
Cryptography Whitepaper

Threema uses modern cryptography based on open source components

that strike an optimal balance between security, performance and message

size. In this whitepaper, the algorithms and design decisions behind the

cryptography in Threema are explained.

VERSION: JUNE 02, 2021

Threema • Cryptography Whitepaper

Contents

Overview 4

Open Source 5

End-to-End Encryption 5

Key Generation and Registration 5

Key Distribution and Trust 6

Message Encryption 7

Group Messaging 8

Key Backup 8

Client-Server Protocol Description 10

Chat Protocol (Message Transport Layer) 10

Directory Access Protocol 11

Media Access Protocol 11

Cryptography Details 12

Key Lengths 12

Random Number Generation 13

Forward Secrecy 14

Padding 14

Repudiability 15

Replay Prevention 15

Local Data Encryption 15

iOS 15

Android 16

Key Storage 16

iOS 16

Android 16

Push Notifications 17

iOS 17

Android 17

Threema • Cryptography Whitepaper

Address Book Synchronization 17

Linking 18

ID Revocation 19

An Example 19

Profile Pictures 19

Web Client 20

Architecture 20

Connection Buildup 21

WebRTC Signaling 22

WebRTC Connection Buildup 22

Trusted Keys / Stored Sessions 23

Push Service 23

Self Hosting 24

Links 24

Threema Calls 24

Signaling 24

Call Encryption 24

Audio Encoding 25

Video Encoding 25

Privacy / IP Exposure 25

Threema Safe 26

Overview 26

Backup Format 27

Encryption 27

Upload/Storage 27

Backup Intervals 28

Restore/Decryption 28

Running a Custom Threema Safe Server 28

4/31 Threema • Cryptography Whitepaper

Overview

Threema uses two different encryption layers to protect messages between the sender and

the recipient.

• End-to-end encryption layer: this layer is between the sender and the recipient.

• Transport layer: each end-to-end encrypted message is encrypted again for transport

between the client and the server, in order to protect the header information.

These layers and other important aspects of the cryptography in Threema are described in

detail in the following chapters. The crucial part is that the end-to-end encryption layer passes

through the server uninterrupted; the server cannot remove the inner encryption layer.

End-to-End
Encryption Layer

Transport Layer Transport Layer

Sender RecipientServer

5/31 Threema • Cryptography Whitepaper

Open Source

The Threema apps for iOS and Android as well as all components of the web client are

published under open source licenses:

• iOS app: https://github.com/threema-ch/threema-ios

• Android app: https://github.com/threema-ch/threema-android

• Web client: https://github.com/threema-ch/threema-web

• SaltyRTC server: https://github.com/saltyrtc/saltyrtc-server-python

• Push relay: https://github.com/threema-ch/push-relay

End-to-End Encryption

In Threema, all messages (whether they are simple text messages, or contain media like

images, videos or audio recordings) are end-to-end encrypted. For this purpose, each

Threema user has a unique asymmetric key pair consisting of a public and a private key

based on Elliptic Curve Cryptography. These two keys are mathematically related, but it is not

technically feasible to calculate the private key given only the public key.

Key Generation and Registration

When a Threema user sets up the app for the first time, the following process is performed:

1. The app generates a new key pair by choosing a private key at random1, storing it securely

on the device, and calculating the corresponding public key over the Elliptic Curve

(Curve25519).

2. The app sends the public key to the server.

3. The server stores the public key and assigns a new random Threema ID, consisting of 8

characters out of A-Z/0-9.

4. The app stores the received Threema ID along with the public and private key in secure

storage on the device.

1 including entropy generated by user interaction; see section “Random Number Generation” for details

6/31 Threema • Cryptography Whitepaper

Key Distribution and Trust

The public key of each user is stored on the directory server, along with its permanently

assigned Threema ID. Any user may obtain the public key for a given Threema ID by querying

the directory server. The following input values can be used for this query:

• a full 8-character Threema ID

• a hash of a E.164 mobile phone number that is linked with a Threema ID (see section

“Address Book Synchronization” for details on the hashing)

• a hash of an email address that is linked with a Threema ID

The Threema app maintains a “verification level” indicator for each contact that it has stored.

The following levels are possible:

Red (level 1): The public key has been obtained from the server because a message

has been received from this contact for the first time, or the ID has been entered manually. No

matching contact was found in the user’s address book (by phone number or email), and

therefore the user cannot be sure that the person is who they claim to be in their messages.

Orange (level 2): The ID has been matched with a contact in the user’s address book

(by phone number or email). Since the server verifies phone numbers and email addresses, the

user can be reasonably sure that the person is who they claim to be.

Green (level 3): The user has personally verified the ID and public key of the contact

by scanning their QR code. Assuming the contact’s device has not been hijacked, the user can

be very sure that messages from this contact were really written by the person that they

indicate.

In the Threema Work app, the following levels are possible in addition to the ones mentioned

above:

Blue (level 2): The ID is a Threema Work internal contact that has not been

personally verified by scanning the QR code.

Blue (level 3): The ID is a Threema Work internal contact that has been personally

verified by scanning the QR code.

To upgrade a contact from the red or orange to the green level, the user must scan that

contact’s public QR code. This QR code is displayed in the “My ID” section of the app, and

uses the following format:

3mid:<identity>,<publicKeyHex>

where <identity> is the 8-character Threema ID, and <publicKeyHex> is the

hexadecimal (lowercase) representation of the user’s 32 byte public key. The app verifies that

7/31 Threema • Cryptography Whitepaper

the scanned public key matches the one that was returned by the directory server.

