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Abstract

Stochastic Gradient Descent (SGD) has become popular for solving large scale supervised machine

learning optimization problems such as SVM, due to their strong theoretical guarantees. While the

closely related Dual Coordinate Ascent (DCA) method has been implemented in various software

packages, it has so far lacked good convergence analysis. This paper presents a new analysis of

Stochastic Dual Coordinate Ascent (SDCA) showing that this class of methods enjoy strong theo-

retical guarantees that are comparable or better than SGD. This analysis justifies the effectiveness

of SDCA for practical applications.
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1. Introduction

We consider the following generic optimization problem associated with regularized loss minimiza-

tion of linear predictors: Let x1, . . . ,xn be vectors in R
d , let φ1, . . . ,φn be a sequence of scalar convex

functions, and let λ > 0 be a regularization parameter. Our goal is to solve minw∈Rd P(w) where1

P(w) =

[

1

n

n

∑
i=1

φi(w
⊤xi)+

λ

2
‖w‖2

]

. (1)

For example, given labels y1, . . . ,yn in {±1}, the SVM problem (with linear kernels and no bias

term) is obtained by setting φi(a) = max{0,1− yia}. Regularized logistic regression is obtained by

setting φi(a)= log(1+exp(−yia)). Regression problems also fall into the above. For example, ridge

regression is obtained by setting φi(a) = (a−yi)
2, regression with the absolute-value is obtained by

setting φi(a) = |a− yi|, and support vector regression is obtained by setting φi(a) = max{0, |a−
yi|−ν}, for some predefined insensitivity parameter ν > 0.

Let w∗ be the optimum of (1). We say that a solution w is εP-sub-optimal if P(w)−P(w∗)≤ εP.

We analyze the runtime of optimization procedures as a function of the time required to find an

εP-sub-optimal solution.

1. Throughout this paper, we only consider the ℓ2-norm.
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A simple approach for solving SVM is stochastic gradient descent (SGD) (Robbins and Monro,

1951; Murata, 1998; Cun and Bottou, 2004; Zhang, 2004; Bottou and Bousquet, 2008; Shalev-

Shwartz et al., 2007). SGD finds an εP-sub-optimal solution in time Õ(1/(λεP)). This runtime does

not depend on n and therefore is favorable when n is very large. However, the SGD approach has

several disadvantages. It does not have a clear stopping criterion; it tends to be too aggressive at

the beginning of the optimization process, especially when λ is very small; while SGD reaches a

moderate accuracy quite fast, its convergence becomes rather slow when we are interested in more

accurate solutions.

An alternative approach is dual coordinate ascent (DCA), which solves a dual problem of (1).

Specifically, for each i let φ∗i : R→ R be the convex conjugate of φi, namely, φ∗i (u) = maxz(zu−
φi(z)). The dual problem is

max
α∈Rn

D(α) where D(α) =




1

n

n

∑
i=1

−φ∗i (−αi)−
λ

2

∥
∥
∥
∥
∥

1
λn

n

∑
i=1

αixi

∥
∥
∥
∥
∥

2


 . (2)

The dual objective in (2) has a different dual variable associated with each example in the training

set. At each iteration of DCA, the dual objective is optimized with respect to a single dual variable,

while the rest of the dual variables are kept in tact.

If we define

w(α) =
1

λn

n

∑
i=1

αixi, (3)

then it is known that w(α∗) = w∗, where α∗ is an optimal solution of (2). It is also known that

P(w∗) = D(α∗) which immediately implies that for all w and α, we have P(w) ≥ D(α), and hence

the duality gap defined as

P(w(α))−D(α)

can be regarded as an upper bound of the primal sub-optimality P(w(α))−P(w∗).

We focus on a stochastic version of DCA, abbreviated by SDCA, in which at each round we

choose which dual coordinate to optimize uniformly at random. The purpose of this paper is to

develop theoretical understanding of the convergence of the duality gap for SDCA.

We analyze SDCA either for L-Lipschitz loss functions or for (1/γ)-smooth loss functions,

which are defined as follows. Throughout the paper, we will use φ′(a) to denote a sub-gradient of a

convex function φ(·), and use ∂φ(a) to denote its sub-differential.

Definition 1 A function φi : R→ R is L-Lipschitz if for all a,b ∈ R, we have

|φi(a)−φi(b)| ≤ L |a−b|.

A function φi : R→ R is (1/γ)-smooth if it is differentiable and its derivative is (1/γ)-Lipschitz. An

equivalent condition is that for all a,b ∈ R, we have

φi(a)≤ φi(b)+φ′i(b)(a−b)+
1

2γ
(a−b)2,

where φ′i is the derivative of φi.
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It is well-known that if φi(a) is (1/γ)-smooth, then φ∗i (u) is γ strongly convex: for all u,v ∈ R and

s ∈ [0,1]:

−φ∗i (su+(1− s)v)≥−sφ∗i (u)− (1− s)φ∗i (v)+
γs(1− s)

2
(u− v)2.

Our main findings are: in order to achieve a duality gap of ε,

• For L-Lipschitz loss functions, we obtain the rate of Õ(n+L2/(λε)).

• For (1/γ)-smooth loss functions, we obtain the rate of Õ((n+1/(λγ)) log(1/ε)).

• For loss functions which are almost everywhere smooth (such as the hinge-loss), we can

obtain rate better than the above rate for Lipschitz loss. See Section 5 for a precise statement.

2. Related Work

DCA methods are related to decomposition methods (Platt, 1998; Joachims, 1998). While several

experiments have shown that decomposition methods are inferior to SGD for large scale SVM

(Shalev-Shwartz et al., 2007; Bottou and Bousquet, 2008), Hsieh et al. (2008) recently argued that

SDCA outperform the SGD approach in some regimes. For example, this occurs when we need

relatively high solution accuracy so that either SGD or SDCA has to be run for more than a few

passes over the data.

However, our theoretical understanding of SDCA is not satisfying. Several authors (e.g., Man-

gasarian and Musicant, 1999; Hsieh et al., 2008) proved a linear convergence rate for solving SVM

with DCA (not necessarily stochastic). The basic technique is to adapt the linear convergence of

coordinate ascent that was established by Luo and Tseng (1992). The linear convergence means

that it achieves a rate of (1−ν)k after k passes over the data, where ν > 0. This convergence result

tells us that after an unspecified number of iterations, the algorithm converges faster to the optimal

solution than SGD.

However, there are two problems with this analysis. First, the linear convergence parameter, ν,

may be very close to zero and the initial unspecified number of iterations might be very large. In

fact, while the result of Luo and Tseng (1992) does not explicitly specify ν, an examine of their

proof shows that ν is proportional to the smallest nonzero eigenvalue of X⊤X , where X is the n×d

data matrix with its i-th row be the i-th data point xi. For example if two data points xi 6= x j becomes

closer and closer, then ν→ 0. This dependency is problematic in the data laden domain, and we

note that such a dependency does not occur in the analysis of SGD.

Second, the analysis only deals with the sub-optimality of the dual objective, while our real goal

is to bound the sub-optimality of the primal objective. Given a dual solution α ∈R
n its correspond-

ing primal solution is w(α) (see (3)). The problem is that even if α is εD-sub-optimal in the dual,

for some small εD, the primal solution w(α) might be far from being optimal. For SVM, (Hush

et al., 2006, Theorem 2) showed that in order to obtain a primal εP-sub-optimal solution, we need

a dual εD-sub-optimal solution with εD = O(λε2
P); therefore a convergence result for dual solution

can only translate into a primal convergence result with worse convergence rate. Such a treatment

is unsatisfactory, and this is what we will avoid in the current paper.

Some analyses of stochastic coordinate ascent provide solutions to the first problem mentioned

above. For example, Collins et al. (2008) analyzed an exponentiated gradient dual coordinate ascent

algorithm. The algorithm analyzed there (exponentiated gradient) is different from the standard
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DCA algorithm which we consider here, and the proof techniques are quite different. Consequently

their results are not directly comparable to results we obtain in this paper. Nevertheless we note that

for SVM, their analysis shows a convergence rate of O(n/εD) in order to achieve εD-sub-optimality

(on the dual) while our analysis shows a convergence of O(n log logn+ 1/λε) to achieve ε duality

gap; for logistic regression, their analysis shows a convergence rate of O((n+ 1/λ) log(1/εD)) in

order to achieve εD-sub-optimality on the dual while our analysis shows a convergence of O((n+
1/λ) log(1/ε)) to achieve ε duality gap.

