
 A Survey of Different Methods used in Detecting Deepfakes

Dr S Manimala1, Suraj R2, Syed Hazim3, Chitranjan Kumar4, Ravi CV5
1Asst. Professor, 2, 3, 4, 5BE Students

Department of Computer Science and Engineering, JSS Science and Technology University,

Mysore- 570006

Abstract

Deepfake is a hybrid of the fake and deep-learning

technologies. Deep learning is an artificial intelligence

function that can be used to both build and identify deepfakes.

Fake films, photos, news, and terrorist incidents are all

created using Deepfake algorithms. When the number of

deepfake videos and photos on social media rises, people will

lose faith in the truth. Artificial intelligence breakthroughs

have made it increasingly difficult to distinguish between real

and counterfeit information, particularly photos and videos.

Deepfake films, which are created by modifying videos using

advanced machine learning techniques, are a recent invention.

In the destination video, the face of an individual from the

source video is replaced with the face of a second person. As

deepfakes get more seamless and easier to compute, this

concept is becoming further polished. Deepfakes, when

combined with the scope and speed of social media, might

easily deceive people by portraying someone saying things that

never happened, leading to people believing imaginary

scenarios, causing distress, and propagating fake news.

Individuals, communities, organisations, security, religions,

and democracy are all being impacted by deepfakes. In this

study, we look at a number of strategies that can be used to

identify deepfake videos. We employ a Transfer Learning

strategy in which the system applies the feature information it

learned while training on the ImageNet dataset and updates

itself while training on our dataset. The trained models are

used to classify counterfeit and unaltered videos. We then

perform a comparative analysis on their performance metrics.

Key Words: deep learning, deepfake, artificial intelligence,

detection, transfer learning

Introduction

Deepfakes is a video modification technique that was first

used to replace the faces of celebrities in video recordings

published to sites like Reddit. They function by substituting

one person's face in an original video with the face of a

second person who is inserted, resulting in similar head

movement, facial expressions, lighting, and lip syncing.

While thousands of images of the second person to be

superimposed into the deepfake are frequently required,

current study has shown that successful deepfakes can be

made with a reduced number of second person images[11].

Deepfakes were first implemented using convolutional

autoencoders [13]. Using an encoder, images of both

subjects are reduced to lower dimensions and then rebuilt

using a decoder. Both source and destination facial

expressions are trained in this manner. A trained encoder

of the source is mapped with a decoder trained on the target

subject's face to conduct a face swap. Adding a generative

adversarial network (GAN) to the decoder is an

enhancement to this technology [4]. A generator and a

discriminator are the two components that make up a GAN.

The generator's job is to create images that seem like the

source, while the discriminator assesses whether or not the

image is fake. It is an iterative process, which makes

deepfakes realistic as they are constantly learning. The

availability of such advanced deepfake creation tools in the

hands of regular researchers, as well as the possibility of

their exploitation by others, has raised worries about their

probable misuse. Deepfacelab[10], FakeApp, and

OpenFaceSwap are GUI-based tools for creating deepfake

movies that are accessible to relatively inexperienced

researchers. With these techniques, it is becoming

increasingly possible to manipulate video evidence for

political purposes, false video evidence, and fake news. As

a result, this presents a challenge for society as well as a

potential for innovative entertainment, but it necessitates

the development of an effective system for detecting

counterfeit video.

While most detectors function admirably on a test subset

derived from the same data distribution as those on which

they were trained, how do they perform in a cross-dataset

scenario? When a CNN trained for deepfake detection on

dataset A is put to the test on dataset B, what happens?

