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HIGHLIGHTS: 

    - Optimal positioning of the microphones is impractical. 

    - Deep learning can be used to virtually sense microphone signals. 

    - Virtual microphone signals can significantly improve the speech 

quality. 
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Abstract10

The cocktail party effect refers to the human sense of hearing’s ability to pay11

attention to a single conversation while filtering out all other background12

noise. To mimic this human hearing ability for people with hearing loss,13

scientists integrate beamforming algorithms into the signal processing path14

of hearing aids or implants’ audio processors.15

Although these algorithms’ performance strongly depends on the number16

and spatial arrangement of the microphones, most devices are equipped with17

a small number of microphones mounted close to each other on the audio18

processor housing.19

We measured and evaluated the impact of the number and spatial ar-20

rangement of hearing aid or head-mounted microphones on the performance21

of the established Minimum Variance Distortionless Response beamformer in22

cocktail party scenarios. The measurements revealed that the optimal micro-23

phone placement exploits monaural cues (pinna-effect), is close to the target24

signal, and creates a large distance spread due to its spatial arrangement.25
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However, this microphone placement is impractical for hearing aid or26

implant users, as it includes microphone positions such as on the forehead. To27

overcome microphones’ placement at impractical positions, we propose a deep28

virtual sensing estimation of the corresponding audio signals. The results29

of objective measures and a subjective listening test with 20 participants30

showed that the virtually sensed microphone signals significantly improved31

the speech quality, especially in cocktail party scenarios with low signal-to-32

noise ratios. Subjective speech quality was assessed using a 3-alternative33

forced choice procedure to determine which of the presented speech mixtures34

was most pleasant to understand.35

Hearing aid and cochlear implant (CI) users might benefit from the pre-36

sented approach using virtually sensed microphone signals, especially in noisy37

environments.38

Keywords: artificial intelligence, selective hearing, neural network,39

beamformer, hearing aid, cochlear implant40
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List of acronyms

SNR signal-to-noise ratio

BSS blind source separation

ASC acoustic scene classification

RTF relative transfer function

STFT short-time Fourier transform

ISTFT inverse short-time Fourier transform

SI-SDR scale-invariant speech to distortion ratio

SDR speech to distortion ratio

STOI short-time objective intelligibility

PESQ perceptual evaluation of speech quality

CI cochlear implant

MVDR minimum variance distortionless response

BCP Bern cocktail party

ILD interaural level difference

HRTF head related transfer function

ReLU rectified linear unit

GUI graphical user interface
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1. Introduction41

Following a conversation in a noisy setting is difficult. In literature, this42

phenomenon is referred to as the cocktail-party problem. It describes an43

acoustic scenario, where multiple speech and noise sources with different in-44

tensities and directions of incidence overlap [1]. For normal-hearing persons,45

the auditory system can handle conflicting sounds and focus on a specific46

conversation [2, 3]. In hearing aids or CI audio processors, this separation47

of the conversational partner from a noise tangle is the goal of sophisticated48

beamforming algorithms [4, 5, 6, 7].49

It is well known that the signal quality of beamforming algorithms in-50

creases with the number of available input microphones and their position-51

ing with respect to the target source [8, 9, 10, 11, 12, 13]. Using numerical52

experiments, Feng et al. [8] showed that the microphone positions play an53

essential role in the overall performance of beamforming algorithms. Jones54

et al. [14] further showed for CI users that the microphone position at the55

ear canal versus behind the ear led to more detailed interaural level differ-56

ence (ILD) information due to the frequency transformations of the pinna57

[15, 16]. In the specific case of unilateral CI users, it was demonstrated that58

an additional microphone positioned at the contralateral ear led to increased59

speech understanding in noise [17, 13, 18].60

Since many conversations are held face to face [19], it is reasonable to as-61

sume that additional microphones in positions other than the contralateral62

ear canal, e.g., on the forehead, may further improve speech understanding.63

However, the additional placement of microphones on the head is impractical64

from the perspective of a hearing aid or CI user. One way of circumventing65
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this limitation may be to place the microphones virtually rather than phys-66

ically. The results of several virtual microphone sensing approaches suggest67

that estimating an additional microphone signal using information from the68

available microphones may improve the speech quality in a cocktail party69

scenario [20, 21, 22]. The microphone array used to record the reference sig-70

nals was similar in the studies and consisted of 2 microphones positioned in a71

straight line at a distance of 4 cm [20, 21] or 3 cm [22] from each other. To gen-72

erate virtual microphone signals, the phase was linearly interpolated [20, 21]73

or extrapolated [22] using measurements of the real microphone signals. In74

Denk et al. [23], functions transformed the sound pressure at a microphone75

positioned on a hearing aid to the pressure measured at the open eardrum.76

The basis for the determination of these functions were the relative transfer77

functions (RTFs) between the microphones, which in turn were determined78

by head related transfer functions (HRTFs) measurements using frequency79

sweeps in an anechoic chamber. Also using frequency sweeps, Corey et al.80

[24] measured and evaluated impulse responses of 160 microphones spread81

across the body and affixed to wearable accessories. Their results suggest82

that microphone arrangements with large spatial distance spread across the83

body provided the best signal-to-noise ratio (SNR) values. Unlike micro-84

phones positioned on the head, the geometric arrangement of microphones85

placed on clothing may change according to posture. Likely, the quality of86

a beamforming algorithm defined for a specific microphone geometry suffers87

from the continually changing microphone geometries in everyday life [25].88

The tremendous progress in the field of machine learning leads to the89

expectation that in the future, the RTFs between microphones can be de-90
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termined purely data-driven, i.e., without prior knowledge of the specific91

measurement setup. As a result, beamforming algorithms could be tuned92

to individual array geometries by simply providing sufficient reference data93

from the wearer without the need for anechoic chambers or knowledge of94

the sound sources’ positions. In the Mic2Mic publication [26] it was demon-95

strated that even with unlabeled and unpaired data, audio signals between96

different microphone domains could be translated. Based on the results, an97

additional virtual microphone at the head of a hearing aid or CI user gen-98

erated or learned solely by data-driven rules seems like a realistic scenario.99

However, regardless of whether the microphones are placed virtually or phys-100

ically on a subject’s head, little is known about how their positioning affects101

beamforming.102

To continue the discussion, the first objective of this work was to system-103

atically investigate the speech signal quality in complex acoustic scenarios104

with varying head-mounted microphone arrangements and a minimum vari-105

ance distortionless response (MVDR) beamformer as introduced by Souden106

et al. [10]. Based on these measurements, virtual microphone signals at spe-107

cific positions were estimated using a deep neural network. Finally, subjec-108

tive listening tests were conducted to investigate to what extent the virtually109

sensed microphone signals could improve the speech signal quality.110
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2. Methods111

