The Strahler number of a Parity Game

K. S. Thejaswini

University of Warwick

September 16th, 2020

Joint work with:
Laure Daviaud
City, University of London, Marcin Jurdzinski
University of Warwick
Highlights - 2020

Parity Games

Parity Games

Parity Games

Parity Games

Quasipolynomial Algorithms for Parity Games

Quasipolynomial Algorithms for Parity Games

An ordered tree is (n, h)-Universal if any ordered tree embeds into it as long as it has

- height at most h
- at most n leaves.

Example of a (4, 2)-Universal tree

Quasipolynomial Algorithms for Parity Games

An ordered tree is (n, h)-Universal if any ordered tree embeds into it as long as it has

- height at most h
- at most n leaves.

Example of a (4, 2)-Universal tree

Quasipolynomial Algorithms for Parity Games

An ordered tree is (n, h)-Universal if any ordered tree embeds into it as long as it has

- height at most h
- at most n leaves.

Example of a (4, 2)-Universal tree

Quasipolynomial Algorithms for Parity Games

Quasipolynomial Algorithms for Parity Games

Quasipolynomial Algorithms for Parity Games

Register Games: [Lehtinen '18], [Lehtinen, Boker '19]

Corollary [Lehtinen '18]

There is an $O\left(n^{\log n} \cdot d^{\log ^{2} n}\right)$ algorithm to solve parity games.

A result

Theorem:
 Register Number $=$ Strahler Number

Strahler Number

Definition

The Strahler number of a rooted tree is the largest height of a perfect binary tree that is its minor.

$$
\operatorname{str}(u)= \begin{cases}\max \{\operatorname{str}(v) \mid v \text { is a child of } u\} & \text { if maximum is unique }, \\ \max \{\operatorname{str}(v) \mid v \text { is a child of } u\}+1 & \text { otherwise }\end{cases}
$$

Strahler Universal trees

Definition

An ordered tree \mathcal{T} is k-Strahler (n, h)-Universal if any ordered tree with

- at most n vertices,
- height at most h
- Strahler number no more than k
can be embedded in it.

Size

There are Strahler universal trees of size $O\left(\operatorname{poly}(n) \cdot h^{k}\right)$

Algorithms for Parity Games

A polynomial time algorithm

Theorem

Given k, the Strahler number of a Parity game, we can find the winning sets for Audrey and Steven in time poly $(n) \cdot\left(\frac{d}{k}\right)^{k}$ and quasi-linear space.

Corollary

Solving parity games is polynomial if $k \cdot \lg \left(\frac{d}{k}\right)=O(\log n)$. (Previously known for $k=O(1)$ and $d=O(\lg n)$)