In addition, Shalev-Shwartz and Tewari (2009), and later Nesterov (2012) have analyzed ran-

domized versions of coordinate descent for unconstrained and constrained minimization of smooth

convex functions. Hsieh et al. (2008, Theorem 4) applied these results to the dual SVM formulation.

However, the resulting convergence rate is O(n/εD) which is, as mentioned before, inferior to the

results we obtain here. Furthermore, neither of these analyses can be applied to logistic regression

due to their reliance on the smoothness of the dual objective function which is not satisfied for the

dual formulation of logistic regression. We shall also point out again that all of these bounds are for

the dual sub-optimality, while as mentioned before, we are interested in the primal sub-optimality.

In this paper we derive new bounds on the duality gap (hence, they also imply bounds on the

primal sub-optimality) of SDCA. These bounds are superior to earlier results, and our analysis only

holds for randomized (stochastic) dual coordinate ascent. As we will see from our experiments, ran-

domization is important in practice. In fact, the practical convergence behavior of (non-stochastic)

cyclic dual coordinate ascent (even with a random ordering of the data) can be slower than our the-

oretical bounds for SDCA, and thus cyclic DCA is inferior to SDCA. In this regard, we note that

some of the earlier analysis such as Luo and Tseng (1992) can be applied both to stochastic and to

cyclic dual coordinate ascent methods with similar results. This means that their analysis, which

can be no better than the behavior of cyclic dual coordinate ascent, is inferior to our analysis.

Recently, Lacoste-Julien et al. (2012) derived a stochastic coordinate ascent for structural SVM

based on the Frank-Wolfe algorithm. Specifying one variant of their algorithm to binary classifi-

cation with the hinge loss, yields the SDCA algorithm for the hinge-loss. The rate of convergence

Lacoste-Julien et al. (2012) derived for their algorithm is the same as the rate we derive for SDCA

with a Lipschitz loss function.

Another relevant approach is the Stochastic Average Gradient (SAG), that has recently been

analyzed in Le Roux et al. (2012). There, a convergence rate of Õ(n log(1/ε)) rate is shown, for the

case of smooth losses, assuming that n≥ 8
λγ . This matches our guarantee in the regime n≥ 8

λγ .

The following table summarizes our results in comparison to previous analyses. Note that for

SDCA with Lipschitz loss, we observe a faster practical convergence rate, which is explained with

our refined analysis in Section 5.

Lipschitz loss

Algorithm type of convergence rate

SGD primal Õ( 1
λε)

online EG (Collins et al., 2008) (for SVM) dual Õ( n
ε )

Stochastic Frank-Wolfe (Lacoste-Julien et al., 2012) primal-dual Õ(n+ 1
λε)

SDCA primal-dual Õ(n+ 1
λε) or faster

570



STOCHASTIC DUAL COORDINATE ASCENT METHODS FOR REGULARIZED LOSS MINIMIZATION

Smooth loss

Algorithm type of convergence rate

SGD primal Õ( 1
λε)

online EG (Collins et al., 2008) (for logistic regression) dual Õ((n+ 1
λ) log 1

ε )

SAG (Le Roux et al., 2012) (assuming n≥ 8
λγ ) primal Õ((n+ 1

λ) log 1
ε )

SDCA primal-dual Õ((n+ 1
λ) log 1

ε )

3. Basic Results

The generic algorithm we analyze is described below. In the pseudo-code, the parameter T indicates

the number of iterations while the parameter T0 can be chosen to be a number between 1 to T . Based

on our analysis, a good choice of T0 is to be T/2. In practice, however, the parameters T and T0 are

not required as one can evaluate the duality gap and terminate when it is sufficiently small.

Procedure SDCA(α(0))

Let w(0) = w(α(0))
Iterate: for t = 1,2, . . . ,T :

Randomly pick i

Find ∆αi to maximize −φ∗i (−(α
(t−1)
i +∆αi))−

λn
2
‖w(t−1)+(λn)−1∆αixi‖

2

α(t)← α(t−1)+∆αiei

w(t)← w(t−1)+(λn)−1∆αixi

Output (Averaging option):

Let ᾱ = 1
T−T0

∑T
i=T0+1 α(t−1)

Let w̄ = w(ᾱ) = 1
T−T0

∑T
i=T0+1 w(t−1)

return w̄

Output (Random option):

Let ᾱ = α(t) and w̄ = w(t) for some random t ∈ T0 +1, . . . ,T
return w̄

We analyze the algorithm based on different assumptions on the loss functions. To simplify the

statements of our theorems, we always assume the following:

1. For all i, ‖xi‖ ≤ 1

2. For all i and a, φi(a)≥ 0

3. For all i, φi(0)≤ 1

Theorem 2 Consider Procedure SDCA with α(0) = 0. Assume that φi is L-Lipschitz for all i. To

obtain a duality gap of E[P(w̄)−D(ᾱ)]≤ εP, it suffices to have a total number of iterations of

T ≥ T0 +n+
4L2

λεP

≥max(0,⌈n log(0.5λnL−2)⌉)+n+
20L2

λεP

.

Moreover, when t ≥ T0, we have dual sub-optimality bound of E[D(α∗)−D(α(t))]≤ εP/2.
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Remark 3 If we choose the average version, we may simply take T = 2T0. Moreover, we note that

Theorem 2 holds for both averaging or for choosing w at random from {T0 +1, . . . ,T}. This means

that calculating the duality gap at few random points would lead to the same type of guarantee with

high probability. This approach has the advantage over averaging, since it is easier to implement

the stopping condition (we simply check the duality gap at some random stopping points. This is in

contrast to averaging in which we need to know T,T0 in advance).

Remark 4 The above theorem applies to the hinge-loss function, φi(u)=max{0,1−yia}. However,

for the hinge-loss, the constant 4 in the first inequality can be replaced by 1 (this is because the

domain of the dual variables is positive, hence the constant 4 in Lemma 22 can be replaced by 1).

We therefore obtain the bound:

T ≥ T0 +n+
L2

λεP

≥max(0,⌈n log(0.5λnL−2)⌉)+n+
5L2

λεP

.

Theorem 5 Consider Procedure SDCA with α(0) = 0. Assume that φi is (1/γ)-smooth for all i. To

obtain an expected duality gap of E[P(w(T ))−D(α(T ))] ≤ εP, it suffices to have a total number of

iterations of

T ≥
(

n+ 1
λγ

)

log((n+ 1
λγ) ·

1
εP
).

Moreover, to obtain an expected duality gap of E[P(w̄)−D(ᾱ)] ≤ εP, it suffices to have a total

number of iterations of T > T0 where

T0 ≥
(

n+ 1
λγ

)

log((n+ 1
λγ) ·

1
(T−T0)εP

).

Remark 6 If we choose T = 2T0, and assume that T0 ≥ n+1/(λγ), then the second part of Theo-

rem 5 implies a requirement of

T0 ≥
(

n+ 1
λγ

)

log( 1
εP
),

which is slightly weaker than the first part of Theorem 5 when εP is relatively large.

Remark 7 Bottou and Bousquet (2008) analyzed the runtime of SGD and other algorithms from

the perspective of the time required to achieve a certain level of error on the test set. To perform

such analysis, we also need to take into account the estimation error, namely, the additional er-

ror we suffer due to the fact that the training examples defining the regularized loss minimization

problem are only a finite sample from the underlying distribution. The estimation error of the pri-

mal objective behaves like Θ
(

1
λn

)
(see Shalev-Shwartz and Srebro, 2008; Sridharan et al., 2009).

Therefore, an interesting regime is when 1
λn

= Θ(ε). In that case, the bound for both Lipschitz and

smooth functions would be Õ(n). However, this bound on the estimation error is for the worst-case

distribution over examples. Therefore, another interesting regime is when we would like ε≪ 1
λn

, but

still 1
λn

= O(1) (following the practical observation that λ = Θ(1/n) often performs well). In that

case, smooth functions still yield the bound Õ(n), but the dominating term for Lipschitz functions

will be 1
λε .