2.1. Linear observation model112

In this work, recordings from M = 16 microphones attached to a human113

head were used. Each of the i = 1 . . .M microphone signals yi(t) recorded114

varying acoustic cocktail party scenarios at time t. In the following, the115

cocktail party mixtures are described as the summation of the target speech116

source si(t) and the noise wi(t) at microphone i:117

yi(t) = ais(t− τi) + wi(t)

where τi represents the time-delay of arrival and ai is the amplitude mod-118

ulation depending on the geometric arrangement of the microphones under119

the assumption of anechoic conditions. The noise wi(t) is assumed to be120

uncorrelated with the signal si(t).121

To enhance the perception of the target speech sources, the signals at each122

microphone can be combined using ”beamforming” techniques. In this study,123

we used the widely studied MVDR beamformer [27, 28], which is introduced124

in the following section.125

2.2. MVDR beamforming126

The MVDR beamformer minimizes the power of the beamformed signal127

while preserving the target signal, under the constraint of no distortion in the128

target signal [10]. The MVDR is a filter-and-sum beamformer and as such129

it applies different phase weights hi(f) to the i input microphone channels130

in order to steer the main lobe of the directivity pattern to the direction of131
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the target signal. The phase weights, or filters, are obtained in the frequency132

domain using [29]:133

href (f) = [h1,ref (f), . . . , hM,ref (f)]T =
1

λ(f)
(G(f)− IM×M) eref (1)

Where I is the identity matrix and G(f) can be obtained by G(f) =134

Φ−1noise (f)Φobs(f) with λ(f) = trace(G(f))−M [30, 10]. The spatial covari-135

ance matrices Φ can be computed by using time-frequency masks [29, 31, 32,136

33]. However, in this work we focus on the impact of additional microphone137

channels on the MVDR beamformers performance and extract Φ−1noise (f),138

Φobs(f) and Φtarget(f) from the noise, observation and target recordings.139

The standard unit vector of the reference microphone eref , is selected by a140

maximum a posteriori expected SNR estimation. The reference microphone141

is chosen based on ref = argmax
r

SNRpost,r [29] and:142

SNRpost,r =

∑F−1
f=0 h

H
r (f)Φtarget(f)hr(f)

∑F−1
f=0 h

H
r (f)Φnoise(f)hr(f)

.

Thus, the reference channel or microphone depends on hr(f), which is

the M -dimensional filter response (see Eq. 1) at the discrete frequency in-

dex f = 0, . . . , F − 1, when eref is set to er. After the filters href (f) are

computed, the beamformed output zt,f is obtained by using the short-time

Fourier transforms (STFTs) yi,t,f of the microphone signals yi(t):

zt,f =
M∑

i=1

hi,ref (f)yi,t,f

For the MVDR beamformer, the input signals were down-sampled to143

8 kHz and a Blackman window was applied [34]. Subsequently, an STFT144

(size = 256 and shift = 128) was performed. To reconstruct the signal, an145
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inverse short-time Fourier transform (ISTFT) with the overlapadd strategy146

was applied. The herein used MVDR beamformer to evaluate the benefits147

of virtual microphone signals is just one application scenario. Theoretically,148

any multi-channel speech-enhancement algorithm could have been used to149

assess the benefits of virtually sensed microphone signals.150

2.3. Data151

The Bern cocktail party (BCP) dataset is tailored to this work, as it152

contains multi-microphone recordings of hearing aid or CI users in cocktail153

party scenarios [35]. For the recordings, 12 loudspeakers (Control 1 Pro,154

JBL, Northridge, USA) were aligned horizontally in a circle at the height155

of the ears (1.2 m) in an acoustic chamber [36, 37, 13]. For this work, we156

used the acoustic scenarios captured with 16 microphones (ICS-40619, TDK,157

Tokyo, Japan) attached to a head and torso simulator (Brel & Kjær, Type158

4128, Nærum, Denmark) (see Figures 1 and 2).159

1 (5)

15 (16)

4 (8)

12 (14) 13

3 (7)2 (6) 9 10 11

Figure 1: Placement of the 16 microphones used for cocktail party scenario recordings.

The IDs refer to the microphone signals assignment in the multi-channel recording audio

files [35]. Numbers in brackets refer to the contralateral (here: right side) assignment of

the microphones. The sagittal plane is defined by a straight line between microphones 10

and 13 (front and back). A numeric description can be found in Table 1.
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Table 1: Assignment of the 16 microphone positions to their respective IDs.

Microphone ID Microphone position

{1} Left audio processor. Facing forward.

{2} Left audio processor. Facing to the top / forward.

{3} Left audio processor. Facing to the top / backward.

{4} Left audio processor. Facing back.

{5} Right audio processor. Facing forward.

{6} Right audio processor. Facing to the top / forward.

{7} Right audio processor. Facing to the top / backward.

{8} Right audio processor. Facing backward.

{9} Right temple.

{10} Front.

{11} Left temple.

{12} Left transmission coil.

{13} Back.

{14} Right transmission coil.

{15} Left Ear. Entry of the ear canal.

{16} Right Ear. Entry of the ear canal.
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2.3.1. Test dataset160

The results of this work were computed with an excerpt of 2400 samples161

from the BCP dataset [35]. The duration of each sample was 1.5 s, resulting162

in a total test dataset duration of 1 h. The samples were randomly chosen163

under the constraint, that a majority of the recordings contain a target source164

azimuth inside the field of view (i.e., ±45◦), as this represents the most165

natural listening scenario [38] (see Figure 3). All samples were randomly166

selected from an SNR distribution which covered conversational speech levels167

with 1 to 3 competing speakers and varying background noise types and168

intensities. The distribution of the audio mixture on the 12 output channels169

covered scenarios of spatially separated and non-separated speech and noise170

sources. The samples or audio mixtures had a mean SNR value of 1.2 dB171

with a standard deviation of 10.9 dB.172

2.3.2. Training dataset173

For the training and validation of the deep neural network 65 h (78404174

audio samples with 3 s duration each) were randomly selected from the head175

and torso simulator recordings of the BCP dataset [35], excluding the test176

dataset (see Section 2.3.1). Ninety percent of the samples were used for177

training and 10% for validation. Because of the large size of the training and178

validation dataset, no cross-validation was performed.179
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Figure 2: Euclidean distances in millimeters between the microphones for the head and

torso simulator measurements [35].

0 °

4 5 °

9 0 °

1 3 5 °

1 8 0 °

2 2 5 °

2 7 0 °

3 1 5 °

2 0 0

4 0 0

Figure 3: Circular histogram of the frequency of occurrence of spatial source directions

in relation to the head and torso simulator azimuth. The audio files were were selected

such that the directional distribution assumes a von-Mises distribution with µ = 0.0 and

κ = 1.1 [35].
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2.4. Evaluation of microphone channel configurations180

Various microphone channel configurations were evaluated by adding or181

omitting microphone channels with respect to a reference microphone chan-182

nel configuration, as explained in detail later (Section 3, Tables 3-6). The183

results were computed by providing the MVDR beamformer [10] with the184

target and noise spatial covariance matrices Φ of the audio mixtures from185

the corresponding microphone configurations.186

The reference microphone configurations were selected to cover reasonable187

microphone inputs of hearing aid devices or audio processors. Care was also188

taken to ensure that all microphones in the unilateral reference microphone189

configurations could technically be connected to the audio processor using an190

existing cable such as from the CI transmission coil to the audio processor.191

To cover realistic use cases regarding the benefits of different microphone192

configurations, the results were divided into 4 categories rather than pre-193

senting all possible microphone channel combinations: subsets of unilateral194

CI microphone configurations (see Table 3), unilateral CI microphone con-195

figurations with additional ipsilateral microphones (Table 4), unilateral CI196

microphone configurations with additional contralateral microphones (Table197

5), symmetric bilateral CI configurations with additional microphones (Table198

6). An overview of all measured microphone configurations can be found in199

Table 2.200

For the evaluation of the microphone configurations (i.e., real recordings201

and virtually sensed microphone channels), the following objective speech202

quality metrics were assessed: perceptual evaluation of speech quality (PESQ)203

[39], short-time objective intelligibility (STOI) [40] and scale-invariant speech204
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Table 2: Overview of all measured microphone configurations.

