
Leafy automata for higher-order concurrency

A. Dixon R. Lazic A. S. Murawski I. Walukiewicz
Warwick Warwick Oxford CNRS & Bordeaux

Finitary Idealized Concurrent Algol (FICA)

Idealized Concurrent Algol combines shared-memory concurrency
with higher-order computation.

M||N λx .M MN

M :=N !M newvar x = i inM

grab(M) release(M) newsem x = i inM

finitary = finite datatypes + looping (but no recursion)

Game semantics of ICA [Ghica & M., FOSSACS 2004]

Game semantics views computation as interaction (play) between
the context (O) and the program (P). Plays are sequences of
moves connected by pointers. Programs are interpreted as
strategies (sets of plays).

λf com→com→com. newvar x := 0 in f (x := 1)(x := 2); !x

q runf runf 1 runf 2 donef 1 donef 2 donef 1
OQ PQ OQ OQ PA PA OA PA

Questions (Q) = calls

Answers (A) = returns

We would like to represent plays as data words

q runf runf 1 runf 2 donef 1 donef 2 donef 1
Q Q Q Q A A A A

(q, a0) (runf , a1) (runf 1, a2) (runf 2, a3) (donef 1, a2) (donef 2, a3)

Pointers from answers will be represented using the data value
of the corresponding question, e.g. (donef 1, a2).

To represent pointers from questions, we assume that the set
of data has (infinite) tree structure and rely on the
parent-child relationship.

a0

a1
②② ❊❊

a2 a3

We use a tree-shaped dataset T

a0

✂✂
✂✂ ❁❁

❁❁

· · · a1

✂✂
✂✂ ❁❁

❁❁
· · ·

a2

✁✁
✁✁

♣♣
♣♣
♣♣
♣♣

· · · a3

✁✁
✁✁ ❂❂

❂❂

· · · · · · · · · · · · · · · · · ·

The dataset T is a countably infinite tree (infinitely many
levels, infinite branching).

To capture plays, we define a special kind of automata, which
will accept data words from (Moves × T)∗.

Leafy automata

Configurations of leafy automata will be finite subtrees of T
labelled with states. The empty tree is the initial configuration.

a0(q0)

a1(q1)
♣♣ ◆◆

a2(q2) a3(q3)

There are two kinds of transitions, each involving a leaf:

add leaf,

remove leaf.

Add leaf while reading (question, a)

a must be fresh (not encountered yet).

If a is not the root of T , the parent of a in T (a3 in the
picture) must occur in the current configuration.

Only the states from the associated branch may be accessed
and updated.

a0(q0)

a1(q1)

✉✉✉
✉ ■■■

■

a2(q2) a3(q3)

7→ a0(q
′

0
)

a1(q
′

1
)

✉✉
✉✉ ■■■

■

a2(q2) a3(q
′

3
)

a(q′
4
)

Remove leaf while reading (answer , a)

a must occur in the current configuration and must be a leaf.

Only the states from the associated branch may be accessed
and updated.

a0(q0)

a1(q1)

✉✉✉
✉ ❍❍

❍

a2(q2) a(q3)

7→ a0(q
′

0
)

a1(q
′

1
)

✉✉✉
✉

a2(q2)

Acceptance

A data word w = (t1, a1) · · · (tk , ak) is accepted by a leafy

automaton if there exists a sequence of transitions reading

w starting from the empty configuration and ending with

the empty configuration.

Emptiness is undecidable already at level 2 (root is level 0).

At level 1, emptiness is interreducible with the Petri-net
reachability problem.

Equivalence is undecidable at level 1.

Correspondence with FICA

Main results

For any FICA term, there exists a leafy automaton
representing its game semantics.

For any leafy automaton, there exists a FICA term
representing the language of the automaton.

Conclusion

Leafy automata = automata-theoretic formalism for rep-

resenting higher-order concurrent computation

