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Abstract

We provide an information-theoretic analysis of Thompson sampling that applies across a
broad range of online optimization problems in which a decision-maker must learn from
partial feedback. This analysis inherits the simplicity and elegance of information theory
and leads to regret bounds that scale with the entropy of the optimal-action distribution.
This strengthens preexisting results and yields new insight into how information improves
performance.
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1. Introduction

This paper considers the problem of repeated decision making in the presence of model
uncertainty. A decision-maker repeatedly chooses among a set of possible actions, observes
an outcome, and receives a reward representing the utility derived from this outcome. The
decision-maker is uncertain about the underlying system and is therefore initially unsure of
which action is best. However, as outcomes are observed, she is able to learn over time to
make increasingly effective decisions. Her objective is to choose actions sequentially so as
to maximize the expected cumulative reward.

We focus on settings with partial feedback, under which the decision-maker does not
generally observe what the reward would have been had she selected a different action. This
feedback structure leads to an inherent tradeoff between exploration and exploitation: by
experimenting with poorly understood actions one can learn to make more effective decisions
in the future, but focusing on better understood actions may lead to higher rewards in the
short term. The classical multi–armed bandit problem is an important special case of this
formulation. In such problems, the decision–maker only observes rewards she receives, and
rewards from one action provide no information about the reward that can be attained
by selecting other actions. We are interested here primarily in models and algorithms
that accommodate cases where the number of actions is very large and there is a richer
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information structure relating actions and observations. This category of problems is often
referred to as online optimization with partial feedback.

A large and growing literature treats the design and analysis of algorithms for such prob-
lems. An online optimization algorithm typically starts with two forms of prior knowledge.
The first – hard knowledge – posits that the mapping from action to outcome distribution
lies within a particular family of mappings. The second – soft knowledge – concerns which
of these mappings are more or less likely to match reality. Soft knowledge evolves with ob-
servations and is typically represented in terms of a probability distribution or a confidence
set.

Much recent work concerning online optimization algorithms focuses on establishing
performance guarantees in the form of regret bounds. Surprisingly, virtually all of these
regret bounds depend on hard knowledge but not soft knowledge, a notable exception being
the bounds of Srinivas et al. (2012) which we discuss further in Section 1.2. Regret bounds
that depend on hard knowledge yield insight into how an algorithm’s performance scales
with the complexity of the family of mappings and are useful for delineating algorithms
on that basis, but if a regret bound does not depend on soft knowledge, it does not have
much to say about how future performance should improve as data is collected. The latter
sort of insight should be valuable for designing better ways of trading off between explo-
ration and exploitation, since it is soft knowledge that is refined as a decision-maker learns.
Another important benefit to understanding how performance depends on soft knowledge
arises in practical applications: when designing an online learning algorithm, one may have
access to historical data and want to understand how this prior information benefits future
performance.

In this paper, we establish regret bounds that depend on both hard and soft knowledge
for a simple online learning algorithm alternately known as Thompson sampling, posterior
sampling, or probability matching. The bounds strengthen results from prior work not only
with respect to Thompson sampling but relative to regret bounds for any online optimization
algorithm. Further, the bounds offer new insight into how regret depends on soft knowledge.
Indeed, forthcoming work of ours leverages this to produce an algorithm that outperforms
Thompson sampling.

We found information theory to provide tools ideally suited for deriving our new regret
bounds, and our analysis inherits the simplicity and elegance enjoyed by work in that field.
Our formulation encompasses a broad family of information structures, including as special
cases multi–armed bandit problems with independent arms, online optimization problems
with full information, linear bandit problems, and problems with combinatorial action sets
and “semi–bandit” feedback. We leverage information theory to provide a unified analysis
that applies to each of those special cases.

A novel feature of our bounds is their dependence on the entropy of the optimal-action
distribution. To our knowledge, these are the first bounds on the expected regret of any
algorithm that depend on the magnitude of the agent’s uncertainty about which action
is optimal. The fact that our bounds only depend on uncertainties relevant to optimizing
performance highlights the manner in which Thompson sampling naturally exploits complex
information structures. Further, in practical contexts, a decision-maker may begin with an
understanding that some actions are more likely to be optimal than others. For example,
when dealing with a shortest path problem, one might expect paths that traverse fewer
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edges to generally incur less cost. Our bounds are the first to formalize the performance
benefits afforded by such an understanding.

1.1 Preview of Results

Our analysis is based on a general probabilistic, or Bayesian, formulation in which uncertain
quantities are modeled as random variables. In principle, the optimal strategy for such a
problem could be calculated via dynamic programing, but for problem classes of practical
interest this would be computationally intractable. Thompson sampling serves as a simple
and elegant heuristic strategy. In this section, we provide a somewhat informal problem
statement, and a preview of our main results about Thompson sampling. In the next
subsection we discuss how these results relate to the existing literature.

A decision maker repeatedly chooses among a finite set of possible actions A and upon
taking action a ∈ A at time t ∈ N she observes a random outcome Yt,a ∈ Y. She associates
a reward with each outcome as specified by a reward function R : Y → R. The outcomes
(Yt,a)t∈N are drawn independently over time from a fixed probability distribution p∗a over
Y. The decision maker is uncertain about the distribution of outcomes p∗ = (p∗a)a∈A, which
is itself distributed according to a prior distribution over a family P of such distributions.
However, she is able to learn about p∗ as the outcomes of past decisions are observed, and
this allows her to learn over time to attain improved performance.

We first present a special case of our main result that applies to online linear optimiza-
tion problems under bandit feedback. This result applies when each action is associated
with a d–dimensional feature vector and the mean reward of each action is the inner prod-
uct between an unknown parameter vector and the action’s known feature vector. More
precisely, suppose A ⊂ Rd and that for every p ∈ P there is a vector θp ∈ Rd such that

E
y∼pa

[R(y)] = aT θp (1)

for all a ∈ A. When an action is sampled, a random reward in [0, 1] is received, where the
mean reward is given by (1). Then, our analysis establishes that the expected cumulative
regret of Thompson sampling up to time T is bounded by√

Entropy(A∗)dT

2
, (2)

where A∗ ∈ arg max
a∈A

E [R(Yt,a)|p∗] denotes the optimal action. This bound depends on the

time horizon, the entropy of the of the prior distribution of the optimal action A∗, and the
dimension d of the linear model.

Because the entropy of A∗ is always less than log |A|, (2) yields a bound of order√
log(|A|)dT , and this scaling cannot be improved in general (see Section 6.5). The bound

(2) is stronger than this worst–case bound, since the entropy of A∗ can be much smaller
than log(|A|).

Thompson sampling incorporates prior knowledge in a flexible and coherent way, and
the benefits of this are reflected in two distinct ways by the above bound. First, as in past
work (see e.g. Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010), the bound depends
on the dimension of the linear model instead of the number of actions. This reflects that the
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algorithm is able to learn more rapidly by exploiting the known model, since observations
from selecting one action provide information about rewards that would have been generated
by other actions. Second, the bound depends on the entropy of the prior distribution of A∗

instead of a worst case measure like the logarithm of the number of actions. This highlights
the benefit of prior knowledge that some actions are more likely to be optimal than others.
In particular, this bound exhibits the natural property that as the entropy of the prior
distribution of A∗ goes to zero, expected regret does as well.

Our main result extends beyond the class of linear bandit problems. Instead of de-
pending on the linear dimension of the model, it depends on a more general measure of
the problem’s information complexity: what we call the problem’s information ratio. By
bounding the information ratio in specific settings, we recover the bound (2) as a special
case, along with bounds for problems with full feedback and problems with combinatorial
action sets and “semi–bandit” feedback.

1.2 Related Work

Though Thompson sampling was first proposed in 1933 (Thompson, 1933), until recently it
was largely ignored in the academic literature. Interest in the algorithm grew after empirical
studies (Scott, 2010; Chapelle and Li, 2011) demonstrated performance exceeding state of
the art. Over the past several years, it has also been adopted in industry.1 This has
prompted a surge of interest in providing theoretical guarantees for Thompson sampling.

One of the first theoretical guarantees for Thompson sampling was provided by May et al.
(2012), but they showed only that the algorithm converges asymptotically to optimality.
Agrawal and Goyal (2012); Kauffmann et al. (2012); Agrawal and Goyal (2013a) and Korda
et al. (2013) studied on the classical multi-armed bandit problem, where sampling one action
provides no information about other actions. They provided frequentist regret bounds for
Thompson sampling that are asymptotically optimal in the sense defined by Lai and Robbins
(1985). To attain these bounds, the authors fixed a specific uninformative prior distribution,
and studied the algorithm’s performance assuming this prior is used.