Unilateral microphone configurations Bilateral microphone configurations

{1} {1, 2, 3, 4, 9}
{2} {1, 2, 3, 4, 14}
{3} {1, 2, 3, 4, 16}
{4} {1, 2, 3, 4, 5, 6, 7, 8}
{10} {1, 2, 3, 4, 5, 6, 7, 8, 10}
{11} {1, 2, 3, 4, 5, 6, 7, 8, 13}
{12} {1, 2, 3, 4, 5, 6, 7, 8, 9, 11}
{13} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
{15} {1, 2, 3, 4, 5, 6, 7, 8, 15, 16}
{1, 2} {2, 3, 9}
{1, 2, 3, 4} {2, 3, 14}
{1, 2, 3, 4, 10} {2, 3, 16}
{1, 2, 3, 4, 11} {2, 3, 6, 7}
{1, 2, 3, 4, 12} {2, 3, 6, 7, 10}
{1, 2, 3, 4, 13} {2, 3, 6, 7, 13}
{1, 2, 3, 4, 15} {2, 3, 6, 7, 9, 11}
{1, 3} {2, 3, 6, 7, 15, 16}
{1, 4} {2, 3, 10, 13, 16}
{2, 3}
{2, 3, 10}
{2, 3, 11}
{2, 3, 12}
{2, 3, 13}
{2, 3, 15}
{2, 4}
{3, 4}
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to distortion ratio (SI-SDR) [41]. The PESQ metric models the speech qual-205

ity as perceived by human listeners. Analysis of speech-audio with the PESQ206

metric usually ranges from 1.0 (high distortion) to 4.5 (no distortion) [39].207

The values of STOI range from 0.0 (no word correctly understood) to 1.0208

(all words correctly understood) and highly correlate with the intelligibility209

of degraded speech signals [40]. The SI-SDR metric defines the energy ratio210

between the clean target signal and the acoustic distortions in decibel (dB).211

It is a slightly modified version of speech to distortion ratio (SDR), making212

it insensitive to power rescaling of the estimated signal [41].213

For testing within a group of microphone configurations, the Friedman214

test was used (see Sections 3.1 and 3.2). To find the configurations that dif-215

fered significantly after the Friedman test has rejected the null hypothesis, a216

post-hoc Nemenyi test was performed. In Section 3.3, two sets of paired sam-217

ples were compared to each other with the two-sided Wilcoxon signed-rank218

test (no multiple testing). The significance level was chosen with α = 0.05219

for all statistical tests.220

2.5. Virtual sensing of a microphone channel221

The virtual sensing approach aimed to improve the speech quality in cock-222

tail party scenarios by providing the beamformer with additional, virtually223

sensed, microphone signals. In this work, the estimation of the virtual micro-224

phone signals was realized by a purely data-driven deep learning approach225

on the raw-audio mixture without preprocessing [42].226

Most applications of deep neural networks in the domain of audio signal227

processing address the enhancement of speech signals by separating a target228

source (speech) from a mixture of interfering noise sources [43]. In the work229
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presented here, however, no source separation was performed, but rather, in230

a transferred sense, a denoising of the reference signal, as explained in the231

following: Let the audio signal captured from a microphone inside the ear232

canal of the left ear be the reference signal and the audio signal inside the233

ear canal of the right ear the target signal. By trying to match the signal of234

the left ear to the right ear or denoise the left ear, we hypothesize that the235

network implicitly learns the RTF between the two microphone signals or, in236

other words, the ”noise” to remove from the audio signal of the left ear. As237

a result, the network tries to virtually sense the right ear’s audio input by238

using the signal of the left ear. To evaluate the quality of the virtually sensed239

microphones, spatial covariance matrices Φ with and without virtually sensed240

microphone signals were provided as input for the MVDR beamformer [10].241

The results were compared with the same metrics and statistics as with the242

real microphones measurements (see Section 2.4).243

In this study, two microphone signals were used as reference signals, and244

three additional microphone signals were virtually sensed. The 2 reference245

signals consisted of the microphones {2, 3} and were chosen because their246

spatial arrangement corresponds to that of a conventional CI audio proces-247

sor (see Figure 1 or Table 1). Motivated by the results of the head-mounted248

microphone measurements, the microphone on the forehead ({10}), the back249

({13}) and inside the ear canal of the contralateral ear ({16}) were chosen250

as target signals for the virtual sensing approach. In the remainder of the251

manuscript, virtual channels are indicated by the subscript v. The resulting252

microphone configuration ({2, 3, 10v, 13v, 16v}) provided the advantages253

as explained in the Discussion (Section 4.1): a high spatial spread of the254

17

                  



microphone signals [44], proximity to the target signal, and frequency trans-255

formations by the pinna and head shadow [15].256

2.5.1. Deep neural network architecture for the virtual sensing approach257

[2, 46077]

[1, 33797]

32 64 64 64 128 128128 256 256 256 512 512 512 1024

64 64 64 128 128 128 256 512 512 512 512 102451225625632

Skip + 

Crop + 

Concatenate

1D Convolution + 

Group Norm +

ReLU

1D Trans. Conv. +

Group Norm +

ReLU

1D Convolution + 

Clamping output to [-1,1] 

(not while training)

1024

1024

Figure 4: The proposed deep neural network architecture for the virtual sensing of addi-

tional microphone channels based on the work of Stoller et al. [42]. The numbers below the

blocks describe the input channel size of the following convolution. Shown is an example

for the estimation of the microphone signal on the forehead ({10}) with the measurement

data of 2 microphones as positioned in conventional cochlear implant (CI) audio processors

(microphones {2, 3}). The network’s input and output data blocks denoted with ”[A, B]”

describe the number of channels (A) and the number of samples (B). For an illustration

of the microphone placement, please see Figure 1.

