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Abstract 

 

Deepfake is a hybrid of the fake and deep-learning 

technologies. Deep learning is an artificial intelligence 

function that can be used to both build and identify deepfakes. 

Fake films, photos, news, and terrorist incidents are all 

created using Deepfake algorithms. When the number of 

deepfake videos and photos on social media rises, people will 

lose faith in the truth. Artificial intelligence breakthroughs 

have made it increasingly difficult to distinguish between real 

and counterfeit information, particularly photos and videos. 

Deepfake films, which are created by modifying videos using 

advanced machine learning techniques, are a recent invention. 

In the destination video, the face of an individual from the 

source video is replaced with the face of a second person. As 

deepfakes get more seamless and easier to compute, this 

concept is becoming further polished. Deepfakes, when 

combined with the scope and speed of social media, might 

easily deceive people by portraying someone saying things that 

never happened, leading to people believing imaginary 

scenarios, causing distress, and propagating fake news. 

Individuals, communities, organisations, security, religions, 

and democracy are all being impacted by deepfakes. In this 

study, we look at a number of strategies that can be used to 

identify deepfake videos. We employ a Transfer Learning 

strategy in which the system applies the feature information it 

learned while training on the ImageNet dataset and updates 

itself while training on our dataset. The trained models are 

used to classify counterfeit and unaltered videos. We then 

perform a comparative analysis on their performance metrics. 

Key Words: deep learning, deepfake, artificial intelligence, 

detection, transfer learning 

Introduction 
 

Deepfakes is a video modification technique that was first 

used to replace the faces of celebrities in video recordings 

published to sites like Reddit. They function by substituting 

one person's face in an original video with the face of a  

second person who is inserted, resulting in similar head 

movement, facial expressions, lighting, and lip syncing. 

While thousands of images of the second person to be  

superimposed into the deepfake are frequently required, 

current study has shown that successful deepfakes can be 

made with a reduced number of second person images[11].  

 

Deepfakes were first implemented using convolutional 

autoencoders [13]. Using an encoder, images of both 

subjects are reduced to lower dimensions and then rebuilt 

using a decoder. Both source and destination facial 

expressions are trained in this manner. A trained encoder 

of the source is mapped with a decoder trained on the target 

subject's face to conduct a face swap. Adding a generative 

adversarial network (GAN) to the decoder is an 

enhancement to this technology [4]. A generator and a 

discriminator are the two components that make up a GAN. 

The generator's job is to create images that seem like the 

source, while the discriminator assesses whether or not the 

image is fake. It is an iterative process, which makes 

deepfakes realistic as they are constantly learning. The 

availability of such advanced deepfake creation tools in the 

hands of regular researchers, as well as the possibility of 

their exploitation by others, has raised worries about their 

probable misuse. Deepfacelab[10], FakeApp, and 

OpenFaceSwap are GUI-based tools for creating deepfake 

movies that are accessible to relatively inexperienced 

researchers. With these techniques, it is becoming 

increasingly possible to manipulate video evidence for 

political purposes, false video evidence, and fake news. As 

a result, this presents a challenge for society as well as a 

potential for innovative entertainment, but it necessitates 

the development of an effective system for detecting 

counterfeit video. 

 

While most detectors function admirably on a test subset 

derived from the same data distribution as those on which 

they were trained, how do they perform in a cross-dataset 

scenario? When a CNN trained for deepfake detection on 

dataset A is put to the test on dataset B, what happens? 

Because it is difficult to acquire direct insights into what 

happens within a CNN black-box model, we present a 

cross-dataset comparison of CNN-based deepfake 

detection algorithms in this study. We train the most 

common architectures used by competitors in the 

DeepFake Detection Challenge [3] and analyse how 

alternative training approaches affect intra-dataset and 

cross-dataset detection performances, rather than focusing 



on inventing a novel methodology suited for a single 

dataset. Our tests are based on datasets that are publicly 

available, such as the DeepFake Detection Challenge 

Dataset [3] and CelebDF(v2) [18]. Because video 

compression is frequently stronger than image 

compression, we focus on faces extracted from deepfake 

videos rather than just deepfake photos.  We  also  perform  

some  analysis  taking into  account  a  limited  availability  

of  training  data.   