Our interest in Thompson sampling is motivated by its ability to incorporate rich forms
of prior knowledge about the actions and the relationship among them. Accordingly, we
study the algorithm in a very general framework, allowing for an arbitrary prior distribution
over the true outcome distributions p∗ = (p∗a)a∈A. To accommodate this level of generality
while still focusing on finite–time performance, we study the algorithm’s expected regret
under the prior distribution. This measure is sometimes called Bayes risk or Bayesian
regret.

Our recent work (Russo and Van Roy, 2014) provided the first results in this setting.
That work leverages a close connection between Thompson sampling and upper confidence
bound (UCB) algorithms, as well as existing analyses of several UCB algorithms. This
confidence bound analysis was then extended to a more general setting, leading to a general
regret bound stated in terms of a new notion of model complexity – what we call the eluder
dimension. While the connection with UCB algorithms may be of independent interest,

1. Microsoft (Graepel et al., 2010), Google analytics (Scott, 2014) and Linkedin (Tang et al., 2013) have
used Thompson sampling.
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it’s desirable to have a simple, self–contained, analysis that does not rely on the–often
complicated–construction of confidence bounds.

Agrawal and Goyal (2013a) provided the first “distribution independent” bound for
Thompson sampling. They showed that when Thompson sampling is executed with an
independent uniform prior and rewards are binary the algorithm satisfies a frequentist regret
bound2 of order

√
|A|T log(T ). Russo and Van Roy (2014) showed that, for an arbitrary

prior over bounded reward distributions, the expected regret of Thompson sampling under
this prior is bounded by a term of order

√
|A|T log(T ). Bubeck and Liu (2013) showed

that this second bound can be improved to one of order
√
|A|T using more sophisticated

confidence bound analysis, and also studied a problem setting where the regret of Thompson
sampling is bounded uniformly over time. In this paper, we are interested mostly in results
that replace the explicit

√
|A| dependence on the number of actions with a more general

measure of the problem’s information complexity. For example, as discussed in the last
section, for the problem of linear optimization under bandit feedback one can provide bounds
that depend on the dimension of the linear model instead of the number of actions.

To our knowledge, Agrawal and Goyal (2013b) are the only other authors to have studied
the application of Thompson sampling to linear bandit problems. They showed that, when
the algorithm is applied with an uncorrelated Gaussian prior over θp∗ , it satisfies frequentist

regret bounds of order d2

ε

√
T 1+ε(log(Td). Here ε is a parameter used by the algorithm to

control how quickly the posterior concentrates. Russo and Van Roy (2014) allowed for an
arbitrary prior distribution, and provided a bound on expected regret (under this prior) of
order d log(T )

√
T . Unlike the bound (2), these results hold whenever A is a compact subset

of Rd, but we show in Appendix D.1 that through discretization argument the bound (2)
also yields a similar bound whenever A is compact. In the worst case, that bound is of
order d

√
T log(T ).

Other very recent work (Gopalan et al., 2014) provided a general asymptotic guarantee
for Thompson sampling. They studied the growth rate of the cumulative number of times a
suboptimal action is chosen as the time horizon T tends to infinity. One of their asymptotic
results applies to the problem of online linear optimization under “semi–bandit” feedback,
which we study in Section 6.6.

An important aspect of our regret bound is its dependence on soft knowledge through
the entropy of the optimal-action distribution. One of the only other regret bounds that de-
pends on soft–knowledge was provided very recently by Li (2013). Inspired by a connection
between Thompson sampling and exponential weighting schemes, that paper introduced a
family of Thompson sampling like algorithms and studied their application to contextual
bandit problems. While our analysis does not currently treat contextual bandit problems,
we improve upon their regret bound in several other respects. First, their bound depends
on the entropy of the prior distribution of mean rewards, which is never smaller, and can
be much larger, than the entropy of the distribution of the optimal action. In addition,
their bound has an order T 2/3 dependence on the problem’s time horizon, and, in order
to guarantee each action is explored sufficiently often, requires that actions are frequently
selected uniformly at random. In contrast, our focus is on settings where the number of
actions is large and the goal is to learning without sampling each one.

2. They bound regret conditional on the true reward distribution: E
[
Regret(T, πTS)|p∗

]
.
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Another regret bound that to some extent captures dependence on soft knowledge is
that of Srinivas et al. (2012). This excellent work focuses on extending algorithms and
expanding theory to address multi-armed bandit problems with arbitrary reward functions
and possibly an infinite number of actions. In a sense, there is no hard knowledge while soft
knowledge is represented in terms of a Gaussian process over a possibly infinite dimensional
family of functions. An upper-confidence-bound algorithm is proposed and analyzed. Our
earlier work (Russo and Van Roy, 2014) showed similar bounds also apply to Thompson
sampling. Though our results here do not treat infinite action spaces, it should be possible
to extend the analysis in that direction. One substantive difference is that our results apply
to a much broader class of models: distributions are not restricted to Gaussian and more
complex information structures are allowed. Further, the results of Srinivas et al. (2012)
do not capture the benefits of soft knowledge to the extent that ours do. For example,
their regret bounds do not depend on the mean of the reward function distribution, even
though mean rewards heavily influence the chances that each action is optimal. Our regret
bounds, in contrast, establish that regret vanishes as the probability that a particular action
is optimal grows.

Our review has discussed the recent literature on Thompson sampling as well as two
papers that have established regret bounds that depend on soft knowledge. There is of
course an immense body of work on alternative approaches to efficient exploration, including
work on the Gittins index approach (Gittins et al., 2011), Knowledge Gradient strategies
(Ryzhov et al., 2012), and upper-confidence bound strategies (Lai and Robbins, 1985; Auer
et al., 2002). In an adversarial framework, authors often study exponential-weighting shemes
or, more generally, strategies based on online stochastic mirror descent. Bubeck and Cesa-
Bianchi (2012) provided a general review of upper–confidence strategies and algorithms for
the adversarial multi-armed bandit problem.

2. Problem Formulation

The decision–maker sequentially chooses actions (At)t∈N from the action set A and observes
the corresponding outcomes (Yt,At)t∈N. To avoid measure-theoretic subtleties, we assume
the space of possible outcomes Y is a subset of a finite dimensional Euclidean space. There is
a random outcome Yt,a ∈ Y associated with each a ∈ A and time t ∈ N. Let Yt ≡ (Yt,a)a∈A
be the vector of outcomes at time t ∈ N. The “true outcome distribution” p∗ is a distribution
over Y |A| that is itself randomly drawn from the family of distributions P. We assume that,
conditioned on p∗, (Yt)t∈N is an iid sequence with each element Yt distributed according to
p∗. Let p∗a be the marginal distribution corresponding to Yt,a.

The agent associates a reward R(y) with each outcome y ∈ Y, where the reward function
R : Y → R is fixed and known. Uncertainty about p∗ induces uncertainty about the true
optimal action, which we denote by A∗ ∈ arg max

a∈A
E [R(Yt,a)|p∗]. The T period regret of the

sequence of actions A1, .., AT is the random variable,

Regret(T ) :=

T∑
t=1

[R(Yt,A∗)−R(Yt,At)] , (3)
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which measures the cumulative difference between the reward earned by an algorithm that
always chooses the optimal action, and actual accumulated reward up to time T . In this
paper we study expected regret

E [Regret(T )] = E

[
T∑
t=1

[R(Yt,A∗)−R(Yt,At)]

]
, (4)

where the expectation is taken over the randomness in the actions At and the outcomes Yt,
and over the prior distribution over p∗. This measure of performance is commonly called
Bayesian regret or Bayes risk.

Filtrations and randomized policies: We define all random variables with respect to a proba-
bility space (Ω,F ,P). Actions are chosen based on the history of past observations and pos-
sibly some external source of randomness. To represent this external source of randomness
more formally, we introduce a sequence of random variables (Ut)t∈N, where for each i ∈ N, Ui
is jointly independent of {Ut}t6=i, the outcomes {Yt,a}t∈N,a∈A, and p∗. We fix the filtration

(Ft)t∈N where Ft ⊂ F is the sigma–algebra generated by
(
A1, Y1,A1 , ..., At−1, Yt−1,At−1)

)
.

The action At is measurable with respect to the sigma–algebra generated by (Ft, Ut). That
is, given the history of past observations, At is random only through its dependence on Ut.