Because it is difficult to acquire direct insights into what

happens within a CNN black-box model, we present a

cross-dataset comparison of CNN-based deepfake

detection algorithms in this study. We train the most

common architectures used by competitors in the

DeepFake Detection Challenge [3] and analyse how

alternative training approaches affect intra-dataset and

cross-dataset detection performances, rather than focusing

on inventing a novel methodology suited for a single

dataset. Our tests are based on datasets that are publicly

available, such as the DeepFake Detection Challenge

Dataset [3] and CelebDF(v2) [18]. Because video

compression is frequently stronger than image

compression, we focus on faces extracted from deepfake

videos rather than just deepfake photos. We also perform

some analysis taking into account a limited availability

of training data.

Related Work on Deepfake Detection

Structural Similarity Index (SSIM) is a perceptual metric

proposed in the work [12] that evaluates image quality

degradation induced by processing such as data

compression or data transmission losses, and for deepfake

films, a quality degradation in frames is attributed to a less

well-trained neural net. It's a comprehensive reference

metric that necessitates the use of two photos taken at the

same time. The SSIM is determined by luminance,

contrast, and structure. When comparing the SSIM time

series of an original video to its deepfakes version,

discrepancies in frames owing to pixelated faces appear.

Observing the eye blinking is another approach to spot

deepfakes. Blinking of the eyes is a basic biological feature

that is incredibly difficult to replicate in deepfake films.

Most training datasets of movies used for deepfake

detection feature a small number of faces with their eyes

closed, with an average rate of 4.5 blinks per second and

each blink lasting 0.1-0.4 seconds. As a result, as revealed

in the paper[8,] the lack of eye blinking can be a promising

signal of a deepfake film.

The authors of [3] provide a sneak peek into deepfake

identification issues using a publicly available dataset and

two facial alteration techniques. The authors of [14] discuss

the challenges and prospects of false news and the detection

of fake news by presenting algorithms for detecting fake

news from web services. The report [15] presents a

thorough examination of current advances in deep face

recognition, including databases and protocols, algorithm

designs, and application scenarios. A overview of face

image modification techniques, deepfake approaches, and

methods to identify manipulations is presented in this

paper[16].

The paper which is most similar to our work is by Luca

Bondi, Edoardo Daniele Cannas, Paolo Bestagini, Stefano

Tubaro, where they investigate the intra dataset and cross

dataset performance of different architectures that are

equipped with different training and data augmentation

techniques. They investigate the model performance using

Binary Cross Entropy and Triplet loss functions.[17]

Deepfake Datasets

A. DFDC Dataset

The footage in the DFDC collection was shot in non-

natural contexts such as news or briefing rooms. The

source data included 3,426 subjects with an average of 14.4

video searches per subject, with the majority of videos

taken in 1080p, totaling 48,190 videos with an average of

68.8 seconds each.Recordings were shot in a range of

natural settings without professional lighting or cosmetics

to illustrate the potential harm of Deepfaked videos

targeted to injure a single, maybe non-public person.

After the source films were pre-processed with an internal

face tracking and alignment algorithm, all face frames

were cropped, aligned, and downsized to 256x256 pixels.

Fig 1: Sample frames of the DFDC Dataset

B. CelebDF Dataset

The Celeb-DF (v2) dataset contains actual and DeepFake

generated movies of comparable visual quality to those

found on the internet. The Celeb-DF (v2) dataset is

significantly larger than the Celeb-DF (v1) dataset, which

only contained 795 DeepFake movies. Celeb-DF now

contains 590 original YouTube videos with topics of

various ages, ethnic groupings, and genders, as well as

5639 DeepFake videos.

 Celeb-DF's videos are created with a new DeepFake

synthesis algorithm, which is crucial to the improved

visual quality. Synthesized faces' low resolution has been

enhanced to 256x256 pixels. This is accomplished by

employing encoder and decoder models that have

additional layers and dimensions.