 

Related Work on Deepfake Detection 

 

Structural Similarity Index (SSIM) is a perceptual metric 

proposed in the work [12] that evaluates image quality 

degradation induced by processing such as data 

compression or data transmission losses, and for deepfake 

films, a quality degradation in frames is attributed to a less 

well-trained neural net. It's a comprehensive reference 

metric that necessitates the use of two photos taken at the 

same time. The SSIM is determined by luminance, 

contrast, and structure. When comparing the SSIM time 

series of an original video to its deepfakes version, 

discrepancies in frames owing to pixelated faces appear.  

 

Observing the eye blinking is another approach to spot 

deepfakes. Blinking of the eyes is a basic biological feature 

that is incredibly difficult to replicate in deepfake films. 

Most training datasets of movies used for deepfake 

detection feature a small number of faces with their eyes 

closed, with an average rate of 4.5 blinks per second and 

each blink lasting 0.1-0.4 seconds. As a result, as revealed 

in the paper[8,] the lack of eye blinking can be a promising 

signal of a deepfake film. 

 

The authors of [3] provide a sneak peek into deepfake 

identification issues using a publicly available dataset and 

two facial alteration techniques. The authors of [14] discuss 

the challenges and prospects of false news and the detection 

of fake news by presenting algorithms for detecting fake 

news from web services. The report [15] presents a 

thorough examination of current advances in deep face 

recognition, including databases and protocols, algorithm 

designs, and application scenarios. A overview of face 

image modification techniques, deepfake approaches, and 

methods to identify manipulations is presented in this 

paper[16]. 

 

The paper which is most similar to our work is by Luca 

Bondi, Edoardo Daniele Cannas, Paolo Bestagini, Stefano 

Tubaro, where they investigate the intra dataset and cross 

dataset performance of different architectures that are 

equipped with different training and data augmentation 

techniques. They investigate the model performance using 

Binary Cross Entropy and Triplet loss functions.[17] 
 

Deepfake Datasets 
 

A. DFDC Dataset 

The footage in the DFDC collection was shot in non-

natural contexts such as news or briefing rooms.   The 

source data included 3,426 subjects with an average of 14.4 

video searches per subject, with the majority of videos 

taken in 1080p, totaling 48,190 videos with an average of 

68.8 seconds each.Recordings were shot in a range of 

natural settings without professional lighting or cosmetics 

to illustrate the potential harm of Deepfaked videos 

targeted to injure a single, maybe non-public person. 

After the source films were pre-processed with an internal 

face tracking and alignment algorithm, all face frames 

were cropped, aligned, and downsized to 256x256 pixels.   

 

 

Fig 1: Sample frames of the DFDC Dataset 

B. CelebDF Dataset 

The Celeb-DF (v2) dataset contains actual and DeepFake 

generated movies of comparable visual quality to those 

found on the internet. The Celeb-DF (v2) dataset is 

significantly larger than the Celeb-DF (v1) dataset, which 

only contained 795 DeepFake movies. Celeb-DF now 

contains 590 original YouTube videos with topics of 

various ages, ethnic groupings, and genders, as well as 

5639 DeepFake videos. 

 Celeb-DF's videos are created with a new DeepFake 

synthesis algorithm, which is crucial to the improved 

visual quality. Synthesized faces' low resolution has been 

enhanced to 256x256 pixels. This is accomplished by 

employing encoder and decoder models that have 

additional layers and dimensions.  



     

Fig 2: Sample frames of the CelebDF Dataset 

Data Preprocessing 
 

We start by extracting frames from a video sample. This is 

done using OpenCV Library[1] , more specifically the 

VideoCapture class. We also use this Library to scale the 

extracted frames in order to  maintain the aspect ratio 

between them. The scaling factor to be used while scaling, 

is dependant on the dimensions of the frame extracted. For 

example, if the dimensions of the extracted frame is greater 

than 1900, the scaling factor will be 0.33. On the same 

lines, if the dimensions of the extracted frame is lesser than 

300, the scaling factor will be 2. Lastly, if the dimensions 

of the extracted frame is in between 1000 and 1900, the 

scaling factor is defined to be 0.5. These extracted scaled 

frames are now passed onto the Face extraction module. 

