropical areas of Vietnam, Rodrigues and de la Riva (2014) achieved an AUC value of
0.71 in Spain, indicating the need for further applications of SVM in wildfire prediction.

28.5 Conclusion
Wildfires are one of the major catastrophic phenomena that occur in territorial ecosystems.
Regional- and, perhaps more importantly, national-scale wildfire probability mapping is
urgently needed to effectively manage and monitor wildfires to reduce the severe loss of
human life and property. In this study, the analysis was performed in a regional spatial extent
with a resolution of 50 m and it was found that the probability of a fire is strongly dependent
upon the human infrastructure and its associated activities. Findings from the RF model dem-
onstrated that proximity to human settlements, rainfall, altitude, and proximity to roads were
the most effective factors on wildfire occurrences. The SVM model that delineated the
research landscape to different levels of probabilities to fire occurrences was proven to be
effective in predicting future fires with satisfactory accuracy. The insights obtained from this
research can be applied to spatially explicit assessment of fire-prone landscapes and to gain a
better understanding of the nature of the different landscape characteristics.
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29.1 Introduction
The 21st century has been marked by a significant transformation of the Earth, related to
both natural phenomena and anthropic factors linked to the satisfaction of human needs
(Foley et al., 2005). Ecosystem function and structure have been compromised by human
activities, resulting in greater vulnerability of places, people, economic dynamics, and the cli-
matic system (Kasperson & Kasperson, 2001; Ogle, Delparte, & Sanger, 2017; Tyson, Steffen,
Mitra, Fu, & Lebel, 2001).

The magnitude and extent of land use/land cover (LULC) changes underway in many
parts of the world (e.g., Feranec, Soukup, Taff, Stych, & Bicik, 2017; Fuchs, Herold, Verburg,
Clevers, & Eberle, 2015) are influenced by socioeconomic and biophysical factors. These
determinants are directly related to the functioning of local and national markets, internal
and external policies, as well as demographic and environmental conditions (Turner, Ross, &
Skole, 1993). Deforestation (Dimobe et al., 2015; Lu, Li, Moran, & Hetrick, 2013), industriali-
zation (Deng, Huang, Rozelle, & Uchida, 2008; Lu, Liang, Bi, Duffy, & Zhao, 2011), agricul-
tural intensification (Kanianska, 2016; Matson, Parton, Power, & Swift, 1997), and urban
growth (Hamidi & Ewing, 2014; Yue, Liu, & Fan, 2013) are all examples of the principal
LULC changes (Lambin, Geist, & Lepers, 2003).

Population growth and the continuous need for housing and other amenities, intrinsically
linked to human responses to stimuli from both the physical environment and sociocultural
contexts (Martine, 2001), is one reason for the increase in urbanized land (Antrop, 2004;
Kulkarni & Ramachandra, 2006). This process has led to spontaneous or unplanned growth
of urban areas, which are typically dispersed and inefficient (Ewing & Hamidi, 2015; Hasse &
Lathrop, 2003).
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29.1.1 Urban Growth Concepts

Urban growth, urban extension, and urban sprawl are sometimes used synonymously, even
though they differ conceptually. Urban growth is an increase in the urbanized land cover.
One possible means of urban growth is by urban extension. Urban growth according to
spontaneous or unplanned urban development is called urban sprawl. Urban sprawl usually
has negative connotations, associated with the generation or intensification of complex
urban problems, such as land, water, and air pollution, with their consequent negative
impacts on human health (Alberti, 1999; Antrop, 2004; Dickson, Baker, Hoornweg, & Asmita,
2012; Kumar & Pandey, 2013; Marshall, Pielke, Steyaert, & Willard, 2004; Pathan, Shukla,
Patel, Patel, & Mehta, 1991; Rivas, Hernandez, & Cueto, 2003).

Wilson, Ware, and Ware (2003) identified three categories of urban growth: infill, exten-
sion, and outlying, with the latter being further subdivided into isolated, linear, and cluster
growth. The relationship (or distance) to existing developed areas is important for determin-
ing what type of urban growth has occurred.

Infill growth is characterized by a nonurban area that is being converted to urban use
and which is surrounded by at least 40% of existing urban area. This scenario can be defined
as the development of a small piece of ground mostly surrounded by urban land cover/use
(Wilson et al., 2003). Ellman (1997) defines infill policies as an incentive to develop the free
space in already built-up areas. Infill growth usually occurs where public infrastructures
already exist, such as roads, water, or sewerage networks (Wilson et al., 2003). Forman
(1995a) describes infill friction as the disappearance of free space and corridors in such
built-up areas.

Growth by extension is characterized by a nonurban area that is being urbanized and is
surrounded by 50% or less of existing urban area. This conversion represents an extension
of the existing urban area (Wilson et al., 2003). This type of development by extension has
been called the metropolitan fringe or urban fringe development (Heimlich & Anderson,
2001; Wasserman, 2000). When urban areas expand in predominantly parallel bands (also
called straps or bangs) with an outer edge, it is called boundary or border development
(Forman, 1995b).

Outlying growth is characterized by a land change from nonurban to urban that occurs
away from existing urban areas (Wilson et al., 2003). This kind of growth has also been named
development beyond the urban fringe or leapfrog development (Heimlich & Anderson, 2001).

Isolated growth is characterized by the urbanization of one or more nonurban areas at
some distance from an existing urban area. This kind of growth is typical of a new house or
a similar construction, surrounded by limited or no urban space (Wilson et al., 2003).
Forman (1995a) defines it as percolation and it is usually seen in rural areas.

29.1.2 Urban Growth Processes

Urban growth is related to landscape transformation, as presented by Forman (1995a).
Although these two processes are quite similar, urban growth defines growth of an urban
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area, whereas landscape transformation defines types of fragmentation, such as reductions
of nonurban areas. The pattern of LULC reflects the organization or spatial distribution of
the built environment.

An important aspect of spatial pattern analyses of built-up areas is precise identification
and cartographic representation of fragmentation, both internal and external (Zipperer,
1993). Bogaert, Ceulemans, and Salvador-Van Eysenrode (2004) developed a classification
algorithm at the landscape level that identifies 10 different categories of fragmentation,
including internal and external fragmentation, according to the observed changes in the
area, as well as the number and perimeter of patches.

However, patch-based approaches are difficult to implement over wide areas, mainly due
to the consequently large number of patches. Reducing the number of patches (Heilman,
Strittholt, Slosser, & Dellasala, 2002) necessitates data modifications that may result in loss of
information, particularly relating to small patches, and subdivision of the area often trun-
cates individual patches, resulting in inaccurate estimates of shape and dimensions (Riitters,
Wickham, & Coulston, 2004).

In practice, most indicators of fragmentation are defined by concepts of adjacency and con-
nectivity at the pixel level (Musick & Grover, 1991) or at the landscape level, referred to as patch
corridor matrix and patch-mosaic (Forman, 1995a). Cartographic representations of internal and
external fragmentation of large areas at the pixel level have been described by Riitters, Wickham,
O’Neill, Jones, and Smith (2000), Riitters et al. (2002), and Civco, Hurd, Wilson, Arnold, and
Prlsloe (2002). These methods are based on image convolution and do not require identification
of individual patches. Instead, a fixed area (i.e., a window or kernel) is centered on each pixel of
a map, and an index that expresses the amount and immediacy of the built-up area within that
window is calculated. The result is assigned to the urban pixel located in the center of the
window, thus building a new map with index fragmentation values.

However, this approach may erroneously classify fragmentation (Riitters et al., 2000)
because: (1) it is partly based on percolation theory, which strictly applies to random maps,
and built landscapes are not random; (2) the fragmentation index is a categorical delineation
of the continuous spatial adjacency quantity parameter; and (3) contextual information out-
side the window cannot be considered. Matheron (1967) introduced morphological image
processing to study the geometry of porous media. Mathematical morphology is a theory
and technique based on set theory that aims to analyze the shape of objects (Soille, 2004).
Morphological image processing has been used in landscape ecology to map types of limits
(border, frontier, fringe, and margin) according to the identities of the adjacent pixels that
form the limit, i.e., the edge (Metzger & Muller, 1996). The abundances of different types of
limit can be used to estimate adjacency indices and border complexity at the level of both
class and landscape. Metzger and Muller (1996) used morphological operations to illustrate
a proposed index of landscape-level connectivity, which they termed the degree of percola-
tion of the interior environment.

Urban growth should be parsed as an urban land pattern, that is, a spatial configuration
of a given municipality at a given time, and as a process, that is, how the spatial structure of
urban space changes over time. In analyzing urban growth as a pattern or process, the
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causes that led to urban coverage and their consequences should be distinguished (Galster
et al., 2001). If urban growth is considered a pattern, then it should be understood as a static
phenomenon, whereas, as a process, it must be analyzed as a dynamic phenomenon.

A careful analysis of urban growth, either as a pattern or as a process, helps our under-
standing of the mutation of an urban landscape over time. This understanding includes: (1)
the rate of urban growth; (2) the spatial configuration of growth; (3) discrepancies between
observed and expected growth; (4) spatial and/or temporal disparities in growth; and (5) dis-
persal of growth (Bhatta, Saraswati, & Bandyopadhyay, 2010). Urban footprints embody the
least traditional exploration of the impact of urban sprawl on open spaces around a city.
They are appropriate for agricultural systems and sustainable development. Urban footprints
categorize three levels of urban area spatial density. Urban pixels in areas of low spatial
density represent a greater amount of open land than urban pixels in areas of high spatial
density. Fringe open land comprises land within 100 m of an urban area and can be
considered an edge-disturbance area.

29.1.3 Geographic Information Systems and Remote Sensing
Techniques in Urban Growth Analysis

Detection of LULC changes is the process of identifying differences in the state of a pixel or
phenomenon by analyzing images acquired on different dates (Singh, 1989). Geographic
information system (GIS) allows quantification of these changes using remote sensing data,
expressed spatially and temporally, to dynamically visualize spatial patterns and LULC com-
position. These changes can be integrated with social and biophysical data to determine the
factors that influence the process of LULC change or its consequences. Often, the resulting
linear or nonlinear relationships can be modeled mathematically and statistically analyzed.

Advances in GIS and information technologies have contributed to a substantial
increase in research studies since the end of the 20th century, focused on patterns of urban
growth and its impacts on human life and natural resources (Terzi & Bolen, 2009). These
studies facilitate comprehensive monitoring of physical changes over time. A primary tech-
nological breakthrough came from advances in satellite remote sensing (Lo, 1997), from
which global projects focused on LULC emerged (e.g., Global Land Cover 2000, CORINE
Land Cover, and Land Use and Cover Change). This advanced technology has driven inno-
vative methodologies and better techniques for the classification, monitoring, and time-
series analysis of land resources using large archives of satellite data (such as Land
[Remote-Sensing] Satellite (Landsat), Moderate Resolution Imaging Spectroradiometer
(MODIS), and the SENTINELs). The Landsat collection is an example of freely available
and analysis-ready data (for Level 1T, see Hansen & Loveland, 2012; Wulder, Masek,
Cohen, Loveland, & Woodcock, 2012), which offers high spatial resolution (30 m) and a
large temporal extent (since the 1970s) (Woodcock et al., 2008). New survey and ground-
based automated and semiautomated methods have been developed from these advances
in remote sensing (Dewan & Yamaguchi, 2009; Maus, Câmara, Cartaxo, et al., 2016).
Consequently, spatiotemporal mapping and monitoring can efficiently provide data on
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multidimensional LULC changes (Lunetta, Knight, Ediriwickrema, Lyon, & Worthy, 2006;
Verbesselt, Hyndman, Newnham, & Culvenor, 2010; Weng, 2002; Xiao et al., 2005),
enabling quantification of the dimensions and degree of urban sprawl over time (Ewing &
Hamidi, 2015; Hamidi & Ewing, 2014; Jiang, Ma, Qu, Zhang, & Zhou, 2016; Sarzynski,
Galster, & Stack, 2014; Weng, 2001; Zhang et al., 2016).

Classification of satellite images is considered a complex and time-consuming process.
Moreover, classification accuracy can be affected by many factors, such as the type of input
images, the selected classification methods, and the algorithm applied (Lu & Weng, 2007).
Algorithms and other such tools that prioritize the time dimension and are capable of spatio-
temporal analysis of remote sensing imagery have been used effectively to identify urbaniza-
tion process dynamics (Seto & Fragkias, 2005).

Despite these efforts, some challenges regarding LULC classification based on time-series
persist (Petitjean, Inglada, & Gancarski, 2012), namely: (1) the irregular temporal phenologi-
cal signatures of different land cover classes (Maus, Câmara, Cartaxo, et al., 2016; Petitjean
et al., 2012); (2) the insufficient sampling used to train the supervised algorithms; and (3) the
missing temporal data. The dynamic time warping (DTW) method (Guan, Huang, Liu, Meng,
& Liu, 2016; Petitjean & Weber, 2014; Petitjean et al., 2012; Rabiner & Juang, 1993) proved
capable of dealing with these challenges (Baumann, Ozdogan, Richardson, & Radeloff, 2017;
Guan et al., 2016; Maus, Câmara, Cartaxo, et al., 2016; Petitjean & Weber, 2014; Petitjean
et al., 2012). More recently, Maus, Câmara, Cartaxo, et al. (2016) developed the time-
weighted DTW (TWDTW) algorithm, improving on the DTW. TWDTW balances shape
matching and temporal alignment, allowing both image classification and spatiotemporal
analysis. It represents one of the few existing open-source methods for remote sensing time-
series analysis, and is freely available through the dtwSat package (Maus, Câmara, Appel,
et al., 2016) and related graphical and statistical R software tools (dtw, proxy, zoo, caret,
mgcv, sp, raster, and ggplot 2) (Maus, Câmara, Appel, & Pebesma, 2016). Maus, Câmara,
Cartaxo, et al. (2016) have demonstrated that this method achieved high accuracy for LULC
classification from a MODIS enhanced vegetation index (EVI) time-series. Furthermore,
Belgiu and Csillik (2018) show that TWDTW achieved a high overall accuracy for LULC clas-
sification using a Sentinel-2 NDVI (normalized difference vegetation index) time-series.

Since urban growth is a spatially conditioned process, where an event at a given site is
partially affected by occurrences in neighboring locations, the TWDTW method was used to
classify urban areas over a long time-series computed from Landsat satellite imagery. The
classification of the images was based on computation of four spectral indices, namely: (1)
NDVI; (2) normalized difference built-up index (NDBI); (3) normalized difference bareness
index (NDBaI); and (4) normalized difference water index (NDWI). Other studies have also
used indices to identify the built-up and bare land in urban areas, for example, NDBI (Zha,
Gao, & Ni, 2003), index-based built-up index (Xu, 2008), urban index (Kawamura,
Jayamanna, & Tsujiko, 1996), (NDBaI) (Zhao & Chen, 2005), and bare soil index (Rikimaru &
Miyatake, 1997). To improve the differentiation between urban and other LULC classes, the
satellite data were mapped in a three-dimensional array in space-time (Maus, Câmara,
Appel, et al., 2016), from which the four spectral indices were derived.
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This study presents the results of applying the TWDTW method, using R tools, for LULC
detection and urban sprawl analysis. The patterns and processes of urban growth for a test
area in southern Portugal are identified and discussed.

29.2 Materials and Methods
29.2.1 Study Area

The study area is located in the municipality of Beja in southeastern Portugal, which is part
of the Baixo-Alentejo subregion of Alentejo (the largest Portuguese region, with an area com-
parable to the size of Belgium). Beja municipality is bordered to the north by the municipali-
ties of Cuba and Vidigueira, to the east by Serpa, to the south by Mértola and Castro Verde,
and to the west by Aljustrel and Ferreira do Alentejo. It covers approximately 1106 km2 and
has a total of 35,854 inhabitants (INE, 2012). The study area of Beja that is considered covers
around 12 km2 (coordinates: 07�49052vW to 07�52037vW and 38�00003vN to 38�01042vN;
Fig. 29-1).

The urban subsystem of the Baixo-Alentejo subregion is organized around the city of
Beja, where two important public companies are located, that is, Empresa de
Desenvolvimento e Infraestruturas do Alqueva SA and ANA Aeroporto de Beja. The former
was established for the design, implementation, construction, and operation of one of the
largest dams and artificial lakes in Western Europe, Alqueva Dam on the River Guadiana,
on the border of Beja and Évora districts. The latter holds the concession for Beja Airport

FIGURE 29-1 Study area in Beja municipality of Baixo-Alentejo, southeastern Portugal.
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and provides support to civil aviation. The airport is located 9 km northwest of the city of
Beja and 150 km from Lisbon, 120 km from Faro, and less than 60 km from the Spanish bor-
der, being the only Portuguese airport in the Alentejo region. However, since this airport
failed to attract the attention of low-cost carriers, no regular flights are scheduled.
Nevertheless, it represents a logistics hub for goods being shipped to the nearby seaport of
Sines and onward to the rest of Europe. Apart from these major companies, the economic,
social, and cultural sustainability of the Baixo-Alentejo subregion is supported by: (1) the
eight heritage values of Beja, Mértola, and Serpa; (2) the affirmation of Moura in the urban
structure of the Alqueva surrounding area; (3) the polarization of accommodation options
in Serpa and Ferreira do Alentejo; and (4) the urban-industrial axis of Castro Verde-
Aljustrel, together with agricultural activities dominated by vineyards and the production of
wheat and olives.

29.2.2 Satellite Image Selection and Preprocessing

Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) images, as
well as a thermal infrared (TIR) sensor with a 30 m spatial resolution and 16-day temporal
resolution were used to cover a temporal series from 2007 to 2017 (Table 29-1), with a gap
for 2012 due to a lack of reliable data for that year. Landsat 7 Enhanced Thematic Mapper
(ETM1 ) images were discarded because from 2003 onward the Scan Line Corrector was not
working correctly, resulting in scene losses of around 22%.

The selected images were obtained from the United States Geological Survey, Level 1 and
almost cloud free (,10% coverage), in GeoTIFF format and were projected to the World
Geodetic System 1984 Geographic Coordinate System. The images originally reported top of
atmosphere (TOA) reflectance and were subjected to an atmospheric correction to convert
their values to bottom of atmosphere reflectance. This correction was performed using the
Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module of the
Environment for Visualizing Images (ENVI) software package (Nazeer, Nichol, & Yung,
2014).

Table 29-1 Spectral Characteristics of the Bands Used to Calculate the Spectral
Indexes

Spectral Regions

Landsat 5 (ETM) Landsat 8 (OLI1 TIRS)

Bands Wavelength (µm) Bands Wavelength (µm)

Blue 1 0.45�0.52 2 0.452�0.512
Green 2 0.52�0.60 3 0.533�0.590
Red 3 0.63�0.69 4 0.636�0.673
Near infrared 4 0.77�0.90 5 0.851�0.879
Shortwave infrared 5 1.55�1.75 6 1.566�1.651
Thermal infrared 6 10.31�12.36 10 10.60�11.19

11 11.50�12.51

ETM, Enhanced Thematic Mapper; OLI, Operational Land Imager; TIRS, thermal infrared sensor.
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Landsat images are widely used to quantify urban spatial changes (Huang, Yan, & Wu,
2016). To avoid inconsistencies between images, TM datasets were geo-rectified based on
OLI, and then all image datasets were projected into the ETRS_1989_Portugal_TM06 coordi-
nate system to accurately retrieve LULC data.

In order to ensure broad temporal continuity, 48 images were used to create a long time-
series. The analyzed time-frame ranges from the end of 2006 to the beginning of 2018, allow-
ing us to perform a 2007�17 classification, representing a 10-year time-series analysis
whereby each month can have more than one image for different days.

There are several techniques for automatically mapping urban LULC using remote sens-
ing data. These techniques can be generally divided into two groups: (1) techniques centered
on data classification, for example, pixel-by-pixel and object-based classifications (Cleve,
Kelly, Kearns, & Moritz, 2008; Guindon, Zhang, & Dillabaugh, 2004); or (2) techniques based
directly upon indices such as the widely used NDVI (Zha et al., 2003; Zhang et al., 2005).
However, it is a significant challenge to obtain accurate remote sensing-based data for urban
areas, mainly due to the spectral and spatial unpredictability of urban environments (Powell,
Roberts, Dennison, & Hess, 2007). Thus, any effort to improve automatic classifications of
urban LULC using remote sensing data is still beneficial.

29.2.3 Spectral Indices

Four remote sensing-based indices were combined: (1) NDVI; (2) NDBI; (3) NDWI; and (4)
NDBaI. This combination takes advantage of the unique spectral responses of built-up areas
and other land cover types. Built-up areas are effectively mapped through arithmetic manip-
ulation of the indices derived from TM and OLI sensor data.

29.2.3.1 Normalized Difference Vegetation Index
The NDVI is a common and widely used remote sensing index (Bhandari, Kumar, & Singh,
2012). NDVI is calculated as the ratio between TOA reflectance of a red band ρred

� �
around

0.66 µm and a near-infrared (NIR) band ρnir
� �

around 0.86 µm. The NDVI of a densely
vegetated area will tend toward positive values, whereas water and built-up areas will be
represented by near zero or negative values. Formally, NDVI is given by Braun and Herold
(2004) as:

NDVI5
ρnir 2 ρred
ρnir 1 ρred

(29-1)

29.2.3.2 Normalized Difference Built-Up Index
The NDBI was designed to identify built-up areas and barren land. These two LULC types
present a strong increase in their reflectance from NIR to shortwave-infrared (SWIR) ρswir

� �
bands, whereas vegetation presents a somewhat lower value on SWIR than on NIR. This
steep rise significantly exceeds those of other LULC classes. Considering a given LULC class,
the minimum and maximum digital numbers (DNs) for NIR are much smaller than those for
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SWIR. The normalized difference between these two bands [Eq. (29-2)] results in DN values
close to 0 for forest and agriculture, negative values for water, and positive values for urban
areas, allowing separation of the latter from other LULC types.

NDBI5
ρswir 2 ρnir
ρswir 1 ρnir

(29-2)

However, by itself, NDBI cannot be used to map the coverage of built-up areas versus
bare land (He, Shi, Xie, & Zhao, 2010; Zha et al., 2003). He et al. (2010) noted this inability to
distinguish vegetation, bare land, and built-up areas, particularly in areas with heteroge-
neous objects, from the highly complex spectral response patterns.

29.2.3.3 Normalized Difference Bareness Index
NDBaI uses SWIR and TIR ρtir

� �
bands to distinguish bare land from other LULC classes.

TIR can differentiate high and low levels of reflectance from built-up objects (Zhao & Chen,
2005). Weng (2008) highlighted that TIR bands are very efficient for mapping urban areas
with low albedo, accounting for shadow and water effects, with high albedo clearly denoting
built-up areas and bare land. TIR also reveals a high level of contrast for vegetation. Urban
areas can be 1�C�3�C (1.8�F�5.4�F) warmer on average—and as much as 12�C (22�F)
warmer in the evening—than surrounding areas (Lu & Weng, 2006). The normalized differ-
ences between SWIR and TIR [Eq. (29-3)] return near zero values for water, negative values
for vegetation, and positive values for built-up and barren land. These results facilitate the
distinction of built-up and bare land areas from other LULC types.

NDBal5
ρswir 2 ρtir
ρswir 1 ρtir

(29-3)

29.2.3.4 Normalized Difference Water Index
The NDWI was developed by McFeeters (1996) to detect surface waters and to measure their
extent. Despite being created for use with Landsat Multispectral Scanner image data, it has
been used effectively with other sensors to analyze the extent of open water (Murray, Phinn,
Clemens, Roelfsema, & Fuller, 2012; Panigrahy, Murthy, Patel, & Singh, 2012). The NDWI is
calculated as:

NDWI5
ρgreen 2 ρnir
ρgreen 1 ρnir

(29-4)

where ðρgreenÞ is the TOA reflectance in the green band. McFeeters (1996) reported that
NDWI values above zero are presumed to characterize water surfaces, whereas values lower
than or equal to zero are nonwater. The NDWI is less sensitive to atmospheric effects than
the NDVI.

All four selected indices (NDVI, NDWI, NDBI, and NDBaI) are presented in an equivalent
scale, with values ranging from 21 to 1, simplifying comparisons. Since data from two
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different sensors were used in this study (Landsat 5 and Landsat 8) (Table 29-1), different
bands are retrieved to derive the corresponding indices.

29.2.4 Time-Series Image Classification

In this study, the TWDTW method was used for time-series analysis of remote sens-
ing data. TWDTW is a time-constrained variation of the DTW approach for time-
series analysis (Velichko & Zagoruyko, 1970). Recently, it was written in R language
and made available via the dtwSat package (R Core Team, 2016; Maus, Câmara,
Appel, et al., 2016).

Despite providing good results regarding shape matching (Keogh & Ratanamahatana,
2004), the traditional DTW approach is not adjusted for satellite image time-series analy-
sis because it ignores the temporal range when trying to find the best pair matches
between time-series (Maus, Câmara, Appel, et al., 2016). To perform an LULC classifica-
tion using image time-series, an equilibrium between shape matching and temporal
alignment is required because each class has a distinctive cycle (Reed et al., 1994; Zhang
et al., 2003). As a result, Maus, Câmara, Appel, et al. (2016) introduce a time constraint
in DTW to account for data seasonality. TWDTW of the dtwSat package requires three
inputs:

1. A satellite image time-series, all with the same spatial extent. In R software, the time-
ordered images should use the RasterBrick/RasterStack class of the raster package.

NDBal5 brickðpasteðdata folder; }ndbalf :tif}; sep5 }=}ÞÞ
NDBI5brickðpasteðdata folder; }ndbif:tif}; sep5 }=}ÞÞ
NDVI5 brickðpasteðdata folder; }ndvif:tif}; sep5 }=}ÞÞ
NDWI5 brickðpasteðdata folder; }ndwif :tif}; sep5 }=}ÞÞ

(29-5)

2. A temporal list of ordered dates associated with the image time-series to provide the
date of each image. The timeline file is a vector containing the acquisition dates of all the
images in the YYYY-MM-DD format.

dates5 scanðpasteð}timeline}; sep5 }=}Þ; what5 }date}Þ (29-6)

3. A list of known ground truth (x,y) locations with spatial and temporal information, that
is, a known temporal time-series in a format readable in R (e.g., comma-separated values
(CSV) or shape file). Our study includes 88 samples (47 urban and 41 nonurban).

field samples5 read:csvðpasteð}samples:csv}; sep5 }=}ÞÞ (29-7)

For each temporal pattern, all matching subintervals in the long-term time-series with
which they intersect were considered, providing a dissimilarity measure. The result is a
set of subintervals, each with its own pattern and dissimilarity measure. Accordingly, the
satellite image time-series is subdivided into annual periods, each one being allocated to
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a LULC class. The patterns are classified based on the LULC class of the best matching
subinterval.

proj str5 scanðpasteð}samples projection}Þ; what5 }character}Þ (29-8)

These datasets were then combined in order to generate a multiple layer raster time-
series, which forms the basis of our TWDTW analysis. The dtwSat package includes the
“twdtwRaster” function that enables construction of a multiband satellite image time-series:

raster timeseries5 twdtwRasterðNDVI; NDBaI;

1NDWI; NDBI; timeline5 datesÞ (29-9)

The classification is highly dependent on the quality of the temporal patterns. Therefore,
it is useful to perform an analysis to assess the differentiability of the temporal pattern.
Ideally, the patterns should produce consistent results if applied to a set of unknown time-
series data. Therefore, before performing our LULC mapping, we performed a cross-
validation procedure. This procedure allowed for assessment of the differentiability of our
patterns before classifying the large dataset.

Using the function “getTimeSeries,” the time data for every field sample are extracted
from the raster time-series. The outcome is a twdtwTimeSeries file with one time-series for
each unique field sample:

field samples ts5 getTimeSeriesðraster timeseries;

1 y5 field samples; proj4string5proj strÞ (29-10)

29.2.4.1 Cross-Validation
Cross-validation was performed to verify sample data consistency using the
“twdtwCrossValidate” function, which splits the sample into two datasets: training and vali-
dation. This approach uses stratified sampling with random sampling within each group.
The “twdtwCrossValidate” function uses the training samples to establish temporal patterns
and then it classifies the remaining samples (validation set) using the “twdtwApply” function.
Accuracy is assessed based on these latter classification results. For training and validation,
100 distinct data partitions (times5 100), each with a 10%�90% balance (P5 .1) were cre-
ated. For the weight function, a logistic function with steepness of 20.1 and a midpoint of 50
was set. The temporal pattern frequency was set to 16 days (frequency5 16) to ensure that
at least one image was selected. Finally, we used a generalized additive model (GAM) as a
smoothing function, applying yBs(x), where s defines a spline model, with time (x) and
satellite datasets (y).

The GAM method (Hastie & Tibshirani, 1986; Wood, 2011) creates smoothed tempo-
ral patterns supported by the training samples, giving flexibility regarding nonparamet-
ric fits, and it is more flexible in terms of the associations among response and
predictor values. Theoretically, this approach offers better-fit possibilities for satellite
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data than parametric models alone due to the inter-/intraannual inconsistency of this
type of data. The result is a “twdtwCrossValidation” file containing the accuracy of
each data partition. This file has two distinct aspects: the partitions that record the
index of the samples used for training, and the accuracy measures (e.g., overall accu-
racy, user accuracy, producer accuracy, and error matrix) of the reference and pre-
dicted classes, as well as the measure of TWDTW distance:

set:seedð1Þ
log fun5 logisticWeightðalpha52 0:1; beta5 50Þ
cross validation5 twdtwCrossValidateðfield samples ts;

1 times5 100; P5 :1; freq5 16; formula5

1 yBsðx; bs5 }cc}Þ; weight:fun5 log funÞ
plotðcross validationÞ

(29-11)

Finally, for the classification itself, 10% of the samples for training were randomly selected
and the remaining 90% of the samples were used for validation. The first sample group
allows temporal patterns to be generated and, consequently, for the image time-series to be
classified. The second sample group enables assessment of the classified maps. Preferably,
an independent set of samples should be used to compute map accuracy but, due to the dif-
ficulty of obtaining field samples with the required quality, we had to use the same samples
from the cross-validation process:

libraryðcaretÞ
set:seedð1Þ
I5unlistðcreateDataPartitionðfield samples½; }label}�; P5 :1ÞÞ
training ts5 subsetðfield samples ts; IÞ
validation samples5 field samples½2 I ; �

(29-12)

Subsequently, the spatiotemporal patterns for each record of the training samples were
obtained using the “createPatterns” function. This step required re-applying the desired tem-
poral pattern frequency and the smoothing function of the GAM model. To do so, as for
Eq. (29-11), a frequency of 16 days and the GAM smoothing parameter yBs(x) was set. The
“createPatterns” function provides a file of the class “twdtwTimeSeries.” The results can be
shown using a plot command:

temporal patterns5 createPatternsðfield samples ts;

1 freq5 16; formula5 yBsðxÞÞ
plotðtemporal patternsÞ

(29-13)

Next, the image time-series were classified using the temporal patterns described by
Eq. (29-13). The result is a TWDTW raster with two layers (urban and nonurban), each
representing the TWDTW distance measure (i.e., dissimilarity) for each pattern (i.e.,
LULC class) over time. As the distance value increases, the probability of retrieving a
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bad classification also increases. We used plot distance to illustrate the dissimilarity for
each class in 2007:

log fun5 logisticWeightðalpha52 0:1; beta5 100Þ
time interval5 seqðfrom5 as:Dateð}2006-12-31}Þ;

1 to5 as:Dateð}2018-01-01}Þ; by5 }12 month}Þ
twdtw dist5 twdtwApplyðx5 raster timeseries; y5 temporal patterns;

1 overlap5 0:5; weight:fun5 log fun;

1breaks5 time interval; overwrite5TRUEÞ
plotðx5 twdtw dist; type5 }distance}Þ

(29-14)

From these data, the categorical LULC maps were generated. The “twdtwClassify” func-
tion selects the most similar patterns for each period and produces a TWDTW time-series
raster of the LULC maps. The resulting file has two layers: the classification of categorical
LULC maps and the dissimilarity measure for each year:

land cover maps5 twdtwClassifyðtwdtw dist;

1 format5 }raster}; overwrite5TRUEÞ
plotðx5 land cover maps; type5 }maps}Þ
plotðx5 land cover maps; type5 }distance}Þ

(29-15)

The final step consists of validating the obtained classification. The “twdtwAssess” func-
tion in R calculates several accuracy metrics following Olofsson, Foody, Stehman, and
Woodcock (2013) and Olofsson et al. (2014), by which the accuracy of the classified categori-
cal map based on the sample set selected for validation can be assessed.

