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Definitions and notations

We consider games on labelled graphs played between two players,
Adam and Eve, with certain winning objectives on the infinite
sequences of labels generated by playing.

Some of the popular objectives are:

• Parity (P): Eve wins the game, if the maximum of the infinitely
many times occuring colours is even. Adam wins, otherwise.

• Mean-Payoff (MP): Eve wins the game, if the average limit of the
infinite sequence is non-negative. Adam wins, otherwise.

We will consider two variants: MP, with lim sup of averages, and
MP, with lim inf of the averages.

1



Definitions and notations

We consider games on labelled graphs played between two players,
Adam and Eve, with certain winning objectives on the infinite
sequences of labels generated by playing.

Some of the popular objectives are:
• Parity (P): Eve wins the game, if the maximum of the infinitely
many times occuring colours is even. Adam wins, otherwise.

• Mean-Payoff (MP): Eve wins the game, if the average limit of the
infinite sequence is non-negative. Adam wins, otherwise.

We will consider two variants: MP, with lim sup of averages, and
MP, with lim inf of the averages.

1



Definitions and notations

We consider games on labelled graphs played between two players,
Adam and Eve, with certain winning objectives on the infinite
sequences of labels generated by playing.

Some of the popular objectives are:
• Parity (P): Eve wins the game, if the maximum of the infinitely
many times occuring colours is even. Adam wins, otherwise.

• Mean-Payoff (MP): Eve wins the game, if the average limit of the
infinite sequence is non-negative. Adam wins, otherwise.

We will consider two variants: MP, with lim sup of averages, and
MP, with lim inf of the averages.

1



Definitions and notations

We consider games on labelled graphs played between two players,
Adam and Eve, with certain winning objectives on the infinite
sequences of labels generated by playing.

Some of the popular objectives are:
• Parity (P): Eve wins the game, if the maximum of the infinitely
many times occuring colours is even. Adam wins, otherwise.

• Mean-Payoff (MP): Eve wins the game, if the average limit of the
infinite sequence is non-negative. Adam wins, otherwise.
We will consider two variants: MP, with lim sup of averages, and
MP, with lim inf of the averages.

1



Games with combination of objectives

• Games with multi-dimensional labels.

• Denoted as W1 ∨W2, in two dimension.
• Eve wins W1 ∨W2, if projection of the infinite sequence on first
coordinate satisfies W1, or that on second coordinate satisfies
W2.

• We give the algorithms for solving the games with combination
of objectives by constructing separating automata for them,
combining those for the individual objectives as black boxes.
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Example: P ∨ MP

Adam

Eve

MP in 2nd coordinateP in 1st coordinate

a b

(3, 1)

(2, 3)

(1,−3)

(3, 1)

a

((3, 1)(3, 1)(3, 1)(3, 1))ω |= P ∨ MP
((2, 3)(1,−3)(2, 3)(1,−3))ω |= P ∨ MP
((3, 1)(1,−3)(3, 1)(1,−3))ω ̸|= P ∨ MP
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Why do we care?

• Synthesis of systems satisfying multiple constraints, qualitative
or quantative

• P may represent qualitative constraints like reachability of a
good behaviour, and MP may represent quantative constraints
like power consumption.
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Separating automata for a winning condition W*

• Automaton A with safety acceptance condition such that

– For all n-sized graphs satisfying W, A
accepts all paths in the graph

– A rejects all paths not satisfying W

ΣωW ¬W

Wn

A

Theorem (Colcombet, Fijalkow 2019)
Let G be a game of size n with positional objective W and A be a
(n,W)−separating automaton.
Then Eve has a strategy ensuring W if and only if she has a strategy
winning the safety game G×A.

* Notion of Separating automata was introduced by Bojańczyk and Czerwiński, and this defintion was given by
Colcombet and Fijalkow. 5
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Separating automaton for ∨iMPi

Theorem (Chatterjee, Velner 2013)
There exists an algorithm for solving these games with complexity
O(n2 ·m · k ·W · (k · n ·W)k

2+2k+1).

Theorem
There exists a separating automaton for ∨iMPi of size O(nk ·Wk),
inducing an algorithm for solving these games with complexity
O(m · nk ·Wk), where k is the number of MP objectives.

Idea: Reduce the problem to construction of separating automata
for strongly connected graphs, and then construct the later using the
property that a strongly connected graph satisfying ∨iMPi, satisfies
MP in one of its coordinates.
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Separating automaton for P ∨ MP

Theorem (Daviaud et al. 2018)
There exists a pseudo-quasi-polynomial time algorithm for solving
games with objective P ∨ MP.

Theorem
There exists a separating automaton for P ∨ MP of size
O(d · |AP| · |AMP|), where d is the highest label in the parity
coordinate.

Idea: Keep simulating the separating automaton for MP, simulate P
separating automaton with the maximum priority when the earlier
rejects, and reject the run when the later rejects.

Note: The separating automaton for P ∨ MP is exactly the same.
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Summary

• We give O(m · nk ·Wk) complexity algorithm for ∨iMPi, with the
separation approach, which is better than that given by
Chatterjee and Velner (2013).

• We match the best known complexity of solving games with
P ∨ MP and P ∨ MP, i.e. pseudo-quasi-polynomial complexity,
using separating automata.

• Chatterjee and Velner (2013) solve the games with winning
condition MP ∨ MP, but it is still open to match the complexity
with the separation approach.
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