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Abstract—Accurate and timely crop yield estimation is critical 

for food security and sustainable development. The rapid 

development of unmanned aerial vehicles (UAVs) offers a new 

approach to acquire high spatio-temporal resolution imagery of 

farmland at a low cost. In order to realize the full potential of UAV 

platform and sensor, machine learning has been introduced to 

estimate crop yield, but the shortages of field measurements have 

troubled researchers. In this study, the CW-RF model, a new 

wheat yield estimation model suitable for the North China Plain, 

was established using random forest, and the crop growth model 

(the CERES-Wheat model) was chosen to simulate abundant 

training samples for random forest at field plot scale. According 

to CERES-Wheat model simulation, the leaf area index (LAI) and 

leaf nitrogen content (LNC) at the wheat jointing and heading 

stages were selected as the most sensitive parameters, and were 

retrieved from UAV hyperspectral imagery using the directional 

second derivative (DSD) and angular insensitivity vegetation index 

(AIVI) methods respectively. Then the retrieved LAI and LNC 

results were input into the CW-RF model to estimate winter wheat 

yield. The field validation in Luohe, Henan showed that the root 

mean squared error (RMSE) of the retrieved LAI and LNC were 

6.27% and 12.17% at jointing stages, 9.21% and 13.64% at 

heading stages, respectively. The RMSE of estimated yield was 

1,008.08 kg/ha, and the mean absolute percent error (MAPE) of 

estimated yield was 9.36%, demonstrating the available of the 

CW-RF model in wheat yield estimation at field plot scale. Apart 

from Luohe, validations in some other fields (e.g. Xiaotangshan, 

Beijing), prove the wide applicability of the CW-RF model. In 

addition, the UAV hyperspectral data were found to significantly 

improve the retrieval accuracy, and further improve CW-RF 

model estimation accuracy. In conclusion, this study showed that 

the CERES-Wheat model simulation can be important data source 

for machine learning-based wheat yield estimation model at field 

plot scale, and the hyperspectral sensor mounted on a UAV is a 

feasible remote sensing data acquisition mode for winter wheat 

growth monitoring and yield estimation. 

Index Terms—wheat yield estimation, the CERES-Wheat model, 

random forest, unmanned aerial vehicle (UAV), hyperspectral 

remote sensing 
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I. INTRODUCTION 

ROP yield is one of the most critical issues affecting 

national economic development and food security [1], [2]. 

Accurate and timely crop yield estimation is essential for 

precision agriculture and sustainable development, and can 

provide strong support for agricultural decision-making and 

management [3]. Traditional crop yield estimation heavily 

depends on ground field surveys, which are costly, time 

consuming and prone to large errors [4].  

Since the 1970s, satellite remote sensing data have been 

broadly used for non-destructive crop yield estimation in large 

region scale [5], [6]. Numerous studies have taken an empirical 

approach based on vegetation indices [7] – [9], and showed that 

there is a linear relationship between crop yield and vegetation 

indices such as the normalized difference vegetation index 

(NDVI), a soil-adjusted vegetation index (SAVI), and green 

vegetation index (GVI). Previous studies [10] – [13] have also 

reported that there are relationships between crop yield and crop 

biophysical and biochemical parameters such as the leaf area 

index (LAI), the fraction of absorbed photosynthetic active 

radiation (FPAR), and the leaf nitrogen content (LNC). Some 

studies concentrated on the empirical models which depended 

on the relationships between these parameters retrieved from 

remote sensing and crop yield to estimate the final crop yield 

[14] [15]. These models have successfully estimated the crop 

yield in the region scale from satellite imagery, and have been 

widely used due to their simplicity, calculation convenience, 

and acceptable accuracy. However, relationships established in 

this way are only applicable for local regions and specified time, 

and seldom involves the mechanism of crop growth.  

