

A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

Antoine Amarilli¹ and İsmail İlkan Ceylan²

September 16, 2020

¹Télécom Paris

²University of Oxford

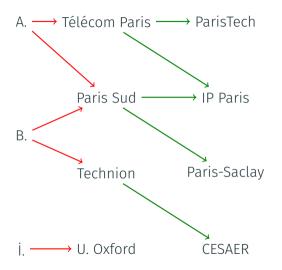
WorksAt		
Antoine	Télécom Paris	
Antoine	Paris Sud	
Benny	Paris Sud	
Benny	Technion	
İsmail	U. Oxford	

In this talk, we manage **data** represented as a **labeled graph**

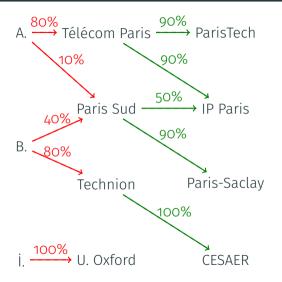
Wo	orksAt
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
Mer	nberOf
Télécom Pari	s ParisTech
Télécom Pari	s IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

.

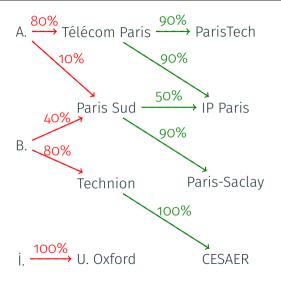
	WorksAt	Antoine	Télécom Paris	ParisTech
Antoine Antoine Benny Benny İsmail	Télécom Paris Paris Sud Paris Sud Technion U. Oxford	Benny	Paris Sud	IP Paris
Télécom P Télécom P Télécom P Paris Su	aris IP Paris	Denny	Technion	Paris-Saclay
Paris Su Technio		İsmail	U. Oxford	CESAER

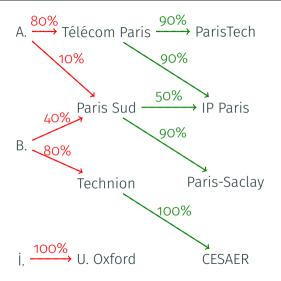

WorksAt		Antoine → Télécom Pari	s ParisTech
Antoine T Antoine Benny Benny İsmail	Télécom Paris Paris Sud Paris Sud Technion U. Oxford	Paris Sud	IP Paris
Men Télécom Paris Télécom Paris Paris Sud		Benny Technion	Paris-Saclay
Paris Sud Technion	Paris-Saclay CESAER	İsmail ──── U. Oxford	CESAER

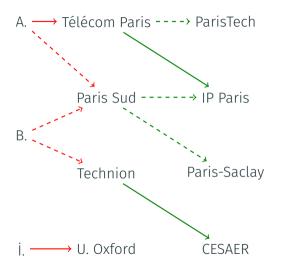
WorksAt	
Antoine Antoine Benny	Télécom Paris Paris Sud Paris Sud
Benny İsmail	Technion U. Oxford
м	emberOf
Télécom Pa Télécom Pa Paris Sue Paris Sue	aris IP Paris d IP Paris
Technio	· · · · · ·


In this talk, we manage data represented as a labeled graph

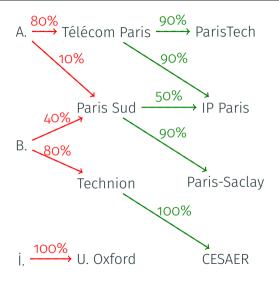
V	VorksAt
Antoine Antoine	Télécom Paris Paris Sud
Benny Benny	Paris Sud Technion
İsmail	U. Oxford
MemberOf	
Télécom Pa	
Télécom Pa	
Paris Suo Paris Suo	
Technior	· · · ·


 \rightarrow **Problem:** we are not **certain** about the true state of the data


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- Probability of W:

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- Probability of W:

$$\Pr(W) = \left(\prod_{F \in W} \Pr(F)\right) \times \left(\prod_{F \notin W} (1 - \Pr(F))\right)$$

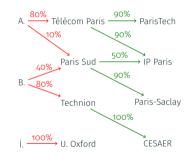
• Query: maps a graph (without probabilities) to YES/NO

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
- Union of conjunctive queries (UCQ): does one of the CQs match?

