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F-Weighted Automaton

Alphabet: Σ = {a, b}

A has 5 states. Black states are
final states.

Series Recognized:

S(A) =
∞∑
i=0

(6ab)i − (6ba)i

Coefficient of the word baba in
S(A) is -36.
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Figure: Weighted Automaton A

Two weighted Automata A,B are said to be equivalent if S(A) = S(B).
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Multi-tape Automaton

Alphabets:

Σ1 = {a, b}

Σ2 = {x , y}

A has 4 states. Black states are final
states.

An accepting run looks like:

a x b y a x b y

k -tape Language Accepted:

L2 ⊆ Σ∗1 × Σ∗2

For the automaton in the figure we have

L2(A) =

{(
(ab)i , (xy)i)}∞

i=0
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Figure: Multi-tape Automaton A

Input Tape:

↓
a b a b

↓
x y x y
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Input Tape:

a
↓
b a b

↓
x y x y
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Input Tape:

a
↓
b a b

x
↓
y x y
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Input Tape:

a b
↓
a b

x
↓
y x y
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Figure: Multi-tape Automaton A

Input Tape:

a b
↓
a b

x y
↓
x y
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Figure: Multi-tape Automaton A

Input Tape:

a b a
↓
b

x y
↓
x y
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Input Tape:

a b a
↓
b

x y x
↓
y
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Input Tape:

a b a b

x y x
↓
y
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Equivalence of Weighted Multi-tape Automata

Alphabets:
Σ1 = {a} Σ2 = {b}

1
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3b
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Figure: 2-tape Automaton A

0

Figure: 2-tape Automaton B

Two weighted k -tape automata A,B are said to be equivalent if they recognize
the same series. In this case

S2(A) =
∞∑
i=1

((2a)i , (3b)i )− ((3a)i , (2b)i )

=
∞∑
i=1

6i (ai , bi )− 6i (ai , bi )

= 0 = S2(B)

(1)

S2(A) =
∞∑
i=1

((2a)i , (3b)i )− ((3a)i , (2b)i ) = 0 = S2(B)
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History of Multi-tape Automata

[RS59]Rabin & Scott 1959: Introduced the concept of multi-tape automata.

[Gri68]Griffiths 1968: Equivalence of multi-tape NFA is undecidable.

[Bir73, Val74]Bird 1973, Valiant 1974: Equivalence of 2-tape DFA is
decidable.

[Bee76]Beeri 1976: Exponential time algorithm for Equivalence 2-tape DFA.

[FG82]Friedman & Greibach 1982: Polynomial time algorithm for
equivalence of 2-tape DFA. The authors also conjectured the same for k -tape
automaton for fixed k .

[HK91]Harju & Karhumäki 1991: Equivalence of weighted multi-tape NFA is
decidable.

[Wor13]Worrell 2013: Randomized Polynomial time algorithm for
Equivalence of weighted k -tape NFA for fixed k .

This Work 2020: Deterministic Quasi-Polynomial time algorithm for
Equivalence of weighted k -tape NFA (and more).
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Partially Commutative Monoids

Alphabet:

Σ = {x1, x2, . . . , xn}

Relations I can be extended to Σ∗.

x1x5x3x4x2 ∼I x5x1x2x3x4

Quotenting by I we obtain a
partially commutative monoid

M = Σ∗/I

In case of k -tape Automata we have

Σ = Σ1∪̇Σ2∪̇ · · · ∪̇Σk

I = ∪k
i=1Σi × Σi

GM is a disjoint union of k many
cliques.

Symmetric non-commutation relations

I ⊆ Σ× Σ

x1 x2

x3 x4x5

Figure: Example of a non-commutation
graph GM

V. Arvind, Abhranil Chatterjee, Rajit Datta , Partha Mukhopadhyay Equivalence Testing of Weighted Automata over Partially Commutative Monoids



Our Results

Structure of non-commutation graph and Complexity of Equivalence testing.

Let A and B be F-weighted automata of total size s over a pc monoid M.

Theorem

If the non-commutation graph GM has a clique cover of size k. Then the equivalence of
A and B can be decided in deterministic (nks)O(k2 log ns) time. Here n is the size of the
alphabet of M and the clique edge-cover is given as part of the input.

Theorem

If the non-commutation graph GM has a clique and star edge-cover of size k. Then the
equivalence of A and B can be decided in randomized (ns)O(k) time. Here n is the size
of the alphabet of M and the clique and star cover is given as part of the input.
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Open Problems

1 Deterministic Polynomial time algorithm?
2 Efficient algorithm for other types of coverings of GM?
3 Hardness over general GM?

a) We show that the hardest case is when GM is a matching.

Thank You!
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