Stackelberg Mean-Payoff Games With a Rationally Bounded Adversarial Follower

Shibashis Guha¹

Jointly with: Mrudula Balachander² Jean-François Raskin³

¹Tata Institute of Fundamental Research, India

²Chennai Mathematical Institute, India

³Université libre de Bruxelles, Belgium

September 17th 2020

Stackelberg Games

Sequential Move:

1. Leader announces her strategy

2. Follower announces his response to leader's strategy

Cooperative vs Adversarial

In the adversarial setting, Follower chooses Best-Response which minimises payoff of Leader

Epsilon-Optimal Best Response

(Best response may not exist: Filiot, Gentilini and Raskin - ICALP 2020)

Epsilon-Best Responses Always Exist

(Filiot, Gentilini and Raskin - ICALP 2020)

Leader strategy:If $a^k b$, then $(c^k de)^{\omega}$ Follower strategy:For $\epsilon = 0.1$, play $a^{1000}b$ For $\epsilon = 0.001$, play $a^{100000}b$

Follower is adversarial, bounded rational, i.e. chooses the epsilon-optimal best response ϵ is fixed

Epsilon-Optimal Adversarial Stackelberg Value (ASV^{ϵ})

ASV^ε is the largest mean-payoff value the Leader can obtain when the Follower plays an **adversarial epsilon-best** response.

$$\mathbf{ASV}^{\epsilon}(\sigma_0)(v) = \inf_{\sigma_1 \in \mathbf{BR}^{\epsilon}(\sigma_0)} \mathsf{Mean-Payoff}_0 \left[\mathsf{Outcome}(\sigma_0, \sigma_1)\right]$$

$$\mathbf{ASV}^{\epsilon}(v) = \sup_{\sigma_0} \mathbf{ASV}^{\epsilon}(\sigma_0)(v)$$

- σ_0 : Leader Strategy
- σ_1 : Follower Strategy
- $\mathbf{BR}^{\epsilon}(\sigma_0)$: Epsilon-Best Response of Follower to Leader's strategy σ_0

RESULT 1:

\mathbf{ASV}^{ϵ} is always achievable

There exists a Leader Strategy σ_0 such that

 $\mathbf{ASV}^{\epsilon}(v) = \mathbf{ASV}^{\epsilon}(\sigma_0)(v)$

Infinite Memory Required for Leader

Leader strategy: $((v_0 \rightarrow v_0)^k (v_0 \rightarrow v_2) \cdot (v_2 \rightarrow v_2)^k (v_2 \rightarrow v_0))_{k \in \mathbb{N}}$ (Finite Memory)If any deviation, then play $v_2 \rightarrow v_0$

The effects of edges (0, 0) become non-negligible and decrease Leader's mean-payoff \mathbf{ASV}^{ϵ} (Leader Strategy)(v_0) = 1

RESULT 2:

Infinite memory might be required for Leader strategies to achieve the \mathbf{ASV}^{ϵ}

RESULT 3:

Infinite memory might be required for the Follower to play an epsilon-optimal best-response

Threshold Problem: ls $ASV^{\epsilon}(v) > c?$

Witnesses and Bad Vertices

 $\Lambda^{\epsilon}(v) = \left\{ \begin{array}{l} (c, d) \in \mathbb{R}^2 \mid \text{From vertex } v, \text{ the Follower can ensure that} \\ \text{Leader's payoff} \leq c \text{ and Follower's payoff} > d - \epsilon \end{array} \right\}$

```
A vertex v is (c, d)^{\epsilon}-bad if (c, d) \in \Lambda^{\epsilon}(v)
```

A path π starting from v is a witness for $ASV^{\epsilon}(v) > c$ if Mean-Payoff of π is (c', d), where c' > c and π does not cross a (c, d)^{ϵ}-bad vertex.

RESULT 4:

ASV^ε(v)> c if and only if there exists a witness

RESULT 6: We can guess a regular-witness in NP-Time

Results

Results in our work

Results by Filiot, Gentilini and Raskin, ICALP'20

	Threshold Problem	Computing ASV	Achievability
General Case	NP-Time Finite Memory Strategy	Theory of Reals	No
Fixed Epsilon	NP-Time Finite Memory Strategy	Theory of Reals/ Solving LP in EXPTime	Yes (Requires Infinite Memory)

Stackelberg Mean-payoff Games with a Rationally Bounded Adversarial Follower: <u>https://arxiv.org/abs/2007.07209</u>