The network architecture followed the U-Net adaption for end-to-end au-258

dio source separation in the time-domain [42]. The neural network operation259

on the raw-waveform in the time domain allowed to model the phase infor-260

mation of the audio signal, thus avoiding complex phase recovery algorithms261

18

                  



[45, 46]. The well known U-Net structure is composed as a convolutional262

autoencoder, and as such, consists of an encoder (contracting path), a bot-263

tleneck, and a decoder (expanding path) [47]. A diagram of our network’s264

architecture implementation is shown in Figure 4.265

In the encoder, an increasing number of higher-level features on coarser266

time scales were calculated, allowing the modeling of long-term dependen-267

cies in the audio signal. Our implementation of the encoder consisted of268

5 levels, with each level working on half the time resolution and twice the269

number of feature maps as the previous one. In the bottleneck, the model270

was forced to learn a compression of the input data, containing only the271

relevant information (latent space) to construct the virtual microphone sig-272

nal. The latent-space representation of the bottleneck layer was passed to273

the decoder, which tried to learn a mapping of the input data to match the274

desired virtual microphone signal. The decoder was the mirror image of the275

encoder and also consisted of 5 levels. Each level worked on double the time276

resolution and half the number of feature maps as the previous level. Based277

on the results of initial tests, transposed convolutions were used for the up-278

sampling process. Each convolution was followed by group normalization,279

and a rectified linear unit (ReLU) activation function [48, 19]. By introduc-280

ing the skip connections in the encoder-decoder architecture, the encoder’s281

high-level features were concatenated with the local features computed dur-282

ing the upsampling block of the decoding. The result of this concatenation283

were multi-scale features that were fed in the output layer of the network284

[47, 42]. The output of the last convolutional layer was the estimation of the285

virtually sensed microphone signal.286
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The receptive field of the model was chosen to work with 2.1 s (46077287

samples), which provided an output vector with the desired test size of 1.5 s288

(33797 samples).289

Since no implicit zero padding was performed in the convolution oper-290

ation, the neural network’s output sample size was smaller than the input291

sample size. Avoiding zero-padding allowed the convolutions to be performed292

in the correct audio context. As a result, audio artifacts in the results could293

be minimized, and the temporal continuity of the audio signal was better294

preserved [42].295

2.5.2. Network training296

To train the deep virtual sensing network, we extracted measurement297

data from the two reference channels ({2, 3}) and the microphone channel to298

be estimated. Due to the large size of the BCP training dataset (see Section299

2.3.2), no data augmentation was necessary. In accordance with the original300

Wave-U-Net implementation [42], the audio data of the BCP dataset [35]301

was downsampled to 22.05 kHz. For evaluating the network’s performance,302

the absolute differences between the actual value and the predicted value (L1303

loss) were used. To update the network weights iteratively based on training304

data, we applied the ADAM optimizer [49] with the default decay rates of305

β1 = 0.9, β2 = 0.999 and a batch size of 16 [42]. Instead of monotonically306

decreasing the learning rate, cyclical learning rates [50] were used with upper307

and lower boundaries of 0.0002 and 0.00001, respectively. Early stopping was308

performed after 10 epochs with only minimal improvement on the validation309

loss. Afterward, the best model was fine-tuned with lower learning rate limits310

(0.000001 to 0.00001) and a batch size of 8, again until 10 epochs without311
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improvement on the validation loss. The fine-tuned network was further used312

to predict the virtual channels. The test dataset to evaluate the virtually313

sensed microphone channels consisted of 2400 samples, which included the314

audio files described in Section 2.3.1. Care was taken to ensure that none of315

the test samples were used to validate or train the network.316

Since each virtual channel was estimated on a separate network, the net-317

works were trained one after the other. The training time was reduced by318

successively using the previously trained network as a starting-point (trans-319

fer learning) [51]. All computations were performed with the open-source320

machine learning framework PyTorch version 1.6.0 [52].321

2.5.3. Subjective listening tests322

Twenty normal hearing participants (6 female, 14 male, mean age in years323

= 29.8, SD = 3.6) performed a subjective listening test to evaluate the benefit324

of the virtually sensed microphone signals on the speech quality. The test325

was performed in a quiet environment, and stimuli were presented via high326

definition insert earphones (Triple Driver, 1 More Inc. San Diego, CA) at327

the most comfortable loudness levels as selected by the subjects.328

The questions of the subjective evaluation were twofold. First, we asked329

the subjects whether the signal processing applied by the MVDR beamformer330

lead to overall improved speech quality. Second, it was evaluated whether the331

beamformed signal based on the reference channels ({2, 3}) with additional332

virtual channels ({10v}, {13v}, {16v}) outperforms the beamformed signal333

without virtual channels available, i.e. only the measured channels {2, 3}334

were used (see Figure 1 or Table 1 for a transcription of the channel IDs).335

To answer these questions, the participants were asked to listen to 3 audio336

21

                  



mixtures, all based on the same recording but either337

• Beamformed based on the reference channels with additional virtual338

channels ({2, 3} + {10v}, {13v}, {16v})339

• Beamformed based on the reference channels only ({2, 3})340

• The non-beamformed recording of the channels {2, 3}341

The 3 audio mixtures were randomly assigned to 3 buttons on a graphical342

user interface (GUI). Since the beamformer’s task was to enhance the speech343

quality for a predefined target signal, a fourth button on the GUI labeled344

”Target Signal” played back a recording of the corresponding target speech345

signal without interfering background noise. Finally, the participants’ task346

was to select from the 3 audio mixtures the one in which the target signal347

was most comfortable to understand. Before the test started, trial runs were348

conducted until the participants confirmed that they understood the test349

procedure.350

During the test and the trial runs, the participants were allowed to hear351

the 4 audio files (1 target signal and 3 audio mixtures) as many times as de-352

sired. The test stimuli consisted of 60 audio mixture quartets of 1.5 seconds353

length per file, ensuring that each file contained the utterance of at least one354

word. All audio mixtures were taken from the pool of the 2400 test files355

described in Section 2.3 with distribution proportions as shown in Figure 3.356

Evaluation of the presented audio files took about 20 minutes; no feedback357

was given during or after the test. After evaluating 30 of the 60 audio files, a358

pause of 3 minutes was taken during which the GUI was disabled. To mini-359

mize order bias, the 2 stimuli blocks that were evaluated before and after the360
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pause were counter-balanced within the participants. The subjective listen-361

ing evaluation was designed in accordance with the Declaration of Helsinki,362

written informed consent was obtained from all participants.363

A Kruskal-Wallis test was used to determine if the frequency of choices364

within the 3 response options differed significantly from each other. After the365

Kruskal-Wallis test has rejected the null hypothesis, a post-hoc Nemenyi test366

was performed to investigate which of the response distributions differed sig-367

nificantly from each other. To determine whether the response distributions368

differed significantly from the chance level of the test (33 %), a chi-square369

test was applied. The significance level was chosen with α = 0.05 for all370

statistical tests.371
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3. Results372