Remark 8 The runtime of SGD is Õ( 1
λε). This can be better than SDCA if n≫ 1

λε . However, in

that case, SGD in fact only looks at n′ = Õ( 1
λε) examples, so we can run SDCA on these n′ examples

and obtain basically the same rate. For smooth functions, SGD can be much worse than SDCA if

ε≪ 1
λn

.
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4. Using SGD At The First Epoch

From the convergence analysis, SDCA may not perform as well as SGD for the first few epochs

(each epoch means one pass over the data). The main reason is that SGD takes a larger step size

than SDCA earlier on, which helps its performance. It is thus natural to combine SGD and SDCA,

where the first epoch is performed using a modified stochastic gradient descent rule. We show that

the expected dual sub-optimality at the end of the first epoch is Õ(1/(λn)). This result can be

combined with SDCA to obtain a faster convergence when λ≫ logn/n.

We first introduce convenient notation. Let Pt denote the primal objective for the first t examples

in the training set,

Pt(w) =

[

1

t

t

∑
i=1

φi(w
⊤xi)+

λ

2
‖w‖2

]

.

The corresponding dual objective is

Dt(α) =




1

t

t

∑
i=1

−φ∗i (−αi)−
λ

2

∥
∥
∥
∥
∥

1
λt

t

∑
i=1

αixi

∥
∥
∥
∥
∥

2


 .

Note that Pn(w) is the primal objective given in (1) and that Dn(α) is the dual objective given in (2).

The following algorithm is a modification of SGD. The idea is to greedily decrease the dual

sub-optimality for problem Dt(·) at each step t. This is different from DCA which works with Dn(·)
at each step t.

Procedure Modified-SGD

Initialize: w(0) = 0

Iterate: for t = 1,2, . . . ,n:

Find αt to maximize −φ∗t (−αt)−
λt
2
‖w(t−1)+(λt)−1αtxt‖

2.

Let w(t) = 1
λt ∑t

i=1 αixi

return α

We have the following result for the convergence of dual objective:

Theorem 9 Assume that φi is L-Lipschitz for all i. In addition, assume that (φi,xi) are iid samples

from the same distribution for all i = 1, . . . ,n. At the end of Procedure Modified-SGD, we have

E[D(α∗)−D(α)]≤
2L2 log(en)

λn
.

Here the expectation is with respect to the random sampling of {(φi,xi) : i = 1, . . . ,n}.

Remark 10 When λ is relatively large, the convergence rate in Theorem 9 for modified-SGD is

better than what we can prove for SDCA. This is because Modified-SGD employs a larger step size

at each step t for Dt(α) than the corresponding step size in SDCA for D(α). However, the proof

requires us to assume that (φi,xi) are randomly drawn from a certain distribution, while this extra

randomness assumption is not needed for the convergence of SDCA.
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Procedure SDCA with SGD Initialization

Stage 1: call Procedure Modified-SGD and obtain α

Stage 2: call Procedure SDCA with parameter α(0) = α

Theorem 11 Assume that φi is L-Lipschitz for all i. In addition, assume that (φi,xi) are iid samples

from the same distribution for all i = 1, . . . ,n. Consider Procedure SDCA with SGD Initialization.

To obtain a duality gap of E[P(w̄)−D(ᾱ)] ≤ εP at Stage 2, it suffices to have a total number of

SDCA iterations of

T ≥ T0 +n+
4L2

λεP

≥ ⌈n log(log(en))⌉+n+
20L2

λεP

.

Moreover, when t ≥ T0, we have duality sub-optimality bound of E[D(α∗)−D(α(t))]≤ εP/2.

Remark 12 For Lipschitz loss, ideally we would like to have a computational complexity of O(n+
L2/(λεP)). Theorem 11 shows that SDCA with SGD at first epoch can achieve no worst than

O(n log(logn)+ L2/(λεP)), which is very close to the ideal bound. The result is better than that

of vanilla SDCA in Theorem 2 when λ is relatively large, which shows a complexity of O(n log(n)+
L2/(λεP)). The difference is caused by small step-sizes in the vanilla SDCA, and its negative effect

can be observed in practice. That is, the vanilla SDCA tends to have a slower convergence rate than

SGD in the first few iterations when λ is relatively large.

Remark 13 Similar to Remark 4, for the hinge-loss, the constant 4 in Theorem 11 can be reduced

to 1, and the constant 20 can be reduced to 5.

5. Refined Analysis For Almost Smooth Loss

Our analysis shows that for smooth loss, SDCA converges faster than SGD (linear versus sub-

linear convergence). For non-smooth loss, the analysis does not show any advantage of SDCA

over SGD. This does not explain the practical observation that SDCA converges faster than SGD

asymptotically even for SVM. This section tries to refine the analysis for Lipschitz loss and shows

potential advantage of SDCA over SGD asymptotically. Note that the refined analysis of this section

relies on quantities that depend on the underlying data distribution, and thus the results are more

complicated than those presented earlier. Although precise interpretations of these results will be

complex, we will discuss them qualitatively after the theorem statements, and use them to explain

the advantage of SDCA over SGD for non-smooth losses.

Although we note that for SVM, Luo and Tseng’s analysis (Luo and Tseng, 1992) shows lin-

ear convergence of the form (1− ν)k for dual sub-optimality after k passes over the data, as we

mentioned, ν is proportional to the smallest nonzero eigenvalue of the data Gram matrix X⊤X , and

hence can be arbitrarily bad when two data points xi 6= x j becomes very close to each other. Our

analysis uses a completely different argument that avoids this dependency on the data Gram matrix.

The main intuition behind our analysis is that many non-smooth loss functions are nearly smooth

everywhere. For example, the hinge loss max(0,1− uyi) is smooth at any point u such that uyi is

not close to 1. Since a smooth loss has a strongly convex dual (and the strong convexity of the dual
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is directly used in our proof to obtain fast rate for smooth loss), the refined analysis in this section

relies on the following refined dual strong convexity condition that holds for nearly everywhere

smooth loss functions.

Definition 14 For each i, we define γi(·)≥ 0 so that for all dual variables a and b, and u∈ ∂φ∗i (−b),
we have

φ∗i (−a)−φ∗i (−b)+u(a−b)≥ γi(u)|a−b|2. (4)

For the SVM loss, we have φi(u) = max(0,1− uyi), and φ∗i (−a) = −ayi, with ayi ∈ [0,1] and

yi ∈ {±1}. It follows that

φ∗i (−a)−φ∗i (−b)+u(a−b) = (b−a)yi +u(a−b) = |uyi−1||a−b| ≥ |uyi−1| · |a−b|2.

Therefore we may take γi(u) = |uyi−1|.
For the absolute deviation loss, we have φi(u) = |u− yi|, and φ∗(−a) = −ayi with a ∈ [−1,1].

It follows that γi(u) = |u− yi|.

Proposition 15 Under the assumption of (4). Let γi = γi(w
∗⊤xi), we have the following dual strong

convexity inequality:

D(α∗)−D(α)≥
1

n

n

∑
i=1

γi|αi−α∗i |
2 +

λ

2
(w−w∗)⊤(w−w∗). (5)

Moreover, given w ∈ R
d and −ai ∈ ∂φi(w

⊤xi), we have

|(w∗−w)⊤xi| ≥ γi|ai−α∗i |.

For SVM, we can take γi = |w
∗⊤xiyi− 1|, and for the absolute deviation loss, we may take

γi = |w
∗⊤xi− yi|. Although some of γi can be close to zero, in practice, most γi will be away from

zero, which means D(α) is strongly convex at nearly all points. Under this assumption, we may

establish a convergence result for the dual sub-optimality.

Theorem 16 Consider Procedure SDCA with α(0) = 0. Assume that φi is L-Lipschitz for all i and it

satisfies (5). Define N(u) = #{i : γi < u}. To obtain a dual-suboptimality of E[D(α∗)−D(αt)]≤ εD,

it suffices to have a total number of iterations of

t ≥ 2(n/s) log(2/εD),

where s ∈ [0,1] satisfies εD ≥ 8L2(s/λn)N(s/λn)/n.

Remark 17 if N(s/λn)/n is small, then Theorem 16 is superior to Theorem 2 for the convergence

of the dual objective function. We consider three scenarios. The first scenario is when s = 1.