The objective is to choose actions in a manner that minimizes expected regret. For
this purpose, it’s useful to think of the actions as being chosen by a randomized policy
π, which is an Ft–adapted sequence (πt)t∈N. An action is chosen at time t by randomiz-
ing according to πt(·) = P(At ∈ ·|Ft), which specifies a probability distribution over A.
We explicitly display the dependence of regret on the policy π, letting E [Regret(T, π)] de-
note the expected value given by (4) when the actions (A1, .., AT ) are chosen according to π.

Further Assumptions: To simplify the exposition, our main results will be stated under
two further assumptions. The first requires that rewards are uniformly bounded, effectively
controlling the worst-case variance of the reward distribution. In particular, this assump-
tion is used only in proving Fact 9. In the technical appendix, we show that Fact 9 can be
extended to the case where reward distributions are sub-Gaussian, which yields results in
that more general setting.

Assumption 1 sup
y∈Y

R(y)− inf
y∈Y

R(y) ≤ 1.

Our next assumption requires that the action set is finite. In the technical appendix we
show that some cases where A is infinite can be addressed through discretization arguments.

Assumption 2 A is finite.

Because the Thompson sampling algorithm only chooses actions from the support of A∗,
all of our results hold when the finite set A denotes only the actions in the support of A∗.
This difference can be meaningful. For example, when A is a polytope and the objective
function is linear, the support of A∗ contains only extreme points of the polytope: a finite
set.
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3. Basic Measures and Relations in Information Theory

Before proceeding, we will define several common information measures – entropy, mutual
information, and Kullback-Leibler divergence — and state several facts about these mea-
sures that will be referenced in our analysis. When all random variables are discrete, each
of these facts is shown in chapter 2 of Cover and Thomas (2012). A treatment that applies
to general random variables is provided in chapter 5 of Gray (2011).

Before proceeding, we will define some simple shorthand notation. Let P (X) = P(X ∈ ·)
denote the distribution function of random variable X. Similarly, define P (X|Y ) = P(X ∈
·|Y ) and P (X|Y = y) = P(X ∈ ·|Y = y).

Throughout this section, we will fix random variables X, Y , and Z that are defined on
a joint probability space. We will allow Y and Z to be general random variables, but will
restrict X to be supported on a finite set X . This is sufficient for our purposes, as we will
typically apply these relations when X is A∗, and is useful, in part, because the entropy of
a general random variable can be infinite.

The Shannon entropy of X is defined as

H(X) = −
∑
x∈X

P(X = x) logP(X = x).

The first fact establishes uniform bounds on the entropy of a probability distribution.

Fact 1 0 ≤ H(X) ≤ log(|X |).

If Y is a discrete random variable, the entropy of X conditional on Y = y is

H(X|Y = y) =
∑
x∈X

P (X = x|Y = y) logP(X = x|Y = y)

and the conditional entropy is of X given Y is

H(X|Y ) =
∑
y

H(X|Y = y)P(Y = y).

For a general random variable Y , the conditional entropy of X given Y is,

H(X|Y ) = EY

[
−
∑
x∈X

P (X = x|Y ) logP(X = x|Y )

]
,

where this expectation is taken over the marginal distribution of Y . For two probability
measures P and Q, if P is absolutely continuous with respect to Q, the Kullback–Leibler
divergence between them is

D(P ||Q) =

∫
log

(
dP

dQ

)
dP (5)

where dP
dQ is the Radon–Nikodym derivative of P with respect to Q. This is the expected

value under P of the log-likelihood ratio between P and Q, and is a measure of how different
P and Q are. The next fact establishes the non-negativity of Kullback–Leibler divergence.
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Fact 2 (Gibbs’ inequality) For any probability distributions P and Q such that P is ab-
solutely continuous with respect to Q, D (P ||Q) ≥ 0 with equality if and only if P = Q
P–almost everywhere.

The mutual information between X and Y

I(X;Y ) = D (P (X,Y ) ||P (X)P (Y )) (6)

is the Kullback–Leibler divergence between the joint distribution of X and Y and the prod-
uct of the marginal distributions. From the definition, it’s clear that I(X;Y ) = I(Y ;X),
and Gibbs’ inequality implies that I(X;Y ) ≥ 0 and I(X;Y ) = 0 when X and Y are
independent.

The next fact, which is Lemma 5.5.6 of Gray (2011), states that the mutual information
between X and Y is the expected reduction in the entropy of the posterior distribution of
X due to observing Y .

Fact 3 (Entropy reduction form of mutual information)

I (X;Y ) = H(X)−H(X|Y )

The mutual information between X and Y , conditional on a third random variable Z is

I(X;Y |Z) = H(X|Z)−H(X|Y,Z),

the expected additional reduction in entropy due to observing Y given that Z is also ob-
served. This definition is also a natural generalization of the one given in (6), since

I(X;Y |Z) = EZ [D (P ((X,Y )|Z) ||P (X|Z)P (Y |Z))] .

The next fact shows that conditioning on a random variable Z that is independent of X
and Y does not affect mutual information.

Fact 4 If Z is jointly independent of X and Y , then I(X;Y |Z) = I(X;Y ).

The mutual information between a random variable X and a collection of random variables
(Z1, ..., ZT ) can be expressed elegantly using the following “chain rule.”

Fact 5 (Chain Rule of Mutual Information)

I(X; (Z1, ...ZT )) = I (X;Z1) + I (X;Z2|Z1) + ...+ I (X;ZT |Z1, ..., ZT−1) .

We provide some details related to the derivation of Fact 6 in the appendix.

Fact 6 (KL divergence form of mutual information)

I (X;Y ) = EX [D (P (Y |X) || P (Y ))]

=
∑
x∈X

P(X = x)D (P (Y |X = x) ||P (Y ))
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While Facts 1 and 6, are standard properties of mutual information, it’s worth highlighting
their surprising power. It’s useful to think of X as being A∗, the optimal action, and
Y as being Yt,a, the observation when selecting some action a. Then, combining these
properties, we see that the next observation Y is expected to greatly reduce uncertainty
about the optimal action A∗ if and only if the distribution of Y varies greatly depending on
the realization of A∗, in the sense that D (P (Y |A∗ = a∗) ||P (Y )) is large on average. This
fact is crucial to our analysis.

One implication of the next fact is that the expected reduction in entropy from observing
the outcome Yt,a is always at least as large as that from observing the reward R(Yt,a).

Fact 7 (Weak Version of the Data Processing Inequality) If Z = f(Y ) for a deterministic
function f , then I(X;Y ) ≥ I(X;Z). If f is invertible, so Y is also a deterministic function
of Z, then I(X;Y ) = I(X;Z).

We close this section by stating a fact that guarantees D (P (Y |X = x) ||P (Y )) is well
defined. It follows from a general property of conditional probability: for any random
variable Z and event E ⊂ Ω, if P (E) = 0 then P (E|Z) = 0 almost surely.

Fact 8 For any x ∈ X with P(X = x) > 0, P (Y |X = x) is absolutely continuous with
respect to P (Y ).

3.1 Notation Under Posterior Distributions

As shorthand, we let

Pt(·) = P(·|Ft) = P(·|A1, Y1,A1 , ..., At−1, Yt−1,At−1)

and Et [·] = E[·|Ft]. As before, we will define some simple shorthand notation for the
distribution function of a random variable under Pt. Let Pt(X) = Pt(X ∈ ·), Pt(X|Y ) =
Pt(X ∈ ·|Y ) and Pt(X|Y = y) = Pt(X ∈ ·|Y = y).

The definitions of entropy and mutual information implicitly depend on some base mea-
sure over the sample space Ω. We will define special notation to denote entropy and mutual
information under the posterior measure Pt(·). Define

Ht(X) = −
∑
x∈X

Pt(X = x) logPt(X = x)

Ht(X|Y ) = Et

[
−
∑
x∈X

Pt(X = x|Y ) logPt(X = x|Y )

]
It(X;Y ) = Ht(X)−Ht(X|Y ).