The output includes four layers: (1) accuracy metrics for each period (e.g., overall accu-
racy, user accuracy, producer accuracy, and error matrix); (2) accuracy and adjusted area
accumulated overall periods; (3) TWDTW distance; and (4) the raster maps. We then com-
puted the accumulated accuracy using the validation sample and a 95% confidence interval
using Eq. (29-16). This step generates the accumulated accuracy of all the LULC maps
(2007�17) as opposed to for a single year (e.g., 2007):

maps assessment5 twdtwAssessðland cover maps;

1 y5 validation samples;

1proj4string5proj str; conf:int5 :95Þ
(29-16)

29.2.5 Measuring Urban Sprawl

To measure urban sprawl, the data for three periods corresponding to the beginning (2007),
middle (2012), and end (2017) of the data time-series were first analyzed. The result was
three urban footprint maps that revealed three levels of spatial density in the urban area. We
used a 1 km2 buffer around each urban cell for our calculations, which corresponds to a
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circle of near 570 m radius or, considering the Landsat spatial resolution (30 m), a
VonNewman neighborhood of 193 19 cells.

The footprint classes were established according to the following criteria: (1) urban
built-up areas have urban values greater than 50%; (2) suburban built-up areas have
urban values varying between 10% and 50%; (3) rural built-up areas have urban values
of less than 10%; (4) fringe open land comprises nonurban pixels within 100 m of urban
pixels; (5) open land is nonurban pixels with coverage of less than 200 ha and totally
surrounded by urban pixels (urban built-up, suburban built-up, and fringe open land);
and (6) rural open land refers to nonurban pixels not classified as either open or fringe
open land.

Finally, the way that changes occurred through time was assessed. Sprawl manifests as
new urban cells that either extend outward from existing urban areas or "leapfrog" away
from them over time. Two scenarios were observed, that is, two land uses with one being the
antithesis of the other and the peculiar situation of a single status change (from nonurban to
urban). Accordingly, a new urban area is any urban cell added between two periods (T1 and
T2). To perform this analysis, a quantitative expansion index (E) (Sun, Zhao, & Qu, 2015; Xu
et al., 2007) was computed instead of a transition matrix. This index is based on locations rel-
ative to the T1 urban area and facilitates identification of three urban expansion types: (1)
infill; (2) extension; and (3) leapfrog.

An urban area growing between or within urban areas at T1 is defined as infill. When an
urban area grows contiguously to existing urban areas, for example, new noninfill cells inter-
secting the T1 urban footprint, it is termed an extension. When a completely new and iso-
lated urban area appears (i.e., lacking contiguity to the T1 urban footprint), it is termed
leapfrog (Liu et al., 2010). The E index is formally given by:

E5
Lcom
Pnew

(29-17)

where Pnew (km) is the perimeter of a new urban area and Lcom (km) is the length of the
shared frontier between the new and the existing urban areas. Urban areas are classified as
infill when E. 0.5, expansion when 0,E, 0.5, and leapfrog when E5 0.

29.3 Results and Discussion
29.3.1 Time-Weighted Dynamic Time Warping Classification

The LULC classes based on 88 samples were separable with high confidence (90%) using our
TWDTW approach. The consistency of the sample was achieved through a cross-validation
procedure and subsequent computation of two accuracy measures, that is, producer and
user accuracy. The former is the classification accuracy from the point of view of the classifi-
cation maker (the producer). It retrieves how often real elements on the ground are correctly
represented on the classified map or the probability that an existing LULC is classified as
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such. The latter is the accuracy from the point of view of a map user. User accuracy quanti-
fies how often the class on the map is actually present, and is denoted as reliability.

The user and producer accuracies for any given class are typically not the same. Our
results show that our urban classification possesses 80% producer accuracy and a little over
70% user accuracy (Fig. 29-2). This means that even though 82% of the reference urban areas
were correctly identified as “urban,” only 71% of the areas classified as “urban” were actually
that LULC type. The classification performance varies from both perspectives, with the user
measure showing greater nonurban than urban accuracy, whereas the producer measure
evidences the opposite scenario. Nevertheless, globally, user accuracy, that is, map reliability,
performs better and has the lowest standard deviation.

The amplitude and phases of urban and nonurban classes can be seen in Fig. 29-3. As
expected, each LULC class has different index amplitudes through time. In the initial phases,
urban features performed as expected, showing higher values of NDBI than NDVI, and of
NDBaI than NDWI, with NDBI and NDBaI being the most relevant to urban reflectance.
However, from 2013 onward, NDVI and NDWI values exceeded those of NDBI and NDBaI,
respectively. As urban areas are not expected to change to vegetation or water cover, this
result may be due to the shift from Landsat 5 to Landsat 8 images. If that is the case, it shows
that the differences in radiometric ðρswir; ρnir; ρtirÞ and especially spatial ðρtirÞ resolutions
between both platforms can considerably affect the results.

Regarding nonurban features, they performed as expected despite being a more heteroge-
neous LULC class. NDVI and NDWI values commonly exceed those of NDBI and NDBaI.
There is one exception, in 2008, which corresponds to a period of severe drought. In more

FIGURE 29-2 Cross-validation for user and producer accuracy.

Chapter 29 • Land Use/Land Cover Change Detection and Urban Sprawl Analysis 635



Date Date

UrbanUnUrban

In
d

ex
 v

al
u

e

In
d

ex
 v

al
u

e

20
06

-1
2-

19

20
07

-0
6-

19

20
07

-1
2-

19

20
08

-0
6-

19

20
08

-1
2-

19

20
09

-0
6-

19

20
09

-1
2-

19

20
10

-0
6-

19

20
10

-1
2-

19

20
11

-0
6-

19

20
11

-1
2-

19

20
12

-1
2-

19

20
13

-1
2-

19

20
14

-1
2-

19

20
15

-1
2-

19

20
16

-1
2-

19

20
17

-1
2-

19

20
17

-0
6-

19

20
16

-0
6-

19

20
15

-0
6-

19

20
14

-0
6-

19

20
13

-0
6-

19

20
12

-0
6-

19

20
06

-1
2-

19

–0.4

–0.3

–0.2

0.2

–0.1

NDVI NDBAL NDWI NDBI NDVI NDBAL NDWI NDBI

0.1

0.3

0.4

–0.4

–0.3

–0.2

0.2

–0.1

0.1

0

0.3

0.4

0

20
07

-0
6-

19

20
07

-1
2-

19

20
08

-0
6-

19

20
08

-1
2-

19

20
09

-0
6-

19

20
09

-1
2-

19

20
10

-0
6-

19

20
10

-1
2-

19

20
11

-0
6-

19

20
11

-1
2-

19

20
12

-1
2-

19

20
13

-1
2-

19

20
14

-1
2-

19

20
15

-1
2-

19

20
16

-1
2-

19

20
17

-1
2-

19

20
17

-0
6-

19

20
16

-0
6-

19

20
15

-0
6-

19

20
14

-0
6-

19

20
13

-0
6-

19

20
12

-0
6-

19

FIGURE 29-3 Spectral signatures of the indexes through the data time-series.



recent years, NDBI and NDBaI exhibited values closer to those of NDVI and NDWI, with
NDVI and NDBI values being practically equal. This trend indicates the occurrence of desert-
ification processes and, therefore, a more evident change from vegetated areas to bare soil.

A TWDTW distance measure was used to create the LULC maps, and the classification
result is based on the most similar pattern for each period. This is a dimensional measure,
where a lower value denotes a higher probability of belonging to a particular class. In
Fig. 29-4, we show the areas that are most (in yellow) and least (in blue) likely to belong to a
given class. The results support the analysis presented in Fig. 29-3, in which a concentrated
pattern of urban areas is clearly identified within the perimeter and along the periphery of
the city of Beja, whereas the nonurban class is more highly dispersed and with several areas
that could be mistaken as being urban.

The resulting LULC maps for the years 2007, 2012, and 2017 can be seen in Fig. 29-5. The
maps demonstrate that urban areas have increased in the Beja study area since 2007,
although according to different rhythms. From 2007 to 2012, there was a pronounced
increase in urban area of approximately 90 ha. In the subsequent period, between 2012 and
2017, urban area only increased by about 20 ha. This outcome clearly demonstrates a slow-
ing rate of urbanization that, combined with the aging population, contributes to the aban-
donment of agricultural land and to the intensification of desertification.

29.3.2 Time-Weighted Dynamic Time Warping Validation

In order to validate the LULC classification we obtained, the TWDTW distance measure was
recovered, but computed for both urban and nonurban classes for each year. In Fig. 29-6,
we present this dissimilarity measure for each year of the time-series, with areas most likely
to be well classified represented in yellow and areas less likely to be well classified in blue.
Despite there not being a clear differentiation across the years, it is evident that urban areas
are more likely to be accurately classified than nonurban ones.

FIGURE 29-4 TWDTW distance from each temporal pattern (class) in 2007. TWDTW, Time-weighted dynamic time
warping.
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FIGURE 29-5 LULC maps for 2007, 2012, and 2017. LULC, Land use/land cover.

FIGURE 29-6 Yearly dissimilarity measure between 2007 and 2017.
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Fig. 29-7 depicts the accumulated accuracy measure over the entire 10-year period,
which we feel is as important as the individual assessments for each year. The errors are
cumulative if we compare two images from different dates (T1 and T2), that is, if both T1
and T2 have 90% accuracy, then assessments of the change between them will have 81%
accuracy (903 90/100), which is more than the 80% user and producer accumulated
accuracy for the 10-year period for the urban LULC class. This outcome can be considered
a satisfactory result. Nevertheless, the validation samples are not equally distributed over
time and data for some years are missing, which inhibits the utility of a year-by-year
accuracy analysis.

The TWDTW approach has proved to be well suited for LULC analysis using remote
sensing time-series datasets (Belgiu & Csillik, 2018; Maus, Câmara, Cartaxo, et al.,
2016). Here, the overall accuracy of our classification with a 95% confidence level is
greater than 85%. User and producer accuracies present similar levels, both also greater
than 80%. Thus, our dataset has proven to be valuable for quantifying spatiotemporal
patterns of urban land using an extension index. Nevertheless, a few sample points in
the time-series could negatively influence assessment accuracy, especially when dealing
with sensors of low temporal resolution such as Landsat images. However, this limita-
tion could be mitigated by combining TWDTW analysis with composition techniques
based on pixel-by-pixel analysis (Griffiths, van der Linden, Kuemmerle, & Hostert, 2013;
White et al., 2014).

FIGURE 29-7 Accumulated accuracy through the time-series.
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29.3.3 Urban Footprints

Three classes of urban footprint were identified, that is, built-up areas, fringe open land, and
open land. The period of analysis (2007�17) seems to have been broad enough to identify
both type and area of the major classes, that is, to perform an urban footprint analysis
(Fig. 29-8).

Pixels in built-up areas with lower spatial densities demonstrated a greater amount of
open land than those of high spatial density. Fringe open land consisted of land within
100 m of development and so can be considered edge-disturbance zones. These zones at the
periphery of urban areas can be influenced, and possibly degraded, by external environmen-
tal factors. Furthermore, the width of these zones can vary according to the particular
attribute under study. For example, timber harvest assessments may be affected by
disturbance-edge zones since areas directly adjacent to developed areas are typically not
suitable for harvesting. In general, edge-disturbance zones of width 100 m are considered.
We found that open land patches diminished due to isolation from other open areas.

Fig. 29-8 shows the urban footprint map, displaying the three main classes and another
three intermediate ones. It represents the least conservative analysis of development impacts
on open land around the city of Beja and is appropriate for agriculture and forest management.

Fig. 29-9 reveals that, for all years, the most important classes are urban built-up and
rural open land, which is in accordance with our empirical knowledge of the study area.

FIGURE 29-8 Urban footprint for 2007, 2012, and 2017.
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However, there is a visible and worrying tendency for urban built-up land to increase at the
expense of rural open land, with the other LULC classes staying rather stable throughout the
years of study. This process raises concern because urban expansion encourages farmers to
sell their land, which can induce agricultural abandonment and, indirectly, facilitate deserti-
fication processes.

The measurement of the urban landscape provides a more systematic analysis of the rela-
tionships between the shape and process of urbanization. The economy, transport system,
and social structure of urban areas can be predicted based on their geography, so their effects
are often articulated through geometric concepts involving the shape of urban land use and
how it spreads (Mesev, Longley, Batty, & Xie, 1995). Banister, Watson, and Wood (1997) found
significant relationships between the physical characteristics of a city, such as its density, size,
amount of free space, etc., and transport energy use. Batty and Sik Kim (1992) presented an
interesting approach of auto-similarity urban assessment using fractal analysis. Fractal geo-
metric analysis provides a deeper insight into density functions and provides ways of linking
the form of development to its spread and extension (Mesev et al., 1995). The form of devel-
opment is a very important element, as is identification of the ideal location for development.
GIS methodologies can help determine the best location for a particular land use (Brookes,
1997). GIS tools also feature a wide spectrum of applications in urban analysis, because they
consider space in analysis and modeling (Abed & Kaysi, 2003; Barredo, Demicheli, Lavalle,
Kasanko, & McCormick, 2004; Du, 2000; Fotheringham & Wegener, 2000; Okunuki, 2000).

29.3.4 Spatiotemporal Changes and Urban Sprawl

Between 2007 and 2012, the trend in urban growth adopts the shape of an oil spill, spreading
in all directions (Fig. 29-10). This transformation occurs by infill (36 ha), extension (50 ha),

FIGURE 29-9 Urban structure in 2007, 2012, and 2017.
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and leapfrog (4 ha) processes (Fig. 29-11). Leapfrog urban growth appears as a new urban
settlement east-southeast of the Beja core area. However, between 2012 and 2017, leapfrog
growth completely disappeared. This abolition of leapfrog growth, combined with mainte-
nance of the relative extension rate (50%), meant that, during this period, some of the urban
areas that had become established by leapfrog growth acted as focal points for infill of the
interurban space (50%). However, this second period is much less dynamic than the previ-
ous one, especially due to the global economic crisis and desertification, exhibiting only

FIGURE 29-10 Patterns of spatiotemporal urban change.

FIGURE 29-11 Structure of urban temporal changes.
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10 ha of both extension and infill urban growth (Fig. 29-11). In addition, the urbanization
process during this secondary period is more spatially restricted, resulting in an anisotropic
territorial pattern. Accordingly, new developments appear mainly on the eastern side of Beja
city (Fig. 29-10). Other changes occur in the west and south, mainly by infill growth
processes.

The data presented in Fig. 29-11 suggest that some urban areas can undergo a phase of
extension before ceasing to grow. Infill growth increases the contiguity of built-up areas by
filling in the open urbanized space, which is generally limited. Extension outwards from
existing development and leapfrog growth is not contiguous with previously developed areas.
These latter processes have the greatest effect on growth of the urban footprint and on frag-
mentation of open lands.

However, it is unclear when growth can be characterized as extension. Therefore,
extension as a process cannot be characterized without considering its pattern.
Accordingly, urban expansion should be considered a pattern in light of snapshots of
multitemporal processes. In any case, measurement of the respective dimensions of devel-
opment patterns for an urban area at different time-points will reveal the process (or
progress) of extension (Galster et al., 2001). Although it can help understand the spatial
distribution of an urban area, the extension pattern is typically presented as a static phe-
nomenon. In fact, areas described as having undergone urban extension are normally part
of a dynamic urban system (Ewing, 1997; Harvey & Clark, 1965). The dynamics of the pro-
cess of urban extension can be summarized within the theoretical scope of the urban
growth process.

Continuous spatial evolution progresses toward the coalescence of urban agglomerations.
The transitional phase initially involves urbanization of the open space between the central
urban core and peripheral centers. This pattern of growth advances toward a saturated state
of urbanization. In more traditional urban studies, this change of scale has been represented
by changing the spatial extension of the concentric rings around the central urban core,
which reflects the scenario in our study area of Beja.

The spatial configuration and dynamics of urban growth are important topics in urban
studies. A review of the literature reveals that urban growth has elicited broad social interest
because, in many cases, that growth is dispersed and seemingly out of control, which can
hinder sustainable development (Angel et al., 2005; Kumar, Pathan, & Bhanderi, 2007).
Accordingly, many previous studies have covered issues such as the patterns, processes,
causes, and consequences of urban growth, as well as countermeasures for its management.
Administrators (politicians), urbanists, and planners aim to analyze past and present patterns
of urban growth in order to prepare for the future (Bhatta et al., 2010). Physical expressions
and growth patterns of urban sprawl can be detected, mapped, and analyzed using this
approach (Angel et al., 2005; Kumar et al., 2007; Pathan, Jothimahi, Kumar, & Pendharkar,
1989). Decision support systems that are operable in a GIS environment can allow evaluation
of geospatial datasets (Axtell & Epstein, 1994; Parker, Manson, Janssen, Hoffmann, &
Deadman, 2003) and they can also predict the patterns for subsequent years based on cur-
rent and historical data.

Chapter 29 • Land Use/Land Cover Change Detection and Urban Sprawl Analysis 643



29.4 Conclusions
In this study, we created a medium/high-resolution time-series LULC dataset to characterize
sequential urban sprawl between 2007 and 2017 in a study area within the Beja municipality
(Portugal). Our analysis of the historical evolution of LULC over these years helps our under-
standing of the forms of urban organization and space occupation, as well as reveals trends
in landscape transformation.

Our assessment of the spatiotemporal characteristics of different urban sprawl scenarios
provides a more systematic analysis of the relationship between urban shape and the urbani-
zation process. Advanced GIS methodologies and the availability of remote sensing data
have made it easier to map (to understand the pattern), monitor (to understand the process),
measure (to analyze), and model (to simulate) urban growth, LULC change, and urban
sprawl. However, satellite images often possess inherent noise and lack of coverage due to
clouds and sensor problems, among other issues, so remote sensing time-series data may
contain large gaps. Thus, methods that can use temporally irregular samples (i.e., irregular
sampling intervals) have great potential for more completely exploring existing remote sens-
ing archives. The DTW approach is clearly one of the strongest available methods for dealing
with irregular time-series data. The TWDTW algorithm is suitable for LULC change analysis
of remote sensing time-series datasets and has proven to be a valuable tool for quantifying
spatiotemporal urban land extension patterns with the use of an extension index.
Nevertheless, the TWDTW algorithm is extremely computationally intensive, so users should
consider the possibility of parallel processing for large datasets (due to large areas, extensive
time-series, high spatial resolution, etc.).

An understanding of urban patterns, dynamic processes, and their relationships is a key
objective of urban research among scientists, managers, and planners because future devel-
opment and urban management require readily available and detailed information about the
processes and patterns of urbanization in action. The central questions revolve around how
cities are spatially organized, when and where evolution occurs, why urban processes result
in a specific spatial pattern and, ultimately, what might be the consequences of such patterns
and/or processes. The answers to these questions will definitely help to prepare for the
future in a more equitable and sustainable way. More specifically, the answers will contribute
to defining how future urban planning is done, if it should be more restrictive, how cities
can overcome the negative effects of urban growth and sprawl, and which are the most
appropriate policies for balancing the various objectives of sustainability.
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30.1 Introduction
In general, gully erosion is a major threat for natural resource management in semiarid to
arid areas, which is expressed as land degradation (Buttafuoco, Conforti, Aucelli, Robustelli,
& Scarciglia, 2011). Gully erosion is one of the most important natural processes of land deg-
radation by soil and running water over the Earth's surface (Billi & Dramis, 2003; BouKheir,
Wilson, & Deng, 2007). This phenomenon causes different types of adverse effects on soil fer-
tility, sedimentation of rivers, and damage to roads, and agricultural practices (Valentin,
Poesen, & Li, 2005; Zakerinejad & Maerker, 2015). Thus river basin fall under semiarid cli-
matic conditions and high-intensity rainfall events are key factors for gully erosion.
Generally, a high rate of deforestation and gully development are considered as an important
source of land degradation in Pathro River basin, Jharkhand, India (Gayen & Saha, 2017). As
proposed by Ghosh & Guchhait (2016), in India, 3975 million hectares of land are already
affected by gully erosion. Therefore, control of gully development is of great concern, how-
ever, gully development is a very complex process which is why it is of such importance to
monitor it. So, fulfillment of this first objective is required by identifying areas with high and
very high probability of gully erosion and gully development.

Gully erosion occurrences and development are predominantly associated with geo-
environmental factors, such as topography, surface geology, soil, and land use and land
cover (LU/LC) types (Bryan & Jones, 2000; Cui, Lin, & Chen, 2012; Kirkby & Bracken, 2009;
Poesen, Nachtergaele, Verstraeten, & Valentin, 2003). Gully development is one of the key
factors of surface runoff, which is associated with LU and topographic attributes (Conoscenti
et al., 2014; Dondofema, 2007; Valentin et al., 2005).

Therefore, for minimizing these problems the magnitude and spatial distribution of gully
erosion zones must be discovered. In the last few decades, a number of models have been
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developed to quantify the gully erosion rate and to assess the water erosion rate (Lal, 2001).
Today, a number of methods have been implemented for assessing gully erosion at different
scales, including locally, regionally, and globally (Terranova, Antronico, Coscarelli, &
Iaquinta, 2009). Several models have been developed for assessing the gully erosion rate
(Poesen et al., 2003). These are physical-based models including Areal Non-point Source
Watershed Environment Response Simulation (Beasley, Huggins, & Monke, 1980), Water
Erosion Prediction Project Model (Nearing, Foster, Lane, & Finkner, 1989), Chemical Runoff
and Erosion for Agricultural Management System (Knisel, 1980), and the European Soil
Erosion Model (Morgan, Quinton, & Rickson, 1990). Other models have been developed
based on empirical and physical models to quantify soil erosion. Those models are Universal
Soil Loss Equation (USLE) (Wischmeier & Smith, 1978), Revised USLE (Renard, Foster,
Weesies, & Porter, 1991), and Modified Universal Soil Loss Equation (MUSLE) which are
used in various spatial scales and in different environments worldwide (Arekhi, Niazi, &
Kalteh, 2012). However, the above-mentioned models cannot predict the spatial distribution
of gully development. Those models are therefore not useful for spatial soil erosion control
practices (Conoscenti et al., 2014). There are also a number of models for producing a gully
erosion susceptibility map or assessing the spatial distribution probability of gully erosion
according to statistical relationships between gully erosion conditioning factors and their
spatial distribution, such as fuzzy logic (Javid & Fathi, 2013), artificial neural-network
(Pourghasemi, Yousefi, Kornejady, & Cerdà, 2017; Rahmati, Tahmasebipour, Haghizadeh,
Pourghasemi, & Feizizadeh, 2017), bivariate statistical models (Rahmati, Haghizadeh,
Pourghasemi, & Noormohamadi, 2016), sensitivity analysis approaches (Mendicino, 1999),
analytical risk evaluation methods (Wu & Wang, 2007), analytical hierarchy process (Svoray,
Michailov, Cohen, Rokah, & Sturm, 2012), logistic regression (Conoscenti et al., 2014), weight
of evidence and frequency ratio model (Zabihi et al., 2018), and index of entropy (Dube
et al., 2014; Rahmati et al., 2016; Zakerinejad & Maerker, 2015) in the GIS environment.

The aim of this study is to assess the efficiency of the CART (classification and regression
tree)�GLM (general linear model) new ensemble model and provide a comparison of its
performance with the CART and GLM when applied alone or individually.

30.2 Materials and Methods
30.2.1 Study Area

The study area is located in the northeast part of Jharkhand, India, between latitudes of
24�9058vN to 24�29050vN and longitudes of 86�15034vE to 86�48018vE (Fig. 30-1). It covers an
area of about 709 km2, and its elevation ranges from 168 to 461 m above mean sea level in an
NE to SE direction. This river basin is one of the mesoscale river basins of Jharkhand and it is
the sixth left bank tributary of the Ajay River (Fig. 30-1), having an extended and asymmetrical
shape. The study area is considered to have a semiarid climate, with a mean annual rainfall of
1247 mm. It receives more than 85% of the rainfall from July to October due to the monsoonal
climate (Gayen & Saha, 2017; Mali, Das, Choudhary, Singh, & Bhatt, 2017). This river basin is
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an important part of the Choto-Nagpur Plateau, with unevenly distributed denudational dis-
sected hills and valleys, and is influence by a hot summer from March to June. Mean mini-
mum temperature in the coldest month is about 8�C, while the mean maximum temperature
in summer is 43�C (Mali et al., 2017). This study area falls under rugged topography with mod-
erately steep slope, isolated flat-topped, small hills, rugged land surface, low vegetation cover,
and high-intensity rainfall, indicating a potential zone of gully erosion.

30.2.2 Gully Erosion Inventory Mapping

The Pathro River basin is affected by intensive gully erosion over a large area. The gully ero-
sion occurrence dataset provides detailed information for the comparative analysis of differ-
ent inventory models. Therefore, a gully erosion inventory map is very useful for
generalizing the relationship between gully erosion events and related factors to gully ero-
sion (Pourghasemi et al., 2017). Firstly, 174 gully erosion locations were identified using a
global positioning system and then the area of gully erosion was drawn as a polygon using
Google Earth. In this research, the gully erosion inventory map based on random sampling

FIGURE 30-1 Study area (A) India, (B) Pathro River, a tributary of the Ajoy River basin, and (C) Pathro River basin
with altitude.
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(Lee et al., 2004) was divided into two datasets: 70% (training/calibration) and 30% (validat-
ing), respectively (Chung & Fabbri, 2003; Rahmati et al., 2016; Remondo et al., 2003). The
locations of gully erosion datasets are shown in Fig. 30-2.

30.2.3 Gully Erosion Influence Factors

To assess gully erosion susceptibility in this study, it is vital to consider several gully erosion
effective factors. Twelve gully erosion effective factors were selected based on a literature
review (Pourghasemi et al., 2017; Rahmati et al., 2016; Zabihi et al., 2018; Zakerinejad &
Maerker, 2015) and the available data for this region. These factors contain three primary
topographical factors (i.e., elevation, slope angle, and slope aspect), three secondary topo-
graphical attributes [i.e., plan curvature, topographical wetness index (TWI), and slope length
(LS)], four linear maps (i.e., distance from river, distance from road, distance from linea-
ment, and drainage density), and finally two categorical factors are included for gully erosion
susceptibility assessment (i.e., LU and soil types) (Table 30-1).

30.2.3.1 Primary Topographical Attributes Maps
Three primary topographical factors, including elevation, slope angle, and slope aspects are
key parameters for gully development in the study area (Conoscenti et al., 2014; Hongchun,
Guoan, Kejian, & Haiying, 2014). First, digital elevation model (DEM) was extracted from

FIGURE 30-2 Gully erosion locations with altitude of the study area.
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Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation
Map (ASTER GDEM) by 30-m spatial resolution. Using this DEM, two other important fac-
tors, slope degree and slope aspect, were produced. Generally, elevation has a positive rela-
tionship with gully development (Hongchun et al., 2014). The upper part of this basin has a
highest elevation of 461 m, and its lowest elevation is 168 m (Fig. 30-3A). The moderate slope
area is important for flow accumulation and the dynamics of gully initiation (Rahmati et al.,
2016; Valentin et al., 2005). According to slope angle ranges, the basin falls under a moderate
to steep slope (Fig. 30-3B). The slope aspect is also an important factor because of its indirect
relationship with sunlight exposition, evapotranspiration, moisture retention, and vegetation
distribution on slopes (Agnesi, Angileri, Cappadonia, Conoscenti, & Rotigliano, 2011; Jaafari,
Najafi, Pourghasemi, Rezaeian, & Sattarian, 2014; Sidle & Ochiai, 2006). In this research, the
slope aspect was categorized into north, northeast, northwest, east, southeast, southwest,
south, west, and flat based on the normal classification (Fig. 30-3C).

30.2.3.2 Secondary Topographical Attributes Maps
Three secondary topographical factors were used in the gully erosion susceptibility analysis: plan
curvature, LS, and TWI. The plan curvature map was reclassified into three subclasses: concave,
convex, and flat, respectively (Fig. 30-3K). The TWI is also an important factor in respect of the
erosive power of runoff in terms of flow velocity, potential discharge, and transport capacity
(Agnesi et al., 2011; Conoscenti et al., 2014; Tehrany, Pradhan, Mansor, & Ahmad, 2015), which
were generated from the DEM (Fig. 30-3D). LS factor is mainly applied in the USLE and Revised
Universal Soil Loss Equation (RUSEL) models for quantification of the erosion rate and impact
of topography on soil erosion (Haregeweyn et al., 2017; Shit, Paira, Bhuia, & Maiti, 2015;
Zakerinejad & Maerker., 2015) (Fig. 30-3F).

30.2.3.3 Linear Feature Maps
Four maps were extracted from the river network, lineament, and road network layers
including drainage density, distance from river, distance from lineament, and distance from

Table 30-1 Details of Data Used in the Gully Erosion Susceptibility Analysis

Data Sources Type and Time/Period

Drainage networks SOI, Topo-sheet no. 72L/7, 72L/8, 72L/11, 72L/12,
72L/15 and 72L/16

1979�84 scale of 1:50,000

DEM Satellite-borne sensor ASTER entity
id-ASTGTM2_N24E086

Acquisition date October 17, 2011

http://gdem.ersdac.jspacesystems.or.jp/ Pixel size
1 arc-second

Satellite images Landsat8 OLI/TIRS April 9, 2016, spatial resolution 30 m.
Path/row-140/043https://landsat.usgs.gov/

Soil map National bureau of soil survey and land
use planning

2005 scale of 1:50,000

http://www.nbsslup.in

SOI, Survey of India; DEM, digital elevation model; OLI, operational land imager; TIRS, thermal infrared sensor.
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road. Firstly, high drainage density causes a large surface runoff ratio (Tehrany, Pradhan, &
Jebur, 2014) (Fig. 30-3H). The drainage density was also affected by several factors such as
soil characteristics, vegetation cover condition, infiltration rate, and slope gradient
(Pourghasemi, 2014). Gully erosion is one of the most effective drivers for transferring runoff
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and sediment from upland to valley bottoms and permanent channels where they cause off-
site effects of water erosion (Conoscenti et al., 2014). In respect the influence of the drainage
network, the distance from the river was considered as an important factor of gully erosion
in this study area (Choi, Park, & Sunwoo, 2008; Zakerinejad & Maerker, 2015) (Fig. 30-3E
and J). Distance from lineament and distance from road are also important factors due to
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their leading effects on slope stability and weakness zone leading to gully erosion (Naghibi,
Pourghasemi, & Dixon, 2016) (Fig. 30-3I).