The crop growth models are process-oriented and dynamic 

simulation models, providing a useful approach to simulate 

crop growth processes and obtain agricultural data at field plot 
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scale, such as LAI, biomass, and yield [16] [17]. The widely 

used crop growth models include CERES [18] and GOSSYM 

[19] series models from the United States, SUCROS [20] series 

models from the Netherlands, and CCSODS [21] series models 

from the China. The accuracy of crop growth models is higher 

in simulating crop growth parameters, but the structure and 

process are more complicated compared with the empirical 

models [22]. A large number of input parameters are needed to 

drive the crop growth models. Some input parameters are 

difficult to collect, and some parameters become unavailable 

because of the variability on region scale, so that these models 

are limited in its practical application [23].  Therefore, 

integration of remote sensing and crop growth models has 

become the highlights in the frontier of crop growth monitoring 

and yield estimation [24]. Some studies focused on assimilating 

remote sensed crop biophysical parameters into the crop growth 

model to obtain the estimated yield [25] – [27], so that the 

problem of spatial scale incompatibility can be solved. But this 

algorithm is complex, and depended on the time-effectiveness 

of satellite remote sensing. 

In recent years, the development of sensor technology and 

technological advancements in unmanned aerial vehicles 

(UAVs) provide an advanced platform for data acquisition [28]. 

Compared with satellite remote sensing, UAV remote sensing 

has the advantage of high spatial-temporal resolution, low-cost, 

flexibility and versatility [29]. Some researchers have 

conducted research on crop yield estimation by UAV remote 

sensing based on vegetation indices methods. Geipel et al. [30] 

demonstrated that three vegetation indices calculated from 

UAV RGB images were highly correlated with corn grain yield. 

Zhou et al. [8] also analyzed the relationships between rice 

grain yield and several vegetation indices at the booting stage 

and multiple growth periods based on UAV imagery, and 

showed that there was a high correlation between grain yield 

and vegetation indices. But the relationships are still locally 

applicable for only specified regions and time. 

With the rapid development of artificial intelligence, the 

application of machine learning algorithms in crop yield 

estimation has been gradually increasing [6], [31], [32]. The 

machine learning including support vector machine (SVM), 

artificial neural networks (ANN), deep learning, and random 

forest, is an efficient empirical method for classification and 

prediction [33]. However, the amount of field measured yield 

data cannot meet the number of samples required for machine 

learning framework, and direct training with measured data 

may result in model overfitting. Among the current machine 

learning algorithms, the random forest algorithm was widely 

used in crop yield estimation at the large regional scale, and has 

achieved accurate predictions [34], [35], due to its unbiased 

estimation and suitability for small sample data [36]. Therefore, 

in this study, we introduced crop growth model simulation to 

increase the number of samples, then using the random forest 

algorithm to build a crop yield estimation model suitable for the 

UAV imagery.  

The primary objectives of this study include: firstly, 

developing a new winter wheat yield estimation model (the 

CW-RF model) using the random forest regression algorithm in 

combination with the CERES-Wheat model suitable for UAV 

hyperspectral imagery; secondly, testing the performance of the 

LAI and LNC retrieval methods for the hyperspectral sensor 

mounted on the UAV; thirdly, assessing the potential for UAV 

remote sensing in yield estimation and analyze the possible 

error sources. 

The remaining parts of this paper are organized as: Section II 

introduces the study area, experimental design, image 

acquisition and processing, and field data collection; Section III 

presents the methods used in this study, including the CERES-

Wheat model, sensitive analysis, random forest algorithm, the 

development of CW-RF model, the LAI and LNC retrieval 

 
Fig. 1. Overview of the study area. (a) Geographical location of the 

experimental site and (b) illustration of field data collection. (c) RGB 

orthomosaic imagery collected by a UAV on 22 March 2019 showing the 

spatial location of the 40 plots.  
Fig. 2. The spatial distribution of whole plots in experimental area. 
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method and model validation; Section IV shows the retrieved 

and estimated results, and Sections V and VI provide discussion 

and conclusions, respectively. 

II. MATERIALS 

A. Study Area 

The study was conducted at the Experimental Station of 

National Agriculture Production Base for High Quality Wheat, 

which is located in Luohe, Henan Province, China (113 °

52′54′′E, 33°41′59′′N) at an altitude of 63 m (Fig. 1). The study 

area has a warm temperate humid continental monsoon climate, 

with mild cold winters, hot rainy summers, and short spring and 

autumn seasons. The annual average temperature, number of 

frost-free days, and precipitation are 14.6°C, 220, and 797.2 

mm, respectively. The temporal distribution of rainfall is 

extremely uneven and is concentrated in the summer months, 

with summer precipitation accounting for approximately 70% 

of the annual precipitation. The annual sunshine duration is 

between 2,187 and 2,359 hours. The predominant soil texture is 

moist and the organic matter content of the soil is 10~20 g/kg 

in the study area. The main crops planted in the study area are 

summer corn and winter wheat. The growth period of winter 

wheat is mainly from October to June of the next year. 