The face extraction process is done using Multi Cascaded 

Convolutional Neural Networks (MTCNN)[19] which 

extracts the faces from the frames with a certain confidence 

level. MTCNN extracts faces in three stages The MTCNN 

creates numerous frames in the first stage, scanning the 

entire image from the top left corner to the bottom right 

corner. P-Net (Proposal Net), a shallow, fully connected 

CNN, is used to retrieve information. In the second stage 

all the information from P-Net is used as an input for the 

next layer of CNN called as R-Net(Refinement Network), 

a fully connected, complex CNN which rejects a majority 

of the frames which do not contain faces. In the third and 

last stage, a more powerful and complicated CNN known 

as O-Net (Output Network) outputs the facial landmark 

location recognising a face from the given image/video, as 

the name suggests. 

 

 
 

Fig 3 Sample of the faces extracted using MTCNN 

The fig 3 shows the faces extracted using MTCNN. The 

next phase of this Pipeline is the splitting of the dataset into 

training, testing and validation set.The training set is 

applied to train, or fit, your model. The validation set is 

used for unbiased model evaluation during hyperparameter 

tuning and the test set is needed for an unbiased evaluation 

of the final model. You shouldn’t use it for fitting or 

validation. Splitting a dataset might also be important for 

detecting if your model suffers from one of two very 

common problems, called underfitting and overfitting.  

To avoid these problems, a good rule of thumb for the ratio 

of splitting is 8:1:1. We follow this rule and split our 

dataset  of the cropped faces into training, testing and 

validation set.  

 

Methodology 
 

We must first develop a homogenous training and testing 

technique in order to successfully compare intra-dataset 

and cross-dataset detection results. A face detection and 

extraction phase is the first step in assessing whether a face 

in a video has been modified. Due to their prominence in 

the DeepFake Detection Challenge, we train 

EfficientNetB0 [20] and Resnet50 [24] architectures as 

reference CNNs, once faces are extracted and are uniform 

in size. Each face's likelihood of being a fake is predicted 

using the trained model.  

 

After 2000 batch repetitions with no reduction in validation 

loss, the network is initialised with a model pre-trained on 

ImageNet, batch of 32 faces, Adam optimizer, initial 

learning rate of 10e-4 multiplied by a factor 0.1, and initial 

learning rate of 10e-4 multiplied by a factor 0.1. When the 

learning rate goes below 10-8, the training is over. The 

final model is the one that minimises the validation loss at 

each iteration. Training and validation batches are always 

balanced, with equal quantities of genuine and artificial 

faces chosen at random. The two CNN models are trained 

using the training sets of the two datasets, and then each 

model is tested against the test set of each dataset. 

 

We trained the models on datasets that were of size 

10,20,40, 50 and 80. We then observed the intra-dataset 

and cross-dataset performance of these models.  The results 

of our experiments were produced using Python3 on Colab, 

a research based Jupyter Notebook server provided by 

Google. In addition to training models on individual 

datasets, we also trained them on combination of both 

datasets and evaluated their performance. 

 

 

 

 



EfficientNet 
 

The first method we investigate is EfficientNet[20]. 

Convolutional Neural Networks (ConvNets) are often built 

with a fixed resource budget and then scaled up for higher 

accuracy when more resources become available. In their 

research [20], they look at model scaling in depth and find 

that properly balancing network depth, width, and 

resolution can improve performance. While increasing 

individual dimensions improves model performance, they 

found that balancing all network dimensions, including 

width, depth, and picture resolution, against available 

resources produced the best overall results. The initial stage 

in the compound scaling strategy under a fixed resource 

constraint is to conduct a grid search to establish the 

relationship between different scaling dimensions of the 

baseline network (e.g., 2x more FLOPS). This calculates 

the proper scaling coefficient for each of the dimensions 

listed above. They then scale up the baseline network to the 

required target model size or computational budget using 

those factors. In addition to squeeze-and-excitation blocks, 

the base EfficientNet-B0 network is built on the inverted 

bottleneck residual blocks of MobileNetV2. 

 
Table I EfficientNetB0 Architecture 

 

The architecture of the baseline EfficientNetB0 is shown in 

table I. MBConv stands for MobileNet Convolution[21] k 

stands for the kernel followed by the kernel size. FC stands 

for Fully Connected Layer. This compound scaling method 

consistently improves model accuracy and efficiency for 

scaling up existing models such as MobileNet[21] and 

ResNet  compared to conventional scaling methods We 

then scale up the baseline network to obtain a family of 

models, called EfficientNets.  