Fig 2: Sample frames of the CelebDF Dataset

Data Preprocessing

We start by extracting frames from a video sample. This is

done using OpenCV Library[1] , more specifically the

VideoCapture class. We also use this Library to scale the

extracted frames in order to maintain the aspect ratio

between them. The scaling factor to be used while scaling,

is dependant on the dimensions of the frame extracted. For

example, if the dimensions of the extracted frame is greater

than 1900, the scaling factor will be 0.33. On the same

lines, if the dimensions of the extracted frame is lesser than

300, the scaling factor will be 2. Lastly, if the dimensions

of the extracted frame is in between 1000 and 1900, the

scaling factor is defined to be 0.5. These extracted scaled

frames are now passed onto the Face extraction module.

The face extraction process is done using Multi Cascaded

Convolutional Neural Networks (MTCNN)[19] which

extracts the faces from the frames with a certain confidence

level. MTCNN extracts faces in three stages The MTCNN

creates numerous frames in the first stage, scanning the

entire image from the top left corner to the bottom right

corner. P-Net (Proposal Net), a shallow, fully connected

CNN, is used to retrieve information. In the second stage

all the information from P-Net is used as an input for the

next layer of CNN called as R-Net(Refinement Network),

a fully connected, complex CNN which rejects a majority

of the frames which do not contain faces. In the third and

last stage, a more powerful and complicated CNN known

as O-Net (Output Network) outputs the facial landmark

location recognising a face from the given image/video, as

the name suggests.

Fig 3 Sample of the faces extracted using MTCNN

The fig 3 shows the faces extracted using MTCNN. The

next phase of this Pipeline is the splitting of the dataset into

training, testing and validation set.The training set is

applied to train, or fit, your model. The validation set is

used for unbiased model evaluation during hyperparameter

tuning and the test set is needed for an unbiased evaluation

of the final model. You shouldn’t use it for fitting or

validation. Splitting a dataset might also be important for

detecting if your model suffers from one of two very

common problems, called underfitting and overfitting.

To avoid these problems, a good rule of thumb for the ratio

of splitting is 8:1:1. We follow this rule and split our

dataset of the cropped faces into training, testing and

validation set.

Methodology

We must first develop a homogenous training and testing

technique in order to successfully compare intra-dataset

and cross-dataset detection results. A face detection and

extraction phase is the first step in assessing whether a face

in a video has been modified. Due to their prominence in

the DeepFake Detection Challenge, we train

EfficientNetB0 [20] and Resnet50 [24] architectures as

reference CNNs, once faces are extracted and are uniform

in size. Each face's likelihood of being a fake is predicted

using the trained model.

After 2000 batch repetitions with no reduction in validation

loss, the network is initialised with a model pre-trained on

ImageNet, batch of 32 faces, Adam optimizer, initial

learning rate of 10e-4 multiplied by a factor 0.1, and initial

learning rate of 10e-4 multiplied by a factor 0.1. When the

learning rate goes below 10-8, the training is over. The

final model is the one that minimises the validation loss at

each iteration. Training and validation batches are always

balanced, with equal quantities of genuine and artificial

faces chosen at random. The two CNN models are trained

using the training sets of the two datasets, and then each

model is tested against the test set of each dataset.

We trained the models on datasets that were of size

10,20,40, 50 and 80. We then observed the intra-dataset

and cross-dataset performance of these models. The results

of our experiments were produced using Python3 on Colab,

a research based Jupyter Notebook server provided by

Google. In addition to training models on individual

datasets, we also trained them on combination of both

datasets and evaluated their performance.

EfficientNet

The first method we investigate is EfficientNet[20].

Convolutional Neural Networks (ConvNets) are often built

with a fixed resource budget and then scaled up for higher

accuracy when more resources become available. In their

research [20], they look at model scaling in depth and find

that properly balancing network depth, width, and

resolution can improve performance. While increasing

individual dimensions improves model performance, they

found that balancing all network dimensions, including

width, depth, and picture resolution, against available

resources produced the best overall results. The initial stage

in the compound scaling strategy under a fixed resource

constraint is to conduct a grid search to establish the

relationship between different scaling dimensions of the

baseline network (e.g., 2x more FLOPS). This calculates

the proper scaling coefficient for each of the dimensions

listed above. They then scale up the baseline network to the

required target model size or computational budget using

those factors. In addition to squeeze-and-excitation blocks,

the base EfficientNet-B0 network is built on the inverted

bottleneck residual blocks of MobileNetV2.