3.1. MVDR beamforming with unilateral channel configurations373

Table 3 shows the PESQ, STOI and SI-SDR performances of unilateral374

single microphone configurations compared to the performance with the ref-375

erence configuration, i.e. a CI audio processor equipped with 4 microphones376

placed on top of the housing. For the PESQ and SI-SDR metric, the per-377

formances with single microphones were significantly worse than with the378

4-channel reference configuration (all p = 0.001). The same was observed379

for STOI (p = 0.001) except for the microphones {1, 4} and {2, 4} (both380

p = 0.9). In all 3 metrics, the microphones that were facing the front (front381

{10}, left temple {11}, forward facing (audio processor) {1}, see Figure 1382

or Table 1) achieved the best results, whereas the performance differences383

between channels {10} and {11} were not statistically significant in terms of384

PESQ and SI-SDR (p = 0.608, p = 0.9) but for STOI (p = 0.001). Between385

the microphones {1} and {2} the metrics PESQ, STOI and SI-SDR did not386

differ significantly (p = 0.408, p = 0.9, p = 0.115) (a significance-matrix387

showing the results of the post-hoc Nemenyi tests for Table 3 can be found388

in the Appendix (Figures A.1-A.3)).389

When the same 4-channel reference configuration (microphones {1, 2, 3,390

4}) was extended by the aforementioned ipsilateral single microphone signals,391

again the front-facing microphones {10} and {11} (see Figure 3) provided the392

greatest benefit (see Table 4). The performance differences for all metrics393

when channel {10} (front) was added did not differ significantly from the394

performance differences when channel {11} (left temple) was added to the395

reference configuration (PESQ: p = 0.792, STOI: p = 0.736, SI-SDR: p = 0.9)396
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(a significance-matrix showing the results of the post-hoc Nemenyi tests for397

Table 4 can be found in the Appendix (Figures A.4-A.9)).398

Since many CI audio processors record signals from 2 microphones posi-399

tioned on top of the housing, the performance of different spatial arrange-400

ments of 2 microphones placed on the audio processor compared to the 4-401

channel reference configuration (microphones {1, 2, 3, 4}) was investigated402

and is shown in Table 3. The arrangement with the largest spatial distance403

between the 2 microphones, namely the microphones on top of the audio pro-404

cessors facing the front and back ({1, 4}), achieved the best performance (see405

Figure 2 for a microphone distance matrix). The statistical analysis showed406

that the performance differences of the microphones {1, 4} did not differ sig-407

nificantly for PESQ and STOI from the results compared to the microphones408

on the audio processor facing the top and the back ({2, 4}) to the reference409

configuration (p = 0.668, p = 0.9). Both 2 channel microphone configura-410

tions did not differ significantly from the 4 channel reference configuration in411

terms of STOI (both p = 0.9). For the SI-SDR metric, the differences when412

adding {1, 4} did not differ statistically significantly from any of the tested413

2 channel configurations (all p = 0.9).414

The arrangement with the smallest inter-microphone distance (micro-415

phones {2, 3}, see Figures 1 and 2), which is related to the conventional416

microphone positions of CI audio processors, achieved the lowest scores in417

2 (STOI and SI-SDR) of the 3 evaluated objective metrics, even though for418

SI-SDR the differences of this configuration did not differ significantly from419

any of the tested 2 channel configurations (all p = 0.9). For the metrics PESQ420

and STOI no significant differences in the performances between the micro-421
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phones {2, 3}, {1, 2} or {1, 3} were observed (PESQ: p = 0.721, p = 0.601,422

STOI: p = 0.884, p = 0.134). Table 4 shows the impact on the PESQ, STOI423

and SI-SDR metrics when additional ipsilateral, including those on the sagit-424

tal plane, microphones were added to the the conventional microphone ar-425

rangement ({2, 3}). The extension of the microphone arrangement ({2, 3})426

with forward facing microphones (front {10} or left temple {11}) provided427

the greatest benefit. For none of the 3 tested metrics did the performance428

between adding the front ({10}) or left temple ({11}) microphone to the429

conventional microphone arrangement differ significantly (PESQ: p = 0.067,430

STOI: p = 0.678, SI-SDR: p = 0.251).431

26

                  



Table 3: Values represent the mean difference in the performance of the unilateral cochlear

implant (CI) microphone configurations compared to the mean performance of the refer-

ence channel configuration including channels positioned on the sagittal plane (see Figure

1). The best result for each metric is marked in bold. All performance differences were sta-

tistically significant compared to the reference channel performance, except those marked

with ”†”.

Metric

Microphone IDs PESQ STOI SI-SDR

Ref.: {1, 2, 3, 4} 1.77 0.48 -29.07

{1} -0.28 -0.06 -2.95

{2} -0.28 -0.06 -3.13

{3} -0.29 -0.06 -3.13

{4} -0.31 -0.07 -3.32

{10} -0.24 -0.03 -2.77

{11} -0.25 -0.04 -2.65

{12} -0.30 -0.07 -3.24

{13} -0.35 -0.08 -3.52

{15} -0.29 -0.06 -3.19

{1, 2} -0.17 -0.03 -1.25

{3, 4} -0.13 -0.02 -0.86

{1, 3} -0.15 -0.03 -0.97

{1, 4} -0.08 -0.01† -0.77

{2, 3} -0.16 -0.03 -1.32

{2, 4} -0.09 -0.01† -0.89
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Table 4: Values represent the mean difference in the performance of unilateral cochlear im-

plant (CI) microphone configurations when additional ipsilateral, including sagittal plane,

microphones were added (see Figure 1). The performance difference is calculated in rela-

tion to the mean performance of the reference channel configuration. The best result for

each metric is marked in bold. All performance differences were statistically significant

compared to the reference channel performance, except those marked with ”†”.

Metric

Microphone IDs PESQ STOI SI-SDR

Ref.: {1, 2, 3, 4} 1.77 0.48 -29.07

Ref. + {10} 0.18 0.04 0.69

Ref. + {11} 0.20 0.04 0.59

Ref. + {12} 0.02 <0.01 0.14†

Ref. + {13} 0.11 0.03 0.64

Ref. + {15} 0.01 <0.01† -0,39†

Ref.: {2, 3} 1.61 0.45 -30.38

Ref. + {10} 0.22 0.06 1.38

Ref. + {11} 0.23 0.06 1.10

Ref. + {12} 0.12 0.03 0.81

Ref. + {13} 0.15 0.04 0.92

Ref. + {15} 0.03 <0.01 0.30
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3.2. MVDR beamforming with bilateral channel configurations432

Table 5 shows the PESQ, STOI and SI-SDR performances when addi-433

tional bilateral microphones were added to the input signals of an unilateral434

CI audio processor equipped with 4 microphones placed on top of the housing435

(microphones {1, 2, 3, 4}, see Figure 1 or Table 1). When a single contralat-436

eral microphone was added, it was not the microphone closest to the target437

source (microphone {9}, temple) that provided the greatest benefit in terms438

of the human perception-related objective metrics PESQ and STOI, but the439

contralateral ear canal microphone {16}. Compared to adding channels {9}440

or {14} (temple or contralateral CI transmission coil), the improvement of441

the PESQ and STOI metrics were significantly better when adding the con-442

tralateral ear-canal microphone (all p = 0.001) (a significance-matrix show-443

ing all results of the post-hoc Nemenyi test for Table 5 can be found in the444

Appendix (Figures A.10-A.15)). However, in terms of SI-SDR, the input445

from the microphone on the contralateral CI transmission coil (microphone446

{14}) achieved the best SI-SDR values and even outperformed the micro-447

phone configuration compared to an additional contralateral 4-channel CI448

audio processor. All differences in SI-SDR with the contralateral transmis-449

sion coil microphone ({14}) compared to {9} (contralateral temple), {16}450

(contralateral ear canal) and Ref. ch. + {5, 6, 7, 8} were not statistically451

significant (p = 0.362, p = 0.802, p = 0.409). Since the cable connection452

between the CI transmission-coil and the audio processor could theoretically453

be exploited to transmit audio signals, a unilateral microphone configuration454

was also used as a reference, which included the coil signal ({12}) in addi-455

tion to the 4 microphones on the audio processors. The results showed in456
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Table 5 did differ only marginally and non significantly between the refer-457