Key Fingerprints

The app displays a key fingerprint for each contact, and for the user’s own identity. This can be

used to compare public keys manually. A key fingerprint is created by hashing the raw public

key with SHA-256, and taking the first 16 bytes of the resulting hash as the fingerprint.

Message Encryption

Threema uses the “Box” model of the NaCl Networking and Cryptography Library to encrypt

and authenticate messages. For the purpose of this description, assume that Alice wants to

send a message to Bob. Encryption of the message using NaCl works as follows:

Preconditions

1. Alice and Bob have each generated a key pair consisting of a public and a

private key.

2. Alice has obtained the public key from Bob over an authenticated channel.

Procedure to Encrypt a Message

1. Alice uses Elliptic Curve Diffie-Hellman (ECDH) over the curve Curve25519 and hashes

the result with HSalsa20 to derive a shared secret from her own private key and Bob’s

public key.

Note that due to the properties of the elliptic curve, this shared secret is the same if the

keys are swapped (i.e. if Bob’s private key and Alice’s public key are used instead).

2. Alice generates a random nonce.

3. Alice uses the XSalsa20 stream cipher with the shared secret as the key and the random

nonce to encrypt the plaintext.

4. Alice uses Poly1305 to compute a Message Authentication Code (MAC), and prepends it

to the ciphertext. A portion of the key stream from XSalsa20 is used to form the MAC key.

5. Alice sends the MAC, ciphertext and nonce to Bob.

By reversing the above steps and using his own private key and Alice’s public key, Bob can

decrypt the message and verify its authenticity.

8/31 Threema • Cryptography Whitepaper

For further details, see Cryptography in NaCl.

Group Messaging

In Threema, groups are managed without any involvement of the servers. That is, the servers

do not know which groups exist and which users are members of which groups. When a user

sends a message to a group, it is individually encrypted and sent to each other group member.

This may appear wasteful, but given typical message sizes of 100-300 bytes, the extra traffic

is insignificant. Media files (images, video, audio) are encrypted with a random symmetric key

and uploaded only once. The same key, along with a reference to the uploaded file, is then

distributed to all members of the group.

Key Backup

The user can back up their private key so that they are able to move their Threema ID to

another device, or to restore it in case of loss/damage to the device. The app automatically

reminds the user to do so, as without a backup, there is no way to recover a lost private key.

To generate a backup, the user must first choose a password (min. 8 characters).

Bob’s
public key

Alice’s
private key

ECDH
(Curve25519)

Random
generator

HSalsa20

Nonce

XSalsa20 Poly1305

Ciphertext

Nonce

MAC

Shared secret

Plaintext

9/31 Threema • Cryptography Whitepaper

The backup data is then generated as follows:

1. Calculate the SHA-256 hash of the following binary string: <identity><private

key>

where <identity> is the 8 character Threema ID, and <private key> is the 32 byte

private key.

Keep only the first two bytes of the resulting hash. It is used during restoration to verify

with reasonable confidence that the provided password was correct.

2. Choose a random 64 bit salt.

3. Derive a 256-bit encryption key from the given password and the random salt using

PBKDF2 with HMAC-SHA256 and 100000 iterations:

keyenc = PBKDF2(HMAC-SHA256, password, salt, 100000, 32)

4. Use the XSalsa20 stream cipher with keyenc and an all-zero nonce to encrypt a binary

string of the following format:

<identity><private key><hash>

where <hash> is the two byte truncated hash calculated in step 1. Note that this can be

done using the crypto_stream function of NaCl.

5. Prepend the salt to the encrypted string.

6. Base32 encode the result.

7. Split the Base32 encoded string into groups of four characters and separate the groups

with dashes. The result will look like this:

XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-

XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX

The encrypted backup data consists of 80 characters (A-Z, 2-7). It is also displayed in QR

code form so that the user can more easily transfer it to another device.

10/31 Threema • Cryptography Whitepaper

Client-Server Protocol Description

Threema communicates with three different types of servers. To access the directory and

to download/upload encrypted media files, HTTPS is used. To transport the actual chat

messages, a custom protocol built on TCP is used.

Chat Protocol (Message Transport Layer)

The chat protocol is used to transport incoming and outgoing messages between the client

(app) and the Threema servers. It is a custom binary protocol that uses the NaCl library to

secure the connection on the application layer. Its properties are:

Provides Forward Secrecy

• New temporary keys are generated whenever the app restarts

• Temporary private keys are never stored in permanent storage, but are only kept in volatile

memory

Optimized for minimal overhead

• Small message headers

• Minimum number of round-trips required for connection setup

Chat Server

Directory Server

Media Server

Custom

HTTPS

HTTPS

11/31 Threema • Cryptography Whitepaper

User is authenticated using his public key during connection setup

• Ensures that a user can only log in if he is in possession of the private key for the

Threema ID

Directory Access Protocol

The directory access protocol is used for the following purposes:

• Creating new Threema IDs

• Fetching the public key of another user

• Linking email addresses and mobile phone numbers

• Matching address book contacts (hashes of phone numbers and email addresses) to

Threema IDs

Requests are authenticated with a challenge/response protocol based on the user’s Threema

ID and key pair.

HTTPS (HTTP with TLS) is used as the transport protocol. Strong TLS cipher suites with

forward secrecy (ECDHE/DHE) and TLS v1.2 are supported. In order to preclude man-in-the-

middle (MITM) attacks even if the system’s trusted CA store has been tampered with, or if a

trusted CA has illegally issued a certificate for a Threema domain name, the app uses public-

key pinning with hardcoded pins to only accept specific, Threema-owned server certificates.