Table I EfficientNetB0 Architecture

The architecture of the baseline EfficientNetB0 is shown in

table I. MBConv stands for MobileNet Convolution[21] k

stands for the kernel followed by the kernel size. FC stands

for Fully Connected Layer. This compound scaling method

consistently improves model accuracy and efficiency for

scaling up existing models such as MobileNet[21] and

ResNet compared to conventional scaling methods We

then scale up the baseline network to obtain a family of

models, called EfficientNets.

ResNet

The vanishing gradient problem was the primary reason for

the development and proposal of ResNets[24]. The error is

calculated and gradient values are determined during the

backpropagation stage. The weights are modified after the

gradients are transmitted back to hidden layers. The

gradient determination process is repeated until the input

layer is reached, after which it is sent back to the next

concealed layer. As a result, the weights of the first layers

will either update slowly or remain unchanged. In other

words, the network's initial layers will not be able to learn

successfully. As a result, deep network training will not

converge, and accuracy will begin to deteriorate or saturate

at a specific value.

Table II ResNet50V2 Architecture

The ResNet design is made up of a skip connection that

bypasses some layers in the middle. As shown in table II,

we trained ResNet50, a variation of the ResNet architecture

with 48 Convolution layers, 1 MaxPool layer, and 1

Average Pool layer. We have one layer thanks to a

convolution with a kernel size of 7 * 7 and 64 distinct

kernels, all with a stride of size 2. Following that, we have

max pooling with a stride size of 2. There is a 1 * 1,64

kernel in the next convolution, followed by a 3 * 3,64

kernel, and finally a 1 * 1,256 kernel. These three layers are

repeated three times in total, giving us nine layers in this

phase. Following there is a kernel of 1 * 1,128, followed by

a kernel of 3 * 3,128, and finally a kernel of 1 * 1,512. This

phase was performed four times, giving us a total of 12

layers. Then there's a 1 * 1,256 kernel, followed by 3 *

3,256 and 1 * 1,1024 kernels, which are repeated six times

for a total of 18 layers. Then a 1 * 1,512 kernel was added,

followed by two more 3 * 3,512 and 1 * 1,2048 kernels, for

a total of nine layers. After that, average pooling is

performed, followed by a fully connected layer of 1000

nodes, and finally, a softmax function is used.

Fig 4(a)

Fig 4 (b)

Fig 4 (c)

Fig 4(d)

Fig 5(a)

Fig 5(b)

Fig 5(c)

Fig 5(d)

Results for ResNet50

The training and validation graphs for ResNet50 trained on

the DFDC dataset are shown in Figures 4(a) and (b). The

architecture identifies the images with reasonable accuracy

and achieves the optimum value with less computational

resources because ResNet50 was initialised with ImageNet

pretrained weights during training. The training and

validation graphs for ResNet50 trained on the CelebDF

dataset are shown in Figure 4(c) and 4(d). In order to

compare the architecture trained on CelebDF dataset with

the model built on DFDC, an equal number of samples and

epochs were configured for the architecture trained on

CelebDF dataset. The model trained on DFDC early stops

on the epoch-15 because validation loss which was the

metric monitored did not improve whereas for the model,

trained on CelebDF did not stop training even after 20

epochs.

Sample Size Training

Accuracy

Validation

Accuracy

10 96% 90%

20 97% 95%

40 99% 97%

50 99% 98%

80 98% 96%

Table III Results obtained for ResNet50

ResNet50 architecture, as seen anecdotally in the above

table, delivers a validation accuracy of 90% as a constant

curve when trained on 10 samples randomly chosen from

CelebDF and DFDC datasets. If the validation accuracy

graph remains constant, then the model is overfitting. To

deal with the problem of overfitting, two methods are used.