30.2.3.4 Categorical Factors (Land Use and Soil Types)
On April 9, 2016, using LANDSAT 8 satellite imagery, the LU map was created using super-
vised classification and maximum likelihood algorithms in the GIS environment. For validat-
ing this classification, Cohen’s kappa index method was used, which shows 86% accuracy of
the classification. Seven LU classes were identified, including agricultural land, barren land,
fallow land, dense forest, shrub forest, water bodies, and built-up areas (Fig. 30-3G). The soil
type map of the study area that has six classes was created from 1:50,000 scale soil map
obtained from the National Bureau of Soil Survey and Land Use Planning of India (Fig. 30-3I).
The soil physical properties play an important role in soil runoff rate, soil resistance, and
gully development (Bryan & Jones, 2000; Deng et al., 2015; Torri et al., 2012). The six soil
types include silt loamy, silt clay loamy, coarse loamy, clay loamy, loamy, and gravely loamy.

30.3 Gully Erosion Susceptibility Spatial Modeling
30.3.1 Application of Classification and Regression Tree

CART is an importance machine learning algorithm which was built with the help of the R
environment and “rpart” package (Breiman, Friedman, Olshen, & Stone, 1984). This model
represents information in such a manner that it is intuitive and easy to visualize; preparation
of candidate predictors (in this study, location of gully) is simplified because gully erosion
factors can be any type, such as numeric, binary, and categorical (Naghibi et al., 2016).
CART enclose a nonparametric regression algorithm that “grows” a decision tree based on a
binary hesitation technique (Aertsen, Kint, Van Orshoven, Özkan, & Muys, 2010). It is a use-
ful model for avoiding overfitting problems by the pruning procedure (Thuiller &
Lafourcade, 2009). Therefore, this model's results are developed based on a complex deci-
sion tree that needs to be “pruned” in order to convey only the most important information
(i.e., it explains the large amount of deviance) (Mckenney & Pedlar, 2003). In CART, there is
an adequate sampling rule, namely the modified towing rule which is developed based on a
direct association of the target feature distribution in two child nodes [Eq. (30-1)].

IðSplitÞ5 0:25 q 12qð Þð Þu
X
k

PLðkÞ2PRðkÞ
�� ��" #2

(30-1)

where, k represents the target classes, PL(k) and PR(k) are the probability distributions of
the target in the left and right child nodes, respectively, and the power term u represents a
user-tolerable penalty on splits generating unequal-size child nodes (Wu et al., 2008).

The result of CART is a hierarchical binary tree which subdivides the prediction space into
regions (Rm) where the values of the response factor are similar ðDamÞ as follows [Eq. (30-2)]:

f ðxÞDam; ’ARm (30-2)
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30.3.2 Application of General Linear Model

The GLM allows to form a multivariate regression relation between a dependent variable
and a number of independent variables (Federici et al., 2005; Giudici, 2005; Greco, Sorriso-
Valvo, & Catalano, 2007). GLM extends the normal regression construction to create non-
normal distributions (Payne, 2012). Eq. (30-3) represents the statistical functions for the
GLM model (Bernknopf, Brookshire, & Shapiro, 1988; Piccolo, 1998):

Y 5Prðy5 1Þ5 eco1C1X11?1CnXn

11 eco1C1X11?1CnXn
(30-3)

where, Y represents the probability of each conditioning factor of gully erosion. LOGIT is
used as a link function between gully erosion occurrence (1) and nonoccurrence (0).
Therefore, a link function provides the relationship between the linear predictor and mean
of the distribution function in R 3.3.3 statistical packages (Nikita, 2014).

30.3.3 Classification and Regression Tree�General Linear
Model Ensemble

For solving intermodel variability there is an ensemble of forecasts by simulating across
more than one set of initial conditions, model classes, model parameters, and boundary con-
ditions (Pearson, Dawson, Berry, & Harrison, 2002; Segurado & Araujo, 2004). The ensemble
model is useful for linking up with a single modeling outcome using two different model
results (Guisan & Thuiller, 2005). A number of approaches are available for combining
ensembles of models in the R statistic environment. In this research, two models (CART and
GLM) were ensembled with the help of a weighted averaging that is weighted using the AUC
(the area under the curve) statistic (Naimi & Araujo, 2016).

30.4 Result and Discussion
30.4.1 Gully Erosion Susceptibility models

The gully erosion susceptibility maps were generated by applying three machine learning
algorithms (CART, GLM, and CART�GLM) in R 3.3.3 statistical packages (Figs. 30-4�30-6).

The GESMs (CART, GLM, and CART�GLM) represents the low to very high susceptibility
of a gully erosion occurrence. The higher index represents a more susceptible area to gully
erosion. The gully erosion susceptibility map (GESM) generated based on CART included
0.97 for the highest and 0.0 representing the low gully erosion susceptibility value. Fig. 30-4
illustrates that the maximum areas of this lower part of the study area fall under very low to
moderate susceptibility of gully erosion and the uppermost part of this basin falls under the
high potential zone of gully development. According to the gully erosion susceptibility map,
which is produced based on the GLM technique, the maximum area of the basin with
respect to the total area is found to have low susceptibility to gully erosion. Moderate and
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high zones make up the upper and middle parts of the study area (Fig. 30-5). The GLM
model represents 0.0�0.92 susceptibility values, representing low and high susceptibility for
development of gullies. However, the CART and ensemble of both models represent more
appropriate results for gully erosion susceptibility assessment (Fig. 30-6).

In the cases of our study, the variables in the upper part of the tree indicate spatially
undefined areas, with a risk of gully formation, and the variables in the lower part of the tree
enable location of the gully at a specific position. In this way, areas with certain soil types,
less vegetation cover, and moderate to steep slopes identified as prone to the development
of gullies are selected by the root nodes of the models.

30.4.2 Validation of Machine Learning Models

For validating the built machine learning models, the receiver operating characteristic (ROC)
curve was used by comparing the existing gully erosion location in the validation datasets
with the gully erosion susceptibility map obtained by CART, GLM, and ensemble models
(Chen, Pourghasemi, Kornejady, & Zhang, 2017; Chen, Pourghasemi, Panahi, Kornejady,
et al., 2017; Pourghasemi & Rahmati, 2018; Razavi Termeh, Kornejady, Pourghasemi, &
Keesstra, 2018; Tien Bui, Tuan, Klempe, Pradhan, Revhaug, 2015). The ROC curve is con-
structed based on the true positive rate (sensitivity) corresponding to the false positive rate
(1—specificity) with the various cutoff thresholds. The AUC is used for qualitative
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GESM by ensemble of
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FIGURE 30-6 Gully erosion susceptibility map produced by the CART and GLM ensemble models. CART,
Classification and regression tree; GLM, general linear model.
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comparison of these CART, GLM, and ensemble models. An AUC value of 1 indicates a per-
fect model, and when AUC equals 0 this indicates a noninformative model (Gayen & Saha,
2018).

Fig. 30-7 shows the AUC values of the gully erosion susceptibility maps obtained using
those models. These curves indicate that the CART model AUC is 79.8% and performs better
than the GLM model in which the AUC is 72.3%. Therefore, it can be seen that the ensemble
of both models in this study area showed reasonably good prediction accuracy (AUC 5

78.9%) for spatial predicting of gully erosion. Also, the ensemble of CART�GLM presented is
better than an individual GLM built model.

Figs. 30-4�30-6 show the potential gullying risk map for the Pathro River basin by the
CART, GLM, and ensemble algorithms. It must be careful that susceptibility map represent as
highly prone to gully erosion but in the real observation where no gully are taking place, this
condition don’t essentially represent an error (Gutiérrez, Schnabel, Lavado, & Contador, 2009).
Areas with favorable conditions for the development of gullies, where gullying has not yet
started, indicates areas under possible risk of gully erosion. It was not feasible to differentiate
between map errors and sensitive areas where gullying has not yet occurred.

Marmion, Hjort, Thullier, and Luoto (2009) compared different ensemble techniques
developed for use in geomorphological maps based on a single performance criterion (AUC).
They showed that GLM represents the best-performing model for susceptibility assessment.
Vorpahl, Elsenbeer, Märker, and Schröder (2012) compared different statistical methods for
landslide susceptibility mapping in the Wadi Tayyah basin, Soudi Arabia. The results indi-
cated that the CART model gives the highest prediction rate of 86.2%. Youssef, Pourghasemi,
Pourtaghi, and Katheeri (2016) developed different landslide susceptibility models and their
performances were compared in the Wadi Tayyah basin. The results showed that the CART
mode predicted more accurately (86.24%) susceptibility than GLM (76.95%). Pourghasemi
and Rahmati (2018) illustrated that Random Forest (RF), Boosted Regression Tree (BRT),

FIGURE 30-7 Model validation of gully erosion susceptibility maps using AUC. AUC, Area under the curve.
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Artificial Neural Networks (ANN), and Support Vector Machine (SVM) generate landslide
susceptibility maps that are spatially discontinuous, while Generalized Additive Model
(GAM), CART, GLM, Multivariate Additive Regression Splines (MARS), and Naïve Bayes (NB)
models produce smoother patterns.

30.5 Conclusion
The CART, GLM, and ensemble models (CART�GLM) presented huge and complex models
with a large number of independent variables, illustrating the difficulty of analyzing the gul-
lying processes. Those three models are represent the same reasonable level of accuracy.
The ensemble model produced good results for validation datasets in comparison to the
GLM model. This analysis has revealed that selected geo-environmental factors have a multi-
functional impact on gully development rather than specific dominance. Most of the high to
very high gully erosion susceptibility areas denote higher elevation and moderate slopes with
barren and fallow LC. Susceptibility maps of gully erosion can be a useful tool for regional
erosion and improve our attempts at controlling gully expansion; launching gully control
measures to avoid loss of land and soil fertility.
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31.1 Introduction
Natural hazards behave unsteadily and follow their own uncertainty principle: even if one
manages to predict their whereabouts, it is difficult to reliably predict their schedule. They
are most destructive when combined, and some are so instantaneous (e.g., earthquakes,
flash floods) that they come with no warning and leave almost no time to respond. However,
it is necessary to keep attempting to model and predict their spatiotemporal behavior, and
reveal their nature, as this is the only way to save lives and reduce the resulting damage. In
the last few decades (1970�2015), around 80,000 people have died in natural disasters every
year, which is only about 0.16% of all those dying annually worldwide (Pears-Piggott & Muir-
Wood, 2016). However, if we exclude health and disease-related causes, and on the other
hand, consider that among the falls, fires, drownings, and alike accidents some will originate
from natural disasters, it is safe to say that natural disasters are among the most common
causes of death in the world (Dilley et al., 2005; Pears-Piggott & Muir-Wood, 2016). Among
these, floods, earthquakes, storms/cyclones, tsunamis, heatwaves, avalanches, and landslides
are considered the most lethal and most damaging (Dilley et al., 2005; EM-DAT: https://
www.emdat.be/database, accessed 10.5.2018). They are unevenly distributed across the
world and some countries are more prone to both casualties and damage. It is also impor-
tant to realize that these statistics are prone to change as climate change takes effect. Even
the most optimistic scenario (i.e., the smallest predicted increase of greenhouse gas emis-
sions) suggests that we will be facing drier, but more violent, weather with pronounced pre-
cipitation and temperature extremes, which is a perfect ground for triggering the hazards
described above (Bouwer, 2011; Gariano & Guzzetti, 2016).

Fortunately, Serbia is not among the most affected countries by any of the above terms,
but its developing road network might change that perspective significantly if natural hazards
in climate changing conditions are not taken seriously. To plan future road network develop-
ment properly, one first needs to consider the spatial context of the most affective hazards,
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and to consider the possibility of their simultaneous activation. Such a scenario implies a
multihazard exposure approach, which is further elaborated in this work. In particular, the
exposure of the road network in Valjevo City in western Serbia is considered in relation to
riverine flood, flash flood, and landslide hazards. Herein, we differentiate between riverine/
fluvial and flash/torrential floods (Doswell, 2015), as they differ in their mechanism, propaga-
tion, reach, etc., which all affect the modeling approach, as it also needs to be different for
these two hazards. Riverine floods tend to spread over larger areas and affect entire road sec-
tions, while flash floods are concentrated and break roads at point-locations where the
stream intersects with the road. Landslides are included as a separate hazard, although there
is a thin line between some types of landslides (flows) and flash floods (Varnes, 1984).

First, a brief literature overview will be given, followed by some details on the Valjevo
case study area, methodology, and materials, and then, the modeling results of all three
hazards and their combination will be discussed and concluded.

31.1.1 The State of the Art

The state-of-the-art approaches for solving these and many other natural hazards necessarily
involve spatial modeling in the GIS environment (Nunes, Castro, Saraiva, & Ramos, 1998).
Such a principle was also followed here, as simple and advanced spatial modeling techni-
ques, mainly based on multicriteria analysis (MCA), were combined.

Riverine flood modeling ranges from very complex models that couple the precipitation
input with 1D/2D hydrologic and hydraulic features of the area (Leandro, Chen, Djordjević,
& Savić, 2009), to simplified solutions, based on terrain surface analyses (Bhuiyan & Al Baky,
2014). The former ones require many set-up parameters of the superficial and underground
properties, as well as the real-time precipitation or high-accuracy precipitation prediction
(Apel, Aronica, Kreibich, & Thieken, 2009; Blösch, Reszler, & Komma, 2008). These are diffi-
cult to acquire for larger, regional scales (B1000 km2), which is why the simplified approach
was followed in this work. It is not necessarily inferior to 1D or 2D, as it can perform accept-
ably for regional-scale studies, while saving processing time and reducing the number of set-
up data requirements to a minimum (Apel et al., 2009). Recently, there have also been
attempts to approach the flood susceptibility model by using soft computing over morpho-
metric and other environmental data (Chapi et al., 2017; Vahid, Termeh, Kornejady,
Pourghasemi, & Keesstra, 2018), although such techniques are more associated with other
types of hazards (e.g., landslides, flash floods, erosion, etc.).

The flash flood models can also range from very complex and elaborate models to rela-
tively simple ones, based on MCA (Smith, 2010) or based on surface/satellite image analyses
in GIS (Youssef, Pradhan, & Hassan, 2011). Some most recent MCA work suggests the appli-
cation of advanced soft computing algorithms, such as artificial neural networks, decision
trees, logistic regression, random forest, and other advanced techniques (Chapi et al., 2017;
Vahid et al., 2018), which overcome the common drawbacks of the simpler MCA or morpho-
metric models (e.g., El Shamy’s or Gavrilović’s models), mainly caused by the subjectivity
introduced in the preparation stage. Herein, it was attempted to couple the MCA and
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morphometric model as we intended to identify both, source areas where the flash floods
begin, and the runout areas, where they terminate. For utilizing that aspect, it was necessary
to use per pixel MCA to zone potential source areas, but also to consider catchment (subba-
sin) morphometric analysis to indicate the runout conditions. This is somewhat innovative,
as these two aspects are usually separately modeled (Youssef et al., 2011), including the
threshold modeling of their onset (Carpenter, Sperfslage, Georgakakos, Sweeney, & Fread,
1999).

The landslide hazard modeling is also approached by different techniques. Recently, soft
computing algorithms, such as neural networks, logistic regression, etc., have been more
popular than MCA (Marjanović, Bajat, Abolmasov, & Kovačević, 2018; Pourghasemi,
Teimoori Yansari, Panagos, & Pradhan, 2018). However, MCA have been proven suitable for
regional studies, time and time again (Günther et al., 2013). Their strongest side is that they
are simple, quick, but reliable at these scales, while there is a chance to calibrate them arbi-
trarily, which is especially convenient when the historic landslide data are poor or incom-
plete (Krušić, Marjanović, Samardžić-Petrović, Abolmasov, & Andrejev, 2017). In the MCA
the morphometric, geological, and environmental factors are most commonly used, but there
is no strong preference which factors and which MCA technique exactly to use, as every case
is unique in its own way (van Westen, Rengers, & Soeters, 2003).

Finally, the road networks are particularly fragile to natural hazards, which is why they
are sometimes studied in detail separately, that is, not within the area-covering approach,
but along the road-links themselves. Therein, the solving of the road link exposure to haz-
ard is one of the key issues (Bíl, Vodák, Kubeček, Bílová, & Sedoník, 2015; Kalantari,
Nickman, Lyon, Olofsson, & Folkeson, 2014). The network analysis uses various algorithms
to calculate the road exposure in a GIS environment, but there is still some discrepancy in
concepts of understanding the exposure vs hazard, vs vulnerability, and vs criticality
(Jenelius & Mattsson, 2015). It is generally suggested that whatever concept is used, the
link-specific calculations should come from the previous analyses of the area-covering
approaches, as the road can be affected by phenomena far above or below the road itself
(Jenelius & Mattsson, 2015).

31.2 Valjevo Case Study
In respect to natural hazards, the territory of Valjevo City in western Serbia is one of the
most affected areas in the country. Its humid climate, together with its hilly landscape config-
uration and high drainage network density, make the way for occasional natural disasters,
primarily floods, flash floods, and landslides, including flows, slumps, and rockfalls
(Andrejev, Krušić, Ðurić, Marjanović, & Abolmasov, 2016; Ristić et al., 2012). These expose
the population, infrastructure, and other socioeconomic elements to a certain level of haz-
ard, which further defines the level of risk that these elements endure and must cope with.
Valjevo is one of the regional centers in western Serbia and its urban sprawl and economic
activities, based on light industry, mining, and agriculture, constantly consume new portions
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of the natural environment. The sprawl further implies building of new infrastructures and
related facilities, while there is still an absence of using proper natural hazards maps during
the planning. It is reasonable to suspect that such an intensive interaction with the natural
environment, coupled with poor planning, will entail a further increase of exposure to high
hazard levels. This is both a global and local trend, noticed in both industrialized and devel-
oping countries (Guzzetti, Reichenbach, Cardinali, Galli, & Ardizzone, 2005). The evidence of
increased exposure to natural disasters is witnessed in extreme rainstorms and related flood-
ing and landsliding in 2006 and 2014, when the territory of Valjevo (along with the rest of
western and central Serbia) suffered a great deal of damage (Marjanović, Krautblatter, et al.,
2018). Locations, which were previously not suspected as having significant potential for
landslides or flash floods, proved that hazards need to be reassessed in these areas. Ever since,
there have been several initiatives to improve disaster resilience at the local level, including
United Nations Development Programme (UNDP) and World Bank projects (http://www.rs.
undp.org/, http://www.worldbank.org/en/country/serbia, respectively, accessed 10.5.2018),
but such initiatives require quantitative hazard assessment, which should pinpoint the critical,
priority areas. Quantitative analyses are still under way in Serbia, and, until they are com-
pleted, spatial planning should be on hold. Only properly supported hazard and risk manage-
ment (with data-based spatial analysis and related output maps and models) can result in
sound strategies for urban/infrastructural planning, sustainable development, and effective
disaster response (Cascini, 2008).

This study concentrates on the road network of the wider Valjevo City territory, that is, its
exposure to riverine flood, flash flood, and landslide hazard. The objective was to allocate
the most exposed road links to each of the three hazards, as well as a multihazard exposure,
with all three hazards combined, which is a rarely attempted approach. Also, the innovation
in this work is regarding the visualization and downscaling of the final multihazard exposure
map to a sublink level (maps are usually visualized on a road link level, thereby reducing the
level of detail). Although the landslide and riverine flood hazard assessment follow standard
procedures (Bhuiyan & Al Baky, 2014; Cascini, 2008; respectively), some improvisation and
improvement were introduced in the case of flash floods.

31.2.1 Study Area Setting

The wider territory of Valjevo City is spread over 905 km2, with a population of about 95,000.
It sits in the middle of the Kolubara District in western Serbia, along the Kolubara River val-
ley (Fig. 31-1). Topographic elevations vary between 122 m in the NE and 1323 m above sea
level in the SW, as the relief morphology changes from flat-hilly to hilly-mountainous,
respectively. Although the absolute slope angle range is 0��63�, the majority of slopes are
within 5��12�. The climate of the study area can be characterized as a moderate-continental
climate, with elements of a subhumid climate. For the observation period of 1981�2010 the
average annual precipitation was 764.38 mm, but in extreme conditions (2014), it reached
1211.27 mm. The maximum daily rainfall of 108.2 mm was recorded on May 15, 2014
(Andrejev et al., 2016).
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The geological setting of the study area is complex. Through its geological evolution, the
entire region suffered intense tectonics, primarily lateral compression across the Dinaric arc,
so that various formations, with entirely different setting, genesis, lithology, and age, are
compressed and thrusted into a relatively small area. The oldest are the Paleozoic formations
(Jadarski and Drinjsko-Ivanjički block), represented by low-crystalline schists, metasediments
(shales, argillite, phyllite, and meta-sandstones), and widespread Carboniferous/Permian
limestones and bituminous limestone. Mesozoic formations are spatially associated with the
Podrinje-Valjevo mountain range. The Triassic limestone, Jurassic ophiolites, and associated
diabase�chert formation are the most widespread. These are overlaid by the massive and
thick-bedded limestone, marly limestone, marls, and conglomerate of the Upper Cretaceous
age. Neogene formations consist of conglomerate, marlstone, clay, sand, and marly lime-
stone. Quaternary sediments occupy a small area, and are mostly made of alluvial and ter-
race deposits in river valleys, talus debris, and scree breccia (Andrejev et al., 2016).

Two major types of instability can be distinguished in the study area: shallow slumps and
flows and deep-seated slumps. The first are primarily related to schist formations and
diabase�chert units, that is, their thick weathered crusts, whereas the second are typically
hosted in Neogene clayey formations in the north. Floods are primarily related to lower-
altitude parts of the Kolubara river catchment. The wide and flat river valley propagates
along a SW�NE direction, linking several tributaries along the way. Flooding typically
occurs after intense and long rainstorms, such as in 2006 and 2014, when excessive water
runout flooded inundation plains. Additionally, the groundwater can contribute to a water
table increase, through highly conductive intergranular media (gravels and sands). The
main tributaries are more prone to flash flood scenarios than riverine flooding, since they

FIGURE 31-1 Setting of the study area.
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are descending from mountainous regions, supplied with substantial material transport.
Flash floods are more prominent in the SW parts, on steep slopes, and their source areas
are mainly located in the crusts of weathered Paleozoic and Mesozoic formations, similarly
to the case of shallow landslides.

31.2.2 Study Area Inventory

From the collected historic and field data (http://geoliss.mre.gov.rs/beware/, accessed
10.5.2018) it can be estimated that there are around 220 landslides recorded, mainly soil slips
(40%) and debris flows (60%), mainly shallow, up to 6 m (90%), with gentle sloping 10��20�

(40%), and with relatively small total size, up to 30,000 m2 (70%). As for the flash flood record,
based on the field data, it was estimated that about 20 subbasins are torrential, that is, there
are at least 20 streams with flash flooding potential. Riverine floods from 2014 in the Kolubara
River catchment only flooded about 12 km2, while other rivers, the Tamnava, the Jadar, the
Ljuboviða, etc., had significant, yet unreported flood extents. The inventory was primarily
used for calibrating and validating the model for each of these three hazard types (Fig. 31-2).

31.3 Materials and Methods
The entire data processing and analyses scheme is outlined in Fig. 31-3.

FIGURE 31-2 Study area inventory (floods, flash floods, and landslides).
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31.3.1 Data Preparation

The following background maps and sources were used to represent the terrain features: dig-
ital terrain model (DTM), river level records, basic geological map, land cover map, soil
map, multispectral satellite images (LANDSAT8), and rainfall baseline frequency and inten-
sity (1981�2010). Some additional inputs were used beforehand for the landslide susceptibil-
ity assessment, which is not described in detail, as the ready-made model was used directly
from our previous research (Andrejev et al., 2016).

The DTM, with 30 m resolution, was obtained from the Republic Geodetic Authority (of
Serbia), and was used directly in riverine flood analysis, and indirectly, for derivation of vari-
ous morphometric parameters for flash flood and landslide hazard analysis.

River level records were obtained from the reporting surface water stations of the
Hydrometeorological Service of Serbia (available at: http://www.hidmet.gov.rs/eng/
hidrologija/izvestajne/index.php, accessed 10.5.2018), and used for simulating the water
level rise.

The basic geological map, with 1:100,000 scale, sheet Valjevo, was obtained from the
Geological Survey of Serbia, and digitized and grouped into appropriate geologic formations,
used for landslide and flash flood analyses.

The land cover map, 100 m resolution, was obtained from the CORINE database (avail-
able at: https://www.eea.europa.eu/data-and-maps, accessed 10.5.2018), and used for land-
slide and flash flood analyses.

FIGURE 31-3 Data, analysis, and output flow chart (blue squares are input data, orange are the hazard analyses,
purple are the inventory data, green are road network vectors and the red is the output exposure; the parts
conducted under R environment are indicated with the R icon).
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Soil maps, with 250 m resolution, were obtained from the SoilGrids database (available
at: https://soilgrids.org, accessed 10.5.2018), including soil type (taxonomy) and soil depth
layers, and were used for landslide and flash flood analyses.

Multispectral satellite images, with 30 m resolution, were obtained from LANDSAT8 data-
base (available at: https://earthexplorer.usgs.gov/, accessed 10.5.2018), including infrared
and red spectral bands, and were used for flash flood analyses.

Rainfall baseline frequency and intensity (1981�2010) were obtained from meteorological
stations of the Hydrometeorological Service of Serbia (available at: http://www.hidmet.gov.
rs/eng/meteorologija/moss_mreza.php, accessed 10.5.2018), and were used for interpolation
maps, utilized in the subsequent hazard assessment for landslides and flash floods. In total,
10 weather stations were used for the interpolation of the historic precipitation.

All these inputs were prepared as raster layers, with their original resolution, whereas the
30 m resolution was used for all interpolated layers or vector layers converted to raster for-
mat. All preprocessing and subsequent analyses were performed in a GIS environment using
the ArcGISDesktop 10.1 platform, except for the nonstandard GIS problems of line vector
segmentation and raster-to-line-vector overlay and extraction procedures. These tasks were
solved externally in R software (version 3.4.4) via TinnR software compiler (version 4.0.3). In
particular, the convenience of communicating S4 class objects and shapefiles was exploited,
for a much easier and quicker overlay using R packages “raster” (Hijmans et al., 2017) and
“rgdal” (Bivand et al., 2018). Solving the line segmentation task was completed routinely
using the “sptool” package (Aiazzi, 2016). For the control of the modeling accuracy the
following inventories were used:

• Flooded areas from 2014, obtained from an independent study of the Kolubara river
flooding hazard (Babić Maldenović, Divac, Prohaska, Knežević, & Popović, 2016);

• Landslide inventory of 2014�15, obtained from the BEWARE project database (available
at: http://geoliss.mre.gov.rs/beware/, accessed 10.5.2018);

• Flash flood inventory 2017, obtained from field surveys in the Valjevo study area.

Finally, the road network, as an element at risk in this study, was obtained from the
Public Enterprise Roads of Serbia database, in a line vector format (.shp), mapped with
the geodetic precision (cm order). It consists of 43 unique road links, given as features of the
line vector, each with a set of supplementary attributes (ID, road number, road category,
road chainage start/end, link length, etc.), and around 300 road junctions.

31.3.2 Methodology

The methodology included three different GIS-based approaches for dealing with three dif-
ferent hazard types: riverine floods, flash floods, and landslides. Subsequently, the exposure
of the road network to each of these three hazards was spatially allocated.

The riverine floods were modeled using the DTMs and simulated flood levels, which is a
simple preliminary model that highlights potentially flooded areas by comparing the flood
level and terrain elevations (Bhuiyan & Al Baky, 2014). The simulated rise of the flood levels
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included (1) levels of regular flood defense—annual return period, (2) emergency defense—
10-year return period, and (3) maximal recorded flood level—50-year return period, obtained
from the appropriate surface water stations. For each of these three simulated levels, the pro-
cedure required:

• deriving the stream network vector from the DTM;
• picking up the DTM elevation z0 per each vertex of the stream network;
• adding new elevation of the simulated level zi (i5 1,2,3) corrected by the factor of altitude

above the local erosion basis, because the flooding level rise is linearly increased toward
the lower elevations along the river thalweg (Babić Maldenović et al., 2016);

• interpolating of the flood surface for each zi; and
• comparing interpolated flood rasters with the original DTM (searching the condition

zi.DTM for depicting areas where the flood levels are higher than the terrain).

Finally, the flood hazard was obtained by summing all three zi rasters into a single one,
and normalized into a 0�1 value range.

The GIS-based practice of the flash flood hazard modeling is usually designed to target
flash flood source areas at constant rainfall thresholds on a subbasin level, such as the flash
flood index (FFI) or flash flood potential index (FFPI) (Smith, 2010). These indices are not
very realistic (Schroeder et al., 2016), because they do not consider the downslope process
development, or flash flood susceptibility of the associated basins, which would require com-
plex deterministic modeling. Herein, we proposed a combination of a simple basin-level
deterministic basin index (Gavrilović, 1972), and an FFPI (Smith, 2010), to work on both
basin and subbasin levels [Eqs. (31-1) and (31-2)]:

I 5BI � FFPI (31-1)

I 5
ϕ0 � S1 � G � O �D � ffiffiffiffiffiffiffiffiffiffiffi

F 1 1
p

Ls �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ff 1 1

p �M 1 S1L1V
4

(31-2)

where ϕ0 is the erosion parameter, between 0.1 for low and 1.0 for high erosional devel-
opment; S1 is the estimate of the water retention ranging from 0.4 for poor retention to
1.0 for high retention (impermeable rock); G is the drainage network density (stream
lengths by basin surface area) in km/km2; O is the circumference of the basin in km; D is
the average elevation within a basin in km; F is the basin surface area in km2; Ls is the
length of the main stream in a basin; Ff is the area under forest in km2; M is the slope
index (values 1�10, flat to steep); S is the soil type index (1�10, loose to compacted); L is
the land use index (1�10, permeable to impermeable); V is the vegetation density index
(1�10, high to low vegetation, calculated from LANDSAT8 bands (Bi) as {(B61B4)1
(B51B2)}/{(B61B4)2 (B51B2)}).

Finally, the flash flood hazard model is obtained by multiplying I with the appropriate
baseline rainfall raster (multiplied annual rainfall frequency and maximum daily precipita-
tion for 1981�2010), thereby highlighting the areas with higher rainfall frequency/intensity
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and higher flash flood potential. This “quasi-hazard” is an alternative to the true hazard anal-
ysis, in the cases where the information on temporal frequency of the phenomenon, that is,
its return period, is unknown (Marjanović & Ðurić, 2016).

A wide variety of methods for assessing landslide susceptibility and hazard are available,
but they diverge significantly, depending on the data availability, common practice,
required level of detail, and so forth (Corominas et al., 2014). Herein, a relatively simple
approach was used. It combines statistical and analytical hierarchy process (AHP)
approaches as demonstrated in Andrejev et al. (2016). Heuristic methods are mainly quali-
tative and subjective, as they depend on the expert’s judgment, and rely on the expert’s
experience in a particular study area. The AHP approach (Saaty & Vargas, 2001) is a semi-
quantitative method that allows subjective as well as objective factors to be considered in
the decision-making process. The implementation of the AHP methodology in the assess-
ment of landslide susceptibility firstly requires finding of interdependencies between the
most important influential attributes, in this case: engineering geological units, slope, eleva-
tion, distance from hydrogeological borders, stream distance, land cover, aspect, and erod-
ibility. It is highly recommended to normalize the values of input attributes and classify
them into a specific number of classes (e.g., 1�5 class range, meaning that 1 is the least
likely to host landslides and 5 is highly likely to host landslides). The AHP principle further
implies generation of a comparative matrix of selected attributes with the 1�9 scale of influ-
ence. It is inversely symmetric (aij 5 aji 5 1) in respect to the main matrix diagonal. For
the final AHP model, the CR (consistency ratio) was also calculated (Saaty & Vargas, 2001).
The consistency index, CI, is calculated as:

CI5
λmax � nð Þ
n2 1ð Þ (31-3)

where λmax is the principal eigenvalue, value of the judgment matrix. This CI can be com-
pared with that of a random matrix RI with equation:

CR5
CI

RI
(31-4)

The ratio derived, CI/RI, is termed the CR. Saaty and Vargas (2001) suggest the value of
CR should be less than 0.1. This depicts whether the interdependences, that is, Eigen weights
were assigned correctly and consistently.

