
Book Chapter Supplement: Structured Learning
from Cheap data

In this supplement we theoretically analyze the problem of learning with partially annotated outputs.
We need a more refined notation as in the book chapter: we denote Y◦(y) and Y◦(y) for the space
of all outputs that compatible and non-compatible, respectively, with y. Thus, for example, the term
Y◦n in the book chapter is denoted by Y◦(yn) here. We also use a more little different notation for
the loss l (see below).

We focus on the problem using the bridge loss, that is,

min
w

λ ‖w‖2 +
1

N

N∑
n=1

∣∣∣∣ max
y∈Y◦(yn)

(〈w, ψ(x, y)〉+ ∆(yn, y))− max
y∈Y∗(yn)

〈w, ψ(x, y)〉
∣∣∣∣
+

.

First note that we can show by a standard Lagrangian argument (cf., e.g., Proposition 12 in [2]) that,
for any λ > 0 there is an µ > 0 such that the above problem can be equivalently rewritten as follows:

min
w:‖w‖≤µ

1

N

N∑
n=1

∣∣∣∣ max
y∈Y◦(yn)

(〈w, ψ(x, y)〉+ ∆(yn, y))− max
y∈Y∗(yn)

〈w, ψ(x, y)〉
∣∣∣∣
+

. (1)

Now let us denote the base hypothesis class (the kernel class) by Fker :=
{((x, y) 7→ 〈w, ψ(x, y)〉) : ‖w‖ ≤ µ} and its induced structured-prediction class F struct :={

((x, y) 7→ ρf (x, y)) : f ∈ Fker
}
, where ρf (x, y) := maxy′∈Y◦(y) (f(x, y′) + ∆(y, y′)) −

maxy′∈Y∗(y) f(x, y′) . Finally, denote the bridge-loss class by Gbridge := lbridge ◦ F struct ,

where lbridge(t) := |t|+. Thus solving problem (1) is equivalent to performing empirical
risk minimization over the class Gbridge, that is, minf∈Fstruct

1
N

∑N
n=1 l

bridge(f(xn, yn)) =

ming∈Gbridge
1
N

∑N
n=1 g(xn, yn). Hence, we may analyze structured prediction with partially

annotation outputs within the proven framework of empirical risk minimization.

Background on Empirical Risk Minimization Let us briefly review the classic setup of empirical
risk minimization [7]. We assume that (x1, y1) , . . . , (xN , yN ) is an i.i.d. sample drawn from a
probability distribution P over X × Y . Let F be a class of functions mapping from X to some set
Y , and let l : Y × Y → [0, b] be a loss function, for some b > 0. The goal in statistical learning
theory is to find a function f ∈ F that predicts well, i.e., that has a low risk E[l(f(x))]. Denoting
the loss class by G := l◦F , this is equivalent finding a function g with small E[g]. The best function
in G we can hope to learn is g∗ ∈ argming∈G E[g].

Since g∗ is unknown, we instead compute a minimizer ĝN ∈ argming∈G Ê[g], where Ê[g] :=
1
N

∑N
n=1 g(xn). Let us compare the prediction accuracies of g∗ and ĝN . Standard learning theory

gives [7] gives, with probability at least 1− δ over the draw of the sample, E[ĝN ]− E[g∗] ≤

2 sup
g∈G

∣∣E[g]− Ê[g]
∣∣ ≤ 2E sup

g∈G

∣∣E[g]− Ê[g]
∣∣+ b

√
2 log(2/δ)

N
≤ 4RN (G) + b

√
2 log(2/δ)

N
. (2)

The first inequality is a direct consequence of the minimality of f̂ , the second one is by McDiamid’s
inequality [5], and the last inequality follows from symmetrization. Note that the result uses the
notion of the Rademacher complexity RN (G), which is defined as follows.
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Definition 1. Let σ1, . . . , σN be an i.i.d. family of Rademacher variables (random signs, i.e., each
σi takes on the values -1 and 1, with equal probability of 1/2), independent of the sample x1, . . . , xN .
Then the Rademacher complexity of G is defined as RN (G) := E supg∈G

1
N

∑N
n=1 σng(xn).

Commonly RN (G) is of the order O(1/
√
N), when we employ appropriate regularization, so in

that case the bound (2) converges at the order of O(1/
√
N). When bounding the Rademacher

complexity for Lipschitz continuous loss classes (such as the hinge loss or the squared loss), the
following lemma is often very helpful.

Lemma 2 (Talagrand’s lemma; [4], Corollary 3.17). Let l be a loss function that is L-Lipschitz
continuous and l(0) = 0. Let F be a hypothesis class of real-valued functions and denote its loss
class by G := l ◦ F . Then the following inequality holds: RN (G) ≤ 2LRN (F).

Generalization Guarantees for Structured Learning with Partially Annotated Outputs Let
us denote the set of all possible partially annotated outputs by Yp. Then we have the following main
theorem:

Theorem 3 (Generalization Bound for Structured Learning with Partially Annotated Outputs). Sup-
pose there exist b, B <∞ such that P

(
supg∈Gbridge |g(x, y)| ≤ b

)
= 1 and P (‖ψ(x, y)‖ ≤ B) = 1.