B. Experimental Design 

An experiment involving four different winter wheat cultivars 

and four different nitrogen application levels was designed for 

this study. Aikang 58, Zhoumai 27, Xinong 509 and Yumai 49-

198 were selected as the test cultivars (Fig. 2). The nitrogen 

treatments were 0, 120, 225, and 330 kg/ha. Half of the nitrogen 

fertilizer was used as base fertilizer, with the other half applied 

at the jointing stage of the winter wheat. In addition, 135 kg/ha 

P2O5 and 105 kg/ha K2O fertilizer supplements were applied to 

all field plots. The experiment had a randomized complete 

block design. As the control group, the 0 kg N per hectare 

treatment had only one block with an area of 100 m2 (10 × 10 

m), while the other treatments had three replications and each 

plot had an area of 130 m2 (10 × 13 m). A total of 40 plots were 

used in the study. The spatial distribution of the plots is shown 

in Fig. 2. The wheat sowing date was October 17, 2018 and the 

wheat harvesting date was June 2, 2019. The field management 

 
(a)                                                           (b) 

Fig. 4. True color composite images based on UAV hyperspectral data. (a) 

Jointing stage. (b) Heading stage. The wavelength of the red band is 659 nm, 

the wavelength of the green band is 549 nm, and the wavelength of the blue 

band is 479 nm. 

 
Fig. 3.  UAV systems and hyperspectral sensor. (a) DJI M600 Pro Hexacopter platform, (b) autonomous flight control system and telemetry and telecontrol 

system, and (c) Pika L hyperspectral sensor. 
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practices were the same as those generally used in high yield 

wheat fields. 

C. Image Acquisition and Processing 

The UAV used in this study was the DJI Matrice 600 Pro (SZ 

DJI Technology Co., Ltd., Sham Chun, China) with six rotors, 

which performs in a very stable manner at low altitudes and low 

wind speeds (Fig. 3a & fig. 3b). The maximum payload 

capacity of the UAV is 6 kg, and the maximum hover time 

without any load is 38 min. Its working environment 

temperature is between -10 and 40°C. A hyperspectral imaging 

instrument, Pika L (Resonon Inc., Bozeman, MT, USA) was 

mounted on the UAV to acquire hyperspectral images (Fig. 3c). 

The Pika L has a short exposure time for push-broom imaging, 

weighs 0.6 kg, and measures 10.0 × 12.5 × 5.3 cm3. It’s 

operating range spans from the visible to the near-infrared, with 

a spectral range of 400~1,000 nm, and its spectral resolution 

was 2.1 nm. Collected radiation data was recorded as a 

hyperspectral cube, with 900 samples and up to 2,000 lines. 

Synchronously with the UAV-based hyperspectral data 

acquisition, an L1D-20C digital camera (Hasselblad Inc., 

Gothenburg, Sweden) mounted on another UAV (DJI Mavic 2 

Pro; SZ DJI Technology Co., Ltd., Sham Chun, China), with 

four rotors, also acquired digital images. These digital images 

were used for the ortho rectification of hyperspectral images. 

The UAV flight was conducted under a clear sky, with 

cloudless and windless environmental conditions between 

10:00 and 14:00 local time during the wheat tilling, jointing and 

heading stages (December 17, 2018, March 23, 2019 and April 

19, 2019). An automatic control system was used to plan flight 

path. The flight altitude was 100 m and the speed was 3 m/s for 

the acquisition of hyperspectral and digital images. A total of 

150 bands were selected for the hyperspectral imaging 

instrument and the exposure parameters of the sensor were set 

manually according to sunlight conditions. The hyperspectral 

images were continuously acquired during the flight at 90 fps 

and saved to a mobile hard drive. Before each flight, a 

calibration white plate (100% reflectance) and four 1.2 × 1.2 m 

standard targets with a fixed reflectance of 5%, 20%, 40%, and 

60%, respectively, were placed on the ground within the UAV 

flight path and captured in the hyperspectral image. This was 

used for the radiation correction of hyperspectral images. 