Because these quantities depend on the realizations of A1, Y1,A1 , ..., At−1, Yt−1,At−1 , they
are random variables. By taking their expectation, we recover the standard definition of
conditional entropy and conditional mutual information:

E[Ht(X)] = H(X|A1, Y1,A1 , ..., At−1, Yt−1,At−1)

E[It(X;Y )] = I
(
X;Y |A1, Y1,A1 , ..., At−1, Yt−1,At−1

)
.
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4. Thompson Sampling

The Thompson sampling algorithm simply samples actions according to the posterior prob-
ability they are optimal. In particular, actions are chosen randomly at time t according
to the sampling distribution πTS

t = P(A∗ = ·|Ft). By definition, this means that for each
a ∈ A, P(At = a|Ft) = P(A∗ = a|Ft). This algorithm is sometimes called probability match-
ing because the action selection distribution is matched to the posterior distribution of the
optimal action.

This conceptually elegant probability matching scheme often admits a surprisingly sim-
ple and efficient implementation. Consider the case where P = {pθ}θ∈Θ is some parametric
family of distributions. The true outcome distribution p∗ corresponds to a particular ran-
dom index θ∗ ∈ Θ in the sense that p∗ = pθ∗ almost surely. Practical implementations
of Thompson sampling typically use two simple steps at each time t to randomly gener-
ate an action from the distribution αt. First, an index θ̂t ∼ P (θ∗ ∈ ·|Ft) is sampled from
the posterior distribution of the true index θ∗. Then, the algorithm selects the action

At ∈ arg max
a∈A

E
[
R(Yt,a)|θ∗ = θ̂t

]
that would be optimal if the sampled parameter were ac-

tually the true parameter. We next provide an example of a Thompson sampling algorithm
designed to address the problem of online linear optimization under bandit feedback.

4.1 Example of Thompson Sampling

Suppose each action a ∈ A ⊂ Rd is defined by a d-dimensional feature vector, and almost
surely there exists θ∗ ∈ Rd such that for each a ∈ A, E [R(Yt,a)|p∗] = aT θ∗. Assume θ∗ is
drawn from a normal distribution N(µ0,Σ0). When a is selected, only the realized reward
Yt,a = R(Yt,a) ∈ R is observed. For each action a, reward noise R(Yt,a) − E [R(Yt,a)|p∗]
follows a Gaussian distribution with known variance. One can show that, conditioned on
the history of observed data Ft, θ∗ remains normally distributed. Algorithm 1 provides an
implementation of Thompson sampling for this problem. The expectations in step 3 can be
computed efficiently via Kalman filtering.

Algorithm 1 Linear–Gaussian Thompson Sampling

1: Sample Model:
θ̂t ∼ N(µt−1,Σt−1)

2: Select Action:
At ∈ arg maxa∈A〈a, θ̂t〉

3: Update Statistics:
µt ← E[θ∗|Ft]
Σt ← E[(θ∗ − µt)(θ∗ − µt)>|Ft]

4: Increment t and Goto Step 1

Algorithm 1 is efficient as long as the linear objective 〈a, θ̂t〉 can be maximized efficiently
over the action set A. For this reason, the algorithm is implementable in important cases
where other popular approaches, like the ConfidenceBall2 algorithm of Dani et al. (2008),

11
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are computationally intractable. Because the posterior distribution of θ∗ has a closed form,
Algorithm 1 is particularly efficient. Even when the posterior distribution is complex, how-
ever, one can often generate samples from this distribution using Markov chain Monte Carlo
algorithms, enabling efficient implementations of Thompson sampling. A more detailed dis-
cussion of the strengths and potential advantages of Thompson sampling can be found in
earlier work (Scott, 2010; Chapelle and Li, 2011; Russo and Van Roy, 2014; Gopalan et al.,
2014).

5. The Information Ratio and a General Regret Bound

Our analysis will relate the expected regret of Thompson sampling to its expected informa-
tion gain: the expected reduction in the entropy of the posterior distribution of A∗. The
relationship between these quantities is characterized by what we call the information ratio,

Γt :=
Et [R(Yt,A∗)−R(Yt,At)]

2

It (A∗; (At, Yt,At))

which is the ratio between the square of expected regret and information gain in period t.
Recall that, as described in Subsection 3.1, the subscript t on Et and It indicates that these
quantities are evaluated under the posterior measure Pt(·) = P(·|Ft).

Notice that if the information ratio is small, Thompson sampling can only incur large
regret when it is expected to gain a lot of information about which action is optimal. This
suggests its expected regret is bounded in terms of the maximum amount of information
any algorithm could expect to acquire, which is at most the entropy of the prior distribution
of the optimal action. Our next result shows this formally. We provide a general upper
bound on the expected regret of Thompson sampling that depends on the time horizon T ,
the entropy of the prior distribution of A∗, H(A∗), and any worst–case upper bound on the
information ratio Γt. In the next section, we will provide bounds on Γt for some of the most
widely studied classes of online optimization problems.

Proposition 1 For any T ∈ N, if Γt ≤ Γ almost surely for each t ∈ {1, .., T},

E
[
Regret(T, πTS)

]
≤
√

ΓH(A∗)T .

Proof Recall that Et[·] = E[·|Ft] and we use It to denote mutual information evaluated
under the base measure Pt(·) = P(·|Ft). Then,

E
[
Regret(T, πTS)

] (a)
= E

T∑
t=1

Et [R(Yt,A∗)−R(Yt,At)] = E
T∑
t=1

√
ΓtIt (A∗; (At, Yt,At))

≤
√

Γ

(
E

T∑
t=1

√
It (A∗; (At, Yt,At))

)
(b)

≤

√√√√ΓTE
T∑
t=1

It (A∗; (At, Yt,At)),

12
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where (a) follows from the tower property of conditional expectation, and (b) follows from
the Cauchy-Schwartz inequality. We complete the proof by showing that expected infor-
mation gain cannot exceed the entropy of the prior distribution. For the remainder of this
proof, let Zt = (At, Yt,At). Then, as discussed in Subsection 3.1,

E [It (A∗;Zt)] = I (A∗;Zt|Z1, ..., Zt−1) ,

and therefore

E
T∑
t=1

It (A∗;Zt) =

T∑
t=1

I (A∗;Zt|Z1, ..., Zt−1)
(c)
= I (A∗ ; (Z1, ...ZT ))

= H(A∗)−H(A∗|Z1, ...ZT )

(d)

≤ H(A∗),

where (c) follows from the chain rule for mutual information (Fact 5), and (d) follows from
the non-negativity of entropy (Fact 1).

6. Bounding the Information Ratio

This section establishes upper bounds on the information ratio in several important set-
tings. This yields explicit regret bounds when combined with Proposition 1, and also helps
to clarify the role the information ratio plays in our results: it roughly captures the extent
to which sampling some actions allows the decision maker to make inferences about different
actions. In the worst case, the information ratio depends on the number of actions, reflect-
ing the fact that actions could provide no information about others. For problems with
full information, the information ratio is bounded by a numerical constant, reflecting that
sampling one action perfectly reveals the rewards that would have been earned by select-
ing any other action. The problems of online linear optimization under “bandit feedback”
and under “semi–bandit feedback” lie between these two extremes, and the information
ratio provides a natural measure of each problem’s information structure. In each case, our
bounds reflect that Thompson sampling is able to automatically exploit this structure.

We will compare our upper bounds on expected regret with known lower bounds. Some
of these lower bounds were developed and stated in an adversarial framework, but were
proved using the probabilistic method; authors fixed a family of distributions P and an
initial distribution over p∗ and lower bounded the expected regret under this environment
of any algorithm. This provides lower bounds on infπ E [Regret(T, π)] in our framework
at least for particular problem instances. Unfortunately, we are not aware of any general
prior-dependent lower bounds, and this remains an important direction for the field.

Our bounds on the information ratio Γt will hold at any time t and under any pos-
terior measure Pt. To simplify notation, in our proofs we will omit the subscript t from
Et,Pt, Pt, At, Yt, Ht, and It.

13
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6.1 An Alternative Representation of the Information Ratio

Recall that the information ratio is defined to be

E [R(YA∗)−R(YA)]2

I (A∗; (A, YA))
.

The following proposition expresses the information ratio of Thompson sampling in a form
that facilitates further analysis. The proof uses that Thompson sampling matches the action
selection distribution to the posterior distribution of the optimal action, in the sense that
P (A∗ = a) = P (A = a) for all a ∈ A.