If N(1/λn)/n is small, and εD ≥ 8L2(1/λn)N(1/λn)/n, then the convergence is linear. The sec-

ond scenario is when there exists s0 so that N(s0/λn) = 0 (for SVM, it means that λn|w∗⊤xiyi−
1| ≥ s0 for all i), and since εD ≥ 8L2(s0/λn)N(s0/λn)/n, we again have a linear convergence of

(2n/s0) log(2/εD). In the third scenario, we assume that N(s/λn)/n = O[(s/λn)ν] for some ν > 0,

we can take εD = O((s/λn)1+ν) and obtain

t ≥ O(λ−1ε
−1/(1+ν)
D log(2/εD)).

The log(1/εD) factor can be removed in this case with a slightly more complex analysis. This result

is again superior to Theorem 2 for dual convergence.
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The following result shows fast convergence of duality gap using Theorem 16.

Theorem 18 Consider Procedure SDCA with α(0) = 0. Assume that φi is L-Lipschitz for all i and

it satisfies (4). Let ρ≤ 1 be the largest eigenvalue of the matrix n−1 ∑i=1 xix
⊤
i . Define N(u) = #{i :

γi < u}. Assume that at time T0 ≥ n, we have dual suboptimality of E[D(α∗)−D(α(T0))]≤ εD, and

define

ε̃P = inf
γ>0

[
N(γ)

n
4L2 +

2εD

min(γ,λγ2/(2ρ))

]

,

then at time T = 2T0, we have

E[P(w̄)−D(ᾱ)]≤ εD +
ε̃P

2λT0

.

If for some γ, N(γ)/n is small, then Theorem 18 is superior to Theorem 2. Although the general

dependency may be complex, the improvement over Theorem 2 can be more easily seen in the

special case that N(γ) = 0 for some γ > 0. In fact, in this case we have ε̃P = O(εD), and thus

E[P(w̄)−D(ᾱ)] = O(εD).

This means that the convergence rate for duality gap in Theorem 18 is linear as implied by the linear

convergence of εD in Theorem 16.

6. Examples

We will specify the SDCA algorithms for a few common loss functions. For simplicity, we only

specify the algorithms without SGD initialization. In practice, instead of complete randomization,

we may also run in epochs, and each epoch employs a random permutation of the data. We call this

variant SDCA-Perm.

Procedure SDCA-Perm(α(0))

Let w(0) = w(α(0))
Let t = 0

Iterate: for epoch k = 1,2, . . .
Let {i1, . . . , in} be a random permutation of {1, . . . ,n}
Iterate: for j = 1,2, . . . ,n:

t← t +1

i = i j

Find ∆αi to increase dual (*)

α(t)← α(t−1)+∆αiei

w(t)← w(t−1)+(λn)−1∆αixi

Output (Averaging option):

Let ᾱ = 1
T−T0

∑T
i=T0+1 α(t−1)

Let w̄ = w(ᾱ) = 1
T−T0

∑T
i=T0+1 w(t−1)

return w̄

Output (Random option):

Let ᾱ = α(t) and w̄ = w(t) for some random t ∈ T0 +1, . . . ,T
return w̄
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6.1 Lipschitz Loss

Hinge loss is used in SVM. We have φi(u) = max{0,1− yiu} and φ∗i (−a) =−ayi with ayi ∈ [0,1].
Absolute deviation loss is used in quantile regression. We have φi(u) = |u− yi| and φ∗i (−a) =−ayi

with a ∈ [−1,1].
For the hinge loss, step (*) in Procedure SDCA-Perm has a closed form solution as

∆αi = yi max

(

0,min

(

1,
1− x⊤i w(t−1)yi

‖xi‖2/(λn)
+α

(t−1)
i yi

))

−α
(t−1)
i .

For absolute deviation loss, step (*) in Procedure SDCA-Perm has a closed form solution as

∆αi = max

(

−1,min

(

1,
yi− x⊤i w(t−1)

‖xi‖2/(λn)
+α

(t−1)
i

))

−α
(t−1)
i .

Both hinge loss and absolute deviation loss are 1-Lipschitz. Therefore, we expect a convergence

behavior of no worse than

O

(

n logn+
1

λε

)

without SGD initialization based on Theorem 2. The refined analysis in Section 5 suggests a rate

that can be significantly better, and this is confirmed with our empirical experiments.

6.2 Smooth Loss

Squared loss is used in ridge regression. We have φi(u) = (u−yi)
2, and φ∗i (−a) =−ayi+a2/4. Log

loss is used in logistic regression. We have φi(u) = log(1+exp(−yiu)), and φ∗i (−a) = ayi log(ayi)+
(1−ayi) log(1−ayi) with ayi ∈ [0,1].

For squared loss, step (*) in Procedure SDCA-Perm has a closed form solution as

∆αi =
yi− x⊤i w(t−1)−0.5α

(t−1)
i

0.5+‖xi‖2/(λn)
.

For log loss, step (*) in Procedure SDCA-Perm does not have a closed form solution. However,

one may start with the approximate solution,

∆αi =
(1+ exp(x⊤i w(t−1)yi))

−1yi−α
(t−1)
i

max(1,0.25+‖xi‖2/(λn))
,

and further use several steps of Newton’s update to get a more accurate solution.

Finally, we present a smooth variant of the hinge-loss, as defined below. Recall that the hinge

loss function (for positive labels) is φ(u) = max{0,1−u} and we have φ∗(−a) =−a with a ∈ [0,1].
Consider adding to φ∗ the term

γ
2
a2 which yields the γ-strongly convex function

φ̃∗γ(a) = φ∗(a)+
γ

2
a2 .

Then, its conjugate, which is defined below, is (1/γ)-smooth. We refer to it as the smoothed hinge-

loss (for positive labels):

φ̃γ(x) = max
a∈[−1,0]

[

ax−a−
γ

2
a2
]

=







0 x > 1

1− x− γ/2 x < 1− γ
1
2γ(1− x)2 otherwise

. (6)
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For the smoothed hinge loss, step (*) in Procedure SDCA-Perm has a closed form solution as

∆αi = yi max

(

0,min

(

1,
1− x⊤i w(t−1)yi− γα

(t−1)
i yi

‖xi‖2/(λn)+ γ
+α

(t−1)
i yi

))

−α
(t−1)
i .

Both log loss and squared loss are 1-smooth. The smoothed-hinge loss is 1/γ smooth. Therefore

we expect a convergence behavior of no worse than

O

((

n+
1

γλ

)

log
1

ε

)

.

This is confirmed in our empirical experiments.

7. Proofs

We denote by ∂φi(a) the set of sub-gradients of φi at a. We use the notation φ′i(a) to denote some

sub-gradient of φi at a. For convenience, we list the following simple facts about primal and dual

formulations, which will used in the proofs. For each i, we have

−α∗i ∈ ∂φi(w
∗⊤xi), w∗⊤xi ∈ ∂φ∗i (−α∗i ),

and

w∗ =
1

λn

n

∑
i=1

α∗i xi.

The proof of our basic results stated in Theorem 5 and Theorem 2 relies on the fact that for

SDCA, it is possible to lower bound the expected increase in dual objective by the duality gap. This

key observation is stated in Lemma 19. Note that the duality gap can be further lower bounded

using dual suboptimality. Therefore Lemma 19 implies a recursion for dual suboptimality which

can be solved to obtain the convergence of dual objective. We can then apply Lemma 19 again,

and the convergence of dual objective implies an upper bound of the duality gap, which leads to the

basic theorems. The more refined results in Section 4 and Section 5 use similar strategies but with

Lemma 19 replaced by its variants.

7.1 Proof Of Theorem 5

The key lemma, which estimates the expected increase in dual objective in terms of the duality gap,

can be stated as follows.