Media Access Protocol

The media servers are used for temporary storage of large media data (e.g. images, videos,

audio recordings). Such media is not sent directly via the chat protocol. Instead, the following

procedure is used:

1. The sender encrypts the media file with a random 256-bit symmetric key using XSalsa20

and adds a Poly1305 authenticator.

2. The sender uploads the encrypted media file to a media server via HTTPS.

3. The media server assigns a unique ID for this upload and returns it to the sender.

4. The sender sends an end-to-end encrypted message to the recipient, which contains the

media ID and the symmetric key.

5. The recipient receives and decrypts the end-to-end encrypted message, obtaining the

media ID and the symmetric key.

6. The recipient uses the media ID to download the encrypted media file from the media

server.

7. The recipient decrypts the media file using the symmetric key.

12/31 Threema • Cryptography Whitepaper

8. The recipient signals the media server to delete the file, unless it was sent in a group

conversation, in which case it remains on the media server for the maximum message

lifetime (14 days), after which it is deleted automatically in any case.

The media servers use the same TLS configuration (cipher suites with forward secrecy, TLS

v1.2) as the directory servers, and the app uses public-key pinning when accessing them.

Cryptography Details

As mentioned earlier, Threema uses the NaCl Networking and Cryptography Library for both

the end-to-end encryption, and to secure the chat protocol at the transport level. This library

uses a collection of algorithms to provide a simplified interface for protecting a message using

what the authors call “public-key authenticated encryption” against eavesdropping, spoofing

and tampering. By default, and as implemented in Threema, it uses the following algorithms:

• Key derivation: Elliptic Curve Diffie-Hellman (ECDH) over the curve Curve25519

• Symmetric encryption: XSalsa20

• Authentication and integrity protection: Poly1305-AES

It is worth mentioning that the ECC curve used by NaCl (and thus by Threema) is not one

of the NIST-recommended curves that have been suspected of containing deliberately

selected weakening constants in their specification. For more details, see Cryptography in

NaCl.

The following implementations of the cryptographic algorithms are used:

Curve25519 XSalsa20 Poly1305

iOS Donna C implementation Reference C implementation “53” C implementation

Android Reference C implementation (native code, fallback to jnacl)

Key Lengths

The asymmetric keys used in Threema have a length of 256 bits, and their effective ECC

strength is 255 bits.

The shared secrets, which are used as symmetric keys for end-to-end message encryption

(derived from the sender’s private key and the recipient’s public key using ECDH, and

combined with a 192 bit nonce), have a length of 256 bits.

13/31 Threema • Cryptography Whitepaper

The random symmetric keys used for media encryption are also 256 bits long.

The message authentication code (MAC) that is added to each message to detect tampering

and forgery has a length of 128 bits.

Discussion of Reasonable Key Lengths

According to NIST Special Publication 800-57 (page 53), the security level of ECC based

encryption at 255 bits can be compared to RSA at roughly 2048 to 3072 bits, or a symmetric

security level of ~128 bits. The possibility of a successful brute force attack on a key with a

128 bit security level is considered extremely unlikely using current technology and knowledge,

according to the judgment of reputable security researchers. A revolutionary breakthrough

in mathematics or quantum computing would most possibly render keys breakable anyway,

whether they are 128 or 256 bits in length.

• http://cr.yp.to/talks/2005.09.19/slides.pdf

(Daniel J. Bernstein, author of Curve25519)

• https://www.imperialviolet.org/2014/05/25/strengthmatching.html

(Adam Langley, Google security researcher)

Random Number Generation

Threema uses random numbers for the following purposes, listed by descending order of

randomness quality required:

• Private key generation

• Symmetric encryption of media files

• Nonces

• Backup encryption salt

• Padding amount determination

Nonces and salts must never repeat, but they are not required to be hard to guess.

To obtain random numbers, Threema uses the system-provided random number generator

(RNG) intended for cryptographically-secure purposes provided by the device’s operating

system. The exact implementation varies among operating systems:

Note that Threema does not use the flawed Dual_EC_DRBG random number generator.

14/31 Threema • Cryptography Whitepaper

Facility Implementation

iOS /dev/random Fortuna

Android /dev/random 1 Linux PRNG

User Generated Entropy for Private Key Generation

Due to the requirement for very high quality randomness when generating the long-term

private key, the user is prompted to generate additional entropy by moving a finger on the

screen. The movements (consisting of coordinate values and high-resolution timestamps) are

continuously collected and hashed for several seconds. The resulting entropy is then mixed

(XOR) with entropy obtained from the system’s RNG.

Forward Secrecy

Due to the inherently asynchronous nature of mobile messengers, providing reliable Forward

Secrecy on the end-to-end layer is difficult. Key negotiation for a new chat session would

require the other party to be online before the first message can be sent. Experimental

schemes like caching pre-generated temporary keys from the clients on the servers increase

the server and protocol complexity, leading to lower reliability and more potential for mistakes

that impact security. The user experience can also be diminished by events that are not under

the control of the sender, for example when the recipient loses their phone’s data, and along

with it the ephemeral keys. Due to these and the following considerations, Threema has

implemented Forward Secrecy on the transport layer only:

• Reliability is very important to ensure that users do not feel negatively impacted by the

cryptography.

• The risk of eavesdropping on any path through the Internet between the sender and the

server, or between the server and the recipient, is orders of magnitude greater than the risk

of eavesdropping on the server itself.

