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The application of deep learning to a diverse array of research problems has accelerated
progress across many fields, bringing conventional paradigms to a new intelligent era. Just
as the roles of instrumentation in the old chemical revolutions, we reinforce the necessity
for integrating deep learning in molecular systems engineering and design as a
transformative catalyst towards the next chemical revolution. To meet such research
needs, we summarize advances and progress across several key elements of molecular
systems: molecular representation, property estimation, representation learning, and
synthesis planning. We further spotlight recent advances and promising directions for
several deep learning architectures, methods, and optimization platforms. Our perspective
is of interest to both computational and experimental researchers as it aims to chart a path
forward for cross-disciplinary collaborations on synthesizing knowledge from available
chemical data and guiding experimental efforts.
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INTRODUCTION

Chemicals play a central role not only in finding solutions to many pressing issues, but also in
sustainably developing the global economy (Miodownik, 2015). Several chemical inventions have
had profound impacts on our lives, like the pivotal roles of synthetic fertilizers and industrial catalysis
in our food-energy-water nexus (Hagen, 2015; Garcia and You, 2016; Garcia and You, 2017). Many
past developments, however, have arisen from accidental or heuristic rule-based experiments while
being restricted by time and resources, and to a small class of molecular structures (Gani, 2004;
Austin et al., 2016). From a chemical engineering viewpoint, another complexity dimension to the
development of new chemicals lies in the multi-scale nature of chemical products and processes
(Alshehri et al., 2020; Zhang et al., 2020). As chemicals offer hope for addressing urgent needs,
persisting to perceive current design difficulties to be solely a result of molecular complexities can
lead global environmental efforts to fall far short of 2,030 targets (Miodownik, 2015). As seen, a shift
from the current paradigm is needed to allow new drivers of innovations in chemical-based products
and processes to take root.

Deep learning has emerged to transformmany elements of today’s services and technologies, from
search engines to robots and recommendation systems (LeCun et al., 2015). Deep neural network
architectures have outperformed many hand-crafted and traditional AI methods and remain to hold
state-of-the-art performances on many complex learning tasks. As deep learning algorithms become
increasingly sophisticated in processing complex information, their applications have bourgeoned
across chemical engineering, including in molecular design (Alshehri et al., 2020), computational
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chemistry (Cova and Pais, 2019), and control and optimization
(Ning and You, 2019; Pappas et al., 2021). Notably, deep learning
has made a breakthrough in biological research by beating
decades of theoretical and experimental work on predicting
the 3D structure of a protein from its genetic sequence (Senior
et al., 2020). As seen, the potential for a transformative paradigm
shift in chemical engineering with deep learning has never been as
accessible and urgent as it is today.

Within the ever-developing deep learning architectures and
algorithms, remarkable progress across several learning tasks has
been attributed to attention-based neural network architectures
(Transformers) (Vaswani et al., 2017). Since their debut in 2017
for language tasks, applications of transformers have moved to
vision tasks (Dosovitskiy et al., 2020), reinforcement learning
(RL) (Parisotto et al., 2020), and sequencing proteins (Rao et al.,
2021), matching or exceeding the performance of conventional
neural networks (Lu et al., 2021). Besides, developments in deep
learning have transcended the Euclidian domains to approach
problems operating in the graph and manifold domains, such as
molecules, with graph neural networks (GNNs) (Monti et al.,
2017; Zhou et al., 2018). While such developments arose in the
supervised learning framework of deep learning, gleaning deeper
knowledge across different domains has recently been
demonstrated by the self-supervised learning framework
(Baevski et al., 2020; LeCun and Misra, 2021). Advances in
deep learning also extend to integrated platforms as in self-
driving laboratories (Schwaller et al., 2018; MacLeod et al.,
2020), and the interpretability of models as a result of medical
and scientific applications (Gunning et al., 2019; Tjoa and Guan,
2020). We envisage that recent advances in deep learning offer

opportunities for rapid and exciting developments in the design
of new chemical products and processes. Such developments can
be realized more efficiently through integrating scientific and
engineering domain knowledge to decide on molecular
representation, modeling, and physical constraints.

Herein, we first present the current status of deep learning
applications to chemicals design, namely, molecular
representation, property estimation, representation learning,
and synthesis planning as shown in Figure 1. Then, we
discuss and describe the new trends and open research lines
related to deep learning-based chemical products and process
design. Finally, the article concludes with an outlook on future
directions and recommendations.

BACKGROUND

In this section, we provide brief descriptions of key areas in
molecular systems engineering and design. Their respective
advances are also discussed with respect to promising
applications, current state-of-the-art performances, and major
limitations. For more extensive discussions on the elements, we
point the interested reader to reviews on machine learning
techniques for chemical systems (Butler et al., 2018),
molecular design (Alshehri et al., 2020), and synthesis
planning (Coley et al., 2018).

Molecular Design
Traditionally, molecular design involves the development of
molecular representation for predicting physicochemical

FIGURE 1 | A high-level description of prominent deep learning applications involved in molecular systems engineering and design.
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properties, and the application of optimization for finding
molecules that satisfy specific property targets (Gani, 2004).
Essentially, the molecular design task can be decomposed into
separate components, each representing a decision or learning
task. The first decision is concerned with molecular
representations, which fall into different categories, such as
dimensionality (1D, 2D, or 3D) or data type (numeric, text, or
graphs) (Alshehri et al., 2020). This decision is followed by the
development of rule-based (Gani, 2019) or learning-based
(Gomez-Bombarelli et al., 2018) representations of molecules,
which encode/decode a given molecular representation into/from
discrete or continuous numerical data. Last, the learned
representations of molecules are exploited to learn property
models relating molecular structures to their physicochemical
properties. These several components are then embedded into a
computational optimization framework that seeks to generate
promising structures for experimental validation.