Lemma 19 Assume that φ∗i is γ-strongly-convex (where γ can be zero). Then, for any iteration t and

any s ∈ [0,1] we have

E[D(α(t))−D(α(t−1))]≥
s

n
E[P(w(t−1))−D(α(t−1))]−

( s

n

)2 G(t)

2λ
,

where

G(t) =
1

n

n

∑
i=1

(

‖xi‖
2−

γ(1− s)λn

s

)

E[(u
(t−1)
i −α

(t−1)
i )2],

and −u
(t−1)
i ∈ ∂φi(x

⊤
i w(t−1)).
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Proof Since only the i’th element of α is updated, the improvement in the dual objective can be

written as

n[D(α(t))−D(α(t−1))] =

(

−φ∗i (−α
(t)
i )−

λn

2
‖w(t)‖2

)

︸ ︷︷ ︸

A

−

(

−φ∗i (−α
(t−1)
i )−

λn

2
‖w(t−1)‖2

)

︸ ︷︷ ︸

B

.

By the definition of the update we have for all s ∈ [0,1] that

A = max
∆αi

−φ∗i (−(α
(t−1)
i +∆αi))−

λn

2
‖w(t−1)+(λn)−1∆αixi‖

2

≥−φ∗i (−(α
(t−1)
i + s(u

(t−1)
i −α

(t−1)
i )))−

λn

2
‖w(t−1)+(λn)−1s(u

(t−1)
i −α

(t−1)
i )xi‖

2. (7)

From now on, we omit the superscripts and subscripts. Since φ∗ is γ-strongly convex, we have that

φ∗(−(α+ s(u−α))) = φ∗(s(−u)+(1− s)(−α))≤ sφ∗(−u)+(1− s)φ∗(−α)−
γ

2
s(1− s)(u−α)2.

Combining this with (7) and rearranging terms we obtain that

A≥−sφ∗(−u)− (1− s)φ∗(−α)+
γ

2
s(1− s)(u−α)2−

λn

2
‖w+(λn)−1s(u−α)x‖2

=−sφ∗(−u)− (1− s)φ∗(−α)+
γ

2
s(1− s)(u−α)2−

λn

2
‖w‖2− s(u−α)w⊤x

−
s2(u−α)2

2λn
‖x‖2

=−s(φ∗(−u)+uw⊤x)
︸ ︷︷ ︸

sφ(w⊤x)

+(−φ∗(−α)−
λn

2
‖w‖2)

︸ ︷︷ ︸

B

+
s

2

(

γ(1− s)−
s‖x‖2

λn

)

(u−α)2

+ s(φ∗(−α)+αw⊤x),

where we used −u ∈ ∂φ(w⊤x) which yields φ∗(−u) =−uw⊤x−φ(w⊤x). Therefore

A−B≥ s

[

φ(w⊤x)+φ∗(−α)+αw⊤x+

(
γ(1− s)

2
−

s‖x‖2

2λn

)

(u−α)2

]

. (8)

Next note that

P(w)−D(α) =
1

n

n

∑
i=1

φi(w
⊤xi)+

λ

2
w⊤w−

(

−
1

n

n

∑
i=1

φ∗i (−αi)−
λ

2
w⊤w

)

=
1

n

n

∑
i=1

(

φi(w
⊤xi)+φ∗i (−αi)+αiw

⊤xi

)

.

Therefore, if we take expectation of (8) w.r.t. the choice of i we obtain that

1

s
E[A−B]≥ E[P(w)−D(α)]−

s

2λn
·

1

n

n

∑
i=1

(

‖xi‖
2−

γ(1− s)λn

s

)

E(ui−αi)
2

︸ ︷︷ ︸

=G(t)

.
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We have obtained that

n

s
E[D(α(t))−D(α(t−1))]≥ E[P(w(t−1))−D(α(t−1))]−

sG(t)

2λn
.

Multiplying both sides by s/n concludes the proof of the lemma.

We also use the following simple lemma:

Lemma 20 For all α, D(α)≤ P(w∗)≤ P(0)≤ 1. In addition, D(0)≥ 0.

Proof The first inequality is by weak duality, the second is by the optimality of w∗, and the third

by the assumption that φi(0) ≤ 1. For the last inequality we use −φ∗i (0) = −maxz(0− φi(z)) =
minz φi(z)≥ 0, which yields D(0)≥ 0.

Equipped with the above lemmas we are ready to prove Theorem 5.

Proof [Proof of Theorem 5] The assumption that φi is (1/γ)-smooth implies that φ∗i is γ-strongly-

convex. We will apply Lemma 19 with s = λnγ
1+λnγ ∈ [0,1]. Recall that ‖xi‖ ≤ 1. Therefore, the

choice of s implies that ‖xi‖
2− γ(1−s)λn

s
≤ 0, and hence G(t) ≤ 0 for all t. This yields,

E[D(α(t))−D(α(t−1))]≥
s

n
E[P(w(t−1))−D(α(t−1))] .

But since ε
(t−1)
D := D(α∗)−D(α(t−1))≤ P(w(t−1))−D(α(t−1)) and D(α(t))−D(α(t−1)) = ε

(t−1)
D −

ε
(t)
D , we obtain that

E[ε
(t)
D ]≤

(
1− s

n

)
E[ε

(t−1)
D ]≤

(
1− s

n

)t
E[ε

(0)
D ]≤

(
1− s

n

)t
≤ exp(−st/n) = exp

(

−
λγt

1+λγn

)

.

This would be smaller than εD if

t ≥
(

n+ 1
λγ

)

log(1/εD) .

It implies that

E[P(w(t))−D(α(t))]≤
n

s
E[ε

(t)
D − ε

(t+1)
D ]≤

n

s
E[ε

(t)
D ]. (9)

So, requiring ε
(t)
D ≤

s
n
εP we obtain a duality gap of at most εP. This means that we should require

t ≥
(

n+ 1
λγ

)

log((n+ 1
λγ) ·

1
εP
) ,

which proves the first part of Theorem 5.

Next, we sum (9) over t = T0, . . . ,T −1 to obtain

E

[

1

T −T0

T−1

∑
t=T0

(P(w(t))−D(α(t)))

]

≤
n

s(T −T0)
E[D(α(T ))−D(α(T0))].
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Now, if we choose w̄, ᾱ to be either the average vectors or a randomly chosen vector over t ∈
{T0 +1, . . . ,T}, then the above implies

E[P(w̄)−D(ᾱ)]≤
n

s(T −T0)
E[D(α(T ))−D(α(T0))]≤

n

s(T −T0)
E[ε

(T0)
D )].

It follows that in order to obtain a result of E[P(w̄)−D(ᾱ)]≤ εP, we only need to have

E[ε
(T0)
D )]≤

s(T −T0)εP

n
=

(T −T0)εP

n+ 1
λγ

.

This implies the second part of Theorem 5, and concludes the proof.

7.2 Proof Of Theorem 2

Next, we turn to the case of Lipschitz loss function. We rely on the following lemma.

Lemma 21 Let φ : R→ R be an L-Lipschitz function. Then, for any α s.t. |α| > L we have that

φ∗(α) = ∞.

Proof Fix some α > L. By definition of the conjugate we have

φ∗(α) = sup
x

[αx−φ(x)]

≥−φ(0)+ sup
x

[αx− (φ(x)−φ(0))]

≥−φ(0)+ sup
x

[αx−L|x−0|]

≥−φ(0)+ sup
x>0

(α−L)x = ∞ .

Similar argument holds for α <−L.

A direct corollary of the above lemma is:

Lemma 22 Suppose that for all i, φi is L-Lipschitz. Let G(t) be as defined in Lemma 19 (with γ = 0).

Then, G(t) ≤ 4L2.

Proof Using Lemma 21 we know that |α
(t−1)
i | ≤ L, and in addition by the relation of Lipschitz and

sub-gradients we have |u
(t−1)
i | ≤ L. Thus, (u

(t−1)
i −α

(t−1)
i )2 ≤ 4L2, and the proof follows.

We are now ready to prove Theorem 2.

Proof [Proof of Theorem 2] Let G = maxt G(t) and note that by Lemma 22 we have G ≤ 4L2.

Lemma 19, with γ = 0, tells us that

E[D(α(t))−D(α(t−1))]≥
s

n
E[P(w(t−1))−D(α(t−1))]−

( s

n

)2 G

2λ
, (10)

which implies that

E[ε
(t)
D ]≤

(
1− s

n

)
E[ε

(t−1)
D ]+

(
s
n

)2 G
2λ .
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We next show that the above yields

E[ε
(t)
D ]≤

2G

λ(2n+ t− t0)
(11)

for all t ≥ t0 = max(0,⌈n log(2λnε
(0)
D /G)⌉). Indeed, let us choose s = 1, then at t = t0, we have

E[ε
(t)
D ]≤

(
1− 1

n

)t
ε
(0)
D + G

2λn2
1

1−(1−1/n) ≤ e−t/nε
(0)
D + G

2λn
≤ G

λn
.