ence configuration with the CI transmission coil ({1, 2, 3, 4, 12}) and the458

reference configuration without the CI transmission coil microphone ({1, 2,459

3, 4}). The small benefit of adding microphone {12} to the reference channel460

configuration is also indicated by the results of Table 4.461

An analysis of the results with a reference microphone configuration based462

on the conventional spatial microphone arrangement in CI audio processors463

(microphones {2, 3}, see Figure 1 or Table 1), lead to similar conclusions464

as with the 4-channel microphone configuration described above (see Table465

5). Again, the overall result of a single additional microphone positioned466

at the contralateral ear-canal {16} was best, but only with respect to STOI467

and PESQ. For the PESQ metric, the performance with an additional mi-468

crophone positioned in the contralateral ear canal differed non-significantly469

compared to the performance with an additional microphone on the temple470

({9}) (p = 0.763). In terms of SI-SDR, the microphones on the contralateral471

side which were close to the sagittal plane (temple {9} and transmission coil472

{14}) outperformed the contralateral ear-canal microphone {16} when added473

to the microphone configuration {2, 3} (p = 0.006, p = 0.9). An additional,474

identical, bilaterally connected processor with 2 microphones ({6, 7}) yielded475

significantly better values in all metrics than adding the single microphones476

shown in Table 5 (see Appendix Figure A.13-A.15 for p-values).477
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Table 5: Values represent the mean difference in the performance of unilateral cochlear

implant (CI) microphone configurations when additional contralateral microphones were

added (see Figure 1). The performance difference is calculated in relation to the mean

performance of the reference channel configuration. The best result for each metric is

marked in bold. All performance differences were statistically significant compared to the

reference channel performance.

Metric

Microphone IDs PESQ STOI SI-SDR

Ref.: {1, 2, 3, 4} 1.77 0.48 -29.07

Ref. + {9} 0.12 0.03 0.41

Ref. + {14} 0.16 0.03 0.80

Ref. + {16} 0.19 0.04 0.42

Ref. + {5, 6, 7, 8} 0.30 0.05 0.61

Ref.: {2, 3} 1.61 0.45 -30.38

Ref. + {9} 0.18 0.04 1.30

Ref. + {14} 0.19 0.04 1.28

Ref. + {16} 0.21 0.05 1.13

Ref. + {6, 7} 0.26 0.06 1.44
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When a bilateral CI processor microphone configuration was taken as a478

reference (microphones {1, 2, 3, 4, 5, 6, 7, 8}, see Table 6), adding a micro-479

phone to the front ({10}) provided more benefit than adding a microphone480

facing the back ({13}) (PESQ and STOI: p = 0.001), but for SI-SDR not481

statistically significant (p = 0.515) (a significance-matrix showing all results482

of the post-hoc Nemenyi test for Table 6 can be found in the Appendix (Fig-483

ures A.16-A.21)). The single front microphone achieved even similar and484

statistically not significantly differing STOI and SI-SDR values compared485

to the performance when adding 2 microphones at the left and right tem-486

ple ({9,11}) (both metrics p = 0.9). For PESQ however, the performance487

with the additional 2 temple microphones ({9,11}) differed statistically sig-488

nificant compared to the additional microphone facing to the front ({10})489

(p = 0.001). Adding the signals of the two in-ear microphones ({15, 16}) to490

the bilateral CI processor microphone configuration (microphones {1, 2, 3, 4,491

5, 6, 7, 8}) did not provide any benefit, not even if only 2 bilateral ({2, 3, 6,492

7}) instead of 4 ({1, 2, 3, 4, 5, 6, 7, 8}) bilateral processor microphones were493

used as a reference microphone configuration. The full 16-channel micro-494

phone configuration achieved the statistically significant best PESQ scores495

(all p = 0.001). However, in terms of STOI and SI-SDR the performance did496

barely, and for SI-SDR non significantly, differ compared to the 8-channel ref-497

erence microphone configuration. Again, as with the unilateral 4-microphone498

CI audio processor configuration, adding the transmission-coil microphone499

signals ({12, 14}) to the bilateral microphone configurations ({1, 2, 3, 4, 5,500

6, 7, 8} or {2, 3, 6, 7}) did barely and statistically not significant influence501

the performance metrics shown in Table 6.502
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Table 6: Values represent the mean difference in the performance of bilateral cochlear

implant (CI) microphone configurations when additional microphones were added (see

Figure 1). The performance difference is calculated in relation to the mean performance

of the reference channel configuration. The best result for each metric is marked in bold.

All performance differences were statistically significant compared to the reference channel

performance, except those marked with ”†”.

Metric

Microphone IDs PESQ STOI SI-SDR

Ref.: {1, 2, 3, 4, 5, 6, 7, 8} 2.07 0.54 -28.46

Ref. + {10} 0.11 0.01 0.02†

Ref. + {9, 11} 0.12 0.02 0.11

Ref.+ {15, 16} -0.01 -0.01 -0.56

Ref.+ {13} 0.05 0.01 0.06†

Ref. + {9, 10, 11, 12, 13, 14, 15, 16} 0.19 0.01 -0.61†

Ref.: {2, 3, 6, 7} 1.87 0.51 -28.94

Ref. + {10} 0.16 0.03 0.49

Ref. + {13} 0.11 0.02 0.20

Ref. + {9, 11} 0.22 0.04 0.81

Ref. + {15, 16} 0.04 <0.01 -0.39†
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3.3. Virtual sensing of microphone channels503