With Threema’s implementation, an attacker who has captured and stored the network traffic

between a client and a Threema server will not be able to decrypt it even if he learns the

private key of the server or the client afterwards.

Padding

In order to thwart attempts to guess the content of short messages by looking at the amount

of data, Threema adds a random amount of PKCS#7 padding to each message before end-to-

end encryption.

1 To avoid the flawed SecureRandom implementation in some Android versions, Threema uses its own implementation

that directly accesses /dev/random (which is not affected by the SecureRandom implementation bug).

15/31 Threema • Cryptography Whitepaper

Repudiability

In general, cryptographically signed messages also provide non-repudiation; i.e. the sender

cannot deny having sent the message after it has been received. The NaCl library’s box

model uses so-called public-key authenticators instead, which guarantee repudiability (see

http://nacl.cr.yp.to/box.html, “Security model”). Any recipient can forge a message that will

look just like it was actually generated by the purported sender, so the recipient cannot

convince a third party that the message was really generated by the sender and not forged

by the recipient. However, the recipient is still protected against forgeries by third parties.

The reason is that in order to perform such a forgery, the private key of the recipient is needed.

Since the recipient himself will know whether or not he has used his own private key for such

a forgery, he can be sure that no third party could have forged the message.

Replay Prevention

The Threema app remembers the nonce of every message that has been sent in the past,

and rejects messages with duplicate nonces. Since the server cannot successfully modify

the nonce of a message without knowing the private key of one of the parties involved in

the communication, this prevents a malicious server from replaying/duplicating previously

sent messages.

Local Data Encryption

The Threema app stores local data (such as the history of incoming and outgoing messages,

and the contact list) in encrypted form on the device. The way in which this data is encrypted

varies among platforms.

iOS

On iOS, Threema stores local data in a Core Data database, which is backed by files in the

app’s private data directory. The iOS sandbox model ensures that no other apps can access

this data directory. All files stored by Threema are protected using the iOS Data Protection

feature using the Data Protection class NSFileProtectionCompleteUntilFirstUser

Authentication. The encryption key used to protect the files is derived from the device’s

UID key and the user’s passcode. A longer passcode will provide better security (on devices

equipped with a Touch/Face ID sensor, longer passcodes can be used without a loss of

comfort as the passcode only needs to be entered after a reboot).

Note that the private key for the Threema ID is stored separately in the iOS Keychain.

16/31 Threema • Cryptography Whitepaper

Android

On Android, Threema stores local data in an SQLite database within the app’s private data

directory. Android ensures that no other apps can access this data directory (as long as the

device is not rooted). The database itself is protected by SQLCipher with AES-256, and any

media files (which are stored separately in the app’s private directory within the file system)

are also encrypted using AES. The key is randomly generated when the database is first

created, and can be protected with a user-supplied passphrase (which is of course necessary

if the user wishes to take advantage of this encryption). The passphrase is never written to

permanent storage and therefore needs to be entered whenever the app process restarts (e.g.

after a low-memory situation, or after the device has rebooted). Alternatively, the user may

enable full-device encryption if supported by the device and Android version.

Key Storage

On the user’s mobile device, the private key is stored in such a way as to prevent access by

other apps on the same device, or by unauthorized users. The procedure differs between

platforms.

iOS

• The private key is stored in the iOS Keychain with the attribute

kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly.

• Only the Threema app can access this keychain entry.

• While the entire iOS keychain is included in backups via iTunes or iCloud, the

kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly attribute causes the keychain entry of

Threema to be encrypted with a device-specific key (“UID key”) that cannot be read directly

and is not known to Apple. Therefore, the keychain entry is only usable if the iTunes/iCloud

backup is restored to the same device.

• When the Threema app is deleted and reinstalled, the keychain entry persists and the

Threema ID is not lost.

Android

• The private key is stored in a file in the app’s private data directory.

• Other apps cannot access this file.

• AES-256-CBC encryption is applied to the private key before it’s written to the file. The

key for this encryption is stored separately and can be protected using a passphrase

(see section “Local Data Encryption” for details).

17/31 Threema • Cryptography Whitepaper

Push Notifications

Threema uses the standard push notification service provided by the operating system. This is

necessary to ensure reliable delivery of push notifications, as mobile operating systems place

high importance on conserving battery power, and thus severely restrict background operation

of apps (such as would be needed to maintain a separate, app-specific persistent connection

for push notifications). Channelizing push notifications through the operating system’s

standard mechanism thus helps conserve battery power, and on iOS, it is the only means

possible and accepted in the App Store.

iOS

The Threema-specific APNS payload consists of a JSON/Base64 encoded NaCl “crypto_

secretbox” ciphertext and corresponding nonce. The symmetric key used by the Threema chat

server to encrypt this payload is chosen at random by the client, and securely transmitted

to the server beforehand using the chat protocol described above. The symmetric key is

not known to Apple. When a push notification arrives, the Threema app decrypts the APNS

payload using the symmetric key, and thus recovers the Threema ID and nickname of the

sender of the corresponding message, as well as the message ID. With this information, the

app can obtain the actual encrypted message by connecting to the chat server, and then

decrypt the message and display a preview (if enabled) and the sender’s contact name in the

local notification.

Android

The GCM payload is empty; that is, the GCM message only serves to wake up the Threema

app in the background. It then connects to the chat server to retrieve any pending messages,

decrypts them, and shows local notifications for them.