Proposition 2

I (A∗; (A, YA)) =
∑
a∈A

P(A = a)I(A∗;Ya)

=
∑

a,a∗∈A
P(A∗ = a)P(A∗ = a∗) [D (P (Ya|A∗ = a∗) ||P (Ya))] .

and

E [R(YA∗)−R(YA)] =
∑
a∈A

P(A∗ = a) (E [R(Ya)|A∗ = a]− E[R(Ya)]

The numerator of the information ratio measures the average difference between rewards
generated from P (Ya), the posterior predictive distribution at a, and P (Ya|A∗ = a), the
posterior predictive distribution at a conditioned on a being the optimal action. It roughly
captures how much knowing that the selected action is optimal influences the expected
reward observed. The denominator measures how much, on average, knowing which action
is optimal changes the observations at the selected action. Intuitively, the information
ratio tends to be small when knowing which action is optimal significantly influences the
anticipated observations at many other actions.

It’s worth pointing out that this form of the information ratio bears a superficial resem-
blance to fundamental complexity terms in the multi-armed bandit literature. The results
of Lai and Robbins (1985) and Agrawal et al. (1989) show the optimal asymptotic growth
rate of regret is characterized by a ratio where the numerator depends on the difference be-
tween means of the reward distributions and the denominator depends on Kullback–Leibler
divergences.

Proof Both proofs will use that the action A is selected based on past observations and
independent random noise. Therefore, conditioned on the history, A is jointly independent

14
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of A∗ and the outcome vector Y ≡ (Ya)a∈A.

I(A∗; (A, YA))
(a)
= I(A∗;A) + I(A∗;YA|A)

(b)
= I(A∗;YA|A)

=
∑
a∈A

P(A = a)I(A∗;YA|A = a)

(c)
=

∑
a∈A

P(A = a)I(A∗;Ya)

(d)
=

∑
a∈A

P(A = a)

(∑
a∗∈A

P(A∗ = a∗)D (P (Ya|A∗ = a∗) ||P (Ya))

)
=

∑
a,a∗∈A

P(A∗ = a)P(A∗ = a∗) [D (P (Ya|A∗ = a∗) ||P (Ya))] ,

where (a) follows from the chain rule for mutual information (Fact 5), (b) uses that A and
A∗ are independent and the mutual information between independent random variables is
zero (Fact 4), (c) uses Fact 4 and that A is jointly independent of Y and A∗, and equality
(d) uses Fact 6. Now, the numerator can be rewritten as,

E [R(YA∗)−R(YA)] =
∑
a∈A

P(A∗ = a)E [R(Ya)|A∗ = a]−
∑
a∈A

P(A = a)E[R(Ya)|A = a]

=
∑
a∈A

P(A∗ = a) (E [R(Ya)|A∗ = a]− E[R(Ya)]) ,

where the second equality uses that P(A = a) = P(A∗ = a) by the definition of Thompson
sampling, and that Y is independent of the chosen action A.

6.2 Preliminaries

Here we state two basic facts that are used in bounding the information ratio. Proofs of
both results are provided in the appendix for completeness.

The first fact lower bounds the Kullback–Leibler divergence between two bounded ran-
dom variables in terms of the difference between their means. It follows trivially from an
application of Pinsker’s inequality.

Fact 9 For any distributions P and Q such that that P is absolutely continuous with respect
to Q, any random variable X : Ω→ X and any g : X → R such that sup g − inf g ≤ 1,

EP [g(X)]− EQ [g(X)] ≤
√

1

2
D (P ||Q),

where EP and EQ denote the expectation operators under P and Q.

Because of Assumption 1, this fact shows

E [R(Ya)|A∗ = a∗]− E [R(Ya)] ≤
√

1

2
D (P (Ya|A∗ = a∗) || P (Ya)).
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By the Cauchy–Schwartz inequality, for any vector x ∈ Rn,
∑

i xi ≤
√
n‖x‖2. The next

fact provides an analogous result for matrices. For any rank r matrix M ∈ Rn×n with
singular values σ1, ..., σr, let

‖M‖∗ :=
r∑
i=1

σi, ‖M‖F :=
√∑m

k=1

∑n
j=1M

2
i,j =

√∑r
i=1 σ

2
i , Trace(M) :=

n∑
i=1

Mii,

denote respectively the Nuclear norm, Frobenius norm and trace of M .

Fact 10 For any matrix M ∈ Rk×k,

Trace (M) ≤
√

Rank(M)‖M‖F.

6.3 Worst Case Bound

The next proposition provides a bound on the information ratio that holds whenever rewards
are bounded, but that has an explicit dependence on the number of actions. This scaling
cannot be improved in general, but we go on to show tighter bounds are possible for problems
with different information structures.

Proposition 3 For any t ∈ N, Γt ≤ |A|/2 almost surely.

Proof We bound the numerator of the information ratio by |A|/2 times its denominator:

E [R(YA∗)−R(YA)]2
(a)
=

(∑
a∈A

P(A∗ = a) (E [R(Ya)|A∗ = a]− E[R(Ya)])

)2

(b)

≤ |A|
∑
a∈A

P(A∗ = a)2 (E [R(Ya)|A∗ = a]− E[R(Ya)])
2

≤ |A|
∑

a,a∗∈A
P(A∗ = a)P(A∗ = a∗) (E [R(Ya)|A∗ = a∗]− E[R(Ya)])

2

(c)

≤ |A|
2

∑
a,a∗∈A

P(A∗ = a)P(A∗ = a∗)D (P (Ya|A∗ = a∗) || P (Ya))

(d)
=
|A|I(A∗; (A, Y ))

2

where (b) follows from the Cauchy–Schwarz inequality, (c) follows from Fact 9, and (a) and
(d) follow from Proposition 2.

Combining Proposition 3 with Proposition 1 shows that E
[
Regret(T, πTS)

]
≤
√

1
2 |A|H(A∗)T .

Bubeck and Liu (2013) show E
[
Regret(T, πTS)

]
≤ 14

√
|A|T and that this bound is order

optimal, in the sense that for any time horizon T and number of actions |A| there exists a
prior distribution over p∗ such that infπ E [Regret(T, π)] ≥ 1

20

√
|A|T .
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6.4 Full Information

Our focus in this paper is on problems with partial feedback. For such problems, what the
decision maker observes depends on the actions selected, which leads to a tension between
exploration and exploitation. Problems with full information arise as an extreme point of
our formulation where the outcome Yt,a is perfectly revealed by observing Yt,ã for any ã 6= a;
what is learned does not depend on the selected action. The next proposition shows that
under full information, the information ratio is bounded by 1/2.

Proposition 4 Suppose for each t ∈ N there is a random variable Zt : Ω → Z such that
for each a ∈ A, Yt,a = (a, Zt). Then for all t ∈ N, Γt ≤ 1/2 almost surely.

Proof As before we bound the numerator of Γt by
√

1/2 times the denominator:

E [R(YA∗)−R(YA)]
(a)
=

∑
a∈A

P(A∗ = a) (E [R(Ya)|A∗ = a]− E[R(Ya)])

(b)

≤
∑
a∈A

P(A∗ = a)

√
1

2
D (P (Ya|A∗ = a) ||P (Ya))

(c)

≤
√

1

2

∑
a∈A

P(A∗ = a)D (P (Ya|A∗ = a) ||P (Ya))

(d)
=

√
1

2

∑
a,a∗∈A

P(A∗ = a)P(A∗ = a∗)D (P (Ya|A∗ = a∗) ||P (Ya))

(e)
=

√
I(A∗; (A, Y ))

2
,

where again (a) and (e) follow from Proposition 2, (b) follows from Fact 9 and (c) fol-
lows from Jensen’s inequality. Equality (d) follows because D (P (Ya|A∗ = a∗) ||P (Ya)) =
D (P (Z|A∗ = a∗) ||P (Z)) does not depend on the sampled action a under full information.

Combining this result with Proposition 1 shows E
[
Regret(T, πTS)

]
≤
√

1
2H(A∗)T . Fur-

ther, a worst–case bound on the entropy ofA∗ shows that E
[
Regret(T, πTS)

]
≤
√

1
2 log(|A|)T .

The bound here improves upon this worst case bound since H(A∗) can be much smaller
than log(|A|) when the prior distribution is informative.

6.5 Linear Optimization Under Bandit Feedback

The stochastic linear bandit problem has been widely studied (e.g Dani et al., 2008; Rus-
mevichientong and Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011) and is one of the most
important examples of a multi-armed bandit problem with “correlated arms.” In this set-
ting, each action is associated with a finite dimensional feature vector, and the mean reward
generated by an action is the inner product between its known feature vector and some un-
known parameter vector. Because of this structure, observations from taking one action
allow the decision–maker to make inferences about other actions. The next proposition
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bounds the information ratio for such problems. Its proof is essentially a generalization of
the proof of Proposition 3.