Let ∆max := supy,y′ ∆(y, y′). Denote g∗ ∈ argming∈Gbridge E[g] and ĝN ∈ argming∈Gbridge Ê[g].
Then, with probability at least 1− δ, the generalization error of structured prediction with partially
annotated outputs is bounded by:

E[ĝN ]− E[g∗] ≤
(µB + ∆max)

(
8 |Yp| |Y|+

√
2 log(2/δ)

)
√
N

.

In particular, we have consistency, that is, E[ĝN ]− E[g∗]→ 0, when N →∞.

The proof, which is given below, uses similar ideas as in [3] for multi-class classification. In partic-
ular, the following result, taken from [6] (Lemma 8.1), is used.

Lemma 4. Let F1, . . . ,Fl be hypothesis sets in RX , and let F := {max(f1, . . . , fl} : fi ∈ Fi, i ∈
{1, . . . , l}}. Then, Rn(F) ≤

∑l
j=1 Rn(Fj).

Proof. By assumption, we have almost surely,

sup
g∈Gbridge

|g(x, y)| ≤ sup
f∈Fstruct

|f(x, y)| ≤ sup
f∈Fker

|f(x, y)|+ ∆max ≤ µB + ∆max .

Thus, by (2), we have, with probability at least 1− δ,

E[ĝN ]− E[g∗] ≤ 4RN (Gbridge) + (µB + ∆max)

√
2 log(2/δ)

N
(3)

For the remainder of the proof it thus suffices to bound RN (Gbridge). To this end, we proceed in
three steps: 1. showing that RN (Gbridge) ≤ 2RN (F struct), 2. showing that RN (F struct) can
be bounded by the term

∑
y∗∈Yp E

[
supf∈Fker

1
N

∑N
n=1 σnρf (xi, y

∗)
]
, and 3. bounding the latter

term.

STEP 1 The first step is also the simplest of the three: it is an obvious consequence of Talagrand’s
lemma (Lemma 2) as the bridge loss lbridge : t 7→ |t|+ is evidently 1-Lipschitz with lbridge(0) := 0.
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STEP 2 Next, we note that

RN (F struct)
def.
= E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, yn)

]
(∗)
≤

∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, yn)1y∗=yn

]

≤ 1

2

∑
y∗∈Yp

E

 sup
f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗) (2 · 1y∗=yn − 1)︸ ︷︷ ︸

⊆{−1,1}


+

1

2

∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗)

]

(∗∗)
=

∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗)

]
,

where (∗) is by the sub-additivity of the supremum, and for (∗∗) we exploit that −σn has the same
distribution as σn.

STEP 3 We start by rewriting ρf explicitly:∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗)

]

=
∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σn max
y∈Y◦(y∗)

(f(x, y) + ∆(y∗, y))− max
y∈Y∗(y∗)

f(x, y)

]

≤
∑
y∗∈Yp

(
RN

(
max

y∈Y◦(y∗)

({
x 7→ f(x, y) + ∆(y∗, y) : f ∈ Fker

}))

+ RN

(
max

y∈Y∗(y∗)

({
x 7→ f(x, y) : f ∈ Fker

})))
We now may apply Lemma 4 to remove the maxima in the above bound, that is, for each y∗,

RN

(
max

y∈Y∗(y∗)

({
x 7→ f(x, y) : f ∈ Fker

}))
≤

∑
y∈Y∗(y∗)

RN

(({
x 7→ f(x, y) : f ∈ Fker

}))
and, similar,

RN

(
max

y∈Y◦(y∗)

({
x 7→ f(x, y) + ∆(y∗, y) : f ∈ Fker

}))
≤

∑
y∈Y◦(y∗)

RN

({
x 7→ f(x, y) + ∆(y∗, y) : f ∈ Fker

})
≤

∑
y∈Y◦(y∗)

(
RN

({
x 7→ f(x, y) : f ∈ Fker

})
+ ∆(y∗, y)︸ ︷︷ ︸
≤∆max

/
√
N

)

≤ |Y
◦(y∗)|∆max

√
N

+
∑

y∈Y◦(y∗)

RN

({
x 7→ f(x, y) : f ∈ Fker

})
,

where we have used the well-known fact (e.g., Theorem 12.5 in [1]) that for a any constant c ∈ R,
RN (F + c) ≤ RN (F) + |c| /

√
N . Furthermore, the Rademacher complexity of kernel classes has

been characterized in [1] (Lemma 22), which yields RN

(({
x 7→ f(x, y) : f ∈ Fker

}))
≤ µB√

N
.

Thus, because |Y◦(y∗)|+ |Y∗(y∗)| = |Y|,∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗)

]
≤ |Yp| |Y| µB + ∆max

√
N

.
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Putting things together, we thus finally obtain the following bound on the Rademacher complexity:

RN (Gbridge)
STEP 1
≤ 2RN (F struct)

STEP 2
≤ 2

∑
y∗∈Yp

E

[
sup

f∈Fker

1

N

N∑
n=1

σnρf (xn, y
∗)

]
STEP 3
≤ 2 |Yp| |Y| (µB + ∆max)√

N
.

Combining the above result with (3), we obtain the claimed result.
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