Molecular Representation
The digital encoding of an expressive molecular structure
representation is at the core of the molecular design learning
task. Popular representations in molecular design and discovery
are divided into two categories: two-dimensional and three-
dimensional. The proper choice of a molecular representation
is reliant on the domain knowledge of the problem at hand as well
as the deep learning architecture that will be used. Yet, the
selection of the best-performing representation for a learning
task is not always clear, persisting as an open research avenue in
cheminformatics (Butler et al., 2018).

In deep learning applications, two-dimensional
representations have enjoyed remarkable success even though
their use entails the loss of conformational and bond distance
information (Goh et al., 2017). The most popular 2D
representation by far is the string-based Simplified Molecular
Input Line Entry System (SMILES) representation (Weininger,
1988). Motivated by the limitations of SMILES, SELF-referencIng
Embedded Strings (SELFIES) was also developed to create robust
representations, ensuring any random combination of characters
corresponds to a valid molecule (Krenn et al., 2020). On the other
hand, the translational, rotational, and permutation variances of
3D representations have long rendered describing molecules in
the 3D space challenging in deep generative models (Goh et al.,
2017). Molecular representations in generative modeling remain
predominantly two-dimensional. However, recent advances in
GNNs and their variants (Schütt et al., 2017; Gao et al., 2018) have
addressed many limitations encountered in applying 3D
representations, opening unexplored avenues of research
(Sourek et al., 2020).

Representation Learning
The choice of molecular representation (input) on which deep
learning methods are implemented has a significant impact on
their performance. As such, the design of generative models that
support successful deep learning applications consumes a large
portion of the efforts in creating frameworks for molecular
design. Typically, the original molecular representation is
transformed across several neural networks into a numerical

representation, from which the original molecular
representation can also be reconstructed. During the
optimization process of these networks, higher and lower-level
features of the molecular representations are encoded into the so-
called latent or hidden space. In the space, each molecular
structure corresponds to a latent representation, which is often
a vector of real values. The goal of such generative models is to
learn expressive continuous representations that are extended to
enhance the optimization of properties and generation of novel
promising molecules (Goodfellow et al., 2016; Sanchez-Lengeling
and Aspuru-Guzik, 2018).

A diverse array of generative models and frameworks have
been applied to not only developing representations, but also
controlling the generative task towards objectives. Some have
observed that variational autoencoders (VAE) achieve higher
generalizability in learning molecular representations by
optimizing the latent space over a fixed vector size (Gomez-
Bombarelli et al., 2018). Other methods such as generative
adversarial networks and recurrent neural networks have also
shown promising results in molecular design by controlling the
generation process with RL or property objectives (Popova et al.,
2018; Jin et al., 2019). Given the growing interest in generative
modeling from the deep learning community, applications of
more complex and hybrid approaches have also been proposed
(Griffiths and Hernandez-Lobato, 2020; Maziarka et al., 2020).
Two benchmarking platforms have been developed for evaluating
distinct elements of the representations learned by generative
models, including validity, novelty, diversity, and uniqueness
(Brown et al., 2019; Polykovskiy et al., 2020). The capability to
learn a domain-invariant molecular representation on different
scales of complexity to generative valid and novel molecules
remains a key limitation.

Property Estimation
Property estimation models are instrumental in guiding the
design of molecular solutions as such models aim to capture
the underlying behavior of the molecular system governed by
thermodynamics (Gani, 2019). The purpose of such models is to
reduce the time and cost associated with experimental screening
while significantly expanding the size of the design space. When
learning quantitative structure-property relationship functions,
deep learning algorithms systematically search the hypothesis
space and uncover complex relationships that would otherwise be
too complex to conceptualize by experts (LeCun et al., 2015). As
such, deep learning applications have brought a ground-breaking
leap in building accurate property estimation models in terms of
accuracy and applicability using a wide array of molecular
representations (Walters and Barzilay, 2020).

Advances in property estimation models are twofold:
involving the use of more sophisticated molecular
representations and advanced deep learning architectures.
Earlier models employed simple molecular representations,
such as fingerprints, descriptors, and functional groups (Pyzer-
Knapp et al., 2015; Zhang et al., 2018). Propelled by progress in
computer vision and language models, recent applications have
exploited more informative and invertible graph representations
and string-based embedding (Su et al., 2019; Ma et al., 2020a). On
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the other hand, algorithmic and architectural advances have led
to remarkable accuracy improvements across different datasets
and properties. For example, transfer learning has closed the gap
between predictive models and quantum chemistry calculations
for estimating the formation energy (Jha et al., 2019), and
Bayesian networks were applied to provide uncertainty-
calibrated estimates (Zhang, 2019). To the best of our
knowledge, a self-supervised graph transformer with transfer
learning holds the current state-of-the-art performance on 11
challenging property classification and regression benchmarks
(Rong et al., 2020). Despite such a ground-breaking leap, the
paucity of property data stands as a major limitation to
establishing confidence in deep predictive models as they are
data-intensive. The complexity of such an issue is compounded
for multiscale problems when products and processes are
considered (Alshehri et al., 2020).