The first step is to minimise the network's complexity, and

the second is to increase the amount of data used to train

the model. We've gradually added additional data while

monitoring ResNet's performance. We set the callback

patience value to 4 throughout the training procedure. This

means that if the model is found to have obtained constant

validation loss for 4 epochs, then the training is terminated.

This is done as a precaution in order to avoid overfitting.

Trained\Tested DFDC CelebDF

DFDC 96.06% 88%

CelebDF 68.6% 98.6%

DFDC+CelebDF 80% 99%

Table IV Cross Dataset and Intra-dataset performance

obtained for ResNet50

As seen in Table IV, we're interested in both intra-dataset

and cross-dataset detection performance. The intra-

detection accuracy of DFDC and CelebDF is nearly same,

while the cross-dataset accuracy is significantly variable.

Based on the information presented above, an architecture

trained on a single dataset may not be suitable for detecting

deepfake samples from a different dataset. As a result,

ResNet50 models trained on samples from both datasets

outperform other models in both intra-dataset and cross-

dataset circumstances.

Results for EfficientNetB0

Fig 5(a) and (b) show the training and validation graphs

obtained for EfficientNetB0 trained on the DFDC dataset.

Since EfficientNetB0 has also been initialized with

ImageNet pretrained weights during training. Fig 5(c) and

5(d) show the training and validation graphs obtained

EfficientNetB0 trained on the CelebDF dataset. Equal

number of samples and epochs were configured for the

architecture trained on CelebDF dataset in order to

compare with model trained on DFDC. Both the models do

not employ early stopping because validation loss keeps

improving.

Sample Size Training

Accuracy

Validation

Accuracy

10 98% 91%

20 97% 92%

40 98% 97%

50 97% 90%

80 97% 97%

Table V Results obtained for EfficientNetB0

From the above table, it can be inferred that

EfficientNetB0 architecture trained on 10 samples

randomly chosen from CelebDF and DFDC datasets,

provides a validation accuracy of 91% as a constant curve

indicating the overfitting of the model. To overcome the

problem of overfitting, we have incrementally added more

data and observed the performance of EfficientNetB0.

During the process of training, we defined the callback

patience value to be 4. This means that if the model is found

to have obtained constant validation loss for 4 epochs, then

the training is terminated. This is done as a precaution in

order to avoid overfitting.

Trained\Tested DFDC CelebDF

DFDC 95.3% 87.5%

CelebDF 70.7% 95.2%

DFDC+CelebDF 83% 97%

Table VI Cross Dataset and Intra-dataset performance

obtained for EfficientNetB0

In terms of the baseline B0, we were curious about the

intra- and cross-dataset detection performance. As shown

in Table VI, the intra-dataset detection accuracy of DFDC

and CelebDF is nearly same, while the cross-dataset

accuracy is significantly varying similar to the case as

observed in ResNet50. Based on the information presented

above, an architecture trained on a single dataset may not

be suitable for detecting deepfake samples from a different

dataset even in the case of EfficientNetB0. Hence, in both

intra-dataset and cross-dataset circumstances,

EfficientNetB0 trained on samples from both datasets

tends to perform better.

Conclusion and Future Work

As deepfakes become more common, automated solutions

are becoming increasingly important in combating them.

All societal features and implications of these high-impact

systems should be investigated by practitioners.On racially

conscious datasets balanced by gender and race, we

examined the predictive performance of popular deepfake

detectors.

In this paper, we explored the performance of two state-of-

the-art architectures in the domain of video classification.

We conducted this research in order to answer the question

“Which architecture performs better using limited

computational resources when provided with less amount

of data?” From the results we obtained, we can

conclusively ascertain that ResNet50 is the better choice.

As the number of samples used for training is increased,

ResNet50 tends to achieve better performance results on

real world data and also uses less computational resources

as it achieves the desired accuracy in earlier stages of

training and employs early stopping, terminating the

training process.

