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Introduction Model Features

Dynamic Networks of Concurrent Pushdown Systems
(DCPS)

Model Features:

Concurrent threads with local recursion.

A finite global memory, accessible by all threads.

New threads being spawned dynamically during execution.

Bound K on context switches per thread (avoids undecidability).
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Introduction Safety Verification

Safety Verification

K -bounded state reachability problem for DCPS (SRP[K ])

Input A DCPS A and a global state g

Question Is g K -bounded reachable in A?

SRP[0] is EXPSPACE-complete.

Shown by Ganty and Majumdar (2012).

SRP[K ] is EXPSPACE-hard and in 2EXPSPACE for every K ≥ 1.

Shown by Atig, Bouajjani, and Qadeer (2009).

Our main result

SRP[K ] is 2EXPSPACE-hard for every K ≥ 1.
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2EXPSPACE Lower Bound Proof Outline

Proof Outline

Termination of triple-exponentially bounded counter programs

Termination of recursive net programs (RNP)*

Coverability for transducer-defined Petri nets (TDPN)*

SRP[1] for DCPS

Adapted Lipton construction

Adapted Lipton construction

New techniques

*new model
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Thank you for your attention!

Any questions?



Appendix

Appendix
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Appendix Locking Inactive Threads

Locking Inactive Threads
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Appendix Lifting to 2EXPSPACE

Lifting to 2EXPSPACE

We used 22d = 22d−1·2 =
(

22d−1
)2

= 22d−1 · 22d−1
.

This means from one level to the next the bound gets squared.

(· · · (2

n-times︷ ︸︸ ︷
2)2 · · · )2 = 22n

(· · · (2

2n-times︷ ︸︸ ︷
2)2 · · · )2 = 222n
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Appendix Details of Known Results

Details of Known Results

Ganty and Majumdar (2012) consider threads running to completion.

We can ensure that threads empty their stack in our model.

This allows us to use their EXPSPACE-completeness result for K = 0.

Atig, Bouajjani, and Qadeer (2009) consider a slightly different DCPS:

Each thread spawns with its parents cs-number plus 1.

We can simulate our model in theirs using 2 more contex switches.

Reduces our SRP[K ] to their SRP[K + 2].

This allows us to use their 2EXPSPACE-membership result.
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Appendix Succinct Representation via Transducers

Succinct Representation via Transducers

Use binary addresses w = u.v for places:

u: Role, i.e. which line, counter, or auxiliary place it is.

v : Binary representation of recursion depth d .

Let the size of the RNP be h, the number of lines of code.

Each counter appears in at least one line.

Each line only needs at most one auxiliary place.

Thus, the number of possibilities for u is linear in h.

Make the transducers distinguish each possible triple (pair) of prefixes u:

Considering triples adds an exponent of 3, still poly in h.
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Appendix Succinct Representation via Transducers

Succinct Representation via Transducers

The recursion depth d changes by at most 1 at a time.

Transducers have to check for equality or off-by-one on postfixes v .

These checks require space linear in the number of bits.

Since the maximum for d is 2n, v has log(2n) = n bits.

The triple (pair) of prefixes u tells us how the depths are related.

Connect the paths for u with the appropriate checks at the end.
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