Finally, the landslide hazard model was obtained using the landslide susceptibility model
from Andrejev et al. (2016) and multiplied with the rainfall raster, following the same princi-
ple as in the flash flood case. As explained earlier (Marjanović & Ðurić, 2016), multiplication
of the rainfall and the susceptibility was used because the quasi-hazard context implies that
rainfall is a dynamic not a static factor, and should not be mixed together with the static
susceptibility factors (geological, geomorphologic, etc.).

By this point, all raster models of all three hazards were completed. The next issues were
related to the element at risk, that is, the vector of the road network.
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31.3.2.1 Segmentation Code
The problem of splitting the source road network, originally divided into sub-features, called
road links, comes down to the splitting of a continuous line vector into smaller features. The
reason for performing it lies in the fact that the final exposure must be assigned per feature.
If the feature remains on a link level, then long sections of the road might collect an expo-
sure (average or summed) that does not represent the spatial distribution of the hazard real-
istically. Therefore, it was decided to split the source links into 500-m segments, which
seemed appropriate to outline the details of the exposure distribution along the network. For
facilitating the segmentation, the appropriate R script was coded, and an example is given
below.

library(rgdal)
library(devtools)
library(sp)
install_github(“duccioa/sptools”)
library(sptools)

# 1) load vector to split into segments
RoadLink,-readOGR(dsn5“.”, layer5“RoadNetLinksVAsel”)

# 2) split by 500 m segments
splited,-splitLines(RoadLink, 500, plot.results5F)

# 3) create S4 class object
splited.sldf,-SpatialLinesDataFrame(splited,
data.frame(id51:length(splited)), match.ID5FALSE)

# 4) export S4 object to .shp
writeOGR(splited.sldf, dsn5“.”, layer5“RoadNet500mVAsel”,

driver5“ESRI Shapefile”)

31.3.2.2 Overlay Code
The problem of different spatial format of the output hazards and element at risk (road net-
work), that is, a conflict between the gridded raster and the line vector data was solved by
the overlaying tool. The vector with segmented (500-m) features, as well as the vector with
the original link level division, were both overlaid to match the closest pixels of the underlay-
ing multihazard map. All pixels that are intersected by the feature (vector part) are then
summed along it. Eventually, the feature receives a new attribute with a value of exposure
that is equal to the said sum. Below is an example of the R code used for the automatic
overlaying procedure.

library(raster)
library(rgdal)
# 1) load rasters
r1,-raster(“floodhazasc.asc”)
r2,-raster(“ffloodhazasc.asc”)
r3,-raster(“landslidehazasc.asc”)
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# 2) load vector(s)
RoadLinks,-readOGR(dsn5“.”,

layer5“RoadNetLinksVAsel”)
RoadSegments500m,-readOGR(dsn5“.”,

layer5“RoadNet500mVAsel”)

# 3) extract sum of pixels along the vector features
flood1,-extract(r1, RoadLinks, method5“simple”,

na.rm5TRUE, df5TRUE, along5TRUE,
fun5sum)

fflood1,-extract(r2, RoadLinks, method5“simple”,
na.rm5TRUE, df5TRUE, along5TRUE,
fun5sum)

landslide1,-extract(r3, RoadLinks, method5“simple”,
na.rm5TRUE, df5TRUE, along5TRUE,
fun5sum)

# 4) link the extracted values to existing S4 object
RoadLinks@data5data.frame(RoadLinks@data,

c(flood1, fflood1, landslide1))

# 5) export S4 object to .shp
writeOGR(RoadLinks, dsn5“.”, layer5“RoadLinkExposure”, driver5“ESRI Shapefile”)
# repeat 3-5 for RoadSegments500m

31.4 Results and Discussion
The road network of the Valjevo study area included only national state roads, with specified
categories 1B, 2A, and 2B. There are 43 road links (22 of 1B, 11 of 2A, and 10 of 2B catego-
ries) and their total length is 265 km. These were further segmented into 500-m long parts,
to increase the visualization resolution and highlight the most exposed parts of the link (sub-
link level). This intervention resulted in 584 additional segments, each 500 m long. This
modified (segmented) road network was further used as a base for exposure calculations.

The separation of the low�high hazard classes was not necessary for the riverine flood
case because it was a discrete raster. The flash flood and landslide models are continuous
rasters, and, therefore, required the hazard classification prior to the exposure assessment.
Their hazard class separation was performed by using five-class (very low—very high)
natural break intervals.

The riverine flood hazard for the specified return periods (Fig. 31-4A), shows three
low�high hazard zones. The low hazard zone matches the control flood level polygon
(purple outline in Figs. 31-2 and 31-4A), with an accuracy of 81.5% (only 18.5% of the pixels
belonged to the no-hazard class). There is some obvious overestimation which is primarily
the consequence of relatively coarse resolution (30 m). The exposure of the road network
was calculated directly from this map, per each road link segment. The sum of the closest
allocated flood hazard values was assigned per each of these segments (Fig. 31-5A).

The flash flood hazard map (Fig. 31-4B) reveals basins (microwatersheds outlined in
black contours in Fig. 31-4B) that are susceptible to both sourcing and propagation of the
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flash flood process. It shows a logical distribution of a higher hazard in the higher altitudes,
but also depicts some basins in lower terrains, which is partly in accordance with the field
observations after 2014. The exposure of the road network to flash floods was calculated
from this map by adjusting for the altitude correction factor, that is, by the altitude above the
local erosion basis. It is likely that a road link at higher elevations, high above the local ero-
sion basis (river/stream channel) will be less exposed to flash flood hazard, because the local
catchment of a potential flash flood will be much smaller and less potent than at the lower
elevations, closer to the local erosional basis, as the torrent will gain gravitational momen-
tum along the way. After the adjustment, the exposure was obtained by summing the closest

FIGURE 31-4 Resulting hazard maps: Flood hazard for specified return periods, with 2014 flood outlined in black
(A); flash flood hazard for 30-year return period, with field mapped flash floods locations as black dots (B),
landslide hazard for 30-year return period, with field mapped landslides as black dots (C).

FIGURE 31-5 Resulting road network exposure maps: riverine flood (A), flash flood (B), and landslide (C).
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allocated flash flood exposure values per each of the road link segments (Fig. 31-5B). The
accuracy is relatively poor, at about 30%, but only due to the incomplete and point-based
inventory (depicting only the critical locations susceptible to flash floods along the road, but
not further up slope, which decreases the overlap with high/very high hazard zones).

Very high and high landslide hazards combined (Fig. 31-4C) match relatively well with
the existing inventory records, with an accuracy of 84%, whereas the very high class has a
poorer match (around 53%). The distribution of hazardous zones is logical, as it favors higher
terrains and weathered lithological formations. The exposure was calculated by buffering the
largest runout distance recorded on the field. This maximum was 900 m, so a 900-m buffer
was calculated outward from the very high hazard zone. This buffer was then inversed to
reflect the vicinity of the potentially hazardous landsliding zone. Thus, the closer a road link
is to the very high hazard zone the bigger the exposure. The final exposure value was
summed up across each of the road link segments, just as in the previous cases (Fig. 31-5C).

Finally, the multihazard exposure was calculated by overlapping all three exposure maps
(Fig. 31-6). The values are averaged (the sum of all three hazard exposure values was divided
by 3) per each road link segment to cancel the influence of different data distributions for
different hazards. The final road link hazard exposure is visualized in a typical green-red
color ramp to reflect the high�low exposure (Fig. 31-6A). The exposure was then recalcu-
lated along the whole (unsegmented) network, on a link level (Fig. 31-6B), which is clearly
unrealistic. The segmented case suggests that there is 42.5 km (out of a total 265 km of the

FIGURE 31-6 Multihazard exposure of the road network: sublink level, that is, per each 500-m segment (A);
link level (B).
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road network or about 16%) of very high hazard distributed along the road links, whereas
the link-based case overestimates the hazard (102.5/265 km or 39%).

31.5 Conclusions
In this research, the three most dominant natural hazards, that is, riverine floods, flash
floods, and landslides, were analyzed for the Valjevo study area. These had been particularly
damaging types of hazards for the road network, which was proven in the 2006 and 2014
events. The principal objective was to spatially define hazard zones and estimate the expo-
sure of the road network to each of the three hazards, individually and combined.

The results indicated which parts of the road network are the most severely exposed, and
indicated the links that suffer from all three types of hazard (Fig. 31-6B), which is an impor-
tant output from the users’, but also, from the decision-makers’, points of view. The former
might be interested in avoiding exposed routes while driving in bad weather conditions, or
when an emergency state is issued. The decision-makers might be interested in knowing for
which links they can expect the greatest problems in the future, the most expensive rehabili-
tation, and other aspects of planning.

On the other hand, the study pinpointed exact road link parts which are the most prob-
lematic, which is another good output for further planning, along with information on
which hazard type is potentially behind this risk. This can be used for planning remedial
measures or emergency plans, or to develop scenarios where different hazards,
triggered under similar conditions (e.g., heavy rainstorm), can superimpose and amplify
their damaging effects.

It was also presented that some parts of the analysis required additional external solu-
tions, provided in the R programming environment. It was clearly a more efficient
approach than dealing with these spatial problems, that is, vector line segmentation and
raster-to-line-vector overlay, in the GIS environment, as there are still no standard tools
to solve this without additional plug-ins, which would require similar programming effort
in Python, for example, but a more complicated interface for embedding the code inside
the GIS.

Further research needs to be directed toward additional records of existing and his-
toric occurrences, which is needed for better control of the individual hazard models and
their improvement. In addition, some other hazardous natural phenomena can be
appended, such as snowdrifts, wildfires, etc. It is also important to consider the wider
road network, and not to be limited by an administrative unit as in this case, but by the
principal neighboring junctions (e.g., bigger surrounding cities). Finally, this research is
an excellent base for further risk assessment which will require additional data on the
road network vulnerability (e.g., current state of protective constructions, current mainte-
nance, traffic frequency, connectivity, and rerouting possibilities in the case of road inter-
ception, social and economic connections through the network, national strategies and
priorities, etc.).
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induced landsliding in Western Serbia: A temporal prediction approach using Decision Tree technique.
Engineering Geology, 232, 147�159. Available from https://doi.org/10.1016/j.enggeo.2017.11.021.

Nunes, F., Castro, C. F., Saraiva, M. D. G., & Ramos, I. (1998). Coupling GIS with hydrologic and hydraulic
flood modelling. Water Resources Management, 12(3), 229�249. Available from https://doi.org/10.1023/
A:1008068426567.

Pears-Piggott, M. I. B., & Muir-Wood, R. (2016). What constitutes a global baseline for worldwide casualties
from catastrophes? International Journal of Disaster Risk Reduction, 17, 123�127. Available from https://
doi.org/10.1016/j.ijdrr.2016.04.002.

Pourghasemi, H. R., Teimoori Yansari, Z., Panagos, P., & Pradhan, B. (2018). Analysis and evaluation of land-
slide susceptibility: A review on articles published during 2005�2016 (periods of 2005�2012 and
2013�2016). Arabian Journal of Geosciences, 11(9), 193�205. Available from https://doi.org/10.1007/
s12517-018-3531-5.

Chapter 31 • Multihazard Exposure Assessment on the Valjevo City Road Network 687

http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref13
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref13
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref13
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref13
https://doi.org/10.1016/j.earscirev.2016.08.011
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref15
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref15
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref15
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref15
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref15
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref15
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref15
https://doi.org/10.1007/s10346-012-0349-1
https://doi.org/10.1016/j.geomorph.2005.06.002
https://doi.org/10.1016/j.geomorph.2005.06.002
http://www.rspatial.org/
http://www.rspatial.org/
https://doi.org/10.1016/j.compenvurbsys.2014.02.003
https://doi.org/10.1016/j.compenvurbsys.2014.02.003
https://doi.org/10.1016/j.jenvman.2013.11.032
https://doi.org/10.1016/j.jenvman.2013.11.032
https://doi.org/10.15233/gfz.2017.34.15
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000037
https://doi.org/10.1007/978-3-319-59511-5_11
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref23
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref23
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref23
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref23
http://refhub.elsevier.com/B978-0-12-815226-3.00031-4/sbref23
https://doi.org/10.1016/j.enggeo.2017.11.021
https://doi.org/10.1023/A:1008068426567
https://doi.org/10.1023/A:1008068426567
https://doi.org/10.1016/j.ijdrr.2016.04.002
https://doi.org/10.1016/j.ijdrr.2016.04.002
https://doi.org/10.1007/s12517-018-3531-5
https://doi.org/10.1007/s12517-018-3531-5
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32.1 Introduction
Landslides are defined as the downward movement of slope materials resulting from a set of
predisposed and triggered geoenvironmental and anthropological factors (Radbruch-Hall &
Varnes, 1976). A single or multiphase mix of materials and energy can potentially produce
destructive powers capable of causing sizable financial losses and casualties, depending on
the movement type, angle of impact, and position of the features at risk (Evans et al., 2006).
Different models have been developed, tested, and implemented, before later becoming
obsolete, and others have been invalidated because they hastened prediction and simplified
complex phenomena. In landslide research, this has resulted in the creation of a series of
maps, each of which pertains to different dimensions and issues such as spatial (susceptibil-
ity), spatiotemporal (hazard), and potential damages (risk). Although hazard and risk maps
are highly favored in land use planning because they are exceedingly processed, documen-
ted, publicized, and, most importantly, of inherent commercial value, in practice they are
treated differently based on specific conditions and problems (Kornejady, Heidari, &
Nakhavali, 2015; Van Westen, Van Asch, & Soeters, 2006). Particularly, in terms of time effec-
tiveness, susceptibility maps are immensely valuable; thus, they serve as the foundation of
the present study.

Most susceptibility models can be classified into five categories (Van Westen et al., 2006):
(1) inventory-based models, which serve as the foundation of all other categories; (2)
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heuristic models with a variety of arbitrary mathematics that serve as rating and weighting
methods; (3) bivariate and multivariate statistical methods, which focus on the mutual and
multilateral interconnection between landslides and their driving factors; (4) machine learn-
ing (ML) algorithms, which emphasize pattern recognition and black box computational
learning theories; and (5) deterministic and physically based models. The links among all the
aforementioned categories are the physical similarities of a natural phenomenon in which
identical physical conditions would most likely result in the same pattern and outcome.
Researchers have primarily focused on category 3 and 4 models because they are easier to
implement and able to manage data scarcity. A subfield of mathematics, several statistical
models have been implemented for susceptibility mapping of different natural hazards (e.g.,
gully, flood, and landslide) such as weights of evidence (Martha, van Westen, Kerle, Jetten, &
Kumar, 2013; Mohammady, Pourghasemi, & Pradhan, 2012; Pourghasemi, Moradi, et al.,
2012; Rahmati, Pourghasemi, & Melesse, 2016; Sterlacchini, Ballabio, Blahut, Masetti, &
Sorichetta, 2011; Sumaryono, Sulaksana, & DasaTriana, 2015; Zabihi et al., 2018), logistic
regression (Kornejady et al., 2015; Yesilnacar & Topal, 2005), certainty factor (Chen et al.,
2016; Dou et al., 2014), and Shannon’s entropy (ShE) (Devkota et al., 2013; Jaafari, Najafi,
Pourghasemi, Rezaeian, & Sattarian, 2014; Naghibi, Pourghasemi, Pourtaghi, & Rezaei, 2015;
Pourghasemi, Mohammady, & Pradhan, 2012), all of which address relationships between
variables to identify an outcome. ML methods, a subfield of artificial intelligence and com-
puter science, include artificial neural networks (Choi, Oh, Lee, Lee, & Lee, 2012; Gomez &
Kavzoglu, 2005; Lee, Ryu, Won, & Park, 2004; Tsangaratos & Benardos, 2014), support vector
machines (Brenning, 2005; Jebur, Pradhan, & Tehrany, 2015; Marjanović, Kovačević, Bajat, &
Voženílek, 2011; Pourghasemi, Jirandeh, Pradhan, Xu, & Gokceoglu, 2013; Ren, Wu, Zhang,
& Niu, 2015; Tien Bui, Tuan, Klempe, Pradhan, & Revhaug, 2016), decision trees (Yeon, Han,
& Ryu, 2010), genetic algorithms (Kavzoglu, Sahin, & Colkesen, 2015), and maximum entropy
(Convertino, Troccoli, & Catani, 2013; Dudík, Phillips, & Schapire, 2007; Elith et al., 2011;
Kim et al., 2015; Kornejady, Ownegh & Bahremand., 2017; Park, 2015; Phillips, Anderson, &
Schapire, 2006; Rahmati et al., 2016), which pursue the same objectives as statistical models
but take a more novel approach through the use of complicated algorithms instead of rule-
based programmed formalizations. Although scholars might often criticize the black box
properties of ML methods, these intelligent models were purposefully created to avoid
human interference and are capable of independently solving problems (Carbonell,
Michalski, & Mitchell, 1983). However, these models have been equipped with different
parameter tuning arrangements to facilitate their computational problem solving (Chapelle,
Vapnik, Bousquet, & Mukherjee, 2002). Nevertheless, if model manipulation or model dis-
section is required, statistical models are certainly better as this model type can be altered
and enhanced with sufficient knowledge of the interaction among variables and proper phe-
nomenology. For years, geographical information system (GIS) has served a huge part of
hazard and disaster management at its different spatiotemporal and executive stages. From
an evolutionary perspective, creating novel extensions for exploring the spatial interconnec-
tion of factors, creating automatic tools for automatically preparing novel thematic layers
(Rahmati, Kornejady, Samadi, Nobre, & Melesse, 2018), and building models with automated
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factor combination and probability estimation functions. More recently, researchers have
paid due attention to open-source and flexible computational environments for implement-
ing their calculations, specifically R software. While GIS serves more compatible in statistical
modeling, R language is more suited for data-mining models with complex pattern learning
algorithms. However, automatic and high-speed data analysis and fast emerging new statisti-
cal R packages have made R language more suitable in a time-effective manner for users.

Concerning statistical models, it is advantageous to use a proper model that utilizes both
rating and weighting mechanisms such as ShE. This property makes it possible to compare
classes within each particular factor and the factors themselves, giving preference to the use
of this model over other bivariate statistical models. In other words, other statistical models
can attain this level of robustness only if they fuse to an extra weighting algorithm such as an
analytical hierarchy process, whereas the mathematics-based ShE model is already a proper
modeling package. Moreover, the ability to separately modify rates and weights makes the
ShE model even more desirable compared to multivariate statistical models. Thus, ShE was
selected to map landslide susceptibility in this study. The resultant landslide susceptibility
map can indirectly delineate the potential areas for pragmatic alternatives pertaining to land
use planning. These boundaries are typically redrawn or modified based on allotment zones
to add more administrative themes to susceptibility maps (Fell et al., 2008). At the indirect
delineation stage, it is critical to prepare a map that addresses the highly susceptible classes
(HSCs) in a more focused manner. This property, also termed practicality, is mentioned in
previous literature (Kornejady, Ownegh, Rahmati & Bahremand, 2017) and is referred to as a
filtering system that helps the model construct a compendious susceptibility outcome, a map
that contains HSCs with lesser areas, yet is more focused and practical. This areal reduction
might be small, but it helps facilitate the allocation tasks in the field. However, selecting a fil-
tering method where the process should be continued until it does not harm the perfor-
mance of the model and still satisfies the practicality purpose is a real challenge. One
practical option is to sieve the susceptibility map by assigning highly susceptible rates to
more instable landslides and pushing the stable landslides down to lower susceptible levels.
Although this requires intense physical modeling and field examinations, some attempts
have been made to narrow down these immense processes by studying the connection
between landslide stability and their trace pattern. Many evidences revealed that the land-
slide spatial occurrence and temporal evolving pattern follow a fractal feature and self-
criticality (Carr, 1997; Carr & Warriner, 1989; Caar & Watters, 1996; Czirók, Somfai, & Vicsek,
1997; Guzzetti, Malamud, Turcotte, & Reichenbach, 2002; Rouai & Jaaidi, 2003; Sasaki, Abe,
& Hirano, 1991; Turcotte & Malamud, 2004; Yang & Lee, 2006). Meanwhile, Yokoi, James,
and Robert (1996), Shunmin and Yunzhi (1997a,b), Chengxuan, Ruijiang, Shuren, Daogong,
and Ling (1999), Kubota, Omura, and Shrestha (2005), Wu et al. (2009), and Xu, Meng,
Wang, and Zhang (2016) argued the relationship between landslide stability and fractal
dimension on different failure types at different spatial and temporal scales, where a clear
positive correlation was resultantly reported. These results were supported by slopes’ safety
factor. Such findings opened opportunities for further studies, especially over areas with
scarce data on landslide physical characteristics.
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Accordingly, based on our limited data, a decision was made to calculate the fractal
dimensions of landslides, which were then incorporated in the ShE model as a screening
strategy in the present study. The use of fractal is rapidly increasing in different scientific
fields such as geology (Turcotte, 1990), seismology (Malamud & Turcotte, 1999), flood esti-
mation (Turcotte, 1994), urban morphology (Macadams, 2006), river analyses (Butler, Lane,
& Chandler, 2001), landform studies (Cai & You, 2010), erosion and soil science (Bayat et al.,
2013; Ibáñez, Pérez-Gómez, & Martínez, 2009; Perfect & Kay, 1995; Yang, Zhen, Li, Huang, &
Jiao, 2011), and landslide science (Pourghasemi et al., 2014; Sezer, 2010). This novel mathe-
matical pair of ShE and fractal (ShEF) dimensions implies a suitable and representative role
for our objectives by bridging geometrical properties to the activity status of each landslide
and spatial modeling. Because fractal dimensions might be difficult to conceptualize, differ-
ent landslide geomorphometric indices have been introduced that rely on a landslide’s shape
and geometric elements (Bhandari & Kotuwegoda, 1996; Doornkamp & King, 1971). The
relationship between fractal dimensions and these indices can lessen the conceptual com-
plexity of the subject. Thus, the specific objectives of the present study are to (1) analyze the
relationship between landslide fractal dimensions and geomorphometric indices (secondary
objective), (2) implement ShE model, and (3) incorporate fractal values into ShE model in an
attempt to improve the model’s focus and strength (primary objective).

32.2 Study Area
The Ziarat watershed is geographically situated between 4,055,495�4,071,815 m UTM zone 40
latitude and 267,542�278,252 m longitude, draining a 90.5 km2 basin (Fig. 32-1), with mini-
mum and maximum altitudes of approximately 519 and 3023 m above sea level, respectively.
Geologically, the study area is covered by several susceptible geological formations such as the
Gorgan Schist, Quaternary alluvial deposits, and the Shemshak formations, which cumulatively
account for a vast proportion (38%) of the study area. These formations, composed of materi-
als such as schist, meta-diabase, recent river deposits, sandstone, and shale, contribute to
consequential erosion and low-quality drinking water, which has a significant impact on the
capital city of Gorgan located downstream of the study area. The issue is even more serious
because this watershed supplies 30% of Gorgan’s drinking water. Sandy-loamy and loamy-
clay soils cover approximately 77% of the Ziarat watershed. Forests are the dominant land
cover type, with an area of approximately 7142 ha (79%); however, many landslides have
occurred in forested areas because of the presence of susceptible soil textures and geological
formations, steep slopes, forest roads, and other contributing factors. The study area is
considered to be one of the most mountainous and landslide-prone areas in the Golestan
Province, with an average slope of approximately 27�. Several landslides have occurred in
the middle of the Gorgan�Ziarat road and many cracks in residents’ houses and roadside
retaining walls have been reported (CONRWMGP, 2009). Additionally, the presence of three
active faults extending across the study area demonstrates the seismic activities in the water-
shed, representing a triggering factor for landslide events.
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FIGURE 32-1 Location of the study area in Iran and Golestan Province.



32.3 Methodology
As previously mentioned, the objective of the present study is to produce a compendious
and improved landslide susceptibility map in terms of performance and practicality. Four
methodological steps were conducted as follows (Fig. 32-2):

1. Prepare the preliminary thematic layers as inputs;
2. Analyze the fractal dimension of each landslide and investigate their relationship with

geomorphometric indices;
3. Implement the ShE model and incorporate the fractal values into the entropy model;

and
4. Validate the models.

32.4 Landslide Inventory Mapping and Thematic Layers
An inventory of the landslides was mapped using a global positioning system device during
several field surveys. Then, the existing inventory map was modified; the landslides were
redrawn according to Google Earth historical imagery (2003�17 images of Quickbird, Spot 5,
Spot 6, Landsat 7 Enhanced Thematic Mapper Plus (ETM1), Landsat 8 Operational Land
Imager (OLI), Sentinel 2 Multispectral Instrument (MSI), with 1.5�30 m resolutions) and fur-
ther inspections due to spatial expansion and the recurrence of old landslides. A total of 91
landslides were mapped in ArcGIS 10.2 and then converted into raster format at 1:50,000
scale with a total area of approximately 41 ha (1009 pixels with a 20-m resolution). The land-
slide sizes ranged between 418.1 m2 and 5.6 ha, corresponding to the smallest and largest
events. A representative photograph of the biggest rotational landslide in the study area is
illustrated in Fig. 32-3. During the field surveys, different landslide types were captured and
classified in six categories including falls, creeps, rotational and translational slides, earth
flows, and complex movements based on Varnes classification (Radbruch-Hall & Varnes,
1976). However, separate landslide type-based modeling could not be performed due to the
paucity of each category in terms of frequency (Table 32-1), although classification helped
better analyze the results. Finally, the landslides were divided into two sets, training (70%;
819 pixel) and test (30%; 190 pixel), based on a random sampling strategy (Hussin et al.,
2016; Pourghasemi, Mohammady, et al., 2012; Youssef, Al-Kathery, & Pradhan, 2015;
Youssef, Pourghasemi, Pourtaghi, & Al-Katheeri, 2016).

The selection of landslide-controlling factors was based primarily on a literature review in
which the factors selected were intended to be representative of different aspects such as
hydrological, topological, geological, environmental, and other possible combinations.
Hence, 13 factors were selected and categorized into three main groups based on expert
knowledge and related literature (Pourghasemi, Yansari, Panagos, & Pradhan, 2018), includ-
ing: (1) topological factors, namely, altitude derived from Digital Elevation Model (DEM),
slope degree, slope aspect, plan curvature, profile curvature, and Topographic Wetness
Index (TWI); (2) environmental factors including NDVI (normalized difference vegetation
index), soil texture, land use/land cover, distance from streams, and distance from
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FIGURE 32-2 Methodological flowchart adopted in the present study.
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roads; and (3) geological factors including geological formations and distance from faults.
Information on all the factors including map scale, organizational sources, and some statis-
tics derived from R language raster: geographic data analysis and modeling package v. 2.8
(Hijmans & van Etten, 2014) and “ModelMap packages” (Freeman, Frescino, & Moisen,
2016), are summarized in Table 32-2. The thematic maps are illustrated in Fig. 32-4. It is
worth noting that according to Kornejady, Ownegh, and Bahremand (2017) and Kornejady,
Ownegh, Rahmati, and Bahremand (2017), all the opted factors are in the safe range of
multicollinearity.

The constant factors, such as altitude and distance from linear features (roads, streams,
and faults), were classified into 10 classes based on the quantile classifiers (Blahut, van
Westen, & Sterlacchini, 2010). A quantile classification scheme can facilitate the process of
exploring the behavior of factors with respect to landslide occurrence, because the rank-
ordered factors are proportionally distributed (Blahut et al., 2010) and each factor contains

FIGURE 32-3 The largest rotational landslide in the study area.

Table 32-1 Frequency and Percentage of the Landslides in the Study Area

Landslide Type Frequency Areal Percentage

Falls 33 39.96
Creeps 32 23.98
Rotational slides 20 9.8
Translational slides 3 18.47
Complex 2 3.72
Flows 1 4.07
Total 91 100
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the same number of features (Rahmati et al., 2016). Plan and profile curvature maps were
divided into three categories: concave, flat areas, and convex, with a reverse interpretation of
classes. Slope degree was categorized into four classes of 0�5, 5�15, 15�30, and .30�,
being the common and compatible classification range in Iran (Pourghasemi et al., 2014;
Rahmati et al., 2016). Slope aspect was categorized into nine types: primary (N, S, W, and E)
and secondary classes (NE, NW, SE, and SW), in addition to flat areas (F). The TWI map was
produced in System for Automated Geoscientific Analyses (SAGA)-GIS and then divided into
three classes including ,8, 8�12, and .12, based on a literature review (Pourtaghi,
Pourghasemi, Aretano, & Semeraro, 2016; Pradhan, Lee, & Buchroithner, 2010). The NDVI
map was produced from the prepossessed Landsat-8 bands of the study area and then cate-
gorized into four classes representing bare lands (0�0.05), sparse vegetation (0.5�0.1), dense
vegetation (0.1�0.5), and forests (. 0.5), according to Eq. (32-1).

NDVI5
Band52Band4

Band51Band4
(32-1)

Acquiring and preprocessing the Landsat-8 images and calculating NDVI were all auto-
matically carried out in LSRS (Land Surface Remote Sensing) package in R language
(Sarparast, 2018). Additionally, geological formations are described in Table 32-3, in which
the presence of some highly susceptible formations, such as Shemshak, Lar, Quaternary allu-
vial deposits, and Gorgan Schist, are evident.

Table 32-2 Information on the Landslide-Controlling Factors

Category
Conditioning
Factor Scale Organization/Date Min. Max. Mean

St.
Deviation

Class
#

Topological
factors

Altitude 1:50,000 NCC 519 3023 1733 580.93 10
Slope degree 1:50,000 DEM-derived 0 72.91 26.83 9.72 4
Slope aspect 1:50,000 DEM-derived � � � � 9
Plan profile 1:50,000 DEM-derived 2 38.7 63.6 20.25 0.028 3
Profile
curvature

1:50,000 DEM-derived 2 24 14 0.009 0.64 3

TWI 1:50,000 DEM-derived 5.69 22.28 9.47 1.65 3
Environmental
factors

NDVI 1:100,000 Landsat 8 satellite
images (2016)

0.035 0.64 0.43 0.1 4

Soil texture 1:100,000 CONRWMGP (2009) � � � � 4
Land use/cover 1:100,000 CONRWMGP (2009) � � � � 8
D. f. streamsa 1:50,000 NCC 0 1471.87 150.51 200.68 10
D. f. roads 1:50,000 NCC 0 2961.42 758.91 629.21 10
D. f. faults 1:50,000 GSDI (1997)b 0 3936.29 1115.62 871.62 10

Geological
factors

Lithological
formations

1:100,000 GSDI (1997) � � � � 11

NCC, National Cartographic Center; NDVI, normalized difference vegetation index.
aDistance from streams.
bGeological Survey Department of Iran.
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FIGURE 32-4 Landslide conditioning factor maps used for susceptibility modeling: (A) altitude (m), (B) slope degree,
(C) slope aspect, (D) plan curvature (100/m), (E) profile curvature (100/m), (F) TWI, (G) NDVI, (H) soil texture, (I) land
use/land cover, (J) distance from streams (m), (K) distance from roads (m), (L) distance from faults (m), (M)
geological formations (Qal: recent river deposits, Qcl: loess, Kul.ml: white marly limestone, Jl1: thick bedded to
massive light gray to pinkish limestone, Jsl.s.sh: gray to brown sandstone and shale, Pr: medium bedded to massive
to massive limestone with intercalations of marl, Pdl: thick bedded to massive oncolytic and schwagrrina limestone,
Cml: dark gray shale, limestone, dolomite, sandstone, marl and diabase, Osch: green schist, quartzite, meta
diabase, phyllite, slate and marble, Gb: meta gabbro). NDVI, Normalized difference vegetation index.