Synthesis Planning
Synthesis planning (retrosynthesis) is the process of identifying a
sequence of chemical reactions to produce a target molecule from
available precursors. The combinatorial problem can also be
approached from the backward route by the recursive selection
of precursors of a target molecule. Efforts in molecular design
have long been devoted to measuring the accessibility of
candidate molecules from a synthesis standpoint through the
conventional use of synthetic accessibility scores, and expert-
crafted rules. An alternative route, deep learning, has brought a
successful paradigm shift, surpassing 6 decades of conventional
efforts through using deep learning-based models for learning to
rank potential precursors. These models mimic expert’s synthesis
decision-making to identify promising routes, avoid reactivity
conflicts, and estimate reaction mechanisms (Coley et al., 2018;
Segler et al., 2018a).

Inspired by advances in recommender systems, several data-
driven models have been devised by exploiting large reaction
databases to approach the forward and backward synthesis
problem. As synthesis planning is a multistep process,
complexities are circumvented through preprocessing and
simplification steps, such as classifying reaction feasibility
(Segler et al., 2018b), predicting reactions from the manual
applications of mechanistic rules (Fooshee et al., 2018), and
ranking relevant templates (Segler and Waller, 2017).
Notable advances in synthesis planning came from hybrid
approaches combining template-based forward enumeration
and deep learning-based candidate ranking to predict the
product(s) of reactions (Coley et al., 2018). Transformer
architectures have resulted in several effective models,
pushing the state-of-the-art performances on predicting both
single-step reactions (Tetko et al., 2020), and multistep
retrosynthesis (Lin et al., 2020; Schwaller et al., 2020).
Further, handling retrosynthesis planning as a set of logic
rules and a conditional graphical model using GNNs has
shown significant improvements on common benchmarks
(Dai et al., 2020). However, major limitations in data-driven
synthesis planning include the absence of detailed final product
distribution (concentrations), and expanding the predictive
capabilities to cover side reactions.

PERSPECTIVES

In this section, we offer our perspective on the most promising
directions in deep learning relative to the gaps in the current
applications of deep learning to molecular systems engineering
and design. To envision the path forward, we distill relevant
trends and advances in deep learning that have resulted in recent
breakthroughs and state-of-the-art results with connections to
molecular systems. On the molecular representation task, we
describe advances in transformers and GNNs as ideal future
directions for dealing with sequential 2D data and 3D molecular
representations, respectively. As a step towards moving beyond
fitting data to functions, we highlight the exploratory application
of deep learning with self-supervised learning (SSL). Design
platforms are also discussed to offer our views on the
systematic multiscale modeling and optimization of molecular
systems. The first three approaches are depicted in Figure 2.

Transformers for Molecules and Beyond
Given the sequential nature of many molecular representations
and reactions, the transformer architecture (Vaswani et al., 2017)
has proven to be powerful enough to provide state-of-the-art
results on many complex tasks through attention mechanisms.
Additionally, the architectures have recently shown to possess
generalization capabilities that can be transferred from one
modality to another (Lu et al., 2021). Such feature allows for
transferring learned knowledge from language models to and
between, for example, different physicochemical properties at 1%
of the required computational power for training. As such, by
combining the powers of transformers and transfer learning, we
foresee that the application of larger transformer models would
catalyze the pace of innovation in molecular engineering and
design. Further, although transformer models maintain state-of-
the-art performances on property prediction (Rong et al., 2020)
and synthesis planning (Tetko et al., 2020), advances around
attention-based structured knowledge unlock the potential to
explore structural properties and lead to potential
improvements. The augmentation of knowledge graphs also
presents a clear advantage in reducing the need for complex
statistical reasoning as many of the chemical/physical features are
encoded within the graphs (Reis et al., 2021). As seen, more
complex models and advanced data representations, such as
graph theory-based embedding (Yun et al., 2019), are
projected to hold remarkable progress in constructing more
powerful models.

Self-Supervised Learning for Autonomous
Exploration
For deep learning models to bring AI systems closer to chemist-
level intelligence, they would need to obtain a nuanced and deep
understanding of the phenomena behind data. Experts in the field
of deep learning believe that SSL is a major exciting direction
towards constructing background knowledge and common sense
from deep learning (Ravanelli et al., 2020; LeCun and Misra,
2021). Indeed, it is observed that many models trained using SSL
yield considerably higher performance than their supervised
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counterparts by learning “more” from the data (Liu et al., 2019;
Baevski et al., 2020). In SSL, the general technique is to predict a
masked or unobserved part of the input. For example, we can
predict hidden parts of molecules or unobserved properties from
the observed molecule by jointly learning the embedding of
molecules and properties. The same masking procedure can
also be applied to synthesis planning where parts of the
experimental parameters (reactants, reagents, catalysts,
temperature, concentrations, time, etc.) are hidden. This
technique expresses the observed and unobserved parts as an
energy-based model that captures the compatibility of the two
parts, and maximizes the compatibility of unseen observations.
Given the scale and complexity of current molecular dataset, we
anticipate that SSL approaches could lead to performance
improvements in training molecular design models. Moreover,
insights into chemical properties and reactions can be derived
from the exploratory application of SSL to property estimation
and synthesis planning.