This implies that (11) holds at t = t0. For t > t0 we use an inductive argument. Suppose the claim

holds for t−1, therefore

E[ε
(t)
D ]≤

(
1− s

n

)
E[ε

(t−1)
D ]+

(
s
n

)2 G
2λ ≤

(
1− s

n

)
2G

λ(2n+t−1−t0)
+
(

s
n

)2 G
2λ .

Choosing s = 2n/(2n− t0 + t−1) ∈ [0,1] yields

E[ε
(t)
D ]≤

(

1− 2
2n−t0+t−1

)
2G

λ(2n−t0+t−1) +
(

2
2n−t0+t−1

)2
G
2λ

= 2G
λ(2n−t0+t−1)

(

1− 1
2n−t0+t−1

)

= 2G
λ(2n−t0+t−1)

2n−t0+t−2
2n−t0+t−1

≤ 2G
λ(2n−t0+t−1)

2n−t0+t−1
2n−t0+t

= 2G
λ(2n−t0+t) .

This provides a bound on the dual sub-optimality. We next turn to bound the duality gap. Summing

(10) over t = T0 +1, . . . ,T and rearranging terms we obtain that

E

[

1

T −T0

T

∑
t=T0+1

(P(w(t−1))−D(α(t−1)))

]

≤
n

s(T −T0)
E[D(α(T ))−D(α(T0))]+

sG

2λn
.

Now, if we choose w̄, ᾱ to be either the average vectors or a randomly chosen vector over t ∈
{T0 +1, . . . ,T}, then the above implies

E[P(w̄)−D(ᾱ)]≤
n

s(T −T0)
E[D(α(T ))−D(α(T0))]+

sG

2λn
.

If T ≥ n+T0 and T0 ≥ t0, we can set s = n/(T −T0) and combining with (11) we obtain

E[P(w̄)−D(ᾱ)]≤ E[D(α(T ))−D(α(T0))]+
G

2λ(T −T0)

≤ E[D(α∗)−D(α(T0))]+
G

2λ(T −T0)

≤
2G

λ(2n− t0 +T0)
+

G

2λ(T −T0)
.

A sufficient condition for the above to be smaller than εP is that T0 ≥
4G
λεP
−2n+ t0 and T ≥ T0+

G
λεP

.

It also implies that E[D(α∗)−D(α(T0))] ≤ εP/2. Since we also need T0 ≥ t0 and T −T0 ≥ n, the

overall number of required iterations can be

T0 ≥max{t0,4G/(λεP)−2n+ t0}, T −T0 ≥max{n,G/(λεP)}.
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We conclude the proof by noticing that ε
(0)
D ≤ 1 using Lemma 20, which implies that

t0 ≤max(0,⌈n log(2λn/G)⌉).

7.3 Proof Of Theorem 9

We assume that (φt ,xt) are randomly drawn from a distribution D, and define the population opti-

mizer

w∗D = argmin
w

PD(w), PD(w) = E(φ,x)∼D

[

φ(w⊤x)+
λ

2
‖w‖2

]

.

By definition, we have P(w∗)≤ P(w∗D) for any specific realization of {(φt ,xt) : t = 1, . . . ,n}. There-

fore

EP(w∗)≤ EP(w∗D) = EPD(w
∗
D),

where the expectation is with respect to the choice of examples, and note that both P(·) and w∗ are

sample dependent.

After each step t, we let α(t) = [α1, . . . ,αt ], and let −u ∈ ∂φt+1(x
⊤
t+1w(t)). We have, for all t,

(t +1)Dt+1(α
(t+1))− tDt(α

(t)) =−φ∗t+1(−α
(t+1)
t+1 )− (t +1)

λ

2
‖w(t+1)‖2 + t

λ

2
‖w(t)‖2

=−φ∗t+1(−α
(t+1)
t+1 )−

1

2(t +1)λ
‖λtw(t)+α

(t+1)
t+1 xt+1‖

2 +
1

2tλ
‖λtw(t)‖2

≥−φ∗t+1(−u)−
1

2(t +1)λ
‖λtw(t)+uxt+1‖

2 +
1

2tλ
‖λtw(t)‖2

=−φ∗t+1(−u)−
t

t +1
x⊤t+1w(t) u+

1

2λ

(
1

t
−

1

t +1

)

‖λtw(t)‖2−
u2‖xt+1‖

2

2(t +1)λ

=−φ∗t+1(−u)− x⊤t+1w(t) u+

(

1−
t

t +1

)

x⊤t+1w(t) u+
1

2(t +1)λ

(

‖λtw(t)‖2

t
−u2‖xt+1‖

2

)

= φt+1(x
⊤
t+1w(t))+

1

2(t +1)λ

(

2λx⊤t+1w(t) u+
‖λtw(t)‖2

t
−u2‖xt+1‖

2

)

= φt+1(x
⊤
t+1w(t))+

λ

2
‖w(t)‖2 +

1

2(t +1)λ

(

2λx⊤t+1w(t) u−‖λw(t)‖2−u2‖xt+1‖
2
)

= φt+1(w
(t) ⊤xt+1)+

λ

2
‖w(t)‖2−

‖λw(t)−uxt+1‖
2

2(t +1)λ
.

The inequality above can be obtained by noticing that the choice of −α
(t+1)
t+1 maximizes the dual

objective. In the derivation of the equalities we have used basic algebra as well as the equa-

tion −φ∗t+1(−u)− x⊤t+1w(t) u = φt+1(x
⊤
t+1w(t)) which follows from −u ∈ ∂φt+1(x

⊤
t+1w(t)). Next we

note that ‖λw(t)− uxt+1‖ ≤ 2L (where we used the triangle inequality, the definition of w(t), and

Lemma 21). Therefore,

(t +1)Dt+1(α
(t+1))− tDt(α

(t))≥ φt+1(w
(t) ⊤xt+1)+

λ

2
‖w(t)‖2−

2L2

(t +1)λ
.
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Taking expectation with respect to the choice of the examples, and note that the (t +1)’th example

does not depend on w(t) we obtain that

E[(t +1)Dt+1(α
(t+1))− tDt(α

(t))]

≥E[PD(w
(t))]−

2L2

(t +1)λ
≥ E[PD(w

∗
D)]−

2L2

(t +1)λ

≥E[P(w∗)]−
2L2

(t +1)λ
= E[D(α∗)]−

2L2

(t +1)λ
.

Using Lemma 20 we know that Dt(α
(t)) ≥ 0 for all t. Therefore, by summing the above over t we

obtain that

E[nD(α(n))]≥ nE[D(α∗)]−
2L2 log(en)

λ
,

which yields

E[D(α∗)−D(α(n))]≤
2L2 log(en)

λn
.

7.4 Proof Of Theorem 11

The proof is identical to the proof of Theorem 2. We just need to notice that at the end of the first

stage, we have Eε
(0)
D ≤ 2L2 log(en)/(λn). It implies that t0≤max(0,⌈n log(2λn ·2L2 log(en)/(λnG))⌉).

7.5 Proof Of Proposition 15

Consider any feasible dual variable α and the corresponding w = w(α). Since

w =
1

λn

n

∑
i=1

αixi, w∗ =
1

λn

n

∑
i=1

α∗i xi,

we have

λ(w−w∗)⊤w∗ =
1

n

n

∑
i=1

(αi−α∗i )w
∗⊤xi.

Therefore

D(α∗)−D(α)

=
1

n

n

∑
i=1

[

φ∗i (−αi)−φ∗i (−α∗i )+(αi−α∗i )w
∗⊤xi

]

+
λ

2
[w⊤w−w∗⊤w∗−2(w−w∗)⊤w∗]

=
1

n

n

∑
i=1

[

φ∗i (−αi)−φ∗i (−α∗i )+(αi−α∗i )w
∗⊤xi

]

+
λ

2
(w−w∗)⊤(w−w∗).

Since w∗⊤xi ∈ ∂φ∗i (−α∗i ), we have

φ∗i (−αi)−φ∗i (−α∗i )+(αi−α∗i )w
∗⊤xi ≥ γi(αi−α∗i )

2.