Proposition 5 If A ⊂ Rd and for each p ∈ P there exists θp ∈ Rd such that for all a ∈ A

E
y∼pa

[R(y)] = aT θp,

then for all t ∈ N, Γt ≤ d/2 almost surely.

Proof Write A = {a1, ..., aK} and, to reduce notation, for the remainder of this proof let
αi = P(A∗ = ai). Define M ∈ RK×K by

Mi,j =
√
αiαj (E[R(Yai)|A∗ = aj ]− E[R(Yai)]) ,

for all i, j ∈ {1, ..,K}. Then, by Proposition 2,

E [R(YA∗)−R(YA)] =

K∑
i=1

αi (E[R(Yai)|A∗ = ai]− E[R(Yai)]) = Trace(M).

Similarly, by Proposition 2,

I(A∗; (A, YA)) =
∑
i,j

αiαjD (P (Yai |A∗ = aj) ||P (Yai))

(a)

≥ 2
∑
i,j

αiαj (E[R(Yai)|A∗ = aj ]− E[R(Yai)])
2

= 2‖M‖2F,

where inequality (a) uses Fact 9. This shows, by Fact 10, that

E [R(YA∗)−R(YA)]2

I(A∗; (A, YA))
≤ Trace(M)2

2‖M‖2F
≤ Rank(M)

2
.

We now show Rank(M) ≤ d. Define

µ = E [θp∗ ] µj = E [θp∗ |A∗ = aj ] .

Then, by the linearity of the expectation operator,

Mi,j =
√
αiαj((µ

j − µ)Tai)

and therefore

M =


√
α1

(
µ1 − µ

)T
...
...√

αK)
(
µk − µ

)T

 [ √α1a1 · · · · · · √αKaK
]
.
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This shows M is the product of a K by d matrix and a d by K matrix, and hence has rank
at most d.

This result shows that E
[
Regret(T, πTS)

]
≤
√

1
2H(A∗)dT ≤

√
1
2 log(|A|)dT for linear ban-

dit problems. Dani et al. (2007) show this bound is order optimal, in the sense that for
any time horizon T and dimension d if the actions set is A = {0, 1}d, there exists a prior
distribution over p∗ such that infπ E [Regret(T, π)] ≥ c0

√
log(|A|)dT where c0 is a constant

the is independent of d and T . The bound here improves upon this worst case bound since
H(A∗) can be much smaller than log(|A|) when the prior distribution is informative.

6.6 Combinatorial Action Sets and “Semi–Bandit” Feedback

To motivate the information structure studied here, consider a simple resource allocation
problem. There are d possible projects, but the decision–maker can allocate resources to at
most m ≤ d of them at a time. At time t, project i ∈ {1, .., d} yields a random reward θt,i,
and the reward from selecting a subset of projects a ∈ A ⊂ {a′ ⊂ {0, 1, ..., d} : |a′| ≤ m} is
m−1

∑
i∈A θt,i. In the linear bandit formulation of this problem, upon choosing a subset of

projects a the agent would only observe the overall reward m−1
∑

i∈a θt,i. It may be natural
instead to assume that the outcome of each selected project (θt,i : i ∈ a) is observed. This
type of observation structure is sometimes called “semi–bandit” feedback (Audibert et al.,
2013).

A naive application of Proposition 5 to address this problem would show Γt ≤ d/2. The
next proposition shows that since the entire parameter vector (θt,i : i ∈ a) is observed upon
selecting action a, we can provide an improved bound on the information ratio. The proof
of the proposition is provided in the appendix.

Proposition 6 Suppose A ⊂ {a ⊂ {0, 1, ..., d} : |a| ≤ m}, and that there are random vari-
ables (θt,i : t ∈ N, i ∈ {1, ..., d}) such that

Yt,a = (θt,i : i ∈ a) and R (Yt,a) =
1

m

∑
i∈a

θt,i.

Assume that the random variables {θt,i : i ∈ {1, ..., d}} are independent conditioned on Ft
and θt,i ∈ [−1

2 ,
1
2 ] almost surely for each (t, i). Then for all t ∈ N, Γt ≤ d

2m2 almost surely.

In this problem, there are as many as
(
d
m

)
actions, but because Thompson sampling ex-

ploits the structure relating actions to one another, its regret is only polynomial in m and
d. In particular, combining Proposition 6 with Proposition 1 shows E

[
Regret(T, πTS)

]
≤

1
m

√
dH(A∗)T . Since H(A∗) ≤ log |A| = O(m log( dm)) this also yields a bound of order√

d
m log

(
d
m

)
T . As shown by Audibert et al. (2013), the lower bound for this problem is

of order
√

d
mT , so our bound is order optimal up to a

√
log( dm) factor.3 It’s also worth

3. In their formulation, the reward from selecting action a is
∑
i∈a θt,i, which is m times larger than in our

formulation. The lower bound stated in their paper is therefore of order
√
mdT . They don’t provide

a complete proof of their result, but note that it follows from standard lower bounds in the bandit
literature. In the proof of Theorem 5 in that paper, they construct an example in which the decision
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pointing that, although there may be as many as
(
d
m

)
actions, the action selection step

of Thompson sampling is computationally efficient whenever the offline decision problem
maxa∈A θ

Ta can be solved efficiently.

7. Conclusion

This paper has provided a new analysis of Thompson sampling based on tools from infor-
mation theory. As such, our analysis inherits the simplicity and elegance enjoyed by work
in that field. Further, our results apply to a much broader range of information structures
than those studied in prior work on Thompson sampling. Our analysis leads to regret
bounds that highlight the benefits of soft knowledge, quantified in terms of the entropy of
the optimal-action distribution. Such regret bounds yield insight into how future perfor-
mance depends on past observations. This is key to assessing the benefits of exploration,
and as such, to the design of more effective schemes that trade off between exploration and
exploitation. In forthcoming work, we leverage this insight to produce an algorithm that
outperforms Thompson sampling.

While our focus has been on providing theoretical guarantees for Thompson sampling,
we believe the techniques and quantities used in the analysis may be of broader interest. Our
formulation and notation may be complex, but the proofs themselves essentially follow from
combining known relations in information theory with the tower property of conditional
expectation, Jensen’s inequality, and the Cauchy–Schwartz inequality. In addition, the
information theoretic view taken in this paper may provide a fresh perspective on this class
of problems.
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Appendix A. Proof of Basic Facts

A.1 Proof of Fact 9

This result is a consequence of Pinsker’s inequality, (see Lemma 5.2.8 of Gray (2011)) which
states that √

1

2
D(P ||Q) ≥ ‖P −Q‖TV (7)

maker plays m bandit games in parallel, each with d/m actions. Using that example, and the standard
bandit lower bound (see Theorem 3.5 of Bubeck and Cesa-Bianchi (2012)), the agent’s regret from each

component must be at least
√

d
m
T , and hence her overall expected regret is lower bounded by a term of

order m
√

d
m
T =

√
mdT .
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where ‖P −Q‖TV is the total variation distance between P and Q. When Ω is countable,
‖P−Q‖TV = 1

2

∑
ω |P (ω)−Q(ω)|. More generally, if P andQ are both absolutely continuous

with respect to some base measure µ, then ‖P −Q‖TV = 1
2

∫
Ω |

dP
dµ −

dQ
dµ |dµ, where dP

dµ and
dQ
dµ are the Radon–Nikodym derivatives of P and Q with respect to µ. We now prove Fact
9.
Proof Choose a base measure µ so that P and Q are absolutely continuous with respect to
µ. This is always possible: since P is absolutely continuous with respect to Q by hypothesis,
one could always choose this base measure to be Q. Let f(ω) = g(X(ω))− infω′ g(X(ω′))−
1/2 so that f : Ω→ [−1/2, 1/2] and f and g(X) differ only by a constant. Then,√

1

2
D(P ||Q) ≥ 1

2

∫ ∣∣∣∣dPdµ − dQ

dµ

∣∣∣∣ dµ ≥ 1

2

∫ ∣∣∣∣2(dPdµ − dQ

dµ

)
f

∣∣∣∣ dµ
≥

∫ (
dP

dµ
− dQ

dµ

)
fdµ

=

∫
fdP −

∫
fdQ

= EP [g(X)]− EQ[g(X)],

where the first inequality is Pinsker’s inequality.