Graph Neural Networks for the 3DModeling
of Molecules
As a result of the expressive ability of learned molecular
representations, GNNs have become quite popular for deep
learning on molecules, especially for property estimation. Yet,
for example, when property data are limited, the highly
dimensional representations of GNNs become more susceptible
to overfitting than other molecular representations as molecular
fingerprints. It has been shown that such a drawback for molecular
data can be alleviated by pretraining and meta-learning (Pappu
and Paige, 2020). A promising direction for applying GNNs to
chemical structures is the use of graph transformer networks (Yun
et al., 2019), which exploits attention mechanisms and the
expression of heterogeneous edges and nodes. Moreover, the
use of 3D molecular representations offers a window into
model interpretability and explainability. Consequently, deep
learning models could better understand model reasoning and
synthesize chemical knowledge as shown in synthesis planning

FIGURE 2 | An illustrative schematic of three promising applications of deep learning to molecular design. In self-supervised learning, this is a masked property-
structure model, which is an instance of contrastive self-supervised learning. In the model, parts of some molecules are masked and properties are used to reconstruct
the molecule from its masked/corrupted version.
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(Dai et al., 2020). It is worth noting that graph neural networks
have also been extended to several chemical engineering
applications, such as control (Wang et al., 2018), process
scheduling (Ma et al., 2020b), fault diagnosis (Wu and Zhao,
2021), among others. In the realm of molecular systems,
applications of GNNs have reaped numerous successes. Yet,
such networks remain limited in scalability and depth (Zhou
et al., 2018), and future algorithmic advances in GNNs will play a
role in expanding their application to chemical engineering data.

Optimization Platforms for Integrated
Multiscale Design
The application of deep learning to molecular systems engineering
and design is merely a stepping stone toward building multifaceted
systems that concurrently integrate nanoscale and macroscale
decisions (Pistikopoulos et al., 2021). The development of such
systems requires synergetic interactions between the key elements
underlying the molecular system as well as the optimization
framework exploiting the mathematical structure to find
solutions. Currently, there is no published work that considers
the simultaneous optimization of molecular design, synthesis
routes, and product/process design. As the design space of
multiscale molecular systems expands, the need for more efficient
optimization strategies controlled by uncertainties present in the
data becomes more critical (Alshehri et al., 2020). RL attempts to
learn an optimal policy (mapping) of decisions to actions that
maximizes the rewards across a single or multiple objective(s).
Thereby, the policy extracts patterns from the data to strike a
balance between exploration and exploitation in the search for
optimality (Nian et al., 2020). A current focus in RL research is
centered around creating systems that learn more efficiently with
remarkable recent advances in causal discovery (Zhu et al., 2019) and
meta-learning (Co-Reyes et al., 2021). Looking ahead, the RL
framework holds the potential to improve solutions across many
complex chemical engineering problems, such as scheduling (Hubbs
et al., 2020), control (Shin et al., 2019), and process optimization
(Petsagkourakis et al., 2020). The framework is also a viable
alternative to exact optimization-based approaches for large
design spaces. Furthermore, the use of RL as an optimization
framework is ideal for integrating multiple facets into the design,
such as automated robotics in self-driving laboratories for molecular
validation (Roch et al., 2018).

OUTLOOK

Integrating nanoscale decisions (molecules) with macroscale
behaviors and properties of chemical systems has been an
open challenge to the chemical engineering community
(Pistikopoulos et al., 2021). Yet, rapid progress in molecular
engineering and design has been enabled by advances in deep
learning architectures and algorithms, as well as the availability of
large chemical informatics and datasets. Looking ahead, much of
the remaining work is perceived as being reliant on innovations
around developing expressive representation encoding physics
and chemistry theory and building multifaceted frameworks.
Applicable developments in such areas are central to allowing
data-driven models to assist decisions in molecular systems
engineering and design, which is critical to solving pressing
problems in the chemical, agriculture, energy, and healthcare
industries.

Advances in graph representations and deep attention-based
architectures have shown the capacity to encode more relevant
graphical data, and meaningful patterns, respectively. As a result,
the error gap between experimental data and predictions in the
field keeps shrinking, building the momentum to break the
barriers for general-purpose molecular design frameworks.
Still, many challenges persist, from the quality of generative
and multistep synthesis models, to interpretability and
expressivity of property estimation models and molecular
representations. With the “black-box” nature of deep learning
as a common barrier to adoption, SSL, uncertainty estimation
(Loquercio et al., 2020), and interpretability (Preuer et al., 2019;
Arrieta et al., 2020) offer quantitative descriptions of error and a
better in-depth understating of decisions.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article, further inquiries can be directed to the corresponding
author.

AUTHOR CONTRIBUTIONS

AA and FY conceived the ideas and wrote the manuscript.

REFERENCES

Alshehri, A. S., Gani, R., and You, F. (2020). Deep Learning and Knowledge-Based
Methods for Computer-Aided Molecular Design-Toward a Unified Approach:
State-Of-The-Art and Future Directions. Comput. Chem. Eng. 141, 107005.
doi:10.1016/j.compchemeng.2020.107005

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A.,
et al. (2020). Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
Opportunities and Challenges toward Responsible AI. Inf. Fusion 58, 82–115.
doi:10.1016/j.inffus.2019.12.012

Austin, N. D., Sahinidis, N. V., and Trahan, D. W. (2016). Computer-aided Molecular
Design: An Introduction and Review of Tools, Applications, and Solution
Techniques. Chem. Eng. Res. Des. 116, 2–26. doi:10.1016/j.cherd.2016.10.014