FIGURE 32-4 (Continued).
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FIGURE 32-4 (Continued).

700 SPATIAL MODELING IN GIS AND R FOR EARTH AND ENVIRONMENTAL SCIENCES



FIGURE 32-4 (Continued).

Table 32-3 Description of the Lithological Formations in the Study Area

Formation
(Youngest
to Oldest) Local Name

Geological System
(Period) Material Description

Qal � Quaternary Recent river deposits
Qcl � Quaternary Loess
Kul ml � Upper Cretaceous White marly limestone
Jl1 Lar Upper Jurassic Thick bedded to massive light gray to pinkish limestone
Jsl.s.sh Shemshak Lower Jurassic Gray to brown sandstone, shale and conglomerate
Pr Ruteh Upper Permian Medium bedded to massive limestone with intercalations of

marl
Pdl Dorud Upper Permian Thick bedded to massive oncolytic and Schwagrrina

limestone
Cml Mobarak Lower Carboniferous Dark gray thick bedded to massive limestone and dolomitic

limestone
Dkh Khosh-Yeilagh Devonian Dark gray shale, limestone, dolomite, sandstone, marl, and

diabase
Osch Gorgan Schists Ordovician Green schist, quartzite, meta diabase, phyllite, slate and

marble
Gb � Post Ordovician

to pre-lower
carboniferous

Intrusive rocks: meta gabbro
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32.5 Analyzing Fractal Dimensions and Geomorphometric
Indices

Characterizing patterns with a complex design using traditional features such as size and
shape would result in oversimplification. Thus, fractal analysis was developed by Mandelbrot
in 1967 as a general method for solving highly complex problems (Mandelbrot, 1967). Fractal
dimensions are simply the meters of complexity. They measure complexity as a change in
detail with a change in scale. A fractal dimension is based on the following expression
(Davis, 2002; Sezer, 2010):

N 5 ε2DF (32-2)

where N is the number of boxes (pieces) and denotes the details; ε is the scale used to obtain
a new piece; and DF is referred to as the dimension or, more specifically, the scaling rule or
complexity and denotes how pattern details change with scale. Eq. (32-2) can be rewritten as
Eq. (32-3):

DF 52
Log N
Log ε

(32-3)

However, the relationship between details and scale is not always easily understood,
especially in highly complex shapes. Thus, different approximation methods such as box-
counting, Minkowsky dilation, and Fourier analysis have been proposed (Ahammer, 2011).
In a befitting study, Sezer (2010) developed a Java-scripted, object-oriented software
FRACEK, which follows box-counting mathematics. In the box-counting technique, detail-vs-
scale becomes count-vs-box size or caliber (Karperien, 2012). As the size of the boxes
increases, lesser boxes (lesser counts) are needed to cover the details. Thus, because the
changes between these two elements cannot be easily determined, the box-counting tech-
nique uses a logarithmic regression between count and size and transforms Eq. (32-3) into
Eq. (32-4):

DF 52 lim
ε!0

Log Nε

Log ε

� �
(32-4)

where lim as the limit is the slope of the regression line between Nε and ε. More details on
the software are presented in Sezer (2010). In the present study, after preparing the invento-
ries as polygon format in ArcGIS 10.2, each landslide was imported as an image into
FRACEK to compute the fractal dimension. Then, to understand why and, more importantly,
how fractal dimensions change in different landslides, geomorphometric analyses were con-
ducted on the landslide features, and then the regression functions (i.e., exponential, linear,
logarithmic, polynomial, and power) were derived between fractal dimensions and these
indices. The geomorphometric indices adopted in the present study are listed as follows that
have been used previously in watershed studies (Farhan, Anbar, Enaba, & Al-Shaikh, 2015;
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Ghosh, 2015; Nayar & Natrajan, 2013) and more specifically for landslide geomorphometric
consideration (Bhandari & Kotuwegoda, 1996; Doornkamp & King, 1971):

1. Area: Because the fractal analysis for the landslides was conducted using an image for-
mat, the 2D area of each landslide as a flat amorphous surface in plan view was considered
in ArcGIS 10.2.

2. Length/width (L/W): This index might be problematic because of the particular defini-
tions regarding direction, center of mass, length, and width of each landslide. According to
the IAEG Commission on Landslides (1990), the width of each landslide is defined as the
maximum breadth of the moving mass perpendicular to the length, whereas the length of
each landslide is defined as the minimum distance between the toe of the mass and the
crown perpendicular to the movement direction. Existing R scripts or other mathematical
extensions in this field are likely to have trouble evaluating these definitions, thus a decision
was made to manually calculate the length and width of each landslide using the embedded
ruler tool in Google Earth imagery.

3. L/Lmax and W/Wmax: Calculating the maximum of all lengths and widths, the indices of
interest were derived.

4. Form factor (F.F): This index is defined as the ratio of each landslide area to the square
of its length (Horton, 1932). The smaller the value of the F.F, the more elongated the shape
will be [Eq. (32-5)].

F:F5
A
L2

(32-5)

5. Unit shape factor (Sh.Fu): This index, defined as the inverse of F.F, has a clear inverse
interpretation [Eq. (32-6)].

Sh:Fu 5
1

F:F
(32-6)

6. Landslide circularity (L.C): This index is defined as the ratio of each landslide area to
the area of a circle having the same circumference as the perimeter of that landslide, as pre-
sented in Eq. (32-7) (Miller, 1953). The L.C values that range from 0.4 to 0.5 indicate a more
elongated and highly permeable landslide with homogeneous geological materials (Miller,
1953). Overall, the higher the L.C values, the more circular the landslides.

L:C5
4πA
P2

(32-7)

7. Lemniscate ratio (K): This index is a measure used to describe how closely the actual
shape approaches the loop of a lemniscate (Bernoulli), as presented in Eq. (32-8) (Chorley,
Malm, & Pogorzelski, 1957). This ratio has been proposed to differentiate one morphometric
shape from another based on slope values. Higher values of K indicate highly elongated
shapes with a longer flow duration.

K 5
L2

4A
(32-8)
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8. Landslide elongation (L.E): This index is defined as the ratio of the diameter of a circle
with an area that is the same as each landslide to its length, as presented in Eq. (32-9)
(Schumm, 1956). Higher values of L.E represent a circular landslide.

L:E5 2

ffiffiffiffiffiffiffiffiffi
A=π

p
L

(32-9)

In all the above equations, A is the area (km2), L is the length (km), W is the width (km),
and P denotes the perimeter (km) of a landslide. All the geomorphometric indices are
dimensionless.

32.5.1 Shannon’s Entropy

Entropy has been used with different purposive interpretations and definitions such as instabil-
ity, amount of information, and degree of unpredictability in different scientific fields such as
studies of storms, droughts, debris flows, and landslides (Hong et al., 2017; Li, Chen, & Ouyang,
2002; Mon, Cheng, & Lin, 1994; Pourghasemi, Mohammady et al., 2012; Ren, 2000; Youssef,
Pourghasemi, El-Haddad, & Dhahry, 2016; Yi & Shi, 1994). Shannon explicated his own defini-
tion of entropy based on the Boltzmann H-theorem (Shannon, 1948), where the amount of
information of every event forms a random variable whose expected value (average) is termed
ShE or the index of entropy. If one of the events is more probable than others, observation of
that event is less informative; thus, the ShE will be small. Entropy only considers the probability
of observing a specific event; thus, the information it encapsulates is information about the
underlying probability distribution, not the meaning of the events themselves (Shannon, 1951).
This allows for the use of ShE in different subjects. Following are the mathematical expressions
of the above-mentioned states (Borda, 2011; Han & Kobayashi, 2002; Shannon, 1948):

Hj 5E IðX Þ½ �5E 2lnðPðxÞÞ½ � (32-10)

where Hj is the entropy, E is the expected value operator (average), and I is the information
content of the random variable X. Eq. (32-10) can explicitly be written as:

Hj 52
XSj
j51

ðPijÞlog2ðPijÞ

j5 1; . . .;n

(32-11)

where Pij is the probability density of a random event. Thus, the average and logarithm of
the probabilities are the foundation of the ShE. The latter implies that information can be
defined as the negative natural logarithm of the probability distribution. The logarithm is a
useful measure of entropy because it is additive for independent sources. However, it is the
only function satisfying the basic set of properties that the entropy function is held to
embody. Moreover, the logarithm causes the function to increase linearly with system size
and acts as information. The average in probability theory is that in which the expected value
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of a random variable is the (long-run) average of the observed data (Hamming, 1991; Ross,
2014). Details on the mathematical processes involved are presented in the literature
(Devkota et al., 2013; Hong et al., 2017; Li et al., 2002; Pourghasemi, Mohammady, et al.,
2012; Youssef, Pourghasemi, & El-Haddad et al., 2016). As previously mentioned, basic math-
ematics, particularly preprocessing of raster files of the controlling factors and landslide
events, superposition of controlling factors and landslide events, and deriving the landslide
density in each factor’s classes were carried out in R software using raster, ModelMap, and
LSRS packages. In order to calculate ShE values for each factor class, we used agrmt entropy
package in R language (Ruedin, 2016). The mathematics of this package follow Tastle and
Wierman (2007), in which a frequency vector describes the number of observations in a
given category, while ignoring categories with zero observations, and then follows the
remaining equations to calculate the final weights.

32.6 Ensemble Modeling of Shannon’s Entropy and Fractal
Dimension

Following the mathematics of ShE, the final susceptibility value was calculated according to
Eq. (32-12) (Devkota et al., 2013).

YIE 5
Xn
i51

Z
mi

3Pj 3Wj (32-12)

where YIE is the sum of all classes within a particular factor, i is the number of controlling
factors, Z is the number of classes within the factor with the highest number of classes, mi is
the number of classes within the particular factor, Pj follows the frequency ratio formula, and
Wj is the final weight of the factor. This equation results in the susceptibility map based on
the separately used ShE model. Since the filtering process should take place within factors’
classes and each class contains several fractal values (one for each landslide), only one value
could be assigned to each class at each model iteration. Among different arithmetic opera-
tors, mean and maximum fractal values (FMean and FMax) were assigned to each class, corre-
sponding to moderate and hard computation strategies, and then incorporated into the
equation above, which results in:

Y 0
IE 5

Xn
i51

Z
mi

3Pj 3 ðFMean or FMaxÞ3Wj (32-13)

where FMean is the mean fractal value and FMax is the maximum fractal value of the landslides
within each particular factor class. The resultant ensemble models filter the areal distribution of
the primary susceptibility map (ShE) based on the derived fractal ranges. All three susceptibility
maps were categorized into five classes of very low (I), low (II), moderate (III), high (IV), and
very high (V) based on a natural break (NR) classification scheme (Hong, Naghibi,
Pourghasemi, & Pradhan, 2016; Pourghasemi & Kerle, 2016; Pourghasemi & Rossi, 2017).
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32.7 Intercomparison and Validation of Model Results
The selection of the premier susceptibility model was performed on the basis of an innovative
index comprising intercomparison statistical and mathematical indices including the chi-square
test, practicality, and validation indices including the area under the success rate curve (SRC)
(AUSRC) and prediction rate curve (PRC) (AUPRC) [Eq. (32-15)]. Intercomparison indices are
responsible for an inner evaluation task by comparing the two fractal-involved models with the
primary ShE model. On the other hand, validation indices examine each model’s performance
without considering others’. The chi-square test examines the spatial differentiation of the suscep-
tibility classes for each model; the higher its value, the closer the susceptibility classification to the
inherent behavior of the phenomenon as it heterogeneously affects a specific site or watershed in
practice (Margarint, Grozavu, & Patriche, 2013; Sarkar & Kanungo, 2004). Practicality, as afore-
mentioned, is a pivotal aim of the present study used to minimize the area of the HSCs (classes IV
and V) by concentrating more on hazardous areas but not harming the performance of the model.
This property was addressed by comparing the summed area of the I and 1V classes correspond-
ing to the susceptibility models (Kornejady, Ownegh, Rahmati,.& Bahremand, 2017).

The AUSRC value indicates the goodness-of-fit of the model in which the cumulative area
of the susceptibility classes (highest to lowest) is plotted on the X-axis against the cumulative
area of the training set (70%) on the Y-axis. The AUPRC value indicates the predictive power
(generalization) of the model. It follows the same manner of plotting as the AUSRC, but the
test set (30%) is plotted on the Y-axis instead of the training set. The proposed new index fol-
lows the equations below. Each index was first rescaled into the range of 0�1 using a unity-
based normalization method, termed feature scaling:

Xn 5
Xi 2XMin

XMax 2XMin
(32-14)

where Xn is a normalized index, Xi is the raw index value of the particular model, and XMax

and XMin are the highest and lowest values of each index among the models, respectively.

IPI5
1

n

Xn
i51

Xni 5
AUSRC1AUPRC1Chi2 1 ðHSCOld=HSCNewÞ

4
(32-15)

where IPI represents the integrated performance index, HSCNew is the calculated new area of
HSCs (IV and V) when integrated with the mean and maximum fractal values (ShEF-mean
and ShEF-max, respectively), and HSCOld is the area of the IV and V classes for the initial
susceptibility model before combining with fractal values (ShE).

We tested the stability (robustness) of the models to the changes in training: test data. The
more a model is sensitive to changes in inputs, the more unreliable are its results. We altered
the training: test sets three times using random sampling and assessed the AUPRC index at
each replicate. We used the following expression to test models’ robustness (Pourghasemi,
Yousefi, Kornejady, & Cerdà, 2017; Termeh, Kornejady, Pourghasemi, & Keesstra, 2018):

CI5 R2 2R1j j1 R3 2R1j j (32-16)
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SI5
CIi 2CImaxj j
CImax 2CImin

(32-17)

where CI is the change index, R1, R2, and R3 are, respectively, the Area Under the Receiver
Operating Characteristic (AUROC) values in first, second, and third replicates, SI is the stabil-
ity index which follows a unity-based normalization method, and finally CIi, CImin, and CImax

are respectively the i-th, minimum, and maximum change index values. At the end, a Chi-
square test was conducted between CI values to see if the changes in models’ results through
three replicates are statistically significant.

32.8 Result
32.8.1 Fractal Dimension and Geomorphometric Indices

The fractal dimensions of landslides were calculated and classified into four classes including
,1.7 (I), 1.7�1.8 (II), 1.8�1.9 (III), and .1.9 (IV) based on the equal interval technique
(Pourghasemi et al., 2014). The percentage of each class is presented in Table 32-4, where
class III covers most of the study area with a value of 41.75%, followed by class II (36.26%),
class I (16.48%), and class IV (5.49%). Moreover, the minimum (1.564), first quartile (25th
percentile; 1.748), median value (50th percentile; 1.791), third quartile (75th percentile;
1.854), and maximum (1.932) of the fractal values were calculated and are included in
Table 32-4. Five graphical instances regarding the quartile values are illustrated in Fig. 32-5.

The geomorphometric indices related to each landslide were calculated and are summa-
rized in Table 32-5 including the area, L/W, L/Lmax, W/Wmax, F.F, shape factor (Sh.Fu), L.C,
lemniscate ratio (K), and L.E indices. To better examine the lateral relationship between the
fractals and indices, the fractal dimensions of each landslide are presented in Table 32-5.
The landslide areas ranged from 418 m2 to 5.66 ha; the L/W values ranged from 0.246 to
8.139; the L/Lmax and W/Wmax both had an interval range of 0.037�1; the F.F values varied
between 0.071 and 1.61; correspondingly, the Sh.Fu values as the inverse of F.F ranged from
0.592 to 13.96; the L.C values extended between 0.187 and 0.843; the K values ranged from
0.148 to 3.491; and the L.E values varied between 0.302 and 1.465.

The regression functions including exponential, linear, logarithmic, polynomial, and
power were established between the above-mentioned geomorphometric indices and fractal
values, summarized in Table 32-6. According to the coefficient of determination (R2), the

Table 32-4 Statistics of the Fractal Dimensions in the Study Area

Fractal
Dimensions Class Number Percentage

Quartile

Minimum Maximum 0.25 0.5 0.75

, 1.7 1 15 16.48 1.5646 1.932 1.748 1.791 1.854
1.7�1.8 2 33 36.26
1.8�1.9 3 38 41.76

. 1.9 4 5 5.49
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polynomial function had the highest R2 in the fractal�area relationship, compared to other
functions, with a value of 0.0054, followed by the linear (0.0014), logarithmic (0.0012), power
(0.002), and exponential (0.004) functions. In the fractal�L/W relationship, the polynomial
function again proved to have the best-fit curve compared to the other functions with an R2

of 0.51, followed by the logarithmic (0.495), linear (0.489), exponential (0.324), and power
(0321) functions. Regarding the fractal�L/Lmax relationship, the exponential function fit bet-
ter on the point set with an R2 value of 0.1513, followed by the power (0.1467), polynomial
(0.1375), linear (0.1311), and logarithmic (0.1293) functions. Regarding the fractal�W/Wmax

relationship, the power function exhibited better fitness with an R2 of 0.0477, followed by the
exponential (0.0461), polynomial (0.0204), logarithmic (0.0153), and linear (0.148) functions.
In the case of the fractal�F.F relationship, the exponential function had the highest R2 value
of approximately 0.544, followed by the power (0.539), polynomial (0.289), linear (0.203),
and logarithmic (0.196) functions. The fractal�Sh.Fu relationship demonstrated that the
polynomial function is comparatively a better representative of the indices’ correlation with
an R2 of 0.702, followed by the logarithmic (0.678), linear (0.67), exponential (0.544), and
power (0.539) functions. The fractal�L.C relationship indicated that the power function has
a relatively higher R2 with a value of 0.7842, followed by the exponential (0.7838), polynomial
(0.7698), linear (0.7528), and logarithmic (0.7461) functions. The regression functions for the
fractal�K relationship demonstrated that the polynomial function fits better on the point set
with an R2 value of 0.702, followed by the logarithmic (0.678), linear (0.67), exponential
(0.544), and power (0.539) functions. Regarding the fractal�L.E relationship, the exponential
function had the highest R2 with a value of 0.544, followed by the power (0.539), polynomial
(0.429), linear (0.378), and logarithmic (0.371) functions. The best-fit functions for all the
above relationships are illustrated in Fig. 32-6.

FIGURE 32-5 Examples of Df of different landslides. Df, Fractal dimension.
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Table 32-5 The Values of the Fractal Dimensions and Geomorphometric Indices Calculated for Each Landslide in the Study
Area

Nos.
Fractal
D.

Area
(km2) L/W

L/
Lmax

W/
Wmax F.F Sh.Fu L.C K L.E Nos.

Fractal
D.

Area
(km2) L/W

L/
Lmax

W/
Wmax F.F Sh.Fu L.C K L.E

1 1.745 0.0037 0.594 0.146 0.529 0.612 1.633 0.293 0.408 0.883 32 1.875 0.0033 1.436 0.169 0.253 0.399 2.508 0.609 0.627 0.713
2 1.712 0.0140 2.722 0.547 0.432 0.164 6.088 0.337 1.522 0.457 33 1.635 0.0016 3.195 0.244 0.164 0.096 10.445 0.188 2.611 0.349
3 1.854 0.0093 1.392 0.267 0.413 0.455 2.199 0.572 0.550 0.761 34 1.806 0.0033 2.614 0.202 0.166 0.279 3.584 0.560 0.896 0.596
4 1.757 0.0246 2.119 0.626 0.635 0.220 4.545 0.266 1.136 0.529 35 1.763 0.0033 3.334 0.243 0.156 0.198 5.047 0.436 1.262 0.502
5 1.699 0.0030 4.626 0.254 0.118 0.164 6.102 0.403 1.526 0.457 36 1.786 0.0015 2.752 0.146 0.114 0.253 3.946 0.532 0.987 0.568
6 1.769 0.0011 3.275 0.129 0.085 0.225 4.442 0.520 1.111 0.536 37 1.818 0.0014 0.686 0.074 0.231 0.877 1.141 0.631 0.285 1.057
7 1.617 0.0040 5.632 0.435 0.166 0.074 13.511 0.188 3.378 0.307 38 1.904 0.0011 1.069 0.082 0.164 0.581 1.721 0.701 0.430 0.860
8 1.879 0.0040 0.791 0.135 0.367 0.778 1.286 0.502 0.321 0.995 39 1.920 0.0009 0.883 0.063 0.153 0.818 1.222 0.803 0.306 1.021
9 1.655 0.0166 4.177 0.756 0.389 0.102 9.811 0.223 2.453 0.360 40 1.896 0.0088 1.321 0.241 0.392 0.533 1.877 0.733 0.469 0.824
10 1.764 0.0018 3.000 0.179 0.128 0.203 4.933 0.509 1.233 0.508 41 1.798 0.0155 2.178 0.467 0.461 0.250 4.004 0.551 1.001 0.564
11 1.670 0.0254 7.499 1.000 0.287 0.089 11.218 0.247 2.805 0.337 42 1.565 0.0004 8.140 0.143 0.038 0.072 13.967 0.206 3.492 0.302
12 1.877 0.0034 1.448 0.158 0.235 0.481 2.079 0.759 0.520 0.783 43 1.877 0.0020 1.526 0.125 0.177 0.455 2.197 0.774 0.549 0.761
13 1.686 0.0026 0.766 0.169 0.474 0.316 3.169 0.218 0.792 0.634 44 1.822 0.0008 2.926 0.118 0.087 0.192 5.215 0.431 1.304 0.494
14 1.932 0.0017 1.008 0.093 0.199 0.668 1.497 0.705 0.374 0.923 45 1.853 0.0040 1.339 0.195 0.313 0.372 2.688 0.424 0.672 0.688
15 1.788 0.0039 2.545 0.219 0.185 0.287 3.481 0.600 0.870 0.605 46 1.831 0.0013 1.870 0.128 0.147 0.288 3.467 0.564 0.867 0.606
16 1.789 0.0016 2.049 0.153 0.161 0.232 4.307 0.473 1.077 0.544 47 1.813 0.0031 2.636 0.209 0.170 0.251 3.982 0.517 0.995 0.566
17 1.783 0.0020 2.830 0.194 0.147 0.187 5.348 0.377 1.337 0.488 48 1.885 0.0016 1.321 0.106 0.173 0.503 1.988 0.699 0.497 0.801
18 1.743 0.0006 2.494 0.099 0.085 0.204 4.903 0.465 1.226 0.510 49 1.791 0.0020 3.291 0.176 0.115 0.225 4.443 0.550 1.111 0.535
19 1.753 0.0062 2.474 0.326 0.284 0.205 4.882 0.347 1.220 0.511 50 1.789 0.0034 2.255 0.221 0.211 0.244 4.094 0.389 1.023 0.558
20 1.875 0.0039 0.633 0.112 0.381 1.080 0.926 0.712 0.231 1.173 51 1.867 0.0039 1.342 0.181 0.291 0.416 2.403 0.599 0.601 0.728
21 1.773 0.0039 2.785 0.240 0.185 0.240 4.174 0.421 1.044 0.552 52 1.763 0.0041 3.721 0.308 0.178 0.152 6.576 0.375 1.644 0.440
22 1.824 0.0011 2.701 0.139 0.111 0.194 5.143 0.478 1.286 0.498 53 1.733 0.0027 4.000 0.265 0.143 0.135 7.416 0.346 1.854 0.414
23 1.880 0.0016 1.608 0.109 0.146 0.460 2.174 0.668 0.543 0.766 54 1.868 0.0067 1.442 0.234 0.349 0.427 2.341 0.631 0.585 0.738
24 1.805 0.0015 2.174 0.140 0.138 0.274 3.650 0.561 0.912 0.591 55 1.680 0.0035 5.738 0.360 0.135 0.094 10.660 0.234 2.665 0.346
25 1.698 0.0017 5.373 0.227 0.091 0.115 8.701 0.300 2.175 0.383 56 1.827 0.0045 1.668 0.211 0.273 0.353 2.831 0.588 0.708 0.671
26 1.643 0.0007 0.247 0.037 0.326 1.687 0.593 0.260 0.148 1.466 57 1.733 0.0043 3.002 0.310 0.222 0.157 6.362 0.368 1.590 0.447
27 1.787 0.0028 2.702 0.233 0.186 0.181 5.526 0.405 1.382 0.480 58 1.850 0.0566 1.881 0.875 1.000 0.260 3.853 0.392 0.963 0.575
28 1.845 0.0065 0.812 0.174 0.461 0.753 1.329 0.483 0.332 0.979 59 1.847 0.0014 2.488 0.139 0.120 0.257 3.896 0.545 0.974 0.572
29 1.785 0.0043 2.370 0.246 0.223 0.248 4.029 0.404 1.007 0.562 60 1.773 0.0153 2.886 0.480 0.357 0.233 4.290 0.452 1.073 0.545
30 1.852 0.0024 1.640 0.142 0.186 0.419 2.388 0.671 0.597 0.730 61 1.727 0.0035 2.043 0.246 0.258 0.205 4.873 0.331 1.218 0.511
31 1.763 0.0036 2.568 0.236 0.198 0.225 4.438 0.448 1.109 0.536 62 1.905 0.0024 1.330 0.128 0.207 0.512 1.953 0.727 0.488 0.808
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Table 32-5 (Continued)

Nos.
Fractal
D.

Area
(km2) L/W

L/
Lmax

W/
Wmax F.F Sh.Fu L.C K L.E Nos.

Fractal
D.

Area
(km2) L/W

L/
Lmax

W/
Wmax F.F Sh.Fu L.C K L.E

63 1.854 0.0038 1.201 0.165 0.295 0.486 2.057 0.563 0.514 0.787 78 1.848 0.0015 1.706 0.116 0.147 0.386 2.592 0.616 0.648 0.701
64 1.706 0.0078 2.790 0.414 0.319 0.159 6.288 0.297 1.572 0.450 79 1.736 0.0010 2.324 0.127 0.118 0.212 4.718 0.430 1.180 0.520
65 1.828 0.0088 1.467 0.299 0.439 0.343 2.915 0.427 0.729 0.661 80 1.786 0.0053 1.611 0.257 0.343 0.283 3.529 0.433 0.882 0.601
66 1.818 0.0068 1.274 0.261 0.441 0.351 2.849 0.478 0.712 0.669 81 1.880 0.0020 1.467 0.134 0.196 0.392 2.552 0.604 0.638 0.707
67 1.760 0.0037 2.559 0.236 0.198 0.231 4.335 0.529 1.084 0.542 82 1.885 0.0016 1.732 0.132 0.164 0.316 3.160 0.559 0.790 0.635
68 1.869 0.0052 1.756 0.225 0.275 0.360 2.775 0.515 0.694 0.678 83 1.699 0.0020 5.230 0.261 0.107 0.104 9.625 0.278 2.406 0.364
69 1.926 0.0014 0.963 0.079 0.176 0.810 1.235 0.844 0.309 1.016 84 1.840 0.0023 1.592 0.156 0.210 0.334 2.992 0.513 0.748 0.653
70 1.854 0.0012 1.863 0.103 0.119 0.400 2.499 0.672 0.625 0.714 85 1.783 0.0011 0.824 0.095 0.249 0.412 2.430 0.285 0.607 0.724
71 1.869 0.0008 2.116 0.096 0.097 0.300 3.333 0.645 0.833 0.618 86 1.773 0.0009 1.550 0.117 0.162 0.233 4.300 0.320 1.075 0.544
72 1.875 0.0038 1.289 0.166 0.277 0.484 2.066 0.494 0.516 0.785 87 1.855 0.0014 1.265 0.108 0.183 0.421 2.375 0.496 0.594 0.732
73 1.693 0.0035 5.400 0.322 0.128 0.119 8.383 0.330 2.096 0.390 88 1.793 0.0015 1.496 0.118 0.170 0.380 2.629 0.508 0.657 0.696
74 1.801 0.0011 1.392 0.125 0.194 0.252 3.975 0.359 0.994 0.566 89 1.785 0.0013 2.856 0.169 0.127 0.164 6.090 0.385 1.523 0.457
75 1.696 0.0012 3.179 0.166 0.112 0.156 6.413 0.366 1.603 0.446 90 1.639 0.0008 3.156 0.155 0.106 0.117 8.519 0.271 2.130 0.387
76 1.779 0.0006 2.641 0.091 0.074 0.244 4.095 0.502 1.024 0.558 91 1.697 0.0013 2.461 0.194 0.170 0.119 8.416 0.221 2.104 0.389
77 1.849 0.0051 1.488 0.212 0.306 0.398 2.513 0.527 0.628 0.712

The bolded cells are the five top rotational slides with the highest fractal values (see Appendix I). F.F, Form factor; Sh.Fu, unit shape factor; L.C, landslide circularity; L.E, landslide elongation.



Table 32-6 Regression Analysis Between Fractal Dimensions and Geomorphometric Indices

Regression Functions

Fractal D—Area Fractal D—L/W Fractal D—L/Lmax

R2 F(x) R2 F(x) R2 F(x)

Exponential 0.0002 y5 0.2025e0.1635x 0.3245 y5 4606.7e24.319x 0.1513 29.645e22.83x

Linear 0.0014 y520.3397x1 1.0603 0.4899 y5212.876x1 25.441 0.1311 y520.7523x1 1.5701
Logarithmic 0.0012 y520.572ln(x)10.7848 0.4952 y5222.9ln(x)1 15.704 0.1293 y521.322ln(x)10.9918
Polynomial 0.0054 y526.1026x21 21.297x218.078 0.51 y5 27.229x22 109.41x1 110.84 0.1375 y521.729x21 5.3777x2 3.8523
Power 0.0004 y5 0.2154x0.397 0.3218 y5 168.52x27.608 0.1467 y5 3.2841x24.93

Regression Functions

Fractal D—W/Wmax Fractal D—F.F Fractal D—Sh.Fu

R2 F(x) R2 F(x) R2 F(x)

Exponential 0.0461 y5 0.0138e1.4887x 0.5441 y5 8E2 06e5.8235x 0.5441 y5 123674e25.824x

Linear 0.0148 y5 0.2226x2 0.1677 0.2033 y5 1.4018x2 2.1775 0.6706 y5228.803x155.97
Logarithmic 0.0153 y5 0.4004ln(x)2 0.0019 0.1961 y5 2.4354ln(x)2 1.0837 0.6782 y5251.24ln(x)1 34.198
Polynomial 0.0204 y521.4319x21 5.2994x24.6584 0.2893 y5 9.5193x22 32.348x1 27.676 0.7025 65.594x22 261.36x1 261.68
Power 0.0477 y5 0.0419x2.6781 0.5394 y5 07x10.257 0.5394 y5 1426.9x210.26

Regression Functions

Fractal D—L.E Fractal D—L.C Fractal D�K

R2 F(x) R2 F(x) R2 F(x)

Exponential 0.5441 y5 0.0032e2.9118x 0.7838 y5 03e4.0984x 0.5441 y5 30919e25.824x

Linear 0.3787 y5 1.592x2 2.2317 0.7528 y5 1.7442x2 2.6534 0.6706 y527.2008x1 13.993
Logarithmic 0.371 y5 2.7874ln(x)2 1.0021 0.7461 y5 3.0719ln(x)2 1.3167 0.6782 y5212.81ln(x)18.5494
Polynomial 0.4297 y5 6.0988x22 20.031x1 16.895 0.7698 y5 2.7349x22 7.9521x1 5.9236 0.7025 y5 16.398x22 65.341x1 65.421
Power 0.5394 y5 0.0299x5.1287 0.7842 y5 0.0065x7.252 0.5394 y5 356.73x210.26

Fractal D, Fractal dimension; L, length; W, width; F.F, form factor ratio; Sh.Fu, unit shape factor ratio; L.E, landslide elongation ratio; L.C, landslide circularity ratio; K, lemniscate ratio.