Address Book Synchronization

Threema optionally lets the user discover other Threema contacts by synchronizing with the

phone’s address book. If the user chooses to do so, the following information is uploaded

through a TLS connection to the directory server:

• HMAC-SHA256 hash of each email address found in the phone’s address book

Key: 0x30a5500fed9701fa6defdb610841900febb8e430881f7a

d816826264ec09bad7

18/31 Threema • Cryptography Whitepaper

• HMAC-SHA256 hash of the E.164 normalized form of each phone number found in the

phone’s address book

Key: 0x85adf8226953f3d96cfd5d09bf29555eb955fcd8aa5ec4f9f

cd869e258370723

The directory server then compares the list of hashes from the user with the known email/

phone hashes of Threema IDs that have been linked with an email address and/or phone

number. Any matches are returned by the server as a tuple (Threema ID, hash). Only those

hashes that have already been submitted by the user are returned (i.e. if the user submits an

email hash which then matches a Threema ID, the server will only return the email hash of that

ID and not the linked phone number’s hash, even if one exists). After returning the matches to

the client, the directory server discards the submitted hashes.

Use of HMAC Keys

The reason why HMAC-SHA256 is used instead of plain SHA256 is not for obfuscation,

but as a best practice to ensure that hashes generated by Threema are unique and do not

match those of any other application. Obviously the keys need to be the same for all users, as

random salting (such as is used when hashing passwords for storage) cannot be used here

because the hashes of all users must agree so that matching contacts can be found.

A Word About Hashing Phone Numbers

Due to the relatively low number of possible phone number combinations, it is theoretically

possible to crack hashes of phone numbers by trying all possibilities. This is due to the nature

of hashes and phone numbers and cannot be solved differently (using salts like for hashing

passwords does not work for this kind of data matching). Therefore, the servers treat phone

number hashes with the same care as if they were raw/unhashed phone numbers. Specifically,

they never store hashes uploaded during synchronization in persistent storage, but instead

discard them as soon as the list of matching IDs has been returned to the client.

Linking

If a user chooses to link their Threema ID to an email address or a phone number, the directory

server verifies that the user actually owns the email address or phone number in question.

• For email addresses, a verification email with a hyperlink is sent to the user. The user must

open the hyperlink and confirm in the browser before the ID link is established.

• For phone numbers, the directory server sends an SMS message with a random 6 digit

code. The user must enter that code in the app, which sends it back to the server to verify

the phone number.

• If the user cannot receive the SMS message, he/she may choose to receive an automated

phone call in which the code is read out.

19/31 Threema • Cryptography Whitepaper

ID Revocation

Threema users may revoke their ID at any time by going to a website (https://myid.threema.

ch/revoke) and entering their Threema ID and a revocation password that they have set

beforehand. Revoked IDs can no longer log in, and they will be shown in strikethrough text on

(or, depending on the users’ settings, disappear from) the contact lists of other users within 24

hours. Messages cannot be sent to revoked IDs.

Revocation passwords are hashed with SHA256 on the client side, but only the first four

bytes are sent to and stored/compared on the directory server. This mitigates the possibility

of brute-force hash cracking on the server side to recover the user’s password. Obviously, the

downside is that the stored key has significantly less entropy than a reasonable user password

and a large number of possible passwords correspond to each key. However, the server can

easily limit the number of key revocation attempts over a period of time.

An Example

A user has set an eight character revocation password with a combination of characters

consisting of the lowercase latin alphabet (a-z) and digits. This results in 368 ≅ 241.36

combinations.

Therefore, a given key can correspond with over 600 different passwords of this length and

character set. On the other hand, the probability of randomly choosing the correct hash value

without knowing anything about the password is 2-32 ≅ 0.000000023%. Assuming that a user

gets three attempts per day, the probability of finding the correct hash value within 10 years is

≅ 0.000255%.

Profile Pictures

It is possible for a user to select a photo to be used as his/her “profile picture”. The user can

choose within the app whether he/she wants to share the profile picture with all their contacts,

with only those contacts selected from a list, or with nobody. If he/she chose to share the

profile picture and sends a message to one of the designated recipients, the newly set profile

picture is encrypted with a random symmetric key within the app, and then uploaded to

the media server like a regular image message. A reference to the encrypted picture on the

media server, along with the symmetric key, is subsequently sent as an end-to-end encrypted

message in the background whenever the user sends a regular message to one of the

designated contacts who has not received the current profile picture yet. As the media server

deletes files after two weeks, the profile picture is uploaded again once a week (if necessary),

using a new symmetric key each time.

20/31 Threema • Cryptography Whitepaper

Web Client

The Threema web client communicates directly with the Threema app over WebRTC data

channels (Android) and WebSockets (iOS). In addition to the standard WebRTC channel

encryption (Android) and WebSocket TLS transport encryption (iOS), all packets are end-

to-end encrypted using NaCl. The WebRTC signaling is also implemented with end-to-end

encryption using the SaltyRTC protocol.

The following paragraphs explain the general architecture of the Threema web client

implementation as well as some aspects of the signaling protocol. If you want to learn more

about the WebRTC signaling protocol, please refer to the main specification as well as the

WebRTC task specification.

Architecture

Signaling Server

Web Client App

1a 1b

2

3

SaltyRTC Server Handshake
(WebSocket, over TLS)

SaltyRTC Client Handshake
and Signaling (E2E
Encrypted)

WebRTC Data Channel
(Android only): E2E
Encrypted with SaltyRTC)

Note: On iOS devices, data is not
transferred through a WebRTC data
channel, but instead through the end-
to-end encrypted signaling channel,
using the signaling server as relay.