Baevski, A., Zhou, H., Mohamed, A., and Auli, M. (2020). wav2vec 2.0: A
Framework for Self-Supervised Learning of Speech Representations. arXiv.
doi:10.1109/icassp40776.2020.9054224

Brown, N., Fiscato, M., Segler, M. H. S., and Vaucher, A. C. (2019). GuacaMol:
Benchmarking Models for De Novo Molecular Design. J. Chem. Inf. Model. 59
(3), 1096–1108. doi:10.1021/acs.jcim.8b00839

Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., and Walsh, A. (2018).
Machine Learning for Molecular and Materials Science. Nature 559, 547–555.
doi:10.1038/s41586-018-0337-2

Coley, C. W., Green, W. H., and Jensen, K. F. (2018). Machine Learning in
Computer-Aided Synthesis Planning. Acc. Chem. Res. 51 (5), 1281–1289.
doi:10.1021/acs.accounts.8b00087

Co-Reyes, J. D., Miao, Y., Peng, D., Real, E., Levine, S., Le, Q. V., et al. (2021).
Evolving Reinforcement Learning Algorithms. ArXiv.

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 7007176

Alshehri and You Deep Learning for Molecular Systems

https://doi.org/10.1016/j.compchemeng.2020.107005
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.cherd.2016.10.014
https://doi.org/10.1109/icassp40776.2020.9054224
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1021/acs.accounts.8b00087
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


Cova, T. F. G. G., and Pais, A. A. C. C. (2019). Deep Learning for Deep Chemistry:
Optimizing the Prediction of Chemical Patterns. Front. Chem. 7 (809). doi:10.
3389/fchem.2019.00809

Dai, H., Li, C., Coley, C. W., Dai, B., and Song, L. (2020). Retrosynthesis Prediction
with Conditional Graph Logic Network. ArXiv. doi:10.1287/20a2211b-f3ae-
4d98-845f-3c68e9f392dc

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., et al. (2020). An Image Is worth 16x16 Words: Transformers for Image
Recognition at Scale. arXiv.

Fooshee, D., Mood, A., Gutman, E., Tavakoli, M., Urban, G., Liu, F., et al. (2018).
Deep Learning for Chemical Reaction Prediction. Mol. Syst. Des. Eng. 3 (3),
442–452. doi:10.1039/C7ME00107J

Gani, R. (2004). Chemical Product Design: Challenges and Opportunities. Comput.
Chem. Eng. 28 (12), 2441–2457. doi:10.1016/j.compchemeng.2004.08.010

Gani, R. (2019). Group Contribution-Based Property Estimation Methods:
Advances and Perspectives. Curr. Opin. Chem. Eng. 23, 184–196. doi:10.
1016/j.coche.2019.04.007

Gao, H., Wang, Z., and Ji, S. (2018). “Large-scale Learnable Graph Convolutional
Networks,” in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining), London, United Kingdom,
1416–1424.

Garcia, D. J., and You, F. (2016). The Water-Energy-Food Nexus and Process
Systems Engineering: A New Focus. Comput. Chem. Eng. 91, 49–67. doi:10.
1016/j.compchemeng.2016.03.003

Garcia, D., and You, F. (2017). Systems Engineering Opportunities for Agricultural
and OrganicWasteManagement in the Food-Water-Energy Nexus. Curr. Opin.
Chem. Eng. 18, 23–31. doi:10.1016/j.coche.2017.08.004

Goh, G. B., Hodas, N. O., and Vishnu, A. (2017). Deep Learning for Computational
Chemistry. J. Comput. Chem. 38 (16), 1291–1307. doi:10.1002/jcc.24764

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M.,
Sánchez-Lengeling, B., Sheberla, D., et al. (2018). Automatic Chemical
Design Using a Data-Driven Continuous Representation of Molecules. ACS
Cent. Sci. 4 (2), 268–276. doi:10.1021/acscentsci.7b00572

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,
MA: MIT Press.

Griffiths, R.-R., and Hernández-Lobato, J. M. (2020). Constrained Bayesian
Optimization for Automatic Chemical Design Using Variational
Autoencoders. Chem. Sci. 11 (2), 577–586. doi:10.1039/c9sc04026a

Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., and Yang, G.-Z. (2019).
XAI-explainable Artificial Intelligence. Sci. Robot. 4 (37), eaay7120. doi:10.
1126/scirobotics.aay7120

Hagen, J. (2015). Industrial Catalysis: A Practical Approach. Weinheim,Germany:
John Wiley & Sons. doi:10.1002/9783527684625

Hubbs, C. D., Li, C., Sahinidis, N. V., Grossmann, I. E., andWassick, J. M. (2020). A
Deep Reinforcement Learning Approach for Chemical Production Scheduling.
Comput. Chem. Eng. 141, 106982. doi:10.1016/j.compchemeng.2020.106982

Jha, D., Choudhary, K., Tavazza, F., Liao, W.-k., Choudhary, A., Campbell, C., et al.
(2019). Enhancing Materials Property Prediction by Leveraging Computational
and Experimental Data Using Deep Transfer Learning. Nat. Commun. 10 (1),
5316. doi:10.1038/s41467-019-13297-w

Jin, W., Yang, K., Barzilay, R., and Jaakkola, T. (2019). “Learning Multimodal Graph-
To-Graph Translation for Molecular Optimization,” in 7th International
Conference on Learning Representations, New Orleans, LA (ICLR).