The bar graphs in Figure 5 compare the performance in PESQ, STOI504

and SI-SDR (see Methods Section 2.4) between virtually sensed microphone505

signals and actually measured microphone signals placed at the same position506

on the head, i.e. the front ({10}), the back ({13}) and at the entry of the507

right external auditory canal ({16}) (see Figure 1 or Table 1). For all 3508

objective speech quality metrics tested, adding virtually sensed microphone509

signals to the input signals of the MVDR beamformer resulted in a significant510

improvement compared to the performance with microphone signals as used511

in conventional CI audio processors ({2, 3}) (p < 0.001).512

The mean benefit in performance when additional virtual/measured mi-513

crophone signals were used for beamforming was 0.24/0.34 units for PESQ,514

0.06/0.07 units for STOI, and 1.17/1.25 dB for SI-SDR. For the PESQ and515

STOI metrics, the performance between the virtually sensed microphone sig-516

nals and the measured microphones signals differed significantly (p < 0.001).517

In terms of SI-SDR, no significant difference between the two configurations518

were observed (p = 0.998).519

An analysis of the performance of the neural networks with respect to each520

of the estimated channels {16}, {13} and {10} showed that the mean benefit521

when an additional virtual/measured microphone signal was used for beam-522

forming was 0.154/0.211, 0.114/0.149, 0.178/0.219 for PESQ, 0.049/0.052,523

0.028/0.032, 0.042/0.048 for STOI, and 1.000/1.057, 0.938/0.877, 1.493/1.377524

for SI-SDR. For the metrics PESQ and STOI the differences in performance525

between the additional virtually estimated microphone and the measured mi-526

crophone were significant (all p < 0.001). For SI-SDR, the differences were527
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significant only with respect to microphone channel {10} (p = 0.027), but not528

for the channels {13} and {16} (p = 0.244, p = 0.309). The on average bad529

results for channel {16}, meaning the largest difference between the benefit530

of additional virtual/measured microphone signals, and the best results for531

channel {10} were also reflected in the validation losses of the trained net-532

works. For channel {16}, {13} and {10}, the best L1-losses on the validation533

set were 2.1× 10−4, 1.5× 10−4 and 1.4× 10−4, respectively.534

1.660
Ref. channels 
performance 

0.460 -30.16

PESQ STOI SI-SDR (dB)

Figure 5: Comparison of overall perceptual evaluation of speech quality (PESQ), short-

time objective intelligibility (STOI) and scale-invariant speech to distortion ratio (SI-SDR)

scores between 3 different microphone channel configurations used as input signals for

the minimum variance distortionless response (MVDR) beamforming algorithm [10]: 1)

Reference channel configuration according to the conventional microphone placement on CI

audio processors (microphone IDs {2, 3}) (bold letters); 2) Reference channel configuration

with additional measured (real) microphones (microphone IDs {2, 3} + {10, 13, 16}) (dark

grey bar); 3) Reference channel configuration with additional virtually sensed microphones

(microphone IDs {2, 3} + {10v, 13v, 16v}) (light grey bar). The dataset used to evaluate

the microphone channel configurations consisted of 2400 cocktail party audio samples, as

described in Section 2.3. Please see Figure 1 or Table 1 for a description of the microphone

IDs.
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3.3.1. Subjective listening tests535

Figure 6 shows that the participants preferred the audio mixture that536

was beamformed using the additional virtual channels (Mean=65%, SD=8%)537

compared to a beamformed signal generated using only the microphones as538

placed in CI audio processors (Mean=23%, SD=4%). This difference in539

selection frequency was statistically significant with p < 0.001.540

The non-beamformed signal was rarely selected as the signal that was541

easiest to understand (Mean=13%, SD=7%). The beamformed signal based542

on the reference channel only and the beamformed signal based on additional543

virtual channels differed significantly to the non-beamformed audio mixture544

selection frequency (p = 0.002, p < 0.001).545

For all of the presented signal configurations, the distribution of the fre-546

quency of choices differed significantly from the chance level of the test (all547

p < 0.001).548

To investigate if the subjects’ choice of the signal most comfortable to549

understand was dependent on the SNR of the original or raw audio mixture,550

the SNRs of the corresponding raw audio mixtures were compared. It was551

observed that the subjects preferred the beamformed signal with additional552

virtual channels if the SNRs of the raw audio mixture were low (Mean=2.4,553

SD=9.3) compared to the raw audio mixtures’ SNRs when the beamformed554

signal based on the reference channels only was selected (Mean=5.2, SD=8.0,555

p = 0.001). The SNRs of the raw audio mixtures when the non-beamformed556

signal was selected (Mean=2.1, SD=9.2) was not significantly different from557

the SNRs of the raw audio mixtures when the beamformed signal with addi-558

tional virtual channels was selected (p = 0.987). However, it was significantly559
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different from the SNRs of the raw audio mixtures when the beamformed sig-560

nal based on the reference channels was chosen (p = 0.029).561

No beamforming Ref. ch. Ref. ch. + Virt. ch.
Beamforming input channels
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Figure 6: Violin plots [53] of the frequency of choices in the subjective listening test. The

data represents the choices for the non-beamformed signal, the beamformed signal with

the measured reference channel configuration as input channels (microphone IDs {2, 3})
and the beamformed signal with additional virtually sensed microphone signals as input

channels (microphone IDs {2, 3} + {10v, 13v, 16v}) (see Figure 1 or Table 1). The dashed

horizontal line indicates the chance level of the test. The probability of observations

taking a given value (Frequency (%)) is indicated by the violin’s width, while each violin

is normalized to have the same area. The thick black bar in the center of the violin

represents the interquartile range. The thin black line extended from it represents the

95% confidence intervals, and the white dot represents the median.
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4. Discussion562

Herein, we presented a comprehensive comparison of different head-mounted563

microphone configurations and their effect on the output of an MVDR beam-564

forming algorithm. The results showed that microphone positions, such as565

placing a microphone on the forehead, would be desirable for better speech566

understanding. Since these microphone positions are not practicable in real-567

ity, we proposed and evaluated a purely data-driven virtual sensing technique.568

4.1. Association of the speech quality and the microphone positioning569

Our measurements of varying head-mounted microphone arrangements in570

cocktail party scenarios confirmed that the performance of beamforming algo-571

rithms and thus the speech quality improves with additional microphone sig-572

nals [44]. Single-microphone speech-enhancement algorithms can only exploit573

temporal and spectral information cues, whereas multi-microphone beam-574

formers can additionally exploit the spatial information of the sound sources575

[10, 44].576

However, a high number of microphones alone does not necessarily lead577

to a better speech quality [10]. In the case of bilaterally placed microphones578

(Table 6), we observed saturation in terms of speech signal enhancement579

with additional microphones that were placed close to the reference micro-580

phones. In particular, the SI-SDR metric showed that noise from additional581

microphone signals can dominate compared to the redundant information582

in the audio signal used for speech enhancement. As also shown by Corey583

et al. [24], the microphone arrangement’s spatial diversity played a signifi-584

cant role in the quality of the acoustic beamforming. The herein performed585
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measurements confirmed this finding since no improvements were observed586

when additional microphones were placed at a distance of about 5 cm to the587

reference microphones. It was assumed that even for low frequencies, these588

microphones were too closely spaced to provide inter-microphone information589

for the beamforming algorithm [24]. Besides, the microphones’ distance was590

too small for an effect of the acoustic head shadow [15]. With the same rea-591

soning, the slightly worse result of the unilateral, conventional microphone592

configuration ({2, 3}) and the good result of the arrangement with the largest593