FIGURE 32-6 The best-fitted regression functions between fractal dimensions and the geomorphometric indices of
landslides: (A) polynomial, (B) polynomial, (C) exponential, (D) power, (E) exponential, (F) polynomial, (G) power,
(H) polynomial, (I) exponential.
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The range of fractal dimensions and L.C values for each landslide type is presented in
Fig. 32-7, except for complex and flow types due to the paucity of events. The follow-up
Figs. 32-8 and 32-9 demonstrate the fractal�L.C regression curves for those types, both sepa-
rately and all together.

FIGURE 32-8 Fractal�L.C regression curves of each landslide type. L.C, Landslide circularity.

FIGURE 32-7 The range of (A) L.C and (B) fractal dimension index for different failure types in the study area. L.C,
Landslide circularity.
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32.8.2 Shannon’s Entropy and the Fractal Dimensions

The rates and weights extracted from the ShE model are summarized in Table 32-7. The
maximum and mean fractal values within factor classes are also included (Table 32-7) [the
last column presents only the YIE index from Eq. (32-12)]. According to the final values
derived from the ShE solely, slopes that were .30� had the highest value (0.182) and,
accordingly, the highest susceptibility to landsliding, followed by those slopes whose ranges
were 15�30� (0.126), 5�15� (0.103), and 0�5� (0.048). The same pattern was derived when
incorporating the mean and maximum fractal values into ShE model. Regarding the slope
aspect factor, southeast-facing slopes had the highest landslide susceptibility with a value of
0.6, followed by east (0.36), southwest (0.224), south (0.199), northwest (0.146), west (0.098),
northeast (0.097), north (0.055), and flat (0) aspect classes. The pattern derived from the
mean fractals is the same, but the maximum fractals slightly changed the susceptibility order
to be SE, E, SW, S, NW, W, NW, N, and F. Regarding the altitude factor, the 519�1174 range
had the highest susceptibility with a value of 0.32, followed by the 1174�1487 (0.26),
1487�1888 (0.21), 1888�2338 (0.09), and 2338�3023 (0.06) ranges. The patterns established
by the ShEF (ShE minimum and maximum fractal) values were the same as the ShE values.

The 0�174-m distance from roads had the highest susceptibility with a value of 0.45, fol-
lowed by distances of 775�1330 (0.31), 174�428 (0.29), 1330�2961 (0.09), and 428�775 m
(0.07). The ShEF values also resulted in the same pattern. The results for distance from
streams revealed that the 0�17-m range has the highest susceptibility occurrence with a
value of 1.13, followed by 17�58 (0.61), 58�115 (0.36), 115�230 (0.18), and .230 m (0.11).
The same pattern was also evident in ShEF values. With respect to land use/land cover types,
irrigated farming had the highest susceptibility with a value of 1, followed by forests with
average density (0.94), forests with low density (0.85), poor-condition rangelands (0.64),

FIGURE 32-9 Fractal�L.C regression curves of landslide types all together. L.C, Landslide circularity.
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Table 32-7 The Rates and Weights of Conditioning Factors Obtained From Shannon’s Entropy Model and the Related
Mean and Maximum Fractal Values

Factor Class
b
(ha) a (ha) b0 (ha) Á (ha)

Fractal
Mean

Fractal
Maximum Pj Pij Hj Hjmax Ij Wj YIE

a

Slope degree 0�5 2 1653 819 22,6123 1.716 1.793 0.334 0.105 1.867 2 0.067 0.053 0.048
5�15 63 24,413 1.803 1.920 0.712 0.225 0.103
15�30 351 11,1480 1.810 1.905 0.869 0.274 0.126
.30 403 88,577 1.764 1.905 1.256 0.396 0.182

Slope aspect F 0 82 819 226,123 0 0 0 0 2.637 3.170 0.168 0.165 0
N 43 43,249 1.796 1.896 0.275 0.031 0.055
NE 47 26,735 1.775 1.920 0.485 0.055 0.098
NW 192 29,550 1.768 1.920 1.794 0.203 0.362
S 270 25,063 1.781 1.905 2.974 0.336 0.600
SE 31 8675 1.812 1.880 0.987 0.112 0.199
SW 53 13,153 1.826 1.879 1.113 0.126 0.224
E 54 30,515 1.801 1.896 0.489 0.055 0.099
W 129 49,101 1.799 1.896 0.725 0.082 0.146

Altitude (m) 519�1174 274 44,835 819 226,123 1.825 1.920 1.687 0.339 2.116 2.322 0.089 0.088 0.327
1174�1487 228 46,426 1.806 1.896 1.356 0.273 0.263
1487�1888 183 45,821 1.746 1.905 1.103 0.222 0.214
1888�2338 79 45,690 1.712 1.879 0.477 0.096 0.093
2338�3023 55 43,351 1.757 1.757 0.350 0.070 0.068

D. f. roads (m) 0�174 286 42,667 819 226,123 1.820 1.920 1.851 0.368 2.064 2.322 0.111 0.112 0.456
174�428 204 47,406 1.809 1.905 1.188 0.236 0.293
428�775 51 45,701 1.837 1.896 0.308 0.061 0.076

775�1330 213 45,904 1.727 1.854 1.281 0.255 0.315
. 1330 65 44,445 1.728 1.769 0.404 0.080 0.099

D. f. streams (m) 0�17 194 20,297 819 226,123 1.771 1.920 2.639 0.469 1.919 2.322 0.173 0.195 1.133
17�58 364 70,030 1.791 1.920 1.435 0.255 0.616

58�115 149 48,116 1.790 1.905 0.855 0.152 0.367
115�230 73 45,671 1.783 1.885 0.441 0.078 0.190

.230 39 42,009 1.819 1.877 0.256 0.046 0.110
Land use/land
cover

Residential 0 1315 819 226,123 0 0 0 0 2.406 3 0.198 0.268 0
Forest-low density 317 37,891 1.823 1.896 2.310 0.213 0.852
Forest-average
density

123 13,198 1.683 1.877 2.573 0.237 0.950

Dense forest 197 127,460 1.791 1.905 0.427 0.039 0.157
Irrigated farming 121 12,314 1.804 1.920 2.713 0.250 1.001

(Continued)



Table 32-7 (Continued)

Factor Class
b
(ha) a (ha) b0 (ha) Á (ha)

Fractal
Mean

Fractal
Maximum Pj Pij Hj Hjmax Ij Wj YIE

a

Rainfed farming 6 1540 1.764 1.764 1.076 0.099 0.397
Rangeland-Good 0 23,746 0 0 0 0 0
Rangeland-Poor 55 8659 1.757 1.757 1.754 0.162 0.647

D. f. faults (m) 0�323 93 45,263 819 226,123 1.841 1.896 0.567 0.113 1.923 2.322 0.172 0.172 0.215
323�692 68 44,798 1.793 1.896 0.419 0.084 0.159
692�1138 78 46,647 1.766 1.885 0.462 0.092 0.175
1138�1891 425 45,312 1.771 1.920 2.590 0.517 0.980
.1891 155 44,103 1.805 1.905 0.970 0.194 0.367

Lithology Cml 97 28,371 819 226,123 1.804 1.885 0.944 0.092 1.988 3.459 0.425 0.397 0.375
Dkh 0 36,146 0 0 0 0 0
Gib 0 459 0 0 0 0 0
Jl1 36 27,609 1.745 1.786 0.360 0.035 0.143
Jsl s.sh 506 47,103 1.790 1.920 2.966 0.289 1.177
Kul ml 40 26,091 1.719 1.764 0.423 0.041 0.168
Osch 11 34,028 1.739 1.793 0.089 0.009 0.035
Pdl 41 20,611 1.808 1.854 0.549 0.054 0.218
Pr 0 655 0 0 0 0 0
QLC 0 118 0 0 0 0 0
Qal 88 4932 1.790 1.880 4.926 0.480 1.955

Plan curvature 2 38.7 to 20.01 462 102,530 819 226,123 1.785 1.920 1.244 0.494 1.480 1.585 0.066 0.056 0.254
2 0.01�0.01 7 4130 1.794 1.896 0.468 0.186 0.095
0.001�63.6 350 119,463 1.788 1.905 0.809 0.321 0.165

Profile curvature 2 24 to 20.01 297 112,370 819 226,123 1.782 1.896 0.730 0.283 1.482 1.585 0.065 0.056 0.149
2 0.01�0.01 13 6705 1.812 1.896 0.535 0.208 0.109
0.001�14 509 107,048 1.789 1.920 1.313 0.509 0.268

NDVI , 0.05 0 257 819 226,123 0 0 0 0 0.636 2.000 0.682 0.271 0
0.05�0.1 0 820 0 0 0 0 0
0.1�0.5 755 155,996 1.792 1.920 1.336 0.839 0.998

. 0.5 64 69,050 1.722 1.896 0.256 0.161 0.191
TWI , 8 38 31,043 819 226,123 1.760 1.877 0.338 0.107 1.340 1.585 0.155 0.163 0.202

8�12 676 178780 1.785 1.905 1.044 0.330 0.624
.12 105 16300 1.804 1.920 1.779 0.563 1.064

Soil texture Silty-loamy 6 29,120 819 226,123 1.655 1.655 0.057 0.016 1.395 2.000 0.302 0.270 0.042
Silty-clay-loamy (D) 71 21,881 1.814 1.885 0.896 0.251 0.666
Loamy-clay 584 73,551 1.784 1.920 2.192 0.613 1.629
Sandy-loamy 158 101571 1.789 1.896 0.429 0.120 0.319

NDVI, Normalized difference vegetation index.
aThis column is calculated based on Eq. (32-12) without including fractal values.



rainfed farming (0.39), dense forests (0.15), residential areas (0), and good-condition range-
lands (0). This pattern remained intact in ShEF values. Concerning distance from faults, the
1138�1891-m range had the highest susceptibility with a value of 0.97, followed by distances
.1891 (0.36), 0�323 (0.21), 692�1138 (0.17), and 323�692 m (0.15). The order of these clas-
ses in ShEF values was the same.

In geological formations, the Qal formation had the highest susceptibility to landsliding
with a value of 1.95, followed by Jsl.s.sh (1.17), Cml (0.37), Pdl (0.21), Kul ml (0.16), Jl1 (0.14),
Osch (0.03), Dkh (0), Gb (0), Pr (0), and Qlc (0) formations. The ShEF values exhibited the same
order of susceptibility. Plan and profile curvature values indicated that concave planar and
profile curvatures have the highest susceptibility, with values of 0.25 and 0.26, respectively,
followed by convex (0.16, 0.14), and flat (0.09, 0.1) plan and profile curvatures. The same pat-
terns were derived from ShEF values. The range of 0.1�0.5 (dense vegetation) for the NDVI
factor had the highest susceptibility with a value of 0.99, followed by .0.5 (0.19), ,0.05 (0),
and 0.05�0.1 (0) ranges. The ShEF models exhibited the same pattern. The results regarding
TWI classes revealed that the class of .12 had the highest susceptibility with a value of 1.06,
followed by the 8�12 (0.62) and ,8 (0.2) classes, which was the same for the ShEF values.
The soil texture results indicated that loamy-clay soils have the highest susceptibility to land-
sliding in the study area with a value of 1.62, followed by silty-clay-loamy (0.66), sandy-loamy
(0.31), and silty-loamy (0.04) soil textures, which was the same for ShEF values.

32.8.3 Intercomparison and Validation of Models

A schematic comparison of the percentage of classes of the three susceptibility maps is
shown in Fig. 32-10. Accordingly, class II had the highest percentage in the ShE model with

FIGURE 32-10 Percentage of susceptibility classes obtained from the ShE, ShEF-mean, and ShEF-maximum models.
ShE, Shannon’s entropy; ShEF-mean, Shannon’s entropy-fractal-mean; ShEF-maximum, Shannon’s entropy-fractal-
maximum.
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a value of 31.58%, followed by class I (24.52%), class III (20.15%), class IV (16.41%), and class
V (7.32%). The same pattern is evident in the ShEF models using mean and maximum frac-
tals, where class II had the highest percentages (30.73% and 31.55%, respectively), followed
by class I (26.17%, 24.49%), class III (20.69%, 20.11%), class IV (16.19%, 16.4%), and class V
(6.19%, 7.43%).

The SRCs and PRCs are shown in Fig. 32-11 in which ShEF-mean has the highest AUSRC
and AUPRC values of 90.14% and 94.96%, respectively. The ShE model had a higher AUSRC
value (89.16) than ShEF-max (89.08); in turn, ShEF-max had a higher AUPRC value (90.82%)
than ShE (90.81%).

All results from the statistical and mathematical indices for the susceptibility models are
summarized in Table 32-8. With respect to practicality, the ShEF-mean model allocated the
smallest area for the HSCs (2025 ha), followed by ShE (2145.88) and ShEF-max (2145.96). The
ShEF-mean model had the highest chi-square value of 1621.901, followed by ShE (1485.001)
and ShEF-max (1468.157). The ShEF-mean model had the highest integrated performance

FIGURE 32-11 The success rate (A) and prediction rate (B) curves for the three susceptibility models.

Table 32-8 Selecting the Best Susceptibility Model Based on the Validation Tests and
the IPI Index

Susceptibility
Models AUSRC AUPRC HSCOld HSCNew

Chi-Square Testa

IPI
Chi-Squared
Value

Significance Levela

(DF5 4)

ShE 89.16 90.82 2145.88 2145.88 1485.001 P, .0001 0.0625
ShEF-mean 90.15 94.96 2145.88 2025 1621.901 P, .0001 1
ShEF-max 89.08 90.82 2145.88 2154.96 1468.157 P, .0001 0.0003

AUSRC, Area under the success rate curve; AUPRC, area under the prediction rate curve; HSCOld, the area of highly susceptible classes
correspond to ShE model; HSCNew, the area of highly susceptible classes correspond to new ensemble models; IPI, integrated
performance index; bIPI: normalized IPI.
aChi-square values are statistically significant at 95% confidence level.
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index ðIPIÞ value (1), followed by ShE (0.0625) and ShEF-max (0.0003). Therefore, the suscep-
tibility map obtained from ShEF-mean, as the optimum model, is illustrated in Fig. 32-12.

The robustness results are summarized in Table 32-9. Accordingly, the ShEF-mean
model had the highest stability index (1), followed by ShE (0.698) and ShEF-max (0).

FIGURE 32-12 Landslide susceptibility map obtained from the ShEF-mean model. ShEF-mean, Shannon’s entropy-
fractal-mean.

Table 32-9 Robustness Analysis Using Three Training Test Replicates

Models

AUPRC

Avg. CI Chi-Square Test SIReplicate 1 Replicate 2 Replicate 3

ShE 90.82 87.33 88.59 88.91 5.72 DF52 0.698
ShEF-mean 94.96 93.02 94.51 94.16 2.39 X2510.18 1
ShEF-max 90.82 85.08 83.12 86.34 13.44 P5 .0062a 0

ShE, Shannon’s entropy; AUPRC, area under the prediction rate curve; CI, change index; SI, stability index; ShEF-mean, Shannon’s
entropy-fractal-mean; ShEF-max, Shannon’s entropy-fractal-maximum.
aChi-square between CI values is statistically significant at 95% confidence level.
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In addition, the chi-square test between CI values was statistically significant at 95% con-
fidence level (P, .05).

32.9 Discussion
Concerning fractal dimensions, different experimental and theoretical statements are
reported in the literature, all of which were considered in the present study. According to
Wu et al. (2009), landslides whose fractal values are approximately 1 can be interpreted as
stable, and if they vary between 1.1 and 1.3, they may be prone to small instabilities. In addi-
tion, if the fractal values increased to a range of 1.4�1.5, landslides would be presumed to
have some reactivations. According to the present study’s results, the fractal values ranged
from 1.564 to 1932, indicating a stability state much more critical than those mentioned
above. According to Omura (1995) and Majtán, Omura, and Morita (2002), higher fractal
values, especially greater than 1.5, reflect more complexity, heterogeneity, and chaos in land-
slide distribution patterns and stability status, indicating an area’s high susceptibility to land-
sliding (Pourghasemi et al., 2014). According to the ranges indicated above, all the recorded
landslides are unstable and prone to reactivation. According to our classification, approxi-
mately 50% of the landslides (classes III and IV in Table 32-4) are considered to be highly
unstable. Thus, a higher susceptibility is expected in areas where landslides have higher
fractal dimensions. This finding supports the study’s objectives and can improve the ShE
model’s focus.

Because the fractal classes are not uniformly distributed in the study area, more infer-
ences can be derived from the relationship between fractal dimensions and the geomorpho-
metric indices (Table 32-6, Fig. 32-6). The results reveal that fractal dimensions and L.C had
the strongest relationship using a power function with an R2 value of approximately 0.784.
All the other functions used to fit these two indices also exhibited relatively good R2 values
indicating fractal dimensions are strongly related to the elongation or circularity of a land-
slide’s shape, regardless of the function selected, where the higher values of L.C indicate cor-
respondingly higher fractal dimensions. In other words, the more circular a landslide is, the
more unstable it will be in the study area. This property can also be seen in other
elongation-based indices such as lemniscate ratio (K) and unit shape factor (Sh.Fu), in agree-
ment with the results derived from L.C in which elongated landslides have a smaller fractal
dimension resulting in more stability. This relationship can be stemmed from the computa-
tional algorithm of fractal dimension. A fractal is any line, surface, or object that differs from
a topological ideal (Davis, 2002; Mandelbrot, 1967). The more irregular a landslide’s bound-
ary trace pattern, the higher the fractal dimension. According to field inspections, fall, trans-
lational, and flow types geometrically follow a triangular or rectangular shapes, with length
longer than width. In contrast, complex, rotational, and some creeps in the study area mani-
fested circular shapes with highly serrated edges. According to Table 32-5 and Appendix I,
the five top landslide types with the highest fractal values are all rotational slides which also
own high L.C values. The top rotational slide (Fig. 32-3), the biggest one among its peers,
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has caused massive damage to adjacent road and residential areas and unloaded a huge
amount of sediment into the streams. The next rank belongs to the biggest and the oldest
landslide in the study area, categorized as a complex slide, which has also manifested several
failure episodes causing considerable economical loss. Creeps are also placed among
the high-ranked landslides, which are mostly located at the slopes overlooking the dams
and reservoirs, exhibiting high instability due to stream erosion at the bottom of the slope,
excavation and construction activities, excessive loading on a slope, earthquake, or human-
induced vibrations (CONRWMGP, 2009). All these landslides are also amongst the highly
circular ones which attest the fractal�L.C relationship. The effect of high circularity on land-
slide stability can be possibly related to a shorter lag time and a faster and higher peak flow,
compared to highly elongated slides. Therefore, the most active landslides are spatially
bounded with a series of environmental (road from above and the streams at the bottom of
the valleys) and human-made (residential areas or unauthorized fencing situated at landslide
flanks) that ended up in a complex, serrated, and heterogeneous boundary trace pattern.
However, thorough physical tests with a focus on different geological settings, the depth of
slip surface, stratigraphy, the mechanism of the failure, and temporal evolution of each land-
slide are needed to justify this relationship, even for utilizing in the current study area and
especially for executive projects. More caution should be given when different basins are the
subject of the study since different fractal�geomorphometric indices relationships may exist
due to the different geoenvironmental and anthropological agents. For instance, Sezer (2010)
found a strong relationship between fractal dimension and W/L on a landslide dataset gath-
ered from different areas. It is worth noting that finding the fractal�L.C relation, as a second-
ary objective, does not affect the result of our primary objective—making a focused landslide
susceptibility map—whatsoever.

Other elongation-based factors such as F.F and L.E underperformed. There appear to be
two obvious outliers in fractal�F.F and fractal�L.C plots, indicated in red in Fig. 32-6. An
investigation revealed that these two outliers are related to a single landslide event with the
smallest L/W value of approximately 0.246. Thus, these two indices are evidently sensitive to
a small L/W rate in which the value of both indices drastically increases when reaching a
particular rate. To test this hypothesis, the outlier was omitted. Accordingly, the R2 values
unexpectedly increased to 0.7 in both plots. However, a decision was made not to omit the
outlier as doing otherwise was considered unacceptable. The outlier is an actual landslide
with a specific length and width. However, a simple transformation in one formula, for
example, Sh.Fu as the inverse of F.F, could counterbalance the point set with a good R2 (fit-
ness) value, which explains why L/W or related indices such as L/Lmax and W/Wmax had a
weak relationship with fractal dimensions. As previously mentioned, circularity is a key ele-
ment but the aforementioned indices do not adequately demonstrate this property. In other
words, a landslide of relatively equal length and width might be considered circular in shape,
but it is questionable whether this holds true for a landslide whose length is much greater
than its width and vice versa. Indeed, both of these landslides would be considered elon-
gated, that is, two landslides with the same property. Therefore, this is the reason the refer-
enced indices were not suitable for the plot. Thus, F.F and L.E simply could not account for
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fractal dimensions, although better indices with thorough algorithms do exist (L.C, Sh.Fu,
and K). In terms of area, the weakest relationship was observed. In fact, this result is in
accordance with nature’s reality where bigger landslides might be completely stable, but
small landslides can still reoccur and result in serious losses until they are completely
depleted of their energy. This is the reason landslides are referred to as isolated but frequent
phenomena that should not be evaluated based on their size but their activity and stability
status instead.

Regarding the results of the regression functions, solid inferences cannot be drawn as
each plot had its own premier function. Demographically, the power and polynomial func-
tions had higher R2 values compared to other functions. Generally, polynomial functions
have the best continuity properties and the power functions generate the formation of
polynomials (Anton, Bivens, & Davis, 2002). We decided to go further and apply the relation-
ship between fractal�L.C to see if it is possible to differentiate different failure types
(Figs. 32-7�32-9). In Fig. 32-7, the range of fractal dimension and L.C index revealed that
almost all failure types, to some degree, share a common span. It is impossible to distinguish
any type based on L.C index ranged from 0.35 to 0.55 and fractal dimension ranged from
1.74 to 1.84. Flows and complex slides are also placed somewhere in the middle. In the best-
case scenario, the decision comes to choose between two types. However, there are some
chances of recognizing rotational slides with a fractal dimension .1.87 (8#) and an L.C index
.0.77 (2#). Sezer (2010) noted that although some debris flows are recognizable from the
other types, an extra check is necessary for the rest of the data to be able to identify one type
from another. In Fig. 32-8, the fractal�L.C relationship has best fits in different cases; how-
ever, when they are put together in one plot (Fig. 32-9), they seem to be overlapped, which
makes it hard to classify different landslides. Although scholars are encouraged to use fractal
dimensions for landslide classification task, we could not find enough potential to rely on.
On the other hand, it seems realistic to expect different stability states for different events of
a particular type. Therefore, claiming for such potential in fractal analysis remains arguable.

Because the fractal dimensions, either mean or maximum values, cannot change the
order of factor classes when incorporated with the ShE model (especially the top-ranked
classes), the following discussion applies to all models. The associated results can be catego-
rized as either being expected or unexpected.

For the expected results, slope degree and susceptibility correspondingly increase in the
study area in response to the increased gravitational pull. Southeast- and south-facing slopes
had higher susceptibility, which might initially seem unrealistic because north-facing slopes
are more humid. However, because the landslides in the study area are predominantly com-
posed of falls, the associated results are logical as south-facing slopes typically receive more
solar radiation, making them more prone to dry movements such as falls and topples. As
altitude increases the susceptibility decreases because higher altitudes primarily consist of
materials resistant to landsliding (Ercanoglu & Gokceoglu, 2002; Jaafari et al., 2014;
Pourghasemi et al., 2014). The areas near roads have the highest susceptibility to landslide
occurrence, emphasizing the negative impacts of road construction with weak foundations,
improper slope modifications, and slope trenching without ensuring safety. A similar
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situation applies to streams in which the susceptibility increases with decreasing distance
from streams because stream-bank undercuts produce shallow landslides alongside the
streams. Irrigated farming had the highest susceptibility, which stems from water percola-
tion, accumulation, and subsurface irrigation which results in escalation of the groundwater
table, forcing an extra load on the slope and aggravation of slope erosion. Geological forma-
tions including Qal, Jsl.s.sh (Shemshak), and Cml (Mobarak) had the highest susceptibility
compared to other formations. The loose Quaternary alluvial materials alongside streams are
highly susceptible to undercuts, especially at the outer bends of watercourses. This confirms
the results regarding distance from streams. Moreover, several mass movements manifested
themselves through mud masses and 20�30-cm tall terraces in Jsl.s.sh and Cml formations.
These movements, after the loss of moisture and appearance of cracks, transform into differ-
ent types of landslides such as falls, slides, and creeps. Additionally, the shaly components in
the Shemshak formation appeared to be very loose and are also able to act as an imperme-
able layer in the absence of cracks and fractures that consequently would convey percolated
water in the vicinity of the surface of rupture. Both plan and profile curvatures indicate that
concave planar and profile curvatures have the highest susceptibility to landslide occurrence.
There is a lower flow rate and more detention in a small concentrated area in concave
curvatures (as opposed to convex curvatures) that subsequently leads to a rising water
table, increasing pore water pressure and consequently slope instability. As TWI values
increase the susceptibility increases due to more areas generating runoff. Loamy-clay and
silty-clay-loamy soils had the highest landslide susceptibility values, respectively, as inter-
preted by their hydrologic soil groups (HSGs), i.e., group D. This HSG has the highest runoff
potential. The subset soils have very low infiltration rates when thoroughly wetted and con-
sist largely of clay soils with a high swelling potential, soils with a permanent high water
table, soils with a clay pan or clay layer at or near the surface, and shallow soils over rela-
tively impervious material, which explains the results associated with soil textures.

The results concerning distance from faults and the NDVI were rather unexpected.
Typically, susceptibility is expected to increase as the distance to faults decreases given the
presence of several active faults, which explains the seismic activity in the study area.
However, some anomalies are evident in the final susceptibility values of the classes.
Further investigation into the fault layer revealed that a counterbalancing by stronger fac-
tors, such as geological formations, soils, and distance from streams is responsible for this
unexpected result. Concerning the NDVI classes, the 0.1�0.5 value of dense vegetation and
.0.5 value of forests had the highest landslide susceptibility. Singh (2010) noted both the
beneficial and adverse roles of vegetation. Accordingly, in addition to beneficial influences
such as soil moisture extraction causing lower pore water pressure, soil reinforcement, com-
paction, and the solidification of slope materials by anchoring deep into firm strata, some
disadvantages are also noted. For instance, exposing the soil to dynamic wind forces and
the weight of trees can overload the slope and increase both normal and downhill force
components.

In sum, three environmental factors, including geological formations, soils, and distance
from streams, and one human-made factor (irrigated farming) are primarily responsible for
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the study area’s susceptibility to landslides. The findings indicate that environmental factors
can initiate and human activities can in return accelerate the process of landslide
occurrence.

Once more, intercomparison and validation of the models were assessed using a novel
arbitrary index comprising four indices: chi-square, AUSRC, AUPRC, and practicality. The
chi-square values of each model revealed that the combination of ShE and mean fractal
values (ShEF-mean) adequately managed to portray the spatial differentiation of landslide
occurrence more than the other two models (ShE and ShEF-max). This may have nothing to
do with the models; however, because the same classification method (NR) was applied to
all the models, the differences in chi-square values directly results from the differences in
the susceptibility values obtained from each model. SRCs and PRCs implied that all the mod-
els have very good fitness and perfect prediction power. The AUSRC values, as an indicator
of goodness-of-fit, were approximately the same for all models. Comparatively, the ShEF-
mean was found to fit better on the training set than other models. The AUPRC values, being
representative of prediction and generalization power, were significant for all the models.
Concerning the AUPRC, the ShEF-mean model ranked highest. Practicality, as the core aim
of the present study, was found in the areal difference of HSCs for the model ensembles. The
HSC of the susceptibility map obtained from the ShE model, as the reference map, changed
by 2120.88 and 19.08 ha for the ShEF-mean ensemble and ShEF-mean, respectively. Thus,
incorporating the mean fractal values to factor classes reduced the HSC of the ShE model by
approximately 121 ha, but resulted in a higher fitness and predictive power. Therefore,
ShEF-mean can be introduced as a parsimonious model on the ground. This areal reduction
might be theoretically small, but when susceptibility maps are the basis for management and
in regard to allocating mitigation actions and budgets, any cuts would have a great deal of
importance. In fact, the small change in area stems from the numerical nature and limited
range of fractal values, which was expected prior to conducting the research, and it might
differ in other studies. On the other hand, according to robustness test, the ShEF-mean had
the highest stability index, indicating a low sensitivity of results in changes in inputs and
high reliability of the model which supports the notion above. According to the suggested
index (IPI), ShEF-mean ranked highest and ShEF-max was positioned at the bottom, despite
having a higher predictive power than ShE. This demonstrates the benefit of using a multit-
est evaluation where all aspects can be considered.

32.10 Limitations and Future Work
The present study encountered some difficulties. Despite the fact that different landslide
types should be treated differently (Glade et al., 2005), we had to prepare a single landslide
susceptibility map for the whole study area, mainly due to the paucity of different types.
According to Table 32-1, during the field inspections for preparing the landslide inventory,
we just came across one flow, two complex, and three translational slides. Even the most fre-
quent type (falls), has only a total number of 33 which, in the case of spate modeling, would
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have led to a statistically naïve model with poor performance and predictive power, let alone
splitting them into two sets for training and testing. However, according to Kornejady,
Ownegh, Bahremand (2017), geological processes have a pivotal impact on landslide occur-
rences such that it prevails over the other landslide predisposing factors. Accordingly, all
types are the result of almost the same set of geoenvironmental factors with the same priority
in Ziarat watershed (Kornejady, Ownegh, Bahremand, 2017). However, data enrichment for
future works is indisputable. The other barrier was the lack of physical data on landslides’
evolving process (safety factors or the other required physical tests) that could have helped
us evaluate the relations among fractal dimension, landslide instability, and geomorpho-
metric indices. However, rigorous local information on landslide activity and several field
inspections supported the results. Indeed, physical tests are the backbone of all landslide
studies; however, when facing a lack of data, limited budget, and working on a large area,
statistical and probabilistic studies can be helpful to acquire preliminary inferences.
Comparison of the present work with other complementary data and models could be a
suitable way for future studies.

32.11 Conclusion
The zonation maps obtained from landslide susceptibility models are most commonly
required for land use planning at the local government level for regional disaster manage-
ment planning. Indeed, producing more practical susceptibility maps can ease the manage-
ment process in terms of timing and budget allocation. Thus, ShEF dimensions were
incorporated as a filtering strategy to compendiously identify highly susceptible areas.
Moreover, the regression relations between fractal dimensions and landslide geomorpho-
metric indices were assessed to understand the fractal dimensions and link the landslide
shapes with activity status. The main conclusions of the present study are:

1. Fractal values exhibited a strong relationship with L.C and, to a lesser extent, with the
unit Sh.Fu and landslide lemniscate ratio (K), whereas other shape-based indices such as
F.F and L.E failed to include important aspects of landslide geometry and consequently
could not create a suitable relationship with fractal values. However, it could not succeed
landslide classification task where the fractal�L.C relationship did not reflect a
sufficiently discernible pattern to distinguish different failure types. The fractal�L.C
relationship, though did not affect the final results, and requires further investigation and
studies on the subject.

2. The modification of landslide inventory and selecting a wide range of conditioning factors
significantly helped the models as approximately all the susceptibility models attained at
least 90% fitness and predictive performance. However, the stability test revealed that the
ShEF-mean model can handle changes in inputs when applying different training: test
replicates, while the other two models underperformed in this manner.

3. The proposed IPI appeared to be useful in assessing multitest analyses. Single-test
analyses are exposed to one-sided considerations, unjustified comments, and neglect
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different aspects of models. The proposed index can be easily modified by the insertion
of new tests into the formula.

4. As an end result, ShEF-mean was introduced as the most practical model with improved
modeling features. It could unexpectedly help the ShE model evolve into a compendious
ensemble model, a model that is able to better focus on highly susceptible areas but still has
a higher goodness-of-fit, prediction power, and robustness, referred to as a practical model.
Greater focus can prevent further time and cost expenditures when susceptibility maps need
to be used for management actions. The proposed ensemble model (ShEF-mean) and
evaluation index can be used for susceptibility modeling and land use planning tasks.
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Appendix I Different Landslide Types in the Study Area
(the Rows Are in Line With Table 32-5)

Nos. LS Type Nos. LS Type Nos. LS Type Nos. LS Type Nos. LS Type Nos. LS Type

1 Translational 17 Creep 33 Creep 49 Rotational 65 Fall 81 Fall
2 Fall 18 Creep 34 Creep 50 Creep 66 Fall 82 Rotational
3 Fall 19 Creep 35 Fall 51 Fall 67 Rotational 83 Creep
4 Fall 20 Creep 36 Creep 52 Creep 68 Fall 84 Fall
5 Fall 21 Creep 37 Rotational 53 Fall 69 Rotational 85 Fall
6 Creep 22 Rotational 38 Rotational 54 Creep 70 Rotational 86 Fall
7 Creep 23 Creep 39 Rotational 55 Creep 71 Rotational 87 Fall
8 Fall 24 Creep 40 Complex 56 Rotational 72 Rotational 88 Fall
9 Debris flow 25 Creep 41 Translational 57 Rotational 73 Fall 89 Fall
10 Fall 26 Creep 42 Fall 58 Translational 74 Fall 90 Fall
11 Fall 27 Creep 43 Creep 59 Fall 75 Rotational 91 Fall
12 Creep 28 Complex 44 Creep 60 Creep 76 Rotational
13 Fall 29 Creep 45 Fall 61 Fall 77 Creep
14 Rotational 30 Rotational 46 Creep 62 Rotational 78 Fall
15 Creep 31 Creep 47 Creep 63 Fall 79 Rotational
16 Creep 32 Rotational 48 Creep 64 Fall 80 Fall

The bolded cells are the top rotational slides with the highest fractal values (see Table 32-5).
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33.1 Introduction
Desertification is the process of land degradation in arid, semiarid, and semihumid areas,
mainly caused by unsustainable land management and climate change (Glenn, Smith, &
Squires, 1998; UNEP, 1991; Zucca, Della Peruta, Salvia, Sommer, & Cherlet, 2012). It mostly
occurs when shrubs and permanent bushes are stripped away for different purposes, such as
forage production for grazing and browsing animals, or to clear land for cultivation. Also, cli-
mate change accelerates the rate of desertification. It is necessary not only to protect the ran-
gelands that are particularly sensitive natural ecosystems, but also to find major destructive
driving forces which are the combination of different factors that transform degraded
rangelands into desert.

Rangelands play a primary role in plant protection, water reservation, and soil conserva-
tion if exploited correctly along with range restoration practices (Heshmati & Mohebbi,
2013). Reduction of canopy cover, destruction of soil surface structure, and pollution of water
as the results of different driving forces are the most significant factors leading to desertifica-
tion in rangelands (Manzano, Návar, Pando, & Martínez, 2000; Mwangi & Swallow, 2008;
Steffens, Kölbl, Totsche, & Kögel-Knabner, 2008). In order to prevent these degradation dri-
vers, it is essential to identify sensitive vegetation indices to maintain the regions which are
susceptible to degeneration (Chen et al., 2012). In other words, factors affecting rangeland
should be assessed by sensitive indices which are able to detect significant ecological

733Spatial Modeling in GIS and R for Earth and Environmental Sciences. DOI: https://doi.org/10.1016/B978-0-12-815226-3.00033-8
© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-815226-3.00033-8


degeneration in an operative way (Bartha, Campetella, Canullo, Bódis, & Mucina, 2004).
Thus, monitoring of plant spatial pattern is one of the best criteria for the evaluation of envi-
ronmental sustainability and management practices.

Recognition of the quantitative characteristics of plants can easily be evaluated by range-
land managers to discover alarms or provide significant ecological thresholds. For this pur-
pose, analyzing the interspecific and intraspecific interactions of plants probably represents
the best indicator for the evaluation of sustainability. This means that rangelands in which
plants grow naturally and go through successional steps have a special interaction with
themselves based on their locations. Thus, the statistical analysis of plant spatial patterns can
be considered as a monitoring tool for vegetation transition shifts (Aguiar & Sala, 1999;
Schlesinger et al., 1990; Valentin, d’Herbès, & Poesen, 1999).

According to the wide distribution of plant communities in rangelands and their role
in preventing desertification, investigation of their interactions is of great importance to
better understanding the ecological structure and function of these ecosystems. Many
more theories and models separately describe the concepts of point processing and
succession theories (Dale, 2000; Diggle, 2003; Illian, Penttinen, Stoyan, & Stoyan, 2008;
Svátek & Matula, 2015; Yu, Wiegand, Yang, & Ci, 2009). However, there is not a monitoring
model for rangeland managers to specify the plant functions and to direct the ecosystems to
the most sustainable states. Therefore, this study proposes a conceptual model that shows a
reliable relationship between vegetation indices and disturbing activities in various states of
succession process.

33.2 Study Area
Golestan Province is located in northeast Iran, on the southeastern shore of the Caspian Sea.
The study area, the Aq Qala, is a part of the Sufikam plain in Golestan Province, located
between 55�35039v to 55�36010vE and 37�1608v to 37�16026vN, comprising a region of 27.3 ha
(Fig. 33-1). The mean elevation is 7 m above sea level. Based on data from the Iranian
Meteorological Organization, the average annual rainfall and temperature in the region are
250�300 mm and 17�C, respectively. The area is completely covered with Halocnemum stro-
bilaceum (Ha. St.) shrubs (Fig. 33-2).

33.3 Methodology
33.3.1 Field Measurements

Modeling the spatial distribution of Ha. St. shrubs needs the point map of study area. Each
point represents the spatial location of each Ha. St. shrub in the observation window. In this
study, the locations of Ha. St. shrubs were taken at two different times. In 2009, the point
map of 198 Ha. St. shrubs was determined for a research project by the Natural Resources
Department of Golestan Province. In 2017, the point map of 119 Ha. St. shrubs was obtained
by the authors. Because the correctness and precision of the point pattern analysis of plants
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depend on their correct recording, Leica TCR407 Total Station Reflectorless (Leica-TCR407)
with an accuracy of 2 mm6 2 ppm was used for obtaining the plant locations in the study
area (Fig. 33-3).

33.3.2 Spatial Analysis

In this study, the spatial data were analyzed using the spatstat package in R software and the
statistical results were introduced to the monitoring model for assessing vegetation transition

FIGURE 33-1 The study area in northeastern Iran.
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shifts (Fig. 33-4). The spatial pattern analysis helps us to understand the underlying
ecological processes (Hosseinalizadeh, Kariminejad, Campetella, Jalalifard, & Alinejad,
2018; Wiegand & Moloney, 2004, 2013). Fine-scale spatial analysis using second-order
statistics, such as the pair correlation function, is applied to identify the type of
underlying pattern (Hosseinalizadeh et al., 2018; Illian et al., 2008; Svátek & Matula,
2015; Wiegand & Moloney, 2014). These analyses are carried out in spatstat package.
Spatstat is a package for the statistical analysis of spatial data. Its main focus is the
analysis of spatial patterns of points in two-dimensional space. The points may carry
auxiliary data, and the spatial region in which the points were recorded may have
arbitrary shape (Baddeley, Rubak, & Møller, 2011; Baddeley, Rubak, & Turner, 2015).
Furthermore, the package is designed to support a complete statistical analysis of
spatial data (Baddeley et al., 2015).

FIGURE 33-2 The study area covered by Halocnemum strobilaceum shrubs.
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33.4 Result and Discussion
33.4.1 Ecological Attributes in Rangeland Ecosystems

Synthesis of the ecological concepts is essential to estimating plant dynamics as a main indi-
cator of ecological site (Briske, Fuhlendorf, & Smeins, 2005). Rangelands tend to complete
their nutrition network and to use the maximum energy available (Heshmati & Mohebbi,
2013; Hoelzer, Smith, & Pepper, 2006; Sharma & Annila, 2007; Whitfield, 2007; Würtz &
Annila, 2010). In fact, ecosystems generally to maximize consumption of energy and
resources. However, a better concept is Clementsian succession theory, which is defined as
an orderly dynamic process of community change in terms of species composition, structure,
and accumulated biomass (Clements, 1916; Karnani & Annila, 2009; Odum, 1969; Tilman,
Wedin, & Knops, 1996). From this point of view, the end step of succession is the climax,
which is not completely stable. Plant structures are developed during this time, but, because
of disturbances, their functions are not raised at the same rate (Fig. 33-5). This means that
sudden, unpredictable, and perhaps irreversible changes are frequently seen when major
disturbances occur (Cortina et al., 2006).

FIGURE 33-3 Leica TCR407 Total Station Reflectorless (Leica-TCR407) with an accuracy of 2 mm 6 2 ppm.
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Another conceptual model is state and transition theory (Ahmadpour et al., 2016).
According to this theory, during succession stages ecosystems are faced with various distur-
bances leaded to the creation of new states (Stringham, Krueger, & Shaver, 2003; Westoby,
Walker, & Noy-Meir, 1989). Describing vegetation dynamics in response to multiple drivers,
the model represents transitions to alternative stable states in different ecological sites. It can
accommodate both categories of vegetation dynamics and management prescriptions (Briske
et al., 2005). Moreover, ecological thresholds have become a central point of state and transi-
tion models. Threshold identification is necessary for recognition of various stable plant
communities (Friedel, 1991; Heshmatti, 1997; Westoby et al., 1989). Based on the threshold

FIGURE 33-4 Flowchart of the study area.
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FIGURE 33-5 Natural and human disturbances at different times of succession trend. Designed by the authors.
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concept, state and transition models describe unidirectional changes in ecosystem structure
and demarcate the points of incipient change (Fig. 33-6). Further, the state and transition
approach may offer an appropriate framework for decision making. This is due to its attend-
ing to the structural thresholds based on changes in spatial vegetation distribution.

33.4.2 Diagnostic Dynamic Patterns of Desertification in Rangelands

Achieving sustainable management by comprehensive understanding of disturbance effects
is a current requisite (Fig. 33-7). Ecological and human functions are two fundamentally dif-
ferent functions that may not coincide together in a rangeland, but sometimes they may be
functionally correlated together (Helmut & Erice, 2004; Suding & Hobbs, 2009). Rangelands
inherently tend toward stability, with a margin of flexibility, by their own rules (Bodin &
Wiman, 2007; Farrell et al., 2000; Walker & Del Moral, 2003). However, human demands are
sometimes not in line with natural outputs. This means that some destructive human activi-
ties are beyond the biological self-purification mechanisms of ecosystems (Babaev, 1985;
Stringham et al., 2003).

FIGURE 33-6 Graphical ESMF (Ecosystem Structure and Multiple Functions) model based on state and transition
theory (Ahmadpour, Heshmati, & Joulaie, 2016).

FIGURE 33-7 The range model describing vegetation dynamics by succession trend and ecological-human functions.
Designed by the authors.
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The causes of rangeland degradation will be analyzed by underlying driving forces,
including their interactions with one another and their feedbacks on land use (Helmut &
Erice, 2004). Ecological disturbances may cause one stable community to cross a threshold
to an alternative stable community. Illogical human actions in land use and land coverage
have a more detrimental effect than ecological functions on desertification hazards and land
degradation. Sometimes, because of the high degree of severity of desertification, it is not
easy to restore degraded lands and combat desertification (Akbari, Ownegh, Asgari,
Sadoddin, & Khosravi, 2016; Wijitkosum, 2016). An ounce of prevention is worth a pound of
cure and showing the importance of dynamic patterns of plants based on diagnosis, monitor-
ing, and assessing by the time of destruction is of critical importance. Thus, identifying these
factors and their impact on land degradation processes is crucial for any sustainable devel-
opment action plan (Ownegh, 2009).

33.4.3 Statistical Analysis of Plant Spatial Patterns

The spatial pattern analysis of plant communities reveals operative information about range-
land ecosystems (Wiegand & Moloney, 2014). Three basic spatial patterns are considered as
references for interpreting observed natural patterns in plant communities (dispersed, ran-
dom, and clustered; see Fig. 33-8). A dispersed pattern of plants indicates spatial homogene-
ity in resource distribution, while clustered patterns occur more often in environments with
competition for scarce resources. When the pattern is more similar than random, none of
the competitive and facilitative influences are observed (Hosseinalizadeh et al., 2018; Sher,
Wiegand, & Ward, 2010). The original pattern of plants reflects their sustainable conditions.
Thus, this is the main key for understanding naturally unspoiled ecosystems.

Spatial pattern analysis of plants has an important role in understanding ecological pro-
cesses such as competition, regeneration strategies, and mortality (López, Larrea-Alcázar, &
Zenteno-Ruiz, 2010; Navarro-Cerrillo et al., 2013). Plant interactions are significantly influ-
enced by plant locations (Erfanifard, Saborowski, Wiegand, & Meyer, 2016). The competitive
interactions between neighboring plants result in dispersed spatial patterns which may
exhibit the strength of competition, while the facilitative interactions can provide clustered
spatial patterns of plants (Erfanifard & Khosravi, 2015). In other words, facilitative interac-
tions of plants are commonly observed in lands with high levels of stress, while competitive
interactions between plants frequently happen in areas with appropriate environmental

FIGURE 33-8 Three basic spatial patterns of plants in ecosystems. Designed by the authors.
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conditions (Sher et al., 2010). In fact, plant structure can be evaluated by spatial pattern as
an indicator and early warning phase between “healthy” and “at-risk” states. Therefore, rec-
ognizing, monitoring, and assessing ecosystem dynamics based on plant structure represents
a better procedure for developing and evaluating rangeland health over decades.

33.4.4 The New Monitoring Model for Vegetation Transition Shifts

Because of the technical problems related to monitoring of soil, such as being time-
consuming and barely traceable, soil attributes cannot be considered as surrogates for plant
patterns. Therefore, plants most probably are the best indicators for the evaluation of ecosys-
tem sustainability (Quets et al., 2014; Svátek & Matula, 2015). Therefore, the objective of the
proposed model is to evaluate rangeland health by monitoring and assessing the spatial dis-
tribution of plants and their interactions, as the most importance ecological indicator of envi-
ronmental conditions. Moreover, the presented model offers an appropriate framework for
decision making to avoid hazards, precluding the conversion of sensitive regions to critical
regions and preventing land use changes. In particular, our model provides a number of
explanations for rangeland degradation. Emphasizing the initial distribution of plants in nat-
ural conditions provides a theoretical framework for performing sustainable development of
a system.

The presented study explains the newest concept which can be used to organize research
in rangelands. The model describes rangelands by means of catalogues of alternative states
and possible transitions between states. It pays more attention to timing and flexibility rather
than on establishing a fixed policy. The catalogue of plant patterns describes the states that
show the specific effects of functions on an environmental condition. In fact, each ecosystem
in a given state has a special plant pattern. Range management should be aware of an early
warning phase between “healthy” and “at-risk” states based on plant distribution and try to
avoid ecological problems in the first instance, rather than trying to fix them once they arise
in the thresholds between “at-risk” and “unhealthy” states (Fig. 33-9). Thus, it is important
for rangeland managers to specify first the state of catalogue of plant patterns or interactions
and then direct their ecosystems to the states that produce the most benefits.

33.4.5 Introducing the Statistical Results to the New Monitoring Model

The spatial pattern of Ha. St. shrubs was carried out in a spatstat package in two temporal
steps. The results of the g(r) function in 2009 showed that there is significant departure
from the null hypothesis at the scales of 1�17 m and Ha. St. is dispersed at these
scales (Fig. 33-10). The pattern was significantly departed from random labeling at the
scales of 0�7 m. In 2017, the results of a pair correlation function revealed that there is sig-
nificant aggregation of Ha. St. shrubs at scales of 1�18 m (Fig. 33-11). In general, there are
negative interactions between Ha. St. shrubs in 2009 and they are aggregated due to their
intraspecific facilitation effects in 2017 in the study area.

Under the proposed model, the results emphasize the hypothetical plant pattern of the
ecosystem structure in relationship with ecological and human wellbeing functions in

Chapter 33 • A Conceptual Model 741



FIGURE 33-9 Schematic model of natural and human disturbances at different times/states in rangeland
ecosystems. Designed by the authors.

FIGURE 33-10 The results of pair correlation function in 2009.
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various states during two different times. To the best of our knowledge, in 2009, plants were
in relatively homogeneous conditions. Because of the lack of natural/human activities, the
area was in a healthy state; meaning the competitive interactions between neighboring plants
resulted in dispersed spatial patterns which might exhibit the strength of competition in the
natural environmental conditions. However, in 2017, environmental changes, such as salinity
and aridity, might be the reasons for the inhomogeneous establishment of Ha. St. shrubs;
this means the facilitative interactions formed clustered spatial patterns of Ha. St. shrubs.
Thus, the facilitative interaction of plants was observed because of high levels of stress. In
other words, at this level of stress, plants were in an at-risk state and this was the time for
them to be managed and restored.

33.5 Conclusion
In both developed and developing countries, land degradation has sharply increased, mainly
as a result of different driving forces degrading lands over recent years. Plants, as traceable
indicators, can be used to prevent the effects of environmental and manmade driving forces.
Using the proposed model resolves the need for an early warning phase between different
states of rangeland health and the need to identify thresholds between these states.
According to the results and proposed model, the spatial pattern of Ha. St. shrubs using pair
correlation function revealed a dispersed distribution which indicates a healthy state in 2009,
while aggregation of species reflects their competition for scarce resources in 2017. Thus, it
is important for rangeland managers to direct the study area toward healthy states.
Furthermore, the new model is highly recommended for implementation throughout range-
lands around the world.

FIGURE 33-11 The results of pair correlation function in 2017.
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spring inventory map, 488
status analysis, 149�150
table drawdown, 551�553

Groundwater potential
CART model application for mapping, 493,

493f, 494f
map validation, 494
spatial prediction of, 492

Growing degree days (GDD), 28
GSI. See Geological Survey of Iran (GSI)
GSSHA. See Gridded Surface/Subsurface

Hydrologic Analysis (GSSHA)
“gstat” package, 89�90
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GUI. See Graphical user interface (GUI)
Gujarati subwatersheds in India, 372�373
Gully development, 653
Gully erosion, 299�300, 653, 656f, 659f
applying LDA model, 311�313
applying QDA model, 313�314
conditioning factors, 303�308, 305f
convergence index, 306
distance from river, 306
distance from roads, 307
drainage density, 306
elevation, 303
land use/land cover, 307
lithology, 308
NDVI, 307�308
plan curvature, 303�306
slope aspect, 303
slope degree, 303
TWI, 306�307

data-mining models, 309
factors, 660
inventory map, 302�303
LDA�QDA, 316
multicollinearity, 310
test, 308�309

study area, 301, 301f, 302f
validation of models, 309�310, 314�316

Gully erosion inventory map (GEIM), 302
Gully erosion spatial modeling
GESMs, 661�663
gully erosion susceptibility spatial modeling
CART application, 660
CART�GLM ensemble, 661
GLM application, 661

materials and methods
gully erosion influencing factors, 656�660
gully erosion inventory mapping, 655�656
study area, 654�655, 655f

validation of machine learning models,
663�665

Gully erosion susceptibility maps (GESMs), 309,
312f, 314f, 661�663, 662f, 663f

analysis, 657, 657t
validation, 664f

H
Habitat suitability
dataset preparation for habitat suitability

modeling, 413�418
using SVM model, 421�422

Habitat suitability map (HSM), 222
application of GLM, 220�222
materials and methods, 214�219

data used and methodology of GLM, 214f
geo-environmental variables, 215�217
model description, 217�219
model validation, 219
spatial dataset preparation, 215
study area, 214�215, 215f

validation, 222�223, 223f
AUC value for GLM, 224t
ROC results for GLM in study area, 224f

Halocnemum strobilaceum (Ha. St. ), 734�735, 736f
Harmonized World Soil Database (HWSD), 122
Harvest decisions, 94
Hazard, 229�230. See also Flood hazard; Flood-

hazard assessment modeling
landslide hazard model, 680
natural, 229�230, 323, 671
quasi-hazard, 679�680

HBV. See Hydrologiska Byrans Vattenavdelning
(HBV)

HCMR. See Hellenic Centre for Marine Research
(HCMR)

HEC-DSSVue software, 399�400
HEC-GeoHMS extension toolkit, 400
HEC-GeoRAS toolkit, 400
HEC-GridUtil software, 399�400
HEC�HMS. See Hydrologic Engineering

Center�Hydrologic Modeling System
(HEC�HMS)

Hellenic Centre for Marine Research (HCMR),
394�395

Heuristic models, 689�691
Hierarchical tree drawing, 376�377
High spatial analysis land cover/use data, 394
High spatial resolution, 594
High-quality landslide inventory maps, 523�524
Highly susceptible classes (HSCs), 691
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HIS. See Hue�saturation�intensity (HIS)
Horton equation, 122
HSCs. See Highly susceptible classes (HSCs)
HSGs. See Hydrologic soil groups (HSGs)
HSM. See Habitat suitability map (HSM)
Hue�saturation�intensity (HIS), 505
HWSD. See Harmonized World Soil Database

(HWSD)
Hybrid algorithms, 119�120
Hydraulic conductivity, 554
Hydro-litholological categories, 395
Hydrolithology layer, 397
Hydrologic Engineering Center�Hydrologic

Modeling System (HEC�HMS), 118, 392
Hydrologic soil groups (HSGs), 722�723
Hydrological
behaviors, 395
processes, 328
reactions, 372�373

Hydrologiska Byrans Vattenavdelning (HBV), 118
Hydromod function, 126
HydroPSO, 119�120
function, 126
optimization parameters in, 129t
package, 126

HYDROTEL, 392
Hyperparameters, 74
Hyrcanian forests, 92

I
IAEG Commission on Landslides, 703
ICA. See Imperialist competitive algorithm (ICA)
Identification of unit Hydrograph and Component

flows from Rainfall Evaporation and
Stream flow data (IHACRES), 118

IDF curves. See Intensity�duration�frequency
curves (IDF curves)

IDW. See Inverse distance weighting (IDW)
IDWRM. See Iranian Department of Water

Resource Management (IDWRM)
IHACRES. See Identification of unit Hydrograph

and Component flows from Rainfall
Evaporation and Stream flow data
(IHACRES)

Image object
creation, 503�505
features, 509t
selection of effective object features, 505�506

Image segmentation, 503
Imperialist competitive algorithm (ICA), 162,

170�174
assimilation policy, 171�172
calculation of empires’ power, 172�173
convergence, 174
empires’ competition, 173�174, 173f
exchanging positions of colony and imperialist,

172, 172f
initial empires creation, 170�171, 171f
revolution, 172

Index-based models, 548
Infill growth, 622
Infiltration equations, 122
INLA. See Integrated nested Laplace

approximation (INLA)
Integrated nested Laplace approximation (INLA),

56�57, 66
Integrated performance index (IPI), 718�719
Intensity�duration�frequency curves (IDF

curves), 1, 6
Intercomparison and validation of models,

717�720
landslide susceptibility map, 719f
percentage of susceptibility classes, 717f
results, 706�707
robustness analysis, 719t
selecting susceptibility model, 718t

Intermodel variability, 661
Interval rough numbers, 343�345
Inventory maps, 242�243, 326
Inventory-based models, 689�691
Inverse distance weighting (IDW), 149�150,

215�216
algorithms, 2

IPI. See Integrated performance index (IPI)
IR’AHP model, 350�356
average rough criteria matrix of cluster pairs, 356t
comparative matrix in cluster pairs, 355t
CRe comparison matrix and experts weights, 355t
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normalized matrix of cluster weight coefficients,
357t

weighting coefficients of clusters/criteria, 357t
Iran, forest resource management perspective in
DSSs role in Iranian forestry, 93
information, 92

Iran Meteorological Organization (IRIMO),
260�261

Iranian Department of Water Resource
Management (IDWRM), 488

Iranian forestry, DSS role in, 93
IRIMO. See Iran Meteorological Organization

(IRIMO)

J
Jackknife test, 494�495, 495t
Joint Research Centre (JRC), 338

K
K-fold cross-validation, 74�75
K2. See KINematic runoff and EROSion

(KINEROS2)
Kanera watershed, 372�373
Kappa coefficient, 349, 360
KINematic runoff and EROSion (KINEROS2),

118�119, 124
parameter optimization using PSO, 117�121

KINEROS model, 122�125

L
L.C. See Landslide circularity (L.C)
L.E. See Landslide elongation (L.E)
L/W. See Length/width (L/W)
Land
cover map, 677
degradation processes, 299�300
subsidence, 147�148
use, 198, 199f, 480, 492, 660

Land Surface Remote Sensing (LSRS), 27, 697
Land use/land cover (LU/LC), 299�300, 307, 621
change detection, 624
measuring urban sprawl, 633�634
satellite image selection and preprocessing,
627�628

spatiotemporal changes and urban sprawl,
641�643

spectral indices, 628�630
study area, 626�627
time-series image classification, 630�633
time-weighted dynamic time warping,
634�643

urban footprints, 640�641, 640f
urban growth, 621�626

classes, 634�635
classification, 625, 630
information, 499, 653

Land-subsidence spatial modeling, 150f
assessment, 151
effective factors

assessment, 154
on land subsidence, 149�150

investigating spatial relationship, 151�154
land-subsidence inventory mapping, 148�149
preparing land-subsidence susceptibility map,

154�157, 154f, 155f, 156f
RF model, 151
spatial relationship, 150�151
study area, 148, 149f

Landform effects, 78
Landsat
collection, 624�625
imagery, 21, 628
Landsat 8 Operational Land Imager, 433�434, 627
Landsat 8 satellite imagery, 470�471, 660
packages, 27
satellites, 21

Landscape
characteristics, 609�610

on wildfire occurrence, 607�608
landscape-level connectivity index, 623
transformation, 622�623

Landslide circularity (L.C), 703
Landslide elongation (L.E), 704
Landslide identification points (LIPs), 58�59
Landslide inventories, 523�524
mapping and thematic layers, 694�701

description of lithological formations, 701t
frequency and percentage of landslides, 696t
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Landslide inventories (Continued)
information on landslide-controlling factors,

697t
landslide conditioning factor maps, 701f
largest rotational landslide, 696f

Landslide spatial modeling
application
of FDA, 476�477
of GLM, 477

materials and methods
landslide conditioning factors, 470�471, 473f
landslide inventory mapping, 468�470, 469f
landslide susceptibility modeling, 471�475
soil types of study area, 470t

study area, 468
validation of landslide susceptibility models,

477�478
variable importance, 475�476, 475f

Landslide spatial prediction
cross-validation study and out-of-sample

predictive skill, 74�76
dataset description and preparation
computing slope units in GIS, 60�61
MORLE, Messina (2009), 57�60

estimation
fixed and random effects, 66�71
landslide intensity at spatial resolutions, 71

model checking and goodness-of-fit
assessment, 72�74

point process modeling and estimation using
R-INLA, 61�65

Landslide susceptibility, 55�56, 519
map, 467, 476�477, 476f
using ANFIS, 268�271

survey
adaptive neuro-fuzzy inference system, 265
Bayesian theory, 263�264
binary logistic regression, 262, 266�268
case study, 260�261, 261f
random forest algorithm, 265�266
SINMAP model, 264�265

Landslide susceptibility index (LSI), 476�477
Landslides, 55, 259, 451, 467, 671�672, 689
aerial image acquisition using unmanned aerial

vehicle technology, 454�456

conceptual scheme, 454f
data-driven identification of landslide-prone

zones, 534�537
dynamics, 461f
errors in georeference process, 458t
hazard model, 680
intensity, 55�56
estimation at spatial resolutions, 71

landslide-controlling factors selection, 694�696
methodology, 453�459
predictive models, 56�57
processing stage of aerial images, 456�459
results, 459�462
risk, 537
study area, 452, 453f

Latent spatial effect, 60, 70�71, 70f, 73�74,
76�78

Latin Hypercube One factor At Time technique
(LH-OAT technique), 126

LDA model. See Linear discriminant analysis
model (LDA model)

LDA�QDA. See Linear and quadratic discriminant
analyses (LDA�QDA)

Leapfrog growth, 641�643
Learning vector quantization (LVQ), 324, 557
factors affecting groundwater salinization, 561f
importance of factors by, 559�560

Least squares (LS), 270�271
Leica TCR407 Total Station Reflectorless,

734�735, 737f
Lemniscate ratio, 703�704
Length/width (L/W), 703
LH-OAT technique. See Latin Hypercube One

factor At Time technique (LH-OAT
technique)

Libsvm, 7�9
LiDAR technology, 594
Linear and quadratic discriminant analyses

(LDA�QDA), 316
Linear covariate effects, 66t
Linear discriminant analysis model (LDA model),

299�300, 309, 311�313. See also Quadratic
discriminant analysis model (QDA model)

confusion matrix in, 311t
weights of gully conditioning factors, 311t
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Linear feature maps, 657�660
Linear model function (lm function), 436
Linear morphometric parameters, 374�376
Linear programming technique, 345�346
Linguistic expression, 347
LIPs. See Landslide identification points (LIPs)
Lithology, 308
lithological units, 237
of study area, 471t

lm function. See Linear model function (lm
function)

Local variance (LV), 503
Logical compatibility of judgments, 376�377
Logistic regression (LR), 147�148, 217�219,

259�260, 278, 284�285
equation, 267t
model, 219, 402�403

Logistics decisions, 94
LR. See Logistic regression (LR)
LS. See Least squares (LS); Slope length (LS)
LSI. See Landslide susceptibility index (LSI)
LSRS. See Land Surface Remote Sensing (LSRS)
LU/LC. See Land use/land cover (LU/LC)
LV. See Local variance (LV)
LVQ. See Learning vector quantization (LVQ)

M
Machine learning (ML), 2�3, 338�339, 468
algorithms, 527, 660�661, 689�691
models validation, 663�665

Maharloo watershed in Iran, 371�372
background research, 372�373
distance values from positive and negative

ideals, 384t
flood inundation in study area, 375f
flood prioritization zoning, 386f
geographical location, 374f
material and methods, 374�380
case study, 374
morphometric parameters, 376t
research methodology, 374�380
scale 9 quantitative for binary comparison of
options, 377t

priority and relative weight of pairwise
comparison, 383f

values of morphometric and rainfall
parameters, 381t

Man and Biosphere Program (MBP), 92
MAPE. See Mean absolute percentage error

(MAPE)
Markov chain Monte Carlo methods, 56�57
MARS. See Multivariate adaptive regression

splines (MARS)
MB. See Model bias (MB)
MBP. See Man and Biosphere Program (MBP)
MCA. See Multicriteria analysis (MCA)
MCDA. See Multicriteria decision analysis

(MCDA)
MCDM systems. See Multicriteria decision-

making systems (MCDM systems)
MCE. See Multicriteria evaluation (MCE)
MDA. See Mean decrease accuracy (MDA)
MDG. See Mean decrease Gini (MDG)
MDMRBF. See Motion differences of matched

region-based features (MDMRBF)
Mean absolute percentage error (MAPE),

436�437
Mean decrease accuracy (MDA), 151, 595
Mean decrease Gini (MDG), 151
Mean slope (Sm), 374�376
Mean squared error (MSE), 10
Meteorological factor, 343
Meteorological model, 404
Metropolitan fringe, 622
MIKE software, 392
MLR. See Multilinear regression (MLR)
MNLI. See Modified nonlinear vegetation index

(MNLI)
Model bias (MB), 126�127
Modern geo-technologies, 391�392
Modified nonlinear vegetation index (MNLI),

434�435
Modified soil-adjusted vegetation index (MSAVI),

430, 434�435
Modified towing rule, 660
MOPSO. See Multiobjective particle swarm

optimization (MOPSO)
MORLE. See Multiple Occurrence Regional

Landslide Event (MORLE)
Morphometric analysis, 371�372, 374�376
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Motion differences of matched region-based
features (MDMRBF), 576�582, 577f

correspondence discovery, 579�580
feature extraction, 578
moving object detection, 581�582, 585f
multigraph matching, 578�579
occlusion detection, 580�581
RAG construction, 577
region labeling, 581
segmentation and region merging, 576�577

Motion similarity graph (MSG), 581, 581f
Mountain Tara, 340
Moving object detection, 581�582, 584�585, 585f
MR models. See Multivariate regression models

(MR models)
MRS algorithm. See Multiresolution segmentation

algorithm (MRS algorithm)
MSAVI. See Modified soil-adjusted vegetation

index (MSAVI)
MSE. See Mean squared error (MSE)
MSG. See Motion similarity graph (MSG)
Multicollinearity, 310, 310t
test, 308�309
results of conditioning factors, 220t

Multicriteria analysis (MCA), 231, 672�673
Multicriteria decision analysis (MCDA), 87�88,

95�96, 339
Multicriteria decision elements
decision elements, 86�87
decision-maker(s) analysis, 86
hierarchical structure, 86
interpretation of findings, 87

Multicriteria decision-making systems (MCDM
systems), 162, 166�168, 189�190,
371�372, 485�486

drawbacks, 168
Multicriteria evaluation (MCE), 100, 189�190,

230�231
Multiflora, 411
Multifold spatial partitioning design, 530, 531f
Multigraph matching, 578�579, 583�584
Multihazard exposure assessment, 682�685
materials and methods, 676�682
data, analysis, and output flow chart, 677f
data preparation, 677�678
methodology, 678�682

multihazard exposure of road network, 684f
resulting hazard maps, 683f
resulting road network exposure maps, 683f
state of the art, 672�673
Valjevo case study, 673�676

Multilinear regression (MLR), 2, 10
Multiobjective particle swarm optimization

(MOPSO), 119�120
Multiple moving objects detection in aerial

videos, 584�585
materials and methods
MDMRBF framework, 576�582
study area and dataset, 575�576

multigraph matching, 583�584
occlusion detection, 584
region merging, 582�583
region segmentation, 582

Multiple Occurrence Regional Landslide Event
(MORLE), 57�60, 76�77

Multiresolution segmentation algorithm (MRS
algorithm), 503

Multispectral satellite images, 678
Multivariate adaptive regression splines (MARS),

299�300, 485�486
Multivariate linear regression analysis, 14�15
Multivariate regression models (MR models), 436
Multivariate statistical methods, 689�691

N
Nash�Sutcliffe efficiency (NSE), 126�127, 138f
National Cadaster & Mapping Agency (NCMA),

397
National Cartographic Center of Iran (NCC),

216�217
Natural disasters, 259
Natural hazards, 229�230, 323, 671
Natural lands, 395
Natural Resource and Watershed Management

Organization, 192
of Iran, 205

Natural Resource and Watershed Management
Organization of Hormozgan Province
(NRWMSI), 192�194

NBR. See Normalized burn ratio (NBR)
NCC. See National Cartographic Center of Iran

(NCC)
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NCMA. See National Cadaster & Mapping Agency
(NCMA)

NDBaI. See Normalized difference bareness index
(NDBaI)

NDBI. See Normalized difference built-up index
(NDBI)

NDVI. See Normalized difference vegetation index
(NDVI)

NDWI. See Normalized difference water index
(NDWI)

Near-infrared band (NIR band), 628
Nearest neighbor method (NN method), 499�500
classifier, 506

Negative-ideal solution (NIS), 202
Neogene formations, 675
Net production zones, 94, 99�100
spatial feasibility map of region, 105f

New monitoring model
statistical results to, 741�743
for vegetation transition shifts, 741

“New riverbed”, 396, 404�405
NIR band. See Near-infrared band (NIR band)
NIS. See Negative-ideal solution (NIS)
NN method. See Nearest neighbor method (NN

method)
Noisy-appearing classified landslide susceptibility

maps, 534
Nonlinear RBF kernel function, 612
Nonlinear regression model, 262
Nonparametric
McNemar’s test, 508, 513
random forests technique, 595
regression algorithm, 660

Nonurban features, 635�637
Normalization process, 15
Normalized burn ratio (NBR), 589�590
Normalized difference bareness index (NDBaI),

625, 629
Normalized difference built-up index (NDBI), 625,

628�629
Normalized difference vegetation index (NDVI),

22, 27�32, 43�48, 66, 259�260, 303,
307�308, 342, 430, 434�435, 470, 505, 595,
625, 628, 694�696

map, 696�697
relationship

between GDD of occurrence of peak, 31f
between NDVI and corresponding GDD, 31f

spatial variations, 32, 35f
Normalized difference water index (NDWI), 625,

629�630
Normalized matrix of cluster weight coefficients,

357t
Normalized root-mean-square error (NRMSE),

436�437
Normalized swarm radius, 137
evolution of global optimum and, 137f

NRMSE. See Normalized root-mean-square error
(NRMSE)

NRWMSI. See Natural Resource and Watershed
Management Organization of Hormozgan
Province (NRWMSI)

NSE. See Nash�Sutcliffe efficiency (NSE)
NW Spain, 589, 592

O
OA. See Overall accuracy (OA)
Object-based image analysis (OBIA), 499
Occlusion detection, 580�581, 584
OLI. See Operational Land Imager (OLI)
OOB data. See Out-of-bag data (OOB data)
Operational Land Imager (OLI), 433�434, 627
Operational planning, 91�92
Optimal cost parameter, 15
Optimization algorithm, 125�126
Optimization process, parameters of model in,

127�128
Ordered weighted average (OWA), 100
order weights vector, 100t

Organic carbon concentration, 432�433
Out-of-bag data (OOB data), 611
observations, 595
rate, 612

Out-of-sample predictive skill, 74�76
Overall accuracy (OA), 501
Overlay code, 681�682
OWA. See Ordered weighted average (OWA)

P
Pair correlation function, 735�736
Pairwise comparisons, 379
Parameter determination process, 346
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Parameter ESTimation algorithm (PEST
algorithm), 118�119

Particle swarm optimization (PSO), 119�120, 125
KINEROS2 parameter optimization using
data set, 122
fitting metrics of selecting storm events, 132t
materials and methods, 121�128
methodology, 122�128
study area, 121, 121f

Patch corridor matrix, 623
Patch-mosaic matrix, 623
Pathro River basin, 655�656
PCRR correction. See Principal component

regression with residual correction (PCRR
correction)

Pearson’s correlation coefficient, 439
Percentage of relative decrease (PRD), 492
Percolation theory, 623
PEST algorithm. See Parameter ESTimation

algorithm (PEST algorithm)
Phantom 3 Advanced drone, 454�456
PIS. See Positive-ideal solution (PIS)
Pix4Dcapture application, 455
Pixel-based approach, 526
Plan curvature, 303�306
Plant spatial patterns, statistical analysis of,

740�741
Point cloud database, 457, 458f
Poisson distribution, 72�73
Poisson point process model, 63
Polynomial equation, 30, 722
Population density and proximity
to residential areas, 165
schools location regarding, 177�180

Population growth, 259�260, 485
Portable global positioning system, 432�433
Positive-ideal solution (PIS), 202
Post-fire soil erosion, 589
PRC. See Prediction rate curve (PRC)
PRD. See Percentage of relative decrease (PRD)
Precipitation, 22�23
Predicted variables, 290f, 434�435, 435t, 437�439
correlation matrix of, 439, 439t
based on GAM, 289t
based on LR model, 288t

descriptive statistic results of, 287t
maps in study area, 284f

Predictor variables
descriptive statistics, 437t
and SOC relationship analysis, 439�440

Prediction rate curve (PRC), 706
Prefiltering method, 511
Prespring rainfall, 43�44
Primary topographical attributes maps, 656�657
Principal component regression with residual

correction (PCRR correction), 2
Probability mapping and validation, 612
Probability modeling using SVM model, 611�612
PSO. See Particle swarm optimization (PSO)
Pumping well density, 555

Q
Qare-Sou watersheds, 372�373
Quadratic discriminant analysis model (QDA

model), 299�300, 309, 313�314. See also
Linear discriminant analysis model (LDA
model)

area of susceptibility classes, 315t
confusion matrix in, 313t
weights of gully erosion conditioning factors,

313f
Quadratic scoring rule, 10
Quantitative landslide risk assessment, 537
Quantitative methods, 467
Quasi-hazard, 679�680

R
R code, 402�403, 681
R software/package, 119�120, 260, 430
environment, 528
spatial prediction of groundwater potential
in, 492

geostatistical analysis with, 89�90
R statistical packages, 380

R-INLA, 57, 61
Gaussian prior model types, 74
K-fold cross-validation procedure, 75
point process modeling and estimation
fitting cox point process model using, 63�65
preprocessing, 61�63
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R-M-R framework, 399
cyclical process, 399f
flowchart of methodology, 400f

r.slopeunits code, 60
R2 value, 436�437
Radial basic function (RBF), 162, 169�170, 169f,

418�419, 611�612
RAG construction. See Region adjacency graph

construction (RAG construction)
Rainfall, 680
characteristics, 23
discharge, 76�77
distribution, 46�48
parameters, 28, 46t

properties, 43�48
Rainfall shape index (RSI), 46�47
Rainfall�runoff models, 118
Random consistency index (RI), 241t, 242
Random effect estimation, 66�71
Random forests (RFs), 485�486, 500�501, 595,

608
algorithm, 151, 265�266, 510�511
classifier, 506
data-mining technique, 147�148
effective factors assessment, 154

model, 147�148, 151
factor analysis using, 611
preparing land-subsidence susceptibility
map, 154�157, 154f, 155f, 156f

results of evaluation, 157t
technique, 595

Rangelands, 733�734
diagnostic dynamic patterns of desertification,

739�740
ecological attributes in rangeland ecosystems,

737�739
graphical ESMF model, 739f
methodology, 734�736
field measurements, 734�735
spatial analysis, 735�736

natural and human disturbances, 738f
new monitoring model for vegetation transition

shifts, 741
statistical analysis of plant spatial patterns,

740�741

statistical results to new monitoring model,
741�743

study area, 734, 735f, 738f
vegetation dynamics, 739f

Ras Gharib area, flash flood event in, 234
Raster databases, 458�459
Raster package, 7, 27
Rate of change (ROC), 503
RBF. See Radial basic function (RBF)
RdNBR. See Relative differenced NBR (RdNBR)
RDVI. See Renormalized difference vegetation

index (RDVI)
Real flood area extraction from satellite images,

247�248
Receiver operating characteristics (ROCs), 219,

248�251, 271, 272f, 302, 329, 343, 361f,
561, 608

curve, 57, 73, 419, 420t, 477�478, 479f,
663�664

ROC�AUC method, 612, 615�616
Recursive algorithm, 492
Region adjacency graph construction (RAG

construction), 574�575, 577
Region labeling, 581
Region merging, 576�577, 582�583
Region segmentation, 582
Regional groundwater potential analysis
CART model application, 493, 493f, 494f
methodology, 486�492, 487f

data, 488�492
groundwater conditioning factors, 488�492,
490f

groundwater spring inventory map, 488
SA and model performance, 492
spatial prediction of groundwater potential,
492

SA, 494�495, 495f
study area, 486, 487f
validation of groundwater potential map, 494

Regional-scale wildfire probability in Iran
factor importance, 612�614, 613f
materials and methods, 608�612

data collection and processing, 609�610
factor analysis using RF model, 611
probability mapping and validation, 612
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Regional-scale wildfire probability in Iran
(Continued)

probability modeling using SVM model,
611�612

prediction map, 614�616
study area, 608, 609f

Regression functions, 707�708
Regression-based approaches, 56
Relative differenced NBR (RdNBR), 595
Relative operating characteristic curve analysis

(ROC curve analysis), 492
Relative slope position (RSP), 488, 491
Relief ratio (Rh), 374�376, 385�387
Remote sensing (RS), 189�190, 260, 338, 391�392
analysis, 88�89
application to establishing flood inventory map,

242�243
data, 21
methods, 230�231, 499
time-series analysis, 625
in urban growth analysis, 624�626

Renormalized difference vegetation index (RDVI),
430

Residuals, 436�437
Revolution in ICA, 172
RFs. See Random forests (RFs)
RI. See Random consistency index (RI)
River basin, 654�655
Riverine floods, 671�672, 678�679
modeling, 672

RMSE. See Root-mean-square error (RMSE)
RNs. See Rough numbers (RNs)
Road network exposure, 682�684
ROC. See Rate of change (ROC)
ROC curve analysis. See Relative operating

characteristic curve analysis (ROC curve
analysis)

ROCs. See Receiver operating characteristics
(ROCs)

Root-mean-square error (RMSE), 10, 433�434
value, 12

Rotation forest (RotFor), 500�501
Rough analytical hierarchy process method,

345�349
Rough numbers (RNs), 343�345

Rough theory, 345�346
RS. See Remote sensing (RS)
RSAGA package, 380
RSI. See Rainfall shape index (RSI)
RSP. See Relative slope position (RSP)
“RStoolbox” packages, 27
Ruggedness number (Rn), 374�376, 385�387
Runoff modelling, fitting metrics of selecting

storm events for, 132t

S
SA. See Sensitivity analysis (SA); Simulated

annealing (SA)
SAGA-GIS. See System for automated geoscientific

analyses (SAGA-GIS)
Saint-Venant equations, 122
“Sal” (Shorea robusta), 430�431
Salinization, 555
Sampsize function, 595�596
Sari-Neka Aquifer, 548�549
Satellite
data, 624�625
image/imagery, 21, 430
selection and preprocessing, 627�628

satellite-derived indexes, 600�601
SAVI. See Soil-adjusted vegetation index (SAVI)
SAW model. See Simple additive weighing model

(SAW model)
SC-SAHEL. See Shuffled Complex-Self Adaptive

Hybrid EvoLution (SC-SAHEL)
Schools, 161�162
evaluating suitability with overall appearance,

182�183
location
regarding city services, 181
regarding cultural and recreational centers,
181�182

regarding population density and proximity,
177�180

regarding urban facilities, 177, 178f, 179f
site selection, 161�162

SCRI. See Shortwave crop reflectance index (SCRI)
SCV. See Spatial CV (SCV)
SDM. See Species distribution models (SDM)
SDSS. See Spatial DSS (SDSS)
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Secondary topographical attributes maps, 657
Segmentation code, 681
Senderek subsurface dam, 192, 205
Sensitivity analysis (SA), 486, 494�495, 495f
and model performance, 492

Sentinel Application Platform (SNAP), 399
SENTINEL-1 program, 396�397, 401
satellite imagery, 394

Sequential Uncertainty Fitting Algorithm (SUFI-2),
198�200

Shannon’s entropy (ShE), 689�691, 704�705,
714�717

ensemble modeling, 705
rates and weights of conditioning factors, 715t

ShE. See Shannon’s entropy (ShE)
ShE and fractal dimensions (ShEF dimensions),

692
ShE and mean fractal values (ShEF-mean), 724
Shortwave crop reflectance index (SCRI), 37�48
relationship between SCRI and VIs, 42f

Shortwave-infrared region (SWIR region), 37,
628�629

Shuffled Complex-Self Adaptive Hybrid EvoLution
(SC-SAHEL), 119�120

SI. See Statistical index (SI)
Simple additive weighing model (SAW model),

372�373
Simple linear iterative clustering algorithm (SLIC

algorithm), 576�577, 583f
Simple linear regression model, 441
Simulated annealing (SA), 119�120
Simulation model, 89
Simulator for Water Resources in Rural Basin

(SWRRB), 118
SINMAP model, 264�265, 265t
Site selection, 162
for building new schools, 183

SLIC algorithm. See Simple linear iterative
clustering algorithm (SLIC algorithm)

Slicing classification technique, 247�248, 250f
Slope angle, 237, 480
Slope aspect, 303, 656�657, 696�697
Slope degree, 303, 696�697
Slope length (LS), 266�268, 282, 656
factor, 657

Slope percent, 197, 198f
Slope units, 60
in GIS, computing, 60�61

“SLURP” hydrologic model, 392
SMCE. See Spatial Multi-Criteria Evaluation

(SMCE)
SNAP. See Sentinel Application Platform (SNAP)
SNDR. See Spatial normalized differential

reflectance (SNDR)
SOC. See Soil organic carbon (SOC)
Soft computing algorithms, 673
Soil
erosion, 282, 299�300
maps, 470�471, 678
parameters, 216�217
pH, 216�217
physical properties, 307�308
texture, 216�217
types, 660
water-holding capacity, 277

Soil and Water Assessment Tool (SWAT), 118,
192�194, 392

distribution model, 191
model, 198�200

Soil burn severity, 589�590, 593
mapping, 599�600
models, 601�602
prediction

explanatory variables, 593�595
field sampling, 592�593
material and methods, 591�596, 591f
predicted soil severity map, 599f, 600f
predictive capacity of soil burn severity
models, 596t

statistical analysis, 595�596
study area, 592

Soil disturbance, 277
database, 280
susceptibility modelling

additive model, 285�286
classification and regression tree, 286
logistic regression, 284�285

Soil disturbance susceptibility maps, 277�278,
292f, 293f. See also Spatially focused
landslide susceptibility map
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Soil disturbance susceptibility maps (Continued)
covered area for susceptibility subclasses, 293t
data collection, 280�284, 280f
decision tree of soil disturbance occurrence,

288f
performance results of three data-mining

models, 287t
predictor variables, 290f
based on GAM, 289t
based on LR model, 288t
descriptive statistic results of, 287t
maps in study area, 284f

results, 287�289
soil disturbance classes, 281t
spatial prediction, 286
study area, 278�279, 279f
variables based on CART, 289t

Soil organic carbon (SOC), 216�217, 429
analysis from field data, 432, 437
correlation coefficient matrix, 441t
data collection and processing, 433�434
materials and methods, 430�437
model validation, 436�437
predicted variables, 434�435, 435t, 437�439
predictor variables
descriptive statistics, 437t
and SOC relationship analysis, 439�440

spatial prediction of soil organic carbon stocks,
441�443

statistical analysis and digital soil mapping, 436
study area, 430�431

Soil-adjusted vegetation index (SAVI), 430
Spanish National Forest Map, 594
Spatial analysis, 88�89, 735�736
Spatial Analyst Tools of ArcGIS 10.4 software, 358
Spatial CV (SCV), 530
Spatial data preparation and selection, 523�527
polygon-based landslide inventory underlain,

524f
strategies to representing landslide location,

525f
Spatial dataset preparation, 215
Spatial decision support system classification,

88�92
forest management hierarchy, 90�92
geostatistical analysis with R packages, 89�90

Spatial distribution, 653�654
of gullies, 299�300
of vegetation indices, 439

Spatial DSS (SDSS), 85
Spatial interpolation, 2, 14
Spatial inventory database, 341
Spatial MCDA, 88
Spatial modeling, 151
analysis, 95
approaches, 89
procedure, 98�101
of VGS, 555�557
effective layers in groundwater salinity, 557
GAM, 556
GLM, 555�556
SVM, 556�557

Spatial Multi-Criteria Evaluation (SMCE), 191
Spatial normalized differential reflectance

(SNDR), 37�42, 39f, 41f
Spatial point pattern, 56
Spatial prediction, 286
of groundwater potential, 492
of soil organic carbon stocks, 441�443
comparative assessment between observed
and predicted SOC, 443t

predicted soil organic stocks, 444f
scatterplots between observed and predicted
SOC, 443f

validation of results, 441�443
Spatial random effect, 64�65
Spatial relationship
between effective factors and occurrence of

land subsidence, 151�154, 152t
between land-subsidence locations and

effective factors, 150�151
Spatial resolutions
landslide intensity estimation at, 71
satellite images, 41�42

Spatial simulation, 89
Spatial variations of NDVI, 32, 35f
Spatially focused landslide susceptibility map.

See also Soil disturbance susceptibility
maps

ensemble modeling of ShE and fractal
dimension, 705

geomorphometric indices
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analyzing fractal dimensions and, 702�705
fractal dimension and, 707�713, 709t

intercomparison and validation of models,
717�720

results, 706�707
landslide inventory mapping and thematic

layers, 694�701
limitations, 724�725
methodology, 694, 695f
ShE and fractal dimensions, 714�717
study area, 692�693, 693f

Spatiotemporal changes, 641�643, 642f
Spatiotemporal geostatistical modeling, 89�90
Spatstat package, 735�736
SPDEs. See Stochastic partial differential

equations (SPDEs)
Species distribution models (SDM), 213, 411�412
Species occurrence data, 215
Spectral characteristics, 627t
Spectral indices, 628�630
NDBaI, 629
NDBI, 628�629
NDVI, 628
NDWI, 629�630

Spectral vegetation indices, 22
Sperchios diversion, 396
Sperchios River, 394, 396
hydrological basin, 395f

SRC. See Success rate curve (SRC)
Stakeholder, 86
State and transition theory, 738�739
State of the art approaches, 672�673
Statistical analysis, 436
of plant spatial patterns, 740�741

Statistical index (SI), 485�486
Statistical landslide susceptibility model
challenges in, 532�534
unclassified and classified maps, 535f

creation, 522f
modeling algorithms, 527�529
preparation and selection of spatial data,
523�527

theoretical background and practical
implementation, 521�523

evaluation, 529�531
Statistical methods, 467�468, 520

Statistical modeling, 534�535, 691
Statistics-driven landslide susceptibility

assessment, 519
Stepwise weight assessment ratio analysis

(SWARA), 162
calculated weight factors, 175f
prioritization and weighing factors, 166

Stochastic partial differential equations (SPDEs),
61�62

Storm events, 122t
Straps, 622
Strategic planning, 90�91
Stream frequency (FS), 374�376
Stream length (LS), 374�376
Student’s t-test, 436
Subsurface dams, 195t
Boolean algorithm, 204, 204f
methodology, 195�198, 196f

fault criteria, 196�197, 197f
geology, 197�198
identification and selection suitable sites, 196
land use, 198, 199f
slope percent, 197, 198f

nomination criteria for evaluating and ranking
suitable sites, 198�200

secondary phase, 200�203
approaches for weighting of criteria, 200�203
assigning criteria weights, 200, 201t

secondary step, 205�206
ranking of subsurface dam on MCDM
models, 206t

study area and data analysis, 191�203, 192f
data, 192�194

validation of ranking sites, 207
Subwatersheds, 371�372
Success rate curve (SRC), 706
SUFI-2. See Sequential Uncertainty Fitting

Algorithm (SUFI-2)
Super-pixel segments, 582
Support vector machine (SVM), 2�3, 7�9,

418�419, 548, 556�557, 608, 614�615
distribution map of wildfire probability, 614f
habitat suitability using, 421�422
prediction rate curve, 615f
probability modeling using, 611�612
rate curve, 615f
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Support vector machine (SVM) (Continued)
spatial analysis of extreme rainfall values
methodology and data, 5�10, 5f
performance criteria, 12�13
study area, 4�5, 4f

structural parameters, 11
SVM-GA model, 12�13

SUraster, 61
Surface runoff, 653
Susceptibility models, 689�691
Susceptibility zonation methods, 278
Sustainable land-use practices and management,

429
SVM. See Support vector machine (SVM)
svm() function, 7�9
SWARA, RBF, and ICA combination

(SWARA�RBF�ICA), 162, 174
SWARA. See Stepwise weight assessment ratio

analysis (SWARA)
SWARA�RBF�ICA. See SWARA, RBF, and ICA

combination (SWARA�RBF�ICA)
SWAT. See Soil and Water Assessment Tool (SWAT)
SWIR region. See Shortwave-infrared region

(SWIR region)
SWRRB. See Simulator for Water Resources in

Rural Basin (SWRRB)
System for automated geoscientific analyses

(SAGA-GIS), 488

T
Tactical planning, 90�91
Technique for order of preference by similarity to

the ideal solution (TOPSIS), 202�203, 206t,
371�373, 378�380

decision-making model, 384
MCDM model, 372�373

Tehran Metropolitan, schools in, 163
Temporal monitoring of spatial dynamics of

landslides, 452
Terrain conditions, 101�106
TFNs. See Triangular membership function

(TFNs)
Thematic Mapper (TM), 21, 627
Landsat 5 Thematic Mapper, 627
sensor, 190�191, 589�590

Thermal infrared sensor (TIR sensor), 627
Threshold-independent performance metrics, 529
Timber harvesting process, 278
Time-series image classification, 630�633
cross-validation, 631�633

Time-weighted dynamic time warping algorithm
(TWDTW algorithm), 625, 639

classification, 634�637
distance, 637, 637f
method, 630
validation, 637�639

TIR sensor. See Thermal infrared sensor (TIR sensor)
TM. See Thematic Mapper (TM)
Tolerance (TOL), 302, 418
Top of atmosphere (TOA), 627
Topographic factors, 488�491
Topographic position index (TPI), 282, 488, 491
Topographic wetness index (TWI), 149�154, 191,

236�241, 282, 299�300, 306�307, 341,
470, 488, 656�657

Topological factors, 694�696
TOPSIS. See Technique for order of preference by

similarity to the ideal solution (TOPSIS)
Torok Hill, 452
TPI. See Topographic position index (TPI)
Training/calibration of DMMs, 557, 557t
Trial-and-error strategy, 503
Triangular membership function (TFNs), 98�99
True skill statistic (TSS), 557
TWDTW algorithm. See Time-weighted dynamic

time warping algorithm (TWDTW
algorithm)

“twdtwApply” function, 631
“twdtwAssess” function, 633
“twdtwClassify” function, 633
“twdtwCrossValidate” function, 631
“twdtwCrossValidation” file, 631�632
“twdtwRaster” function, 631
TWI. See Topographic wetness index (TWI)
Two polar-trajectory satellites, 396

U
UAV. See Unmanned aerial vehicle (UAV)
UNESCO, 92
MAB Committee, 340�341
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Unevenness index (UR), 28
Unit shape factor (Sh.Fu), 703, 720�721
United Nation Office for Disaster Risk Reduction

(UNISDR), 323�324
Universal Soil Loss Equation (USLE), 653�654
Universal Transverse Mercator projection system,

433�434
Unmanned aerial vehicle (UAV), 451�452, 573
experimental camera and, 575f

UR. See Unevenness index (UR)
Urban development, 259�260
Urban extension/expansion, 622, 634
Urban facilities, 165
schools location regarding, 177, 178f, 179f

Urban flood risk, 324
Urban footprints, 640�641, 640f
Urban fringe development, 622
Urban growth, 625
concepts, 621�622
GIS and remote sensing techniques in, 624�626
processes, 622�624

Urban road network, 673
accessibility to, 165
schools location regarding accessibility to, 180

Urban sprawl, 622, 641�643
measurement, 633�634

Urbanization process, 641�643
USDA Agricultural Research Service (ARS),

118�119
USLE. See Universal Soil Loss Equation (USLE)

V
Validation, 289�291
of flood hazard maps, 329
of forest fire susceptibility maps, 349
of habitat suitability map of Zataria multiflora,

423
of HSM, 222�223, 223f
of groundwater potential map, 494
of landslide susceptibility models, 477�478
AUC values, 479t

map of DMMs, 561
of models, 309�310, 314�316
of ranking sites, 207
of SVM, GLM, and GAM Models, 561t

Valjevo case study, 673�676
study area inventory, 676, 676f
study area setting, 674�676, 675f

Variables. See also Explanatory variables
beta coefficients and test statistics of, 267t
contribution analysis, 328�329
geo-environmental variables, 215�217
importance, 475�476, 475f
predicted, 434�435, 435t, 437�439

Variance inflation factor (VIF), 220, 302, 418
Vector data analysis, 87
Vegetation, 594�595
effects, 607�608
monitoring model for vegetation transition

shifts, 741
Vegetation indices (VIs), 22, 27, 29f, 46�47, 430
remotely sensed spatial and temporal variations

data, 24�27
dates of Landsat images in year for analyzing,
26t

GEMI, 35�37
GNDVI, 32�35
materials and methods, 23�28
NDVI, 28�32
rainfall distribution parameters, 28
rainfall properties vs. NDVI, GNDVI, GEMI,
and SCRI, 43�48

SNDR and SCRI, 37�42
spatial variations of NDVI, 32, 35f
study area, 23�24, 23f

Vertical planning strategies, 91
Very high spatial resolution (VHSR), 499
VGS. See Vulnerability to groundwater salinization

(VGS)
VIF. See Variance inflation factor (VIF)
VIKOR model, 101, 372�373
VIs. See Vegetation indices (VIs)
Vulnerability map of DMMs, 558�559
comparing vulnerability of groundwater to

salinity classes, 560f
vulnerability of groundwater to salinity map,

558f, 559f, 560f
Vulnerability to groundwater salinization (VGS),

548
data mining and spatial modeling, 555�557
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Vulnerability to groundwater salinization (VGS)
(Continued)

hydrogeological factors involved in, 550�555, 553f
aquifer cross-resistance, 554
aquifer thickness, 551
bedrock depth, 554
Cl/CO31HCO3 impact, 555
density of pumping wells, 555
distance from shore, 554
groundwater height above sea level, 554
groundwater occurrence, 550�551
groundwater table drawdown, 551�553
hydraulic conductivity, 554
Na/Cl impact, 555

W
Walkely�Black Wet oxidation method, 432�433
Water, 189�190
absorption, 37
erosion, 657�660
stress, 37
water-related factors, 488

Water Company of Mazandaran Province
(WCM), 549

Watershed, 371�372. See also Maharloo
watershed in Iran

Firoozeh watershed, 486
Kanera watershed, 372�373
Qare-Sou watersheds, 372�373
Ziarat, 692

Watershed modeling systems (WMS), 243�244
WCM. See Water Company of Mazandaran

Province (WCM)
Weather, 593�594, 594t
factor, 343

Weighted linear combination (WLC), 98, 100, 343
aggregation, 357�360

Weighted linear method, 244�245
Weighting

approaches for weighting of criteria
AHP, 200�202
TOPSIS, 202�203, 206t

coefficients of clusters/criteria, 357t
techniques, 191

Wildfire causative factors, 607�610, 610f
relative importance, 613t

Wind, 343
characteristics, 594

WindNinja software, 593�594
WLC. See Weighted linear combination (WLC)
WMS. See Watershed modeling systems (WMS)
WorldView-2 imagery (WV-2 imagery), 501
WV-2 imagery. See WorldView-2 imagery (WV-2

imagery)

Y
Yasarfa Shahdel River, 372�373

Z
Zataria, 411
Zataria multiflora (ZM), 411
habitat suitability using SVM model, 421�422
materials and methods, 412
study area, 412

methodology, 413�419, 414f
accuracy assessment, 419
Boruta algorithm, 419
collinearity test of effective factors, 418
dataset preparation for habitat suitability
modeling, 413�418

SVM method, 418�419
thematic maps of study area, 418f

results
of collinearity, 420
of variable importance of effective factors,
420�421

validation of habitat suitability map, 423
Ziarat watershed, 692
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