The process workflow for the hyperspectral images included 

radiometric calibration, radiometric correction, atmospheric 

correction, geometric correction and image mosaicking [37], 

[38]. Radiometric calibration was performed by a hyperspectral 

sensor calibration file using Spectronon software (Resonon 

Inc.), and the original digital number (DN) values of the images 

were converted to an apparent radiance. Radiometric correction 

was based on four standard targets. According to the 

relationship between the radiance of targets in airborne images 

and fixed reflectance, the apparent radiance data was 

transformed into surface reflectance data using a least square 

linear method. Second Simulation of a Satellite Signal in the 

Solar Spectrum (6S) model was adopted to carry out 

atmospheric correction. Geometric correction included both 

lens distortion correction and ortho rectification. The georectify 

tool in Spectronon software was used for lens distortion 

correction. In addition, a digital orthophoto map (DOM) was 

generated from UAV-based digital images using Photoscan 

Professional software (Agisoft LLC., ST. Petersburg, Russia). 

Then, an orthographic correction was applied based on ground 

control points that were extracted manually between DOM and 

hyperspectral images. Finally, Spectronon software was used to 

mosaic images. The ortho hyperspectral images obtained 

previously were resampled to 0.1 m and projected into the 

WGS84 coordination system. Color composite images of 

hyperspectral data corresponding to the jointing and heading 

stages are shown in Fig. 4. 

D. Field Data Collection 

Field measurements and UAV flights were conducted 

simultaneously. The collected data mainly included the LAI, 

LNC, and the spectral reflectance of the canopy during the 

growth stage of winter wheat. Repeated nondestructive 

sampling was carried out in each plot for the determination of 

the LAI and spectra, while destructive sampling was carried out 

in each plot for the determination of LNC. Three clusters from 

each plot were randomly selected to determine the LAI using a 

plant canopy analyzer (LAI-2000; LI-COR Inc., Lincoln, NE, 

USA). The LAI for each plot was calculated as an average. The 

ground hyperspectral data was measured using a field 

spectrometer (FieldSpec 3; Analytica Spectra Devices Inc., 

Longmont, CO, USA), with a spectral range of 350~2500 nm 

and spectral resampling interval of 1 nm. Calibration was 

conducted before and after the measurement using a calibration 

plate and was repeated 10 times to obtain an average. Ten wheat 

plants were randomly cut with scissors in each plot, and their 

green leaves were killed at 105°C for 30 min in the laboratory, 

then kept at 70~80°C, dried, and crushed, before the total 

nitrogen content of leaves was determined. At winter wheat 

maturity, a 1 m2 sampling area from each plot was harvested 

manually for the calculation of yield. The number of winter 

wheat spikes and grains in the sampling area was counted. The 

thousand grain weight was calculated after drying under 

sunlight, and the yield of winter wheat was determined. 

III. METHODOLOGY 

Fig.5 shows a concept map for winter wheat yield estimation 

based on the integration of the CERES-Wheat model and 

random forest algorithm.  

First, the parameters selected on the basis of typical 

conditions for the North China Plain, including local weather 

and soil conditions, plant characteristics and the general 

management information were input into the CERES-Wheat 

model, and abundant simulated data was produced. Second, 

based on the simulation results, the optimal growth parameters 

and periods for the wheat yield were selected using sensitive 

analysis. Then, the relationship between the optimal growth 

parameters at best stages and wheat yield was developed with 

the use of the random forest regression algorithm, which was 

called the CW-RF model. Besides, the parameters were 

retrieved from UAV hyperspectral imagery using the proper 

method. Finally, the retrieved results were input into the CW-
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RF model, and the estimated winter wheat yield was obtained. 

Compared with the measured yield, the accuracy of the model 

was verified. 

A. The CERES-Wheat Model 

The CERES-Wheat model, employed in this study, is a 

deterministic model to simulate the growth of wheat. It was 

originally developed under the auspices of the USDA-ARS 

Wheat Yield Project and the U.S. government multiagency 

AGRI-STARS program in the late 1970s [39]. The CERES-

Wheat model is one of the main models incorporated in the 

Decision Support System for Agro-technology Transfer 

(DSSAT), and simulates wheat growth, development, and yield 

data by considering photosynthesis, nutrient absorption, water 

absorption and transpiration, organ formation and senescence. 

DSSAT v.4.5 model was used for the study.  