inter-microphone distance (front and back facing {1, 4}) compared to other594

2-channel microphone arrangements on the audio processor can be argued.595

Although adding a microphone with a high Euclidean distance to the ref-596

erence microphone configuration is a good rule of thumb to improve acoustic597

beamforming, other microphone positioning factors, such as exploiting the598

acoustic head shadow [15], may be just as important. In the unilateral con-599

figuration (see Table 4), we observed that the proximity to the most likely600

target source with an additional microphone on the temple ({2, 3}+{11})601

was more important than the spatial diversity of the microphones with an602

additional microphone placed on the back of the head ({2, 3}+{13}). In603

addition to the proximity to the target signal and the microphone distance,604

our measurements confirmed that the pinna’s directional frequency trans-605

formation provided relevant information for improving the quality of the606

beamforming algorithm [15, 54, 16]. We observed that the most useful ad-607

ditional contralateral microphone was neither the one closest to the target608

signal ({11}, temple) nor the one with the highest Euclidean distance to the609

reference microphone configuration ({14}, CI transmission coil). It was the610
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contralateral microphone placed in the ear canal facing away from the target611

signal ({16}).612

4.2. Virtual sensing of head-mounted microphone signals613

In this work, we presented and evaluated a method for virtual sensing614

of microphone signals to improve the speech quality of hearing aid and CI615

users in noisy environments. The proposed methodology enabled to capture616

microphone signals at positions on the head, including but not limited to617

the forehead, where a physical placement of microphones is impractical. Our618

objective measurements showed, that adding strategically positioned virtual619

microphones on the head significantly improved the speech quality compared620

to the speech quality as obtained with a microphone arrangement found in621

conventional CI audio processors. This result was also confirmed in human622

listening tests using a 3-alternative forced-choice procedure with the task of623

selecting the speech mixture that was most comfortable to understand.624

In addition to the general assumption that adding microphone signals625

to hearing aid applications can increase the performance of beamforming626

algorithms [44], we hypothesized and confirmed that replacing real micro-627

phone signals with virtual microphone signals can also increase beamformer628

performance. In contrast to the work presented in [22, 21, 20], our entirely629

data-driven approach showed that explicit knowledge of the real microphone’s630

positioning might not be necessary to enhance the speech quality with vir-631

tual microphone channels. The mathematical reasoning for the success of632

our deep learning-based approach is the subject of ongoing research [55, 56].633

In the measurements with the reference microphone configuration accord-634

ing to conventional CI audio processors ({2, 3}), we observed that an addi-635
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tional microphone on the forehead produced similar improvements in speech636

quality as an additional microphone placed at the entry of the contralateral637

ear canal. However, due to the poor estimation of the contralateral ear sig-638

nal by the neural network, a higher benefit was obtained with the virtual639

microphone channel estimating the signal at the forehead. Therefore the640

estimation of optimal microphone positions for neural network-based beam-641

forming approaches requires further investigation.642

The subjective feedback of the 20 participants significantly showed that643

the additional virtual microphone signals were preferred, especially in cock-644

tail party scenarios with low SNRs. On the other hand, the participants’645

choices also showed that in low SNRs scenarios, the MVDR beamforming,646

either with real or real and additional virtual channels, might degrade the647

subjective speech signal quality instead of enhancing it. This finding con-648

firmed that although MVDR beamformers aim to keep the target signal649

undistorted [7], there was a trade-off between noise reduction and speech650

signal distortion [10].651

4.3. Limitations and outlook652

Although the virtually sensed microphones significantly improved the653

speech quality within this study, further research is needed before the method-654

ology can be used in hearing aids or CI audio processors.655

Due to the input data size of 2 seconds, the delay of the proposed net-656

work architecture is too long to be applicable in a real hearing aid application.657

However, this paper’s main objective was to demonstrate a proof of concept658

for purely data-driven virtual channel estimations in hearing aids or CIs.659

Tackling the problem of latency and neural network complexity in online660
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speech enhancement is ongoing research [57, 58, 59, 60] with promising re-661

sults and input frame lengths as little as 2 ms [60]. Future research should662

investigate whether the significant reduction in network time delay required663

for an application in hearing devices affects the performance of the presented664

approach. In addition to progress in reducing the computational costs, sub-665

stantial progress is continuously being made in other areas of speech signal666

enhancement with artificial neural networks relevant for the methodology of667

this work, such as in blind source separation (BSS) [61, 62, 63], acoustic668

scene classification (ASC) [64, 65, 66], domain shift [26, 67] and the usage of669

loss functions to optimize the parameters of the network based on the human670

perception of speech [68, 59]. The results of Drude et al. [63] indicated, that671

the benefit of the presented approach when using estimated coherence matri-672

ces may be different from the benefit achieved with the oracle matrices. For673

computational time reasons, no sophisticated optimization of the presented674

network’s architecture was performed. Further research may investigate the675

optimal number and size of hidden layers for the presented approach.676

Our approach follows a two-step procedure to estimate a virtual micro-677

phone channel that is used as an additional input to the beamformer. We678

chose this procedure to improve the compatibility with existing beamform-679

ing technology in current devices. However, the entire approach could be680

replaced by an end-to-end single-network artificial intelligence solution for681

hearing devices.682

One of the biggest challenges of the presented methodology to be ap-683

plicable in a real-world application will be to ensure the robustness of the684

network’s predictions in acoustic environments with high reverberation [69,685
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70, 71, 72]. In the context of this work, the first step in this direction would be686

the use of more challenging acoustic training data, for example, by simulating687

conditions with higher reverberation [73] or the use of dynamically moving688

sound sources [36, 74]. Another possibility would be to record acoustic sce-689

narios using a portable microphone array [75]. In a real-world application,690

this data could be collected as part of an audiological fitting routine. In691

both cases, whether the data was simulated or recorded in real environments692

for each subject, the additional recordings and the personalization of the693

network through transfer learning would most likely increase the robustness694

of applied neural network solutions [76]. To account for the different head695

geometries and thus varying inter-microphone features, the information of696

3D head scans as provided in Fischer et al. [35] could be fed into a neural697

network architecture that allows metadata injection.698

Although the speech quality may improve by applying the proposed mea-699

sures, binaural cues would still be discarded, resulting in a low spatial quality700

of the perceived sounds [15]. It remains unclear whether the findings of this701

study will also hold for current state-of-the-art beamformers with binaural702

output. To preserve the binaural cues and thus improve the spatial qual-703

ity of the MVDR beamforming algorithm [10], adaptations such as those704

proposed by Marquardt et al. [77] or Marquardt and Doclo [78] could yield705

improvements in this regard while still enhancing the speech quality [79].706

5. Conclusions707

In this work, real and virtual microphone signals were combined as in-708

put for an MVDR beamformer to investigate the effects on speech quality709
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for hearing aid or CI users in cocktail party scenarios. The measurements710

with respect to the number and spatial arrangement of real microphones in-711

dicated that, optimally, microphones should be placed as close as possible712

to the target source, encode monaural cues, and produce a large distance713

spread by their spatial arrangement. In reality, however, it is inconvenient714

to place the microphones according to these criteria. To overcome this prob-715

lem, virtual microphone signals were estimated using a deep neural network716

without explicit knowledge of the spatial microphone arrangement. The re-717

sults of 3-alternative forced choice subjective listening tests and objective718

speech quality metrics suggest that hearing aid or CI users might benefit719

from virtually sensed microphone signals, especially in challenging cocktail720

party scenarios.721

Appendix A. Additional Figures722

Please see appendix A.pdf for significance-matrices of the post-hoc Ne-723

menyi tests concerning the data in Tables 3-6.724
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