We can't compare our results directly to the data in the

entire DFDC findings because the best performing

algorithms at the Deepfake Detection Challenge [3]

obtained an accuracy of 82.56 percent across a

considerably bigger test dataset than we used here. We

believe that our results help us to understand how deepfake

video detection can be accomplished using modern

architectures.

A more extensive comparison of many alternative state-of-

the-art architectures, such as InceptionV3[25] and

XceptionNet[26], could be included in future research.

Further research can also produce results that can help

answer the question of which architecture can be used in a

real-world application where the data isn't structured or

labelled at all. In addition, our entire study relied on

supervised learning. The notion of Unsupervised

Contrastive Learning[27] can also be utilised to detect

deepfakes via unsupervised learning. Recurrent Neural

Networks, in a similar vein, can be utilised to solve this

video categorization problem[5].

Since deepfake media is being shared at an alarming pace

on social media, the scope for research into this subject is

fast expanding. Future work may potentially result in

changes to a current architecture's fundamental parameters

and hyperparameters. Specifically, seeing how

performance changes when alternative optimisers, loss

functions, and the metric being watched are used. Well-

funded research could also lead to the development of a

whole new architecture that outperforms previous systems.

This new architecture might have a new layer orientation,

a new kernel function, less training constraints and a better

performance on real world data.

Acknowledgements

Firstly, we would like to express our sincere gratitude to

Dr. M. P. Pushpalatha, HOD of Dept. of Computer Science

and Engineering, JSS STU for providing an excellent

environment for our education and encouraging us

throughout our stay in college. We extend our heartfelt

gratitude to our guide Dr. Manimala, Asst. Professor

of Dept. of Computer Science and Engineering, JSS STU

who has supported us throughout our project with her

patience and knowledge whilst allowing us the room to

work in our own way.

References

[1] Gary Bradski and Adrian Kaehler. Learning OpenCV:

Computer vision with the OpenCV library. O’Reilly

Media, Inc., 2008.

[2] Francois Chollet et al. Keras. https://keras.io, 2015.

Last Accessed: 21 December 2020.

[3] Brian Dolhansky, Russ Howes, Ben Pflaum, Nicole

Baram, and Cristian Canton Ferrer. The deepfake

detection challenge (DFDC) preview dataset. arXiv

preprint arXiv:1910.08854, 2019.

[4] Ian Goodfellow. NIPS 2016 tutorial: Generative

adversarial networks. arXiv preprint

arXiv:1701.00160, 2016.

https://keras.io/
https://keras.io/

[5] David Guera and Edward J Delp. Deepfake video

detection¨ using recurrent neural networks. In 2018

15th IEEE International Conference on Advanced

Video and Signal Based Surveillance (AVSS), pages

1–6. IEEE, 2018.

[6] Sepp Hochreiter and Jurgen Schmidhuber. LSTM can

solve¨ hard long time lag problems. In Advances in

neural information processing systems, pages 473–

479, 1997.

[7] Marissa Koopman, Andrea Macarulla Rodriguez, and

Zeno Geradts. Detection of deepfake video

manipulation. In The 20th Irish Machine Vision and

Image Processing Conference, pages 133–136, 2018.

[8] Yuezun Li, Ming-Ching Chang, and Siwei Lyu. In

ictu oculi: Exposing AI generated fake face videos by

detecting eye blinking. arXiv preprint

arXiv:1806.02877, 2018.

[9] Artem A Maksutov, Viacheslav O Morozov,

Aleksander A Lavrenov, and Alexander S Smirnov.

Methods of deepfake detection based on machine

learning. In IEEE Conference of Russian Young

Researchers in Electrical and Electronic Engineering

(EIConRus), pages 408–411. IEEE, 2020.