 

ResNet 
 

The vanishing gradient problem was the primary reason for 

the development and proposal of ResNets[24]. The error is 

calculated and gradient values are determined during the 

backpropagation stage. The weights are modified after the 

gradients are transmitted back to hidden layers. The 

gradient determination process is repeated until the input 

layer is reached, after which it is sent back to the next 

concealed layer. As a result, the weights of the first layers 

will either update slowly or remain unchanged. In other 

words, the network's initial layers will not be able to learn 

successfully. As a result, deep network training will not 

converge, and accuracy will begin to deteriorate or saturate 

at a specific value. 

 

 
 

Table II ResNet50V2 Architecture 

 

The ResNet design is made up of a skip connection that 

bypasses some layers in the middle. As shown in table II, 

we trained ResNet50, a variation of the ResNet architecture 

with 48 Convolution layers, 1 MaxPool layer, and 1 

Average Pool layer. We have one layer thanks to a 

convolution with a kernel size of 7 * 7 and 64 distinct 

kernels, all with a stride of size 2. Following that, we have 

max pooling with a stride size of 2. There is a 1 * 1,64 

kernel in the next convolution, followed by a 3 * 3,64 

kernel, and finally a 1 * 1,256 kernel. These three layers are 

repeated three times in total, giving us nine layers in this 

phase. Following there is a kernel of 1 * 1,128, followed by 

a kernel of 3 * 3,128, and finally a kernel of 1 * 1,512. This 

phase was performed four times, giving us a total of 12 

layers. Then there's a 1 * 1,256 kernel, followed by 3 * 

3,256 and 1 * 1,1024 kernels, which are repeated six times 

for a total of 18 layers. Then a 1 * 1,512 kernel was added, 

followed by two more 3 * 3,512 and 1 * 1,2048 kernels, for 

a total of nine layers. After that, average pooling is 

performed, followed by a fully connected layer of 1000 

nodes, and finally, a softmax function is used. 



 
Fig 4(a)  
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Fig 4(d) 
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Results for ResNet50 
 

The training and validation graphs for ResNet50 trained on 

the DFDC dataset are shown in Figures 4(a) and (b). The 

architecture identifies the images with reasonable accuracy 

and achieves the optimum value with less computational 

resources because ResNet50 was initialised with ImageNet 

pretrained weights during training. The training and 

validation graphs for ResNet50 trained on the CelebDF 

dataset are shown in Figure 4(c) and 4(d). In order to 

compare the architecture trained on CelebDF dataset with 

the model built on DFDC, an equal number of samples and 

epochs were configured for the architecture trained on 

CelebDF dataset. The model trained on DFDC early stops 

on the epoch-15 because validation loss which was the 

metric monitored did not improve whereas for the model, 

trained on CelebDF did not stop training even after 20 

epochs.   

 

Sample Size Training 

Accuracy 

Validation 

Accuracy 

10 96% 90% 

20 97% 95% 

40 99% 97% 

50 99% 98% 

80 98% 96% 

 

Table III Results obtained for ResNet50 

 

ResNet50 architecture, as seen anecdotally in the above 

table, delivers a validation accuracy of 90% as a constant 

curve when trained on 10 samples randomly chosen from 

CelebDF and DFDC datasets. If the validation accuracy 

graph remains constant, then the model is overfitting. To 

deal with the problem of overfitting, two methods are used. 

The first step is to minimise the network's complexity, and 

the second is to increase the amount of data used to train 

the model. We've gradually added additional data while 

monitoring ResNet's performance. We set the callback 

patience value to 4 throughout the training procedure. This 

means that if the model is found to have obtained constant 

validation loss for 4 epochs, then the training is terminated. 

This is done as a precaution in order to avoid overfitting. 

 

Trained\Tested DFDC CelebDF 

DFDC 96.06% 88% 

CelebDF 68.6% 98.6% 

DFDC+CelebDF 80% 99% 

 

Table IV Cross Dataset and Intra-dataset performance 

obtained for ResNet50 

 

As seen in Table IV, we're interested in both intra-dataset 

and cross-dataset detection performance. The intra-

detection accuracy of DFDC and CelebDF is nearly same, 

while the cross-dataset accuracy is significantly variable. 

Based on the information presented above, an architecture 

trained on a single dataset may not be suitable for detecting 

deepfake samples from a different dataset. As a result, 

ResNet50 models trained on samples from both datasets 

outperform other models in both intra-dataset and cross-

dataset circumstances. 

 

Results for EfficientNetB0 

 

Fig 5(a) and (b) show the training and validation graphs 

obtained for EfficientNetB0 trained on the DFDC dataset. 