A.2 Proof of Fact 10

Proof Fix a rank r matrix M ∈ Rk×k with singular values σ1 ≥ ... ≥ σr. By the Cauchy
Shwartz inequality,

‖M‖∗
Def
=

r∑
i=1

σi ≤
√
r

√√√√ r∑
i=1

σ2
i

Def
=
√
r‖M‖F . (8)

Now, we show

Trace(M) = Trace

(
1

2
M +

1

2
MT

)
(a)

≤
∥∥∥∥1

2
M +

1

2
MT

∥∥∥∥
∗

(b)

≤ 1

2
‖M‖∗ +

1

2

∥∥MT
∥∥
∗

(c)
= ‖M‖∗

(d)

≤
√
r‖M‖F .

Here (b) follows from the triangle inequality and the fact that norms are homogeneous of
degree one. Inequality (c) uses that the singular values of M and MT are the same, and
inequality (d) follows from equation (8).

To justify inequality (a), we show that for any symmetric matrix W , Trace(W ) ≤ ‖W‖∗.
To see this, let W be a rank r matrix and let σ̃1 ≥ ... ≥ σ̃r denote its singular val-
ues. Since W is symmetric, it has r nonzero real valued eigenvalues λ1, .., λr. If these
are sorted so that |λ1| ≥ ... ≥ |λr| then σ̃i = |λi| for each i ∈ {1, .., r}.4 This shows
Trace(M) =

∑r
i=1 λi ≤

∑r
i=1 σ̃i = ‖M‖∗.

4. This fact is stated, for example, in Appendix A.5 of Boyd and Vandenberghe (2004).
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Appendix B. Proof of Proposition 6

The proof relies on the following lemma, which lower bounds the information gain due to
selecting an action a. The proof is provided below, and relies on the chain–rule of Kullback–
Leibler divergence.

Lemma 1 Under the conditions of Proposition 6, for any a ∈ A,

I(A∗;Ya) ≥ 2
∑
i∈a

P(i ∈ A∗) (E [θi|i ∈ A∗]− E [θi])
2

Proof In the proof of this lemma, for any i ∈ a we let θ<i = (θj : j < i, j ∈ a). Since
a ∈ A is fixed throughout this proof, we do not display the dependence of θ<i on a. Recall
that by Fact 6,

I(A∗;Ya) =
∑
a∗∈A

P(A∗ = a∗)D (P (Ya|A∗ = a∗) ||P (Ya)) .

where here,

D (P (Ya|A∗ = a∗) ||P (Ya)) = D (P ((θi : i ∈ a)|A∗ = a∗) || P ((θi : i ∈ a)))

(a)
=

∑
i∈a

E
[
D (P (θi|A∗ = a∗, θ<i) || P (θi|θ<i))

∣∣∣∣A∗ = a∗
]

(b)

≥ 2
∑
i∈a

E
[
(E [θi|A∗ = a∗, θ<i]− E [θi|θ<i])2

∣∣∣∣A∗ = a∗
]

(c)
= 2

∑
i∈a

E
[
(E [θi|A∗ = a∗, θ<i]− E [θi])

2

∣∣∣∣A∗ = a∗
]

(d)

≥ 2
∑
i∈a

(E [θi|A∗ = a∗]− E [θi])
2 .

Equality (a) follows from the chain rule of Kullback–Leibler divergence, (b) follows from
Fact 9, (c) follows from the assumption that (θi : 1 ≤ i ≤ d) are independent conditioned on
any history of observations, and (d) follows from Jensen’s inequality and the tower property
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of conditional expectation. Now, we can show

I(A∗;Ya) ≥ 2
∑
i∈a

∑
a∗∈A

P(A∗ = a∗) (E [θi|A∗ = a∗]− E [θi])
2

= 2
∑
i∈a

P(i ∈ A∗)
∑
a∗∈A

P(A∗ = a∗)

P(i ∈ A∗)
(E [θi|A∗ = a∗]− E [θi])

2

≥ 2
∑
i∈a

P(i ∈ A∗)
∑

a∗:i∈a∗

P(A∗ = a∗)

P(i ∈ A∗)
(E [θi|A∗ = a∗]− E [θi])

2

= 2
∑
i∈a

P(i ∈ A∗)
∑

a∗:i∈a∗
P(A∗ = a∗|i ∈ A∗) (E [θi|A∗ = a∗]− E [θi])

2

(e)

≥ 2
∑
i∈a

P(i ∈ A∗)

( ∑
a∗:i∈a∗

P(A∗ = a∗|i ∈ A∗) (E [θi|A∗ = a∗]− E [θi])

)2

(f)
= 2

∑
i∈a

P(i ∈ A∗) (E [θi|i ∈ A∗]− E [θi])
2 ,

where (e) and (f) follow from Jensen’s inequality and the tower property of conditional
expectation, respectively.

Lemma 2 Under the conditions of Proposition 6,

I(A∗; (A, YA)) ≥ 2
d∑
i=1

P(i ∈ A∗)2 (E [θi|i ∈ A∗]− E [θi])
2 .

Proof By Lemma 1 and the tower property of conditional expectation,

I(A∗; (A;YA)) = P(A∗ = a)I(A∗;Ya)

≥ 2
∑
a∈A

P(A∗ = a)

[∑
i∈a

P(i ∈ A∗) (E [θi|i ∈ A∗]− E [θi])
2

]

= 2
d∑
i=1

∑
a:i∈a

P(A∗ = a)
(
P(i ∈ A∗) (E [θi|i ∈ A∗]− E [θi])

2
)

= 2

d∑
i=1

P(i ∈ A∗)2 (E [θi|i ∈ A∗]− E [θi])
2 .

Now, we complete the proof of Proposition 6.

23



Russo and Van Roy

Proof The proof establishes that the numerator of the information ratio is less than d/2m2

times its denominator:

mE[R(YA∗)−R(YA)] = E
∑
i∈A∗

θi − E
∑
i∈A

θi

=
d∑
i=1

P(i ∈ A∗)E[θi|i ∈ A∗]−
d∑
i=1

P(i ∈ A)E[θi|i ∈ A]

=

d∑
i=1

P(i ∈ A∗) (E[θi|i ∈ A∗]− E[θi])

≤
√
d

√√√√ d∑
i=1

P(i ∈ A∗)2 (E[θi|i ∈ A∗]− E[θi])
2

≤
√
dI(A∗; (A, YA))

2
.

Appendix C. Proof of Fact 6

We could not find a reference that proves Fact 6 in a general setting, and will therefore
provide a proof here.

Consider random variables X : Ω → X and Y : Ω → Y where X is assumed to be a
finite set but Y is a general random variable. We show

I(X;Y ) =
∑
x∈X

P (X = x)D (P (Y ∈ ·|X = x) ||P (Y ∈ ·)) .

When Y has finite support this result follows easily by using that P(X = x, Y = y) =
P(X = x)P(Y = y|X = x). For an extension to general random variables Y we follow
chapter 5 of Gray (2011).

The extension follows by considering quantized versions of the random variable Y . For
a finite partition Q = {Qi ⊂ Y}i∈I , we denote by YQ the quantization of Y defined so that
YQ(ω) = i if and only if Y (ω) ∈ Qi. As shown in Gray (2011), for two probability measures
P1 and P2 on (Ω,F),

D (P1(Y ∈ ·)||P2(Y ∈ ·)) = sup
Q
D (P1(YQ ∈ ·)||P2(YQ ∈ ·)) , (9)

where the supremum is taken over all finite partitions of Y, and whenever Q is a refinement
of Q,

D
(
P1(YQ ∈ ·)||P2(YQ ∈ ·)

)
≥ D (P1(YQ ∈ ·)||P2(YQ ∈ ·)) . (10)

Since I(X;Y ) = D (P(X ∈ ·, Y ∈ ·) ||P(X ∈ ·)P(Y ∈ ·)) these properties also apply to I(X;YQ).
Now, for each x ∈ X we can introduce a sequence of successively refined partitions (Qxn)n∈N
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so that

D (P (Y ∈ ·|X = x) ||P (Y ∈ ·)) = lim
n→∞

D
(
P
(
YQxn ∈ ·|X = x

)
||P
(
YQxn ∈ ·

))
= sup

Q
D (P (YQ ∈ ·|X = x) ||P (YQ ∈ ·)) .