[10] Ivan Petrov, Daiheng Gao, Nikolay Chervoniy,

Kunlin Liu, Sugasa Marangonda, Chris Ume, Jian

Jiang, Luis RP, Sheng´ Zhang, Pingyu Wu, et al.

Deepfacelab: A simple, flexible and extensible face

swapping framework. arXiv preprint

arXiv:2005.05535, 2020.

[11] Simranjeet Singh, Rajneesh Sharma, and Alan F.

Smeaton. Using GANs to synthesise minimum

training data for deepfake generation. In Proceedings

of the 28th Irish Conference on Artificial Intelligence

& Cognitive Science Dublin, Ireland http://ceur-

ws.org/Vol-2771/, pages 193– 204, December 2020.

[12] Zhou Wang, Eero P Simoncelli, and Alan C Bovik.

Multiscale structural similarity for image quality

assessment. In The 27th Asilomar Conference on

Signals, Systems & Computers, volume 2, pages

1398–1402. IEEE, 2003.

[13] Yifei Zhang. A Better Autoencoder for Image:

Convolutional Autoencoder.2018

[14] L. O. Alvaro Figueira, The current state of fake news:

challenges and opportunities, in ICHSCIST,

Barcelona, 2017

[15] W. D. Mei Wang, Deep Face Recognition: A

Survey,2019.

[16] R. V.-R. J. F. A. M. J. O.-G. Ruben Tolosana,

DeepFakes and Beyond A Survey of Face

Manipulation and Fake Detection, pp. 1-15, 2020

[17] Luca Bondi, Edoardo Daniele Cannas, Paolo

Bestagini, Stefano Tubaro. Training Strategies and

Data Augmentations in CNN-based DeepFake Video

Detection Computer Vision and Pattern Recognition,

arxiv:2011.07792

[18] Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, Siwei

Lyu Celeb-DF,Computer Vision and Pattern

Recognition (cs.CV) Arxiv:1909.12962

[19] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, Yu

Qiao Joint Face Detection and Alignment using

Multi-task Cascaded Convolutional Networks.

Computer Vision and Pattern Recognition (cs.CV).

arxiv:1604.02878

[20] Mingxing Tan, Quoc V. Le EfficientNet: Rethinking

Model Scaling for Convolutional Neural Networks.

Computer Vision and Pattern Recognition (cs.CV).

arxiv:1905.11946

[21] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco

Andreetto, Hartwig Adam. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision

Applications Computer Vision and Pattern

Recognition (cs.CV).arxiv:1704.04861

[22] Mark Sandler, Andrew Howard, Menglong Zhu,

Andrey Zhmoginov, Liang-Chieh Chen.

MobileNetV2: Inverted Residuals and Linear

Bottlenecks. Computer Vision and Pattern

Recognition (cs.CV).arxiv:1801.04381

[23] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay

Vasudevan, Mark Sandler, Andrew Howard, Quoc V.

Le. MnasNet: Platform-Aware Neural Architecture

Computer Vision and Pattern Recognition (cs.CV) .

arxiv:1807.11626

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian

Sun. Deep Residual Learning for Image Recognition

Computer Vision and Pattern Recognition (cs.CV) .

arxiv:1512.03385

[25] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe

Jonathon Shlens, Zbigniew Wojna. Rethinking the

Inception Architecture for Computer Vision.

Computer Vision and Pattern Recognition(cs.CV) .

arxiv:1512.00567

[26] Francois Chollet. Xception: Deep Learning with

Depthwise Separable Convolutions. Computer Vision

and Pattern Recognition(cs.CV). arXiv:1610.02357

[27] Sheldon Fung, Xuequan Lu, Chao Zhang, Chang Tsun

Li DeepfakeUCL: Deepfake Detection via

Unsupervised Contrastive Learning. Computer Vision

and Pattern Recognition(cs.CV). arXiv:2104.11507

http://ceur-ws.org/Vol-2771/
http://ceur-ws.org/Vol-2771/
http://ceur-ws.org/Vol-2771/