By combining the previous two displayed inequalities, we obtain the first desired bound.
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Next, we let u = w∗⊤xi, v = w⊤xi. Since −ai ∈ ∂φi(v) and −α∗i ∈ ∂φi(u), it follows that u ∈
∂φ∗i (−α∗i ) and v ∈ ∂φ∗i (−ai). Therefore

|u− v| · |α∗i −ai|

=[φ∗i (−ai)−φ∗i (−α∗i )+u(ai−α∗i )]
︸ ︷︷ ︸

≥0

+[φ∗i (−α∗i )−φ∗i (−ai)+ v(α∗i −ai)]
︸ ︷︷ ︸

≥0

≥φ∗i (−ai)−φ∗i (−α∗i )+u(ai−α∗i )≥ γi(u)|ai−α∗i |
2.

This implies the second bound.

7.6 Proof Of Theorem 16

The following lemma is very similar to Lemma 19 with nearly identical proof, but it focuses only

on the convergence of dual objective function using (5).

Lemma 23 Assume that (5) is valid. Then for any iteration t and any s ∈ [0,1] we have

E[D(α(t))−D(α(t−1))]≥
s

2n
E[D(α∗)−D(α(t−1))]+

3sλ

4n
‖w∗−w(t−1)‖2−

( s

n

)2 G
(t)
∗ (s)

2λ
,

where

G
(t)
∗ (s) =

1

n

n

∑
i=1

(

‖xi‖
2−

γiλn

s

)

E[(α∗i −α
(t−1)
i )2].

Proof Since only the i’th element of α is updated, the improvement in the dual objective can be

written as

n[D(α(t))−D(α(t−1))] =

(

−φ∗(−α
(t)
i )−

λn

2
‖w(t)‖2

)

︸ ︷︷ ︸

Ai

−

(

−φ∗(−α
(t−1)
i )−

λn

2
‖w(t−1)‖2

)

︸ ︷︷ ︸

Bi

.

By the definition of the update we have for all s ∈ [0,1] that

Ai = max
∆αi

−φ∗(−(α
(t−1)
i +∆αi))−

λn

2
‖w(t−1)+(λn)−1∆αixi‖

2

≥−φ∗(−(α
(t−1)
i + s(α∗i −α

(t−1)
i )))−

λn

2
‖w(t−1)+(λn)−1s(α∗i −α

(t−1)
i )xi‖

2.

We can now apply the Jensen’s inequality to obtain

Ai ≥−sφ∗i (−α∗i )− (1− s)φ∗i (−α
(t−1)
i )−

λn

2
‖w(t−1)+(λn)−1s(α∗i −α

(t−1)
i )xi‖

2

=−s[φ∗i (−α∗i )−φ∗i (−α
(t−1)
i )] −φ∗i (−α

(t−1)
i )−

λn

2
‖w(t−1)‖2

︸ ︷︷ ︸

Bi

−s(α∗i −α
(t−1)
i )x⊤i w(t−1)

−
s2(α∗i −α

(t−1)
i )2

2λn
‖xi‖

2.
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By summing over i = 1, . . . ,n, we obtain

n

∑
i=1

[Ai−Bi]≥− s
n

∑
i=1

[φ∗i (−α∗i )−φ∗i (−α
(t−1)
i )]− s

n

∑
i=1

(α∗i −α
(t−1)
i )x⊤i w(t−1)

−
s2

2λn

n

∑
i=1

(α∗i −α
(t−1)
i )2‖xi‖

2

=− s
n

∑
i=1

[φ∗i (−α∗i )−φ∗i (−α
(t−1)
i )+λ(w∗−w(t−1))⊤w(t−1)]

−
s2

2λn

n

∑
i=1

(α∗i −α
(t−1)
i )2‖xi‖

2,

where the equality follows from ∑n
i=1(α

∗
i −α

(t−1)
i )xi = λn(w∗−w(t−1)). By rearranging the terms

on the right hand side using (w∗−w(t−1))⊤w(t−1) = ‖w∗‖2/2−‖w(t−1)‖2/2−‖w∗−w(t−1)‖2/2, we

obtain

n

∑
i=1

[Ai−Bi]

≥− s
n

∑
i=1

[

φ∗i (−α∗i )−φ∗i (−α
(t−1)
i )+

λ

2
‖w∗‖2−

λ

2
‖w(t−1)‖2

]

+
λsn

2
‖w∗−w(t−1)‖2

−
s2

2λn

n

∑
i=1

(α∗i −α
(t−1)
i )2‖xi‖

2

=sn[D(α∗)−D(α(t−1))]+
sλn

2
‖w∗−w(t−1)‖2−

s2

2λn

n

∑
i=1

(α∗i −α
(t−1)
i )2‖xi‖

2.

We can now apply (5) to obtain

n

∑
i=1

[Ai−Bi]≥
sn

2
[D(α∗)−D(α(t−1))]+

3sλn

4
‖w∗−w(t−1)‖2

−
s2

2λn

n

∑
i=1

(α∗i −α
(t−1)
i )2(‖xi‖

2− γiλn/s).

This implies the desired result.

Lemma 24 Suppose that for all i, φi is L-Lipschitz. Let G
(t)
∗ be as defined in Lemma 23. Then

G
(t)
∗ (s)≤

4L2N(s/(λn))

n
.

Proof Similarly to the proof of Lemma 22, we know that (α∗i −α
(t−1)
i )2≤ 4L2. Moreover, ‖xi‖

2≤ 1,

and ‖xi‖
2− γiλn

s
≤ 0 when γi ≥ s/(λn). Therefore there are no more than N(s/(λn)) data points i

such that ‖xi‖
2− γiλn

s
is positive. The desired result follows from these facts.

586



STOCHASTIC DUAL COORDINATE ASCENT METHODS FOR REGULARIZED LOSS MINIMIZATION

Proof [Proof of Theorem 16] Let ε
(t)
D =E[D(α∗)−D(α(t))], and G∗(s) = 4L2N(s/λn)/n. We obtain

from Lemma 23 and Lemma 24 that

ε
(t)
D ≤ (1− s/(2n))ε

(t−1)
D +

( s

n

)2 G∗(s)

2λ
.

It follows that for all t > 0 we have

ε
(t)
D ≤(1− s/(2n))tε

(0)
D +

1

1− (1− s/(2n))

( s

n

)2 G∗(s)

2λ

≤e−st/2n +
( s

n

) G∗(s)

λ
≤ e−st/2n + εD/2.

It follows that when

t ≥ (2n/s) log(2/εD),

we have ε
(t)
D ≤ εD.

7.7 Proof Of Theorem 18

Let ε
(t)
D = E[D(α∗)−D(α(t))]. From Proposition 15, we know that for all t ≥ T0:

ε
(t)
D ≥

1

n

n

∑
i=1

[

γiE |α
(t)
i −α∗i |

2 +
λ

2ρ
E((w(t)−w∗)⊤xi)

2

]

≥
1

n

n

∑
i=1

[

γiE |α
(t)
i −α∗i |

2 +
λγ2

i

2ρ
E(u

(t−1)
i −α∗i )

2

]

,

where −u
(t−1)
i ∈ ∂φi(x

⊤
i w(t)). It follows that given any γ > 0, we have

1

n

n

∑
i=1

E |α
(t)
i −u

(t−1)
i |2

≤
N(γ)

n
sup

i

E |α
(t)
i −u

(t−1)
i |2 +

2

n
∑

i:γi≥γ

[

E |α
(t)
i −α∗i |

2 +E(u
(t−1)
i −α∗i )

2
]

≤
N(γ)

n
sup

i

E |α
(t)
i −u

(t−1)
i |2 +

2
n ∑n

i=1

[

γiE |α
(t)
i −α∗i |

2 +
λγ2

i

2ρ E(u
(t−1)
i −α∗i )

2
]

min(γ,λγ2/(2ρ))

≤
N(γ)

n
4L2 +

2ε
(t)
D

min(γ,λγ2/(2ρ))
,

where Lemma 22 is used for the last inequality. Since γ is arbitrary and ε
(t)
D ≤ εD, it follows that

1

n

n

∑
i=1

E |α
(t)
i −u

(t−1)
i |2 ≤ ε̃P.
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Now plug into Lemma 19, we obtain for all t ≥ T0 +1:

ε
(t−1)
D − ε

(t)
D

≥
s

n
E[P(w(t−1))−D(α(t−1))]−

( s

n

)2 1

2λn

n

∑
i=1

E[(u
(t−1)
i −α

(t−1)
i )2]

≥
s

n
E[P(w(t−1))−D(α(t−1))]−

( s

n

)2 ε̃P

2λ
.