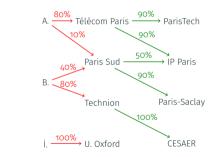
- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
- Union of conjunctive queries (UCQ): does one of the CQs match?
- \rightarrow Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
- Union of conjunctive queries (UCQ): does one of the CQs match?
- \rightarrow Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q


They generalize **CQs** and **UCQs**, but also **regular path queries** (RPQs), **Datalog**, etc.

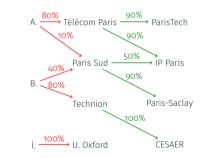
Here is the problem PQE(Q):

• We fix a query $Q: x \longrightarrow y \longrightarrow z$


Here is the problem PQE(Q):

- We fix a query $Q: x \longrightarrow y \longrightarrow z$
- The **input** is a TID **D**:

Here is the problem PQE(Q):


- We fix a query $Q: x \longrightarrow y \longrightarrow z$
- The **input** is a TID **D**:

• The **output** is the **probability** that the query is true

Here is the problem PQE(Q):

- We fix a query $Q: x \longrightarrow y \longrightarrow z$
- The **input** is a TID **D**:

- The **output** is the **probability** that the query is true
- \rightarrow Question: What is the complexity of PQE(Q) depending on the query Q?

Existing dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are safe and PQE(**Q**) is in PTIME
- All others are **unsafe** and PQE(**Q**) is **#P-hard**

Existing dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are safe and PQE(**Q**) is in PTIME
- All others are **unsafe** and PQE(**Q**) is **#P-hard**

We study PQE for **homomorphism-closed queries** and show:

Existing dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are safe and PQE(**Q**) is in PTIME
- All others are **unsafe** and PQE(**Q**) is **#P-hard**

We study PQE for **homomorphism-closed queries** and show:

Theorem [Amarilli and Ceylan, 2020]

For any query Q closed under homomorphisms:

• Either **Q** is equivalent to a **safe UCQ** and PQE(**Q**) is in **PTIME**

Existing dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are safe and PQE(**Q**) is in PTIME
- All others are **unsafe** and PQE(**Q**) is **#P-hard**

We study PQE for homomorphism-closed queries and show:

Theorem [Amarilli and Ceylan, 2020]

For any query Q closed under homomorphisms:

- Either Q is equivalent to a safe UCQ and PQE(Q) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**

Existing dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are safe and PQE(**Q**) is in PTIME
- All others are **unsafe** and PQE(**Q**) is **#P-hard**

We study PQE for homomorphism-closed queries and show:

Theorem [Amarilli and Ceylan, 2020]

For any query Q closed under homomorphisms:

- Either **Q** is equivalent to a safe UCQ and PQE(**Q**) is in **PTIME**
- In all other cases, PQE(**Q**) is **#P-hard**

So bad news: all homomorphism-closed queries are hard except safe UCQs

What's next?

- The result only applies to graphs, not higher-arity databases
 - We **conjecture** that it holds for arbitrary arity

What's next?

- The result only applies to graphs, not higher-arity databases
 - We **conjecture** that it holds for arbitrary arity
- Adapting to **unweighted** PQE, where all probabilities are **1**/**2**?
 - We have a recent result on **non-hierarchical self-join-free CQs** [Amarilli and Kimelfeld, 2020]
 - Recent paper by Suciu and Kenig [Kenig and Suciu, 2020]

What's next?

- The result only applies to **graphs**, not higher-arity databases
 - We **conjecture** that it holds for arbitrary arity
- Adapting to **unweighted** PQE, where all probabilities are **1**/**2**?
 - We have a recent result on **non-hierarchical self-join-free CQs** [Amarilli and Kimelfeld, 2020]
 - Recent paper by Suciu and Kenig [Kenig and Suciu, 2020]

Thanks for your attention!

nofreeviewnoreview.org

Amarilli, A. and Ceylan, I. I. (2020).

A dichotomy for homomorphism-closed queries on probabilistic graphs. In *ICDT*.

- Amarilli, A. and Kimelfeld, B. (2020).
 Uniform reliability of self-join-free conjunctive queries.
 arXiv preprint arXiv:1908.07093.
- Dalvi, N. and Suciu, D. (2012).
 The dichotomy of probabilistic inference for unions of conjunctive queries.
 J. ACM, 59(6).

Kenig, B. and Suciu, D. (2020). A dichotomy for the generalized model counting problem for unions of conjunctive queries.

arXiv preprint arXiv:2008.00896.