Since EfficientNetB0 has also been initialized with 

ImageNet pretrained weights during training. Fig 5(c) and 

5(d) show the training and validation graphs obtained 

EfficientNetB0 trained on the CelebDF dataset. Equal 

number of samples and epochs were configured for the 

architecture trained on CelebDF dataset in order to 

compare with model trained on DFDC. Both the models do 

not employ early stopping because validation loss keeps 

improving.  

 

Sample Size Training  

Accuracy 

Validation 

Accuracy 

10 98% 91% 

20 97% 92% 

40 98% 97% 

50 97% 90% 

80 97% 97% 

 

Table V Results obtained for EfficientNetB0 

 

From the above table, it can be inferred that  

EfficientNetB0 architecture trained on 10 samples 

randomly chosen from CelebDF and DFDC datasets, 

provides a validation accuracy of 91% as a constant curve 

indicating the overfitting of the model. To overcome the 

problem of overfitting, we have incrementally added more 

data and observed the performance of EfficientNetB0. 

During the process of training, we defined the callback 

patience value to be 4. This means that if the model is found 

to have obtained constant validation loss for 4 epochs, then 

the training is terminated. This is done as a precaution in 

order to avoid overfitting. 

 

 

 



Trained\Tested DFDC CelebDF 

DFDC 95.3% 87.5% 

CelebDF 70.7% 95.2% 

DFDC+CelebDF 83% 97% 

 

Table VI Cross Dataset and Intra-dataset performance 

obtained for EfficientNetB0 

 

In terms of the baseline B0, we were curious about the 

intra- and cross-dataset detection performance. As shown 

in Table VI, the intra-dataset detection accuracy of DFDC 

and CelebDF is nearly same, while the cross-dataset 

accuracy is significantly varying similar to the case as 

observed in ResNet50. Based on the information presented 

above, an architecture trained on a single dataset may not 

be suitable for detecting deepfake samples from a different 

dataset even in the case of EfficientNetB0. Hence, in both 

intra-dataset and cross-dataset circumstances, 

EfficientNetB0 trained on samples from both datasets 

tends to perform better. 

 

Conclusion and Future Work 
 

As deepfakes become more common, automated solutions 

are becoming increasingly important in combating them. 

All societal features and implications of these high-impact 

systems should be investigated by practitioners.On racially 

conscious datasets balanced by gender and race, we 

examined the predictive performance of popular deepfake 

detectors. 

 

In this paper, we explored the performance of two state-of-

the-art architectures in the domain of video classification. 

We conducted this research in order to answer the question 

“Which architecture performs better using limited 

computational resources when provided with less amount 

of data?” From the results we obtained, we can 

conclusively ascertain that ResNet50 is the better choice. 

As the number of samples used for training is increased, 

ResNet50 tends to achieve better performance results on 

real world data and also uses less computational resources 

as it achieves the desired accuracy in earlier stages of 

training and employs early stopping, terminating the 

training process. 

 

We can't compare our results directly to the data in the 

entire DFDC findings because the best performing 

algorithms at the Deepfake Detection Challenge [3] 

obtained an accuracy of 82.56 percent across a 

considerably bigger test dataset than we used here. We 

believe that our results help us to understand how deepfake 

video detection can be accomplished using modern 

architectures. 

A more extensive comparison of many alternative state-of-

the-art architectures, such as InceptionV3[25] and 

XceptionNet[26], could be included in future research. 

Further research can also produce results that can help 

answer the question of which architecture can be used in a 

real-world application where the data isn't structured or 

labelled at all. In addition, our entire study relied on 

supervised learning. The notion of Unsupervised 

Contrastive Learning[27] can also be utilised to detect 

deepfakes via unsupervised learning. Recurrent Neural 

Networks, in a similar vein, can be utilised to solve this 

video categorization problem[5]. 

 

Since deepfake media is being shared at an alarming pace 

on social media, the scope for research into this subject is 

fast expanding. Future work may potentially result in 

changes to a current architecture's fundamental parameters 

and hyperparameters. Specifically, seeing how 

performance changes when alternative optimisers, loss 

functions, and the metric being watched are used. Well-

funded research could also lead to the development of a 

whole new architecture that outperforms previous systems. 

This new architecture might  have a new layer orientation, 

a new kernel function, less training constraints and a better 

performance on real world data.  
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