By taking s = n/T0, and summing over t = T0 +1, . . . ,2T0 = T , we obtain

εD ≥ ε
(T0)
D − ε

(T )
D ≥ E[P(w̄)−D(ᾱ)]−

ε̃P

2λT0

.

This proves the desired bound.

8. Experimental Results

In this section we demonstrate the tightness of our theory. All our experiments are performed

with the smooth variant of the hinge-loss defined in (6), where the value of γ is taken from the set

{0,0.01,0.1,1}. Note that for γ = 0 we obtain the vanilla non-smooth hinge-loss.

In the experiments, we use εD to denote the dual sub-optimality, and εP to denote the primal

sub-optimality (note that this is different than the notation in our analysis which uses εP to denote

the duality gap). It follows that εD + εP is the duality gap.

8.1 Data

The experiments were performed on three large data sets with very different feature counts and spar-

sity, which were kindly provided by Thorsten Joachims. The astro-ph data set classifies abstracts

of papers from the physics ArXiv according to whether they belong in the astro-physics section;

CCAT is a classification task taken from the Reuters RCV1 collection; and cov1 is class 1 of the

covertype data set of Blackard, Jock & Dean. The following table provides details of the data set

characteristics.

Data Set Training Size Testing Size Features Sparsity

astro-ph 29882 32487 99757 0.08%

CCAT 781265 23149 47236 0.16%

cov1 522911 58101 54 22.22%

8.2 Linear Convergence For Smooth Hinge-loss

Our first experiments are with φγ where we set γ = 1. The goal of the experiment is to show

that the convergence is indeed linear. We ran the SDCA algorithm for solving the regularized

loss minimization problem with different values of regularization parameter λ. Figure 1 shows

the results. Note that a logarithmic scale is used for the vertical axis. Therefore, a straight line

corresponds to linear convergence. We indeed observe linear convergence for the duality gap.

8.3 Convergence For Non-smooth Hinge-loss

Next we experiment with the original hinge loss, which is 1-Lipschitz but is not smooth. We again

ran the SDCA algorithm for solving the regularized loss minimization problem with different values
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of regularization parameter λ. Figure 2 shows the results. As expected, the overall convergence rate

is slower than the case of a smoothed hinge-loss. However, it is also apparent that for large values of

λ a linear convergence is still exhibited, as expected according to our refined analysis. The bounds

plotted are based on Theorem 2, which are slower than what we observe, as expected from the

refined analysis in Section 5.

8.4 Effect Of Smoothness Parameter

We next show the effect of the smoothness parameter. Figure 3 shows the effect of the smoothness

parameter on the rate of convergence. As can be seen, the convergence becomes faster as the loss

function becomes smoother. However, the difference is more dominant when λ decreases.

Figure 4 shows the effect of the smoothness parameter on the zero-one test error. It is noticeable

that even though the non-smooth hinge-loss is considered a tighter approximation of the zero-one

error, in most cases, the smoothed hinge-loss actually provides a lower test error than the non-

smooth hinge-loss. In any case, it is apparent that the smooth hinge-loss decreases the zero-one test

error faster than the non-smooth hinge-loss.

8.5 Cyclic vs. Stochastic vs. Random Permutation

In Figure 5 we compare choosing dual variables at random with repetitions (as done in SDCA)

vs. choosing dual variables using a random permutation at each epoch (as done in SDCA-Perm)

vs. choosing dual variables in a fixed cyclic order (that was chosen once at random). As can be

seen, a cyclic order does not lead to linear convergence and yields actual convergence rate much

slower than the other methods and even worse than our bound. As mentioned before, some of the

earlier analyses such as Luo and Tseng (1992) can be applied both to stochastic and to cyclic dual

coordinate ascent methods with similar results. This means that their analysis, which can be no

better than the behavior of cyclic dual coordinate ascent, is inferior to our analysis. Finally, we also

observe that SDCA-Perm is sometimes faster than SDCA.

8.6 Comparison To SGD

We next compare SDCA to Stochastic Gradient Descent (SGD). In particular, we implemented SGD

with the update rule w(t+1) = (1−1/t)w(t)− 1
λt

φ′i(w
(t)⊤xi)xi, where i is chosen uniformly at random

and φ′i denotes a sub-gradient of φi. One clear advantage of SDCA is the availability of a clear

stopping condition (by calculating the duality gap). In Figure 6 and Figure 7 we present the primal

sub-optimality of SDCA, SDCA-Perm, and SGD. As can be seen, SDCA converges faster than

SGD in most regimes. SGD can be better if both λ is high and one performs a very small number

of epochs. This is in line with our theory of Section 4. However, SDCA quickly catches up.

In Figure 8 we compare the zero-one test error of SDCA, when working with the smooth hinge-

loss (γ = 1) to the zero-one test error of SGD, when working with the non-smooth hinge-loss. As

can be seen, SDCA with the smooth hinge-loss achieves the smallest zero-one test error faster than

SGD.
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λ astro-ph CCAT cov1

10−3

1 2 3 4 5 6 7 8 9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

1 2 3 4 5 6 7 8 9 10 11
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

1 2 3 4 5 6 7 8 9 10 11
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

10−4

0 2 4 6 8 10 12
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

1 2 3 4 5 6 7 8 9 10 11
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

10−5

0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

1 2 3 4 5 6 7 8 9 10 11
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

10−6

0 5 10 15 20 25 30 35 40 45
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

ε
D

ε
P

ε
D
+ε

P

Bound

Figure 1: Experiments with the smoothed hinge-loss (γ = 1). The primal and dual sub-optimality,

the duality gap, and our bound are depicted as a function of the number of epochs, on the

astro-ph (left), CCAT (center) and cov1 (right) data sets. In all plots the horizontal axis

is the number of iterations divided by training set size (corresponding to the number of

epochs through the data).
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Figure 2: Experiments with the hinge-loss (non-smooth). The primal and dual sub-optimality, the

duality gap, and our bound are depicted as a function of the number of epochs, on the

astro-ph (left), CCAT (center) and cov1 (right) data sets. In all plots the horizontal axis

is the number of iterations divided by training set size (corresponding to the number of

epochs through the data).
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λ astro-ph CCAT cov1
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Figure 3: Duality gap as a function of the number of rounds for different values of γ.
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Figure 4: Comparing the test zero-one error of SDCA for smoothed hinge-loss (γ = 1) and non-

smooth hinge-loss (γ = 0). In all plots the vertical axis is the zero-one error on the test

set and the horizontal axis is the number of iterations divided by training set size (corre-

sponding to the number of epochs through the data). We terminated each method when

the duality gap was smaller than 10−5.
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Figure 5: Comparing the duality gap achieved by choosing dual variables at random with repetitions

(SDCA), choosing dual variables at random without repetitions (SDCA-Perm), or using

a fixed cyclic order. In all cases, the duality gap is depicted as a function of the number

of epochs for different values of λ. The loss function is the smooth hinge loss with γ = 1.
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Figure 6: Comparing the primal sub-optimality of SDCA and SGD for the smoothed hinge-loss

(γ = 1). In all plots the horizontal axis is the number of iterations divided by training set

size (corresponding to the number of epochs through the data).
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Figure 7: Comparing the primal sub-optimality of SDCA and SGD for the non-smooth hinge-loss

(γ = 0). In all plots the horizontal axis is the number of iterations divided by training set

size (corresponding to the number of epochs through the data).
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Figure 8: Comparing the test error of SDCA with the smoothed hinge-loss (γ = 1) to the test error

of SGD with the non-smoothed hinge-loss. In all plots the vertical axis is the zero-one

error on the test set and the horizontal axis is the number of iterations divided by training

set size (corresponding to the number of epochs through the data). We terminated SDCA

when the duality gap was smaller than 10−5.
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