The main inputs of CERES-Wheat include weather and soil 

conditions, plant characteristics, and field management. In 

order to make the simulation data more suitable for the situation 

of the North China Plain, we considered inputting several sets 

of weather, soil, plant characteristics, and general management 

parameters adopted in the North China Plain into the CERES-

Wheat model. 

The minimum weather inputs of the model are daily solar 

radiation (SRAD, MJ m-2 day-1), minimum and maximum air 

temperature (TMIN and TMAX, °C), and precipitation (RAIN, 

mm). These temperature and precipitation values were obtained 

from the China meteorological data sharing service system 

website, with the exception of solar radiation. The approximate 

daily solar radiation was calculated from the daily sunshine 

hours recorded on the same website. According to the 

Angstrom empirical formula [40], the expression of daily solar 

radiation is as follows: 

 𝑅𝑠 = 𝑅𝑚𝑎𝑥 (𝑎𝑠 + 𝑏𝑠

𝑛

𝑁
) (1) 

where 𝑅𝑠 is daily solar radiation; 𝑅𝑚𝑎𝑥 is daily astronomical 

radiation; 𝑛 is daily sunshine hours; 𝑁 is the theoretical daily 

maximum sunshine hours; and 𝑎𝑠  and 𝑏𝑠  are empirical 

coefficients values of 𝑎𝑠 = 0.18 and 𝑏𝑠 = 0.55 for the North 

China Plain, as recommended by the Food and Agriculture 

Organization of the United Nations (FAO). 

The input soil dataset included general information such as 

soil type, color, albedo, drainage, and runoff potential, and for 

each soil layer it included information such as the proportion of 

clay, silt, stones, the content of organic carbon, cation exchange 

capacity, total nitrogen, pH, bulk density, saturated soil water, 

and other factors.  

The input field management information was obtained from 

the exact practices adopted in the experiment. In addition to 

basic planting information, such as the date of planting and 

harvesting, planting population, and planting depth, irrigation 

and fertilizer information were recorded and used in the model. 

The irrigation method was sprinkler irrigation and the main 

nitrogen fertilizer was urea. The irrigation and fertilizer 

amounts were set as variables. 

Plant characteristics are generally determined by debugging 

the cultivar parameters file in the CERES-Wheat model. The 

definition, unit, and range of these parameters are shown in 

Table Ⅰ. The program is usually debugged by the generalized 

likelihood uncertainty estimation (GLUE) method, but in this 

study, different sets of calibrated wheat cultivar parameters 

were derived from several literature sources [41] – [43] and 

empirical values to simulate more universal results. 

The output data of the CERES-Wheat model included the 

result variables such as wheat yield and grain protein content 

(GPC), and process variables such as LAI, FPAR, LNC, above-

ground biomass (AGB), stem nitrogen content (SNC), root 

nitrogen content (RNC) and other factors. The process data was 

recorded on a daily timescale. 

 
Fig. 5. The concept map for winter wheat yield estimation based on the integration of the CERES-Wheat model and random forest algorithm. 
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B. Sensitive Analysis 

Establishing the relationship between simulated multi-period 

crop growth parameters and simulated yield may lead to model 

redundancy. Therefore, we considered using a correlation 

analysis to select the optimal parameters of the best growth 

period. 

The Sensitive analysis was utilized for select optimal growth 

parameters and periods. Sensitivity analysis is realized by 

calculating Pearson correlation coefficient. The basic function 

is represented as:  

 
r =

∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛
𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1 √∑ (𝑌𝑖 − 𝑌̅)2𝑛

𝑖=1

 (2) 

where the r represents the Pearson correlation coefficient, 𝑋𝑖 

represents simulated wheat growth parameter in this study,  𝑌𝑖 

represents simulated wheat yield, 𝑋̅  and 𝑌̅  denotes the mean 

value of  𝑋𝑖 and 𝑌𝑖 respectively. 

First, we divided the whole growth process of wheat from 

sowing to maturity into eight stages: tilling stage, jointing stage, 

flagging stage, heading stage, flowering stage, filling stage, and 

maturing stage. Second, considering the growth parameters that 

can be effectively retrieved by remote sensing, the LAI, LNC, 

and FPAR were selected among the numerous simulated 

parameters in this study. Then, the data of each growth stage 

were averaged. Finally, the Pearson correlation coefficients of 

these parameters during