1

2

3

The web client and the app form a client-server relationship. All data about new events and

old conversations is exchanged directly between the two through an end-to-end encrypted

channel.

When the web client is started, it requests the initial data (conversations, contacts, avatars,

etc.) from the app. The app responds with the requested data.

21/31 Threema • Cryptography Whitepaper

To send a message to a contact, the web client dispatches a message request to the app,

which will then send the message to the recipient. When a new message arrives, the app

notifies the web client. No messages are exchanged directly between the web client and the

Threema chat server. The user’s private key never leaves the device.

Connection Buildup

The full connection buildup happens in three stages.

1. SaltyRTC Server Handshake

First, the web client generates a new permanent key-pair and a random authentication

token. It then connects to the SaltyRTC signaling server as initiator. The hex-encoded public

permanent key is used as the WebSocket path.

The public permanent key of the web client as well as the authentication token and the

protocol version are transferred to the app through a QR code. The app first generates its own

permanent key-pair and then connects to the same WebSocket path as responder.

Both peers conduct the server handshake according to the SaltyRTC protocol.

2. SaltyRTC Client Handshake and Signaling

As soon as both peers have successfully finished the server handshake, they can start

exchanging client handshake messages. Because the server has established a trusted

connection with both the initiator and the responder, it can relay encrypted messages without

knowing the content. This is how the session keys and the signaling data are transferred.

The two peers each generate a random session key-pair independent of the permanent key-

pair. The public session keys are exchanged. Additionally, the peers exchange information on

how they intend to communicate after the client handshake (the so-called SaltyRTC Task):

• Android devices request to communicate over WebRTC data channels

• iOS devices request to communicate over the signaling channel

The transfer of data between browser and app differs between Android and iOS, due to

platform constraints:

2.1 Android

After the client handshake is successful and both peers know each other’s public session key,

they initiate a WebRTC PeerConnection. The necessary signaling information to build up the

connection (like offer, answer and ICE candidate messages) are exchanged via the WebSocket

connection, encrypted with the session keys.

22/31 Threema • Cryptography Whitepaper

As soon as the WebRTC PeerConnection is established, the two peers initiate the handover

of the signaling channel. Future signaling messages (like additional ICE candidates when the

network configuration changes) are exchanged over a secure signaling data channel. Once the

handover is complete, the WebSocket connection to the server is closed.

The two peers now open a second WebRTC data channel in order to exchange application

data. All packets transferred through that data channel are encrypted using the session keys.

2.2 iOS

After the client handshake is successful and both peers know each other’s public session

key, they can immediately start exchanging application data over the established WebSocket

signaling connection. All packets transferred through that channel are encrypted using the

session keys.

3. Data Channel (Android Only)

All required web client data (conversations, contacts, messages, etc.) can now be freely

exchanged through the encrypted WebRTC data channel.

WebRTC Signaling

The direct communication channel between the app and the Android web client is established

using a WebRTC PeerConnection. In order to establish such a peer-to-peer connection,

a signaling channel is inevitable. Common signaling server implementations often use

WebSockets without any end-to-end encryption (often even without transport encryption),

meaning that the server can read all (potentially sensitive) network information of the peers

connecting. There is also the risk of a server manipulating the data being transmitted, opening

up possibilities of MITM attacks.

In order to mitigate this risk as well as minimizing metadata exposure in general, we

participated in the design and implementation of the SaltyRTC protocol, which offers end-to-

end encryption of signaling data and does not require the clients to trust the server at all.

WebRTC Connection Buildup

Because networks in the real world don’t always make it possible to establish a direct

connection between two peers due to obstacles like firewalls, NATs, CGNs and the like,

WebRTC connection buildup may have to resort to mechanisms like STUN and TURN. STUN

(Session Traversal Utilities for NAT) is a protocol that allows to find each other’s public IP

despite the existence of NATs. TURN (Traversal Using Relays around NAT) is a protocol that

provides relaying of data packets in case the connection buildup using STUN alone fails.

Note, however, that even though a TURN server relays packets between two peers, it cannot

know anything about the content of these packets as they are both end-to-end encrypted by

WebRTC using DTLS and end-to-end encrypted by SaltyRTC.

23/31 Threema • Cryptography Whitepaper

Threema runs its own STUN and TURN servers.

Trusted Keys / Stored Sessions

In order to prevent having to scan the QR code each time a connection needs to be

established, the public permanent key of the peer can optionally be stored as a trusted key.

To be able to securely store this information in the browser, users must provide a password

if they want to be able to restore the session at a later point in time. The public permanent

key of the app as well as the private permanent key of the web client are then encrypted with

the provided user password using authenticated NaCl secret key encryption (XSalsa20 +

Poly1305) and stored in local browser storage.

On the app side, the public permanent key of the web client and the private permanent key of

the app are stored in the encrypted app database.

When reconnecting to an existing session, instead of creating a new permanent key-pair, the

peers restore the trusted key-pair before initiating the server and client handshake. Note,

however, that new session keys are still created, thus offering perfect forward secrecy on a

session level.

Push Service

On Android devices, if Google Play Services are installed on the device of the user, the FCM

push token (an opaque string provided by Google) is transferred to the web client together

with the initial data.

On iOS devices, the APNs push token (an opaque string provided by Apple) is transferred to

the web client together with the initial data.

If the user requests to persist a session, the token is then stored in the local browser storage

together with the trusted keys, encrypted with a key derived from the user-provided password.

When reconnecting a web client session (e.g. when the user requests to restore a previous

session, or when automatically reconnecting due to connection loss) and if a push token is

available, the browser sends this token via HTTPS to a push relay server provided by Threema,

together with the SHA256 hash of the public permanent key of the initiator. The push relay

server then sends the hash to the app as a FCM/APNs push notification. When the app

receives such a notification, it first checks whether the web client is enabled. If it is enabled

and if a web client session with the specified public key exists, that session is started and

connects to the SaltyRTC server for the handshake and reconnection procedure.

24/31 Threema • Cryptography Whitepaper

Self Hosting

All components of the web client (except the code in the Threema app itself) are published

under open source licenses (see the beginning of this document for repository links).

The URL and public permanent key of the SaltyRTC server to be used are transferred through

the QR code and stored together with the session information. This allows the user to entirely

bypass the web server and SaltyRTC server operated by Threema, if desired. Instructions

on how to set up a self-hosted Threema Web instance can be found in the Threema Web

repository.

The push relay cannot practically be run by an end user, since the FCM API key and the APNs

certificates are not public, but the source code is provided on GitHub for review purposes.

Links

1. https://webrtc.org/

2. https://saltyrtc.org/

3. https://github.com/saltyrtc/saltyrtc-meta/blob/master/Protocol.md

4. https://github.com/saltyrtc/saltyrtc-meta/blob/master/Task-WebRTC.md

5. https://github.com/saltyrtc/saltyrtc-meta/blob/master/Task-RelayedData.md

6. https://github.com/threema-ch/threema-web/blob/master/docs/self_hosting.md

Threema Calls

Threema Calls are based on WebRTC, an open IETF standard. WebRTC uses the ICE, STUN

and TURN protocols to establish a secure peer-to-peer connection.

Signaling

Signaling data is sent through Threema messages, thus providing the same end-to-end

security and trust level as a regular Threema conversation. If you have verified your contact,

you can also trust your phone calls with that contact.

Call Encryption

The audio stream is encrypted with the SRTP protocol, with DTLS-SRTP being used for

the key exchange. The certificates used for the DTLS session are cryptographically linked

to the keys used for Threema’s end-to-end encryption by means of including the certificate

fingerprints in signaling messages. DTLS version 1.2 is enforced.

25/31 Threema • Cryptography Whitepaper

The DTLS ciphersuites offered by the Threema app are (in that order):

• TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (0xcca9)

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (0xc02c)

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xc02b)

The SRTP ciphersuites offered by the Threema app are (in that order):

• SRTP_AEAD_AES_256_GCM (0x0008)

• SRTP_AEAD_AES_128_GCM (0x0007)

• SRTP_AES128_CM_HMAC_SHA1_80 (0x0001)

RTP header extensions are only used if offered in an encrypted form.

Audio Encoding

Audio data is encoded using the state-of-the-art Opus codec at 48 kHz. To avoid potential

privacy and security issues associated with variable bitrate audio codecs1, Threema Calls

always enforce constant bitrate to encode the audio stream.

Video Encoding

Video data is encoded by VP9, VP8 or H.264.

Privacy / IP Exposure

WebRTC connections can be established in two ways: Either a direct connection between the

two devices is used (using STUN to help with NAT traversal), or one or both sides use a TURN

server to relay the encrypted packets.

Relaying has the advantage of hiding the public IP address from the call partner, thus

providing added privacy when the peer is not trusted. On the other hand it exposes some

metadata towards the TURN server, and the connection quality (especially latency) may

be worse than in a direct call. By default, Threema enforces relaying through TURN for all

unverified contacts (with a single red dot as verification status). Optionally, users can enforce

relaying for all calls through the “Always relay calls” option in the “Privacy” settings.

1 Schneier on Security: Eavesdropping on Encrypted Compressed Voice

(https://www.schneier.com/blog/archives/2008/06/eavesdropping_o_2.html)

26/31 Threema • Cryptography Whitepaper

Threema Safe

Overview

Threema Safe is an encrypted server-based backup solution that encompasses the following

user-specific data:

• Threema ID

• Private key

• Profile information

• Nickname

• Profile photo

• Linked email address and phone number

• Contact list

• Contact Threema ID

• Public key

• Name

• Verification level

• Group definitions

• Group ID

• Creator

• Group name

• List of members

• Distribution lists

• Name

• List of members

• App settings

Messages and media data are not part of a Threema Safe backup.

The rationale behind Threema Safe is to give users a secure backup option that allows them

to restore their Threema ID and important related data, or to move it to another device, using

nothing but the knowledge of their Threema ID and the Threema Safe password that they

have chosen.

The use of Threema Safe is optional; the user can choose to enable or disable it at any time.

By default, encrypted backups are stored on Threema servers, but the user can use their own

server as a backup store instead. A Threema Safe backup server cannot tell which backup

belongs to which Threema user by looking at the uploaded data.

27/31 Threema • Cryptography Whitepaper

Backup Format

The Threema app compiles the information mentioned in the previous section as a JSON

document (binary values like the private key or profile photo are encoded in Base64). This

JSON document is then compressed with gzip and encrypted as follows. The resulting

encrypted backup typically has a size of only a few dozen kilobytes (depending mostly on the

profile photo size, number of contacts and groups).