Krenn, M., Häse, F., Nigam, A., Friederich, P., and Aspuru-Guzik, A. (2020). Self-
Referencing Embedded Strings (SELFIES): A 100% Robust Molecular String
Representation. Machine Learn. Sci. Tech. 1 (4), 045024. doi:10.1088/2632-
2153/aba947

LeCun, Y., and Misra, I. (2021). Self-supervised Learning: The Dark Matter of
Intelligence. [Online]. Facebook AI. Available at: https://ai.facebook.com/blog/
self-supervised-learning-the-dark-matter-of-intelligence/(Accessed).

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep Learning. Nature 521 (7553),
436–444. doi:10.1038/nature14539

Lin, K., Xu, Y., Pei, J., and Lai, L. (2020). Automatic Retrosynthetic Route Planning
Using Template-free Models. Chem. Sci. 11 (12), 3355–3364. doi:10.1039/
C9SC03666K

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al. (2019). Roberta: A
Robustly Optimized Bert Pretraining Approach. arXiv.

Loquercio, A., Segu, M., and Scaramuzza, D. (2020). A General Framework for
Uncertainty Estimation in Deep Learning. IEEE Robot. Autom. Lett. 5 (2),
3153–3160. doi:10.1109/LRA.2020.2974682

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. (2021). Pretrained Transformers as
Universal Computation Engines. arXiv.

Ma, H., Bian, Y., Rong, Y., Huang, W., Xu, T., Xie, W., et al. (2020a). Multi-View
Graph Neural Networks for Molecular Property Prediction. arXiv.

Ma, T., Ferber, P., Huo, S., Chen, J., and Katz, M. (2020b). “Online Planner
Selection with Graph Neural Networks and Adaptive Scheduling,” in
Proceedings of the AAAI Conference on Artificial Intelligence), New York,
NY, 5077–5084.

MacLeod, B. P., Parlane, F. G., Morrissey, T. D., Häse, F., Roch, L. M., Dettelbach,
K. E., et al. (2020). Self-driving Laboratory for Accelerated Discovery of Thin-
Film Materials. Sci. Adv. 6 (20), eaaz8867. doi:10.1126/sciadv.aaz8867

Maziarka, Ł., Pocha, A., Kaczmarczyk, J., Rataj, K., Danel, T., and Warchoł, M.
(2020). Mol-CycleGAN: a Generative Model for Molecular Optimization.
J. Cheminform 12 (1). doi:10.1186/s13321-019-0404-1

Miodownik, M. (2015). Materials for the 21st century: What Will We Dream up
Next? MRS Bull. 40 (12), 1188–1197. doi:10.1557/mrs.2015.267

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M.
(2017). “Geometric Deep Learning on Graphs and Manifolds Using Mixture
Model Cnns”, in: Proceedings of the IEEE conference on computer vision and
pattern recognition), Honolulu, HI, 5115–5124.

Nian, R., Liu, J., and Huang, B. (2020). A Review on Reinforcement Learning:
Introduction and Applications in Industrial Process Control. Comput. Chem.
Eng. 139, 106886. doi:10.1016/j.compchemeng.2020.106886

Ning, C., and You, F. (2019). Optimization under Uncertainty in the Era of Big
Data and Deep Learning: When Machine Learning Meets Mathematical
Programming. Comput. Chem. Eng. 125, 434–448. doi:10.1016/j.
compchemeng.2019.03.034

Pappas, I., Kenefake, D., Burnak, B., Avraamidou, S., Ganesh, H. S., Katz, J., et al.
(2021). Multiparametric Programming in Process Systems Engineering: Recent
Developments and Path Forward. Front. Chem. Eng. 2 (32). doi:10.3389/fceng.
2020.620168

Pappu, A., and Paige, B. (2020). Making Graph Neural Networks Worth it for
Low-Data Molecular Machine Learning. arXiv. doi:10.7554/elife.56159.sa1

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C., Jayakumar, S., et al. (2020).
“Stabilizing Transformers for Reinforcement Learning,” in International
Conference on Machine Learning: PMLR 7487–7498.

Petsagkourakis, P., Sandoval, I. O., Bradford, E., Zhang, D., and del Rio-
Chanona, E. A. (2020). Reinforcement Learning for Batch Bioprocess
Optimization. Comput. Chem. Eng. 133, 106649. doi:10.1016/j.
compchemeng.2019.106649

Pistikopoulos, E. N., Barbosa-Povoa, A., Lee, J. H., Misener, R., Mitsos, A.,
Reklaitis, G. V., et al. (2021). Process Systems Engineering - the Generation
Next? Comput. Chem. Eng. 147, 107252. doi:10.1016/j.compchemeng.2021.
107252

Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golovanov, S., Tatanov, O.,
Belyaev, S., et al. (2020). Molecular Sets (MOSES): A Benchmarking Platform
for Molecular Generation Models. Front. Pharmacol. 11 (1931). doi:10.3389/
fphar.2020.565644

Popova, M., Isayev, O., and Tropsha, A. (2018). Deep Reinforcement Learning for
De Novo Drug Design. Sci. Adv. 4 (7), eaap7885. doi:10.1126/sciadv.aap7885

Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., and Unterthiner, T.
(2019). “Interpretable Deep Learning in Drug Discovery,” in Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning (Cham, Switzerland:
Springer), 331–345. doi:10.1007/978-3-030-28954-6_18

Pyzer-Knapp, E. O., Li, K., and Aspuru-Guzik, A. (2015). Learning from the
harvard Clean Energy Project: The Use of Neural Networks to Accelerate
Materials Discovery. Adv. Funct. Mater. 25 (41), 6495–6502. doi:10.1002/adfm.
201501919

Rao, R., Liu, J., Verkuil, R., Meier, J., Canny, J. F., Abbeel, P., et al. (2021). Msa
Transformer. bioRxiv. doi:10.1016/j.surge.2021.02.002

Ravanelli, M., Zhong, J., Pascual, S., Swietojanski, P., Monteiro, J., Trmal, J., et al.
(2020). “Multi-task Self-Supervised Learning for Robust Speech Recognition,”
in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Barcelona, Spain (IEEE), 6989–6993.