Let the finite partition Qn denote the refinement of the partitions {Qxn}x∈X . That is, for
each x, every set in Qxn can be written as the union of sets in Qn. Then,

I(X;Y ) ≥ lim
n→∞

I(X;YQn)

= lim
n→∞

∑
x∈X

P (X = x)D (P (YQn ∈ ·|X = x) ||P (YQn ∈ ·))

≥ lim
n→∞

∑
x∈X

P (X = x)D
(
P
(
YQxn ∈ ·|X = x

)
||P
(
YQxn ∈ ·

))
=

∑
x∈X

P (X = x)D (P (Y ∈ ·|X = x) ||P (Y ∈ ·))

=
∑
x∈X

P (X = x) sup
Qx

D (P (YQx ∈ ·|X = x) ||P (YQx ∈ ·))

≥ sup
Q

∑
x∈X

P (X = x)D (P (YQ ∈ ·|X = x) ||P (YQ ∈ ·))

= sup
Q
I(X;YQ) = I(X;Y ),

hence the inequalities above are equalities and our claim is established.

Appendix D. Technical Extensions

D.1 Infinite Action Spaces

In this section, we discuss how to extend our results to problems where the action space
is infinite. For concreteness, we will focus on linear optimization problems. Specifically,
throughout this section our focus is on problems where A ⊂ Rd and for each p ∈ P there is
some θp ∈ Θ ⊂ Rd such that for all a ∈ A

E
y∼pa

[R(y)] = aT θp.

We assume further that there is a fixed constant c ∈ R such that supa∈A ‖a‖2 ≤ c and
supθ∈Θ ‖θ‖2 ≤ c. Because A is compact, it can be extremely well approximated by a finite
set. In particular, we can choose a finite cover Aε ⊂ A with log |Aε| = O(d log(dc/ε) such
that for every a ∈ A, minã∈Aε ‖a− ã‖2 ≤ ε. By the Cauchy-Schwartz inequality, this implies
that | (a− ã)T θP | ≤ cε for every θP .

We introduce a quantization A∗Q of the random variable A∗. A∗Q is supported only on
the set Aε, but satisfies ‖A∗(ω)−A∗Q(ω)‖2 ≤ ε for each ω ∈ Ω.
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Consider a variant of Thompson sampling that randomizes according to the distribution

of A∗Q. That is, for each a ∈ Aε, P (At = a|Ft) = P
(
A∗Q = a|Ft

)
. Then, our analysis shows,

E
T∑
t=1

[R(Yt,A∗)−R(Yt,At)] = E
T∑
t=1

[
R(Yt,A∗)−R(Yt,A∗Q)

]
+ E

T∑
t=1

[
R(Yt,A∗Q)−R(Yt,At)

]
≤ εT +

√
dTH

(
A∗Q

)
.

This new bound depends on the time horizon T , the dimension d of the linear model, the
entropy of the prior distribution of the quantized random variable A∗Q and the discretization

error εT . Since H(A∗Q) ≤ log (|Aε|), by choosing ε = (cT )−1 and choosing a finite cover

with log (|Aε|) = O(d log(dcT )) we attain a regret bound of order d
√
T log(dcT ). Note that

for d ≤ T , this bound is of order d
√
T log(cT ), but for d > T ≥ 1, we have a trivial regret

bound of T <
√
dT .

Here, for simplicity, we have considered a variant of Thompson sampling that randomizes
according to the posterior distribution of the quantized random variable A∗Q. However, with
a somewhat more careful analysis, one can provide a similar result for an algorithm that
randomizes according to the posterior distribution of A∗.

D.2 Unbounded Noise

In this section we relax Assumption 1, which requires that reward distributions are uniformly
bounded. This assumption is required for Fact 9 to hold, but otherwise was never used in
our analysis. Here, we show that an analogue to Fact 9 holds in the more general setting
where reward distributions are sub–Gaussian. This yields more general regret bounds.

A random variable is sub–Gaussian if its moment generating function is dominated by
that of a Gaussian random variable. Gaussian random variables are sub–Gaussian, as are
real-valued random varaibles with bounded support.

Definition 1 Fix a deterministic constant σ ∈ R. A real–valued random variable X is σ
sub–Gaussian if for all λ ∈ R

E [exp{λX}] ≤ exp{λ2σ2/2}.

More generally X is σ sub–Gaussian conditional on a sigma-algebra G ⊂ F if for all λ ∈ R,

E [exp{λX}|G] ≤ exp{λ2σ2/2}

almost surely.

The next lemma extends Fact 9 to sub-Gaussian random variables.

Lemma 3 Suppose there is a Ft measurable random variable σ such that for each a ∈ A,
R(Yt,a)) is σ sub-Gaussian conditional on Ft. Then for every a, a∗ ∈ A

Et[R(Yt,a)|A∗ = a∗]− Et[R(Yt,a)] ≤ σ
√

2D (Pt(Yt,a|A∗ = a∗) ||Pt(Yt,a)),

almost surely.

26



An Information-Theoretic Analysis of Thompson Sampling

Using this Lemma in place of Fact 9 in our analysis leads to the following corollary.

Corollary 1 Fix a deterministic constant σ ∈ R. Suppose that conditioned on Ft, R(Yt,a)−
E [R(Yt,a|Ft] is σ sub–Gaussian. Then

Γt ≤ 2|A|σ2

almost surely for each t ∈ N. Furthermore, Γt ≤ 2σ2 under the conditions of Proposition
4, Γt ≤ 2dσ2 under the conditions of Proposition 5, and Γt ≤ 2dσ2

m2 under the conditions of
Proposition 6.

It’s worth highlighting two cases under which the conditions of Corollary 1 are satisfied.
The first is a setting with a Gaussian prior and Guassian reward noise. The second case is
when under any model p ∈ P expected rewards lie in a bounded interval and reward noise
is sub–Gaussian.

1. Suppose that for each a ∈ A, R(Yt,a) follows a Guassian distribution with vari-
ance less than σ2, Yt,a = R(Yt,a) and, reward noise R(Yt,a) − E[R(Yt,a)|p∗] is Gaus-
sian with known variance. Then, the posterior predictive distribution of R(Yt,a),
P (R(Yt,a) ∈ ·|Ft) is Gaussian with variance less than σ2 for each a ∈ A and t ∈ N.

2. Fix constants C ∈ R and σ ∈ R. Suppose that almost surely E [R(Yt,a)|p∗] ∈
[−C

2 , C2
]

and reward noise is R(Yt,a)− E [R(Yt,a)|p∗] is σ sub–Gaussian. Then, conditioned on
the history, R(Yt,a)− E [R(Yt,a)|Ft] is

√
C2 + σ2 sub-Gaussian almost surely.

The first case relies on the fact that E[R(Yt,a)|p∗] is C–sub-Gaussain, as well as the following
fact about sub-Gaussian random variables.

Fact 11 Consider random variables (X1, ..., XK). If for each Xi there is a deterministic

σi such that Xi is σi sub–Gaussian conditional on X1, .., Xi−1, then
∑K

i=1Xi is
√∑K

i=1 σ
2
i

sub-Gaussian.

Proof For any λ ∈ R,

E

[
exp{λ

K∑
i=1

Xi}

]
= E

[
K∏
i=1

exp{λXi}

]
= E

[
K∏
i=1

E
[
exp{λXi}

∣∣∣∣X1, ..Xi−1

]]

≤
K∏
i=1

exp

{
λ2σ2

i

2

}
= exp

{
λ2(
∑

i σ
2
i )

2

}
.

The proof of Lemma 3 relies on the following property of Kullback–Leibler divergence.

Fact 12 (Variational form of KL–Divergence given in Theorem 5.2.1 of Gray (2011)) Fix
two probability distributions P and Q such that P is absolutely continuous with respect to
Q. Then,

D(P ||Q) = sup
X
{EP [X]− logEQ [exp{X}]} ,

where EP and EQ denote the expectation operator under P and Q respectively, and the
supremum is taken over all real valued random variables X such that EP [X] is well defined
and EQ [exp{X}] <∞.
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We now show that Lemma 3 follows from the variational form of KL–Divergence.
Proof Define the random variable X = R (Yt,a) − Et [R (Yt,a)]. Then, for abitrary λ ∈ R,
applying Fact 12 to λX yields

D (Pt (Yt,a|A∗ = a∗) ||Pt(Yt,a)) ≥ λEt [X|A∗ = a∗]− logEt [exp{λX}]
= λ (Et[R (Yt,a) |A∗ = a∗]− Et [R (Yt,a)])− logE [exp{λX}|Ft]
≥ λ (Et[R (Yt,a) |A∗ = a∗]− Et [R (Yt,a)])− (λ2σ2/2).

Maximizing over λ yields the result.
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