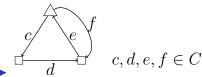
Positionality and strategy improvement for continuous payoffs


A. Kozachinskiy

University of Warwick, Coventry, UK

Highlights of L., G. and A. 2020

Infinite games on finite graphs

Fix a function $\phi: C^{\omega} \to \mathbb{R}$ (called a *payoff*). A ϕ -game consist of:

- Min and Max are shifting a pebble (Min in △-nodes and Max in □-nodes) along the edges. Infinitely many shifts.
- ▶ Zero sum: Min pays Max a fine of size $\phi(c_1c_2c_3...)$, where $c_1, c_2, c_3, ...$ are colors along trajectory of the pebble.

Definition

A payoff ϕ is positional if in all ϕ -games players can play optimally via a positional strategy.

Continuous payoffs

Definition

A payoff $\phi: C^{\omega} \to \mathbb{R}$ is <u>continuous</u> if for any $\alpha \in C^{\omega}$ and for any infinite sequence $\beta_1, \beta_2, \beta_3, \ldots \in C^{\omega}$ the following holds. Assume that for any $i \in \mathbb{N}$ we have that α and β_i coincide in the first i elements. Then

$$\phi(\alpha) = \lim_{i \to \infty} \phi(\beta_i)$$

Can be defined by the cylinder topology, which is compact.

Examples: (multi)discounted payoff is continuous, Parity and Mean Payoff are not.

Characterizing positional payoffs

A payoff $\phi\colon C^\omega\to\mathbb{R}$ is called **prefix-monotone** if there are no $x,y\in C^*$ and $\alpha,\beta\in C^\omega$ such that

$$\phi(X\alpha) > \phi(X\beta), \qquad \phi(y\alpha) < \phi(y\beta).$$

Theorem

Let $\phi: C^{\omega} \to \mathbb{R}$ be a continuous payoff. Then ϕ is positional if and only if ϕ is prefix-monotone.

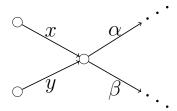


Figure: The "only if" part.

What else can be said

Generalizing some results for (multi)discounted payoffs.

- strategy improvement (all continuous positional payoffs)
- LP-type problems and subexponential randomized algorithms (all continuous positional payoffs).
- Strong bounds on strategy improvement (for generalized or non-linear discounted payoff).

What about stochastic games?

 Continuous + stochastically positional (multi)discounted.

Thank you!