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 7007177

Alshehri and You Deep Learning for Molecular Systems

https://doi.org/10.3389/fchem.2019.00809
https://doi.org/10.3389/fchem.2019.00809
https://doi.org/10.1287/20a2211b-f3ae-4d98-845f-3c68e9f392dc
https://doi.org/10.1287/20a2211b-f3ae-4d98-845f-3c68e9f392dc
https://doi.org/10.1039/C7ME00107J
https://doi.org/10.1016/j.compchemeng.2004.08.010
https://doi.org/10.1016/j.coche.2019.04.007
https://doi.org/10.1016/j.coche.2019.04.007
https://doi.org/10.1016/j.compchemeng.2016.03.003
https://doi.org/10.1016/j.compchemeng.2016.03.003
https://doi.org/10.1016/j.coche.2017.08.004
https://doi.org/10.1002/jcc.24764
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1039/c9sc04026a
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1002/9783527684625
https://doi.org/10.1016/j.compchemeng.2020.106982
https://doi.org/10.1038/s41467-019-13297-w
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1088/2632-2153/aba947
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://doi.org/10.1038/nature14539
https://doi.org/10.1039/C9SC03666K
https://doi.org/10.1039/C9SC03666K
https://doi.org/10.1109/LRA.2020.2974682
https://doi.org/10.1126/sciadv.aaz8867
https://doi.org/10.1186/s13321-019-0404-1
https://doi.org/10.1557/mrs.2015.267
https://doi.org/10.1016/j.compchemeng.2020.106886
https://doi.org/10.1016/j.compchemeng.2019.03.034
https://doi.org/10.1016/j.compchemeng.2019.03.034
https://doi.org/10.3389/fceng.2020.620168
https://doi.org/10.3389/fceng.2020.620168
https://doi.org/10.7554/elife.56159.sa1
https://doi.org/10.1016/j.compchemeng.2019.106649
https://doi.org/10.1016/j.compchemeng.2019.106649
https://doi.org/10.1016/j.compchemeng.2021.107252
https://doi.org/10.1016/j.compchemeng.2021.107252
https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.3389/fphar.2020.565644
https://doi.org/10.1126/sciadv.aap7885
https://doi.org/10.1007/978-3-030-28954-6_18
https://doi.org/10.1002/adfm.201501919
https://doi.org/10.1002/adfm.201501919
https://doi.org/10.1016/j.surge.2021.02.002
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


Reis, E. S. D., Costa, C. A. D., Silveira, D. E. D., Bavaresco, R. S., Righi, R. D. R.,
Barbosa, J. L. V., et al. (2021). Transformers Aftermath. Commun. ACM 64 (4),
154–163. doi:10.1145/3430937

Roch, L. M., Häse, F., Kreisbeck, C., Tamayo-Mendoza, T., Yunker, L. P. E., Hein,
J. E., et al. (2018). ChemOS: Orchestrating Autonomous Experimentation. Sci.
Robot. 3 (19), eaat5559. doi:10.1126/scirobotics.aat5559

Rong, Y., Bian, Y., Xu, T., Xie, W., Wei, Y., Huang, W., et al. (2020). Self-Supervised
Graph Transformer on Large-ScaleMolecular Data.Adv. Neural Inf. Process. Syst. 33.

Sanchez-Lengeling, B., and Aspuru-Guzik, A. (2018). Inverse Molecular Design
Using Machine Learning: Generative Models for Matter Engineering. Science
361 (6400), 360–365. doi:10.1126/science.aat2663

Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R., and Tkatchenko, A.
(2017). Quantum-chemical Insights from Deep Tensor Neural Networks. Nat.
Commun. 8 (1), 1–8. doi:10.1038/ncomms13890

Schwaller, P., Gaudin, T., Lányi, D., Bekas, C., and Laino, T. (2018). “Found in
Translation”: Predicting Outcomes of Complex Organic Chemistry Reactions
Using Neural Sequence-To-Sequence Models. Chem. Sci. 9 (28), 6091–6098.
doi:10.1039/C8SC02339E

Schwaller, P., Petraglia, R., Zullo, V., Nair, V. H., Haeuselmann, R. A., Pisoni, R.,
et al. (2020). Predicting Retrosynthetic Pathways Using Transformer-Based
Models and a Hyper-Graph Exploration Strategy. Chem. Sci. 11 (12),
3316–3325. doi:10.1039/C9SC05704H

Segler, M. H. S., and Waller, M. P. (2017). Neural-Symbolic Machine Learning for
Retrosynthesis and Reaction Prediction. Chem. Eur. J. 23 (25), 5966–5971.
doi:10.1002/chem.201605499

Segler, M. H. S., Preuss, M., and Waller, M. P. (2018a). Planning Chemical
Syntheses with Deep Neural Networks and Symbolic AI. Nature 555 (7698),
604–610. doi:10.1038/nature25978