Encryption

In order to set up Threema Safe, the user must choose a password consisting of at least 8

characters. The app checks whether the password is on a list of the most frequently used

passwords, and warns the user if that is the caseFrom the password and the Threema ID of

the user, a Threema Safe Master Key is derived as follows:

• threemaSafeMasterKey = scrypt(P = Password, S = Threema ID, N =

65536, r = 8, p = 1, dkLen = 64)

The scrypt parameters have been chosen to provide a reasonable trade-off between

calculation time, memory usage and security without precluding the use on older/lower-end

devices.

The scrypt output is then split into two parts of 32 bytes each as follows:

• threemaSafeBackupId = threemaSafeMasterKey[0..31]

• threemaSafeEncryptionKey = threemaSafeMasterKey[32..63]

The Threema Safe backup data in the form of a UTF-8 encoded JSON string (plaintext)

is then encrypted as follows:

1. Compress using gzip: gzippedPlaintext = gzip(plaintext)

2. Generate random 24 byte nonce: nonce = randombytes(24)

3. threemaSafeEncryptedBackup = nonce ||

crypto_secretbox(gzippedPlaintext,

threemaSafeEncryptionKey, nonce)

|| = concatenation

The crypto_secretbox operation is described in the NaCl documentation.

Upload/Storage

The encrypted data (threemaSafeEncryptedBackup) is uploaded to, or downloaded

from, the Threema Safe server using simple WebDAV-compatible HTTPS requests (see below

for details). The threemaSafeBackupId in lowercase hex encoding is used as a filename. If

the user disables Threema Safe, a DELETE request is issued by the app.

28/31 Threema • Cryptography Whitepaper

Backup Intervals

When Threema Safe is enabled and a backup password is set, the Threema app generates

a backup once per day when the app is in use. If the backup data has changed since the last

upload, or if more than half of the server-specified backup retention time has passed, then

the backup is uploaded to the server, replacing any existing backup with the same ID that may

already exist on the server.

Restore/Decryption

1. User enters their Threema ID and password in the setup screen.

2. Derive the master key as described above.

3. Fetch threemaSafeEncryptedBackup from the server using the

threemaSafeBackupId.

4. nonce = threemaSafeEncryptedBackup[0..23]

5. gzippedPlaintext =

crypto_secretbox_open(threemaSafeEncryptedBackup[24..],

nonce, threemaSafeEncryptionKey)

The crypto_secretbox operation is described in the NaCl documentation.

6. plaintext = gunzip(gzippedPlaintext)

The decrypted and decompressed JSON document (plaintext) is then used to restore the

Threema ID and other information.

Running a Custom Threema Safe Server

When setting up Threema Safe, a custom backup server URL may be specified by the

user. This URL must start with https:// and may include username/password information

(e.g. https://username:password@my.server.example/path). The server must use a TLS

certificate trusted by the operating system.

The server must respond to the following requests (paths relative to the backup URL):

Request Server Configuration

GET config

Accept: application/json

29/31 Threema • Cryptography Whitepaper

Response Codes

Code Description

200 OK Response body contains the configuration, see example below.

400 Bad Request Validation failed.

Example Response

{

 "maxBackupBytes": 524288,

 "retentionDays": 180

}

The app uses maxBackupBytes to determine whether a backup is too big to be uploaded

(in which case the user is alerted). retentionDays is used to determine backup expiration:

if retentionDays/2 days have elapsed since the last backup, the backup is uploaded again

even if the backup data has not changed, to keep the backup from expiring.

Create/Update Backup

PUT backups/<threemaSafeBackupId>

Content-Type: application/octet-stream

The threemaSafeEncryptedBackup is sent along unmodified in the PUT body.

Validation

• The threemaSafeBackupId must be a 64 character lowercase hex string

• The Content-Type header must be set to application/octet-stream

Response Codes

Code Description

200 OK The backup was created or updated (for servers that do not differentiate

between the two).

201 Created The backup was created.

204 No Content The backup was updated.

400 Bad Request Validation failed.

413 Payload Too Large Message body is too large.

429 Too Many Request Rate limit reached.

30/31 Threema • Cryptography Whitepaper

Fetch Backup

GET backups/<threemaSafeBackupId>

Accept: application/octet-stream

Validation

• The threemaSafeBackupId must be a 64 character lowercase hex string

• The Accept header must be set to application/octet-stream

Response Codes

Code Description

200 OK Response body contains the threemaSafeEncryptedBackup.

400 Bad Request Validation failed.

404 Not Found No backup was found at the specified URL.

429 Too Many Requests Rate limit reached.

Delete Backup

DELETE backups/<threemaSafeBackupId>

Validation

• The threemaSafeBackupId must be a 64 character lowercase hex string

Response Codes

Code Description

200 OK The backup was deleted.

204 No Content The backup was deleted.

400 Bad Request Validation failed.

404 Not Found No backup was found at the specified URL.

429 Too Many Requests Rate limit reached.

Security Recommendations

The following recommendations are not required for automated backups to work, but they

improve security. Implementing these recommendations is especially important when offering

a public service.

31/31 Threema • Cryptography Whitepaper

Throttling

To avoid misuse, throttling/rate limiting should be enforced in the server. It is up to

the implementer whether to limit requests based on the peer’s IP address, or the

requested threemaSafeBackupId. If the limit has been reached, requests must be

responded to with a HTTP 429 (Too Many Requests) status code.

If the server software itself does not support rate limiting, this can be implemented by using a

Proxy like Nginx or HAProxy.

User Agent Validation

All requests from a real Threema app contain a user agent header containing the string

“Threema”. If the user agent does not contain that string, HTTP 400 should be returned by

the server.

Data Retention

Backups should be automatically deleted after a certain amount of time, as specified in the

“retentionDays” configuration key.