Segler, M. H. S., Kogej, T., Tyrchan, C., and Waller, M. P. (2018b). Generating
Focused Molecule Libraries for Drug Discovery with Recurrent Neural
Networks. ACS Cent. Sci. 4 (1), 120–131. doi:10.1021/acscentsci.7b00512

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., et al. (2020).
Improved Protein Structure Prediction Using Potentials from Deep Learning.
Nature 577 (7792), 706–710. doi:10.1038/s41586-019-1923-7

Shin, J., Badgwell, T. A., Liu, K.-H., and Lee, J. H. (2019). Reinforcement Learning -
Overview of Recent Progress and Implications for Process Control. Comput.
Chem. Eng. 127, 282–294. doi:10.1016/j.compchemeng.2019.05.029

Sourek, G., Zelezny, F., and Kuzelka, O. (2020). Learning with Molecules beyond
Graph Neural Networks. arXiv.

Su, Y., Wang, Z., Jin, S., Shen, W., Ren, J., and Eden, M. R. (2019). An Architecture
of Deep Learning in QSPR Modeling for the Prediction of Critical Properties
Using Molecular Signatures. Aiche J. 65 (9), e16678. doi:10.1002/aic.16678

Tetko, I. V., Karpov, P., Van Deursen, R., and Godin, G. (2020). State-of-the-art
Augmented NLP Transformer Models for Direct and Single-step
Retrosynthesis. Nat. Commun. 11 (1), 1–11. doi:10.1038/s41467-020-19266-y

Tjoa, E., and Guan, C. (2020). A Survey on Explainable Artificial Intelligence (Xai):
Toward Medical Xai. IEEE Trans. Neural Netw. Learn. Syst. 1–21. doi:10.1109/
TNNLS.2020.3027314

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention Is All You Need. Adv. Neural Inf. Process. Syst.

Walters, W. P., and Barzilay, R. (2020). Applications of Deep Learning in Molecule
Generation and Molecular Property Prediction. Acc. Chem. Res. 54, 263–270.
doi:10.1021/acs.accounts.0c00699

Wang, T., Liao, R., Ba, J., and Fidler, S. (2018). “Nervenet: Learning Structured
Policy with Graph Neural Networks,” in International Conference on Learning
Representations, Vancouver, Canada.

Weininger, D. (1988). SMILES, a Chemical Language and Information System. 1.
Introduction to Methodology and Encoding Rules. J. Chem. Inf. Model. 28 (1),
31–36. doi:10.1021/ci00057a005

Wu, D., and Zhao, J. (2021). Process Topology Convolutional Network Model for
Chemical Process Fault Diagnosis. Process Saf. Environ. Prot. 150, 93–109.
doi:10.1016/j.psep.2021.03.052

Yun, S., Jeong, M., Kim, R., Kang, J., and Kim, H. J. (2019). Graph Transformer
Networks. arXiv.

Zhang, L., Mao, H., Liu, L., Du, J., Gani, R., and Engineering, C. (2018). A Machine
Learning Based Computer-AidedMolecular Design/screeningMethodology for
Fragrance Molecules. Comput. Chem. Eng. 115, 295–308. doi:10.1016/j.
compchemeng.2018.04.018

Zhang, L., Mao, H., Liu, Q., and Gani, R. (2020). Chemical Product Design - Recent
Advances and Perspectives. Curr. Opin. Chem. Eng. 27, 22–34. doi:10.1016/j.
coche.2019.10.005

Zhang, Y., and Lee, A. A. (2019). Bayesian Semi-supervised Learning for
Uncertainty-Calibrated Prediction of Molecular Properties and Active
Learning. Chem. Sci. 10 (35), 8154–8163. doi:10.1039/C9SC00616H

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., et al. (2018). Graph Neural
Networks: A Review of Methods and Applications. arXiv.

Zhu, S., Ng, I., and Chen, Z. (2019). Causal Discovery with Reinforcement Learning.
arXiv.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Alshehri and You. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Chemical Engineering | www.frontiersin.org June 2021 | Volume 3 | Article 7007178

Alshehri and You Deep Learning for Molecular Systems

https://doi.org/10.1145/3430937
https://doi.org/10.1126/scirobotics.aat5559
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1039/C8SC02339E
https://doi.org/10.1039/C9SC05704H
https://doi.org/10.1002/chem.201605499
https://doi.org/10.1038/nature25978
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1016/j.compchemeng.2019.05.029
https://doi.org/10.1002/aic.16678
https://doi.org/10.1038/s41467-020-19266-y
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1021/acs.accounts.0c00699
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1016/j.psep.2021.03.052
https://doi.org/10.1016/j.compchemeng.2018.04.018
https://doi.org/10.1016/j.compchemeng.2018.04.018
https://doi.org/10.1016/j.coche.2019.10.005
https://doi.org/10.1016/j.coche.2019.10.005
https://doi.org/10.1039/C9SC00616H
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles

	Paradigm Shift: The Promise of Deep Learning in Molecular Systems Engineering and Design
	Introduction
	Background
	Molecular Design
	Molecular Representation
	Representation Learning
	Property Estimation

	Synthesis Planning

	Perspectives
	Transformers for Molecules and Beyond
	Self-Supervised Learning for Autonomous Exploration
	Graph Neural Networks for the 3D Modeling of Molecules
	Optimization Platforms for Integrated Multiscale Design

	Outlook
	Data Availability Statement
	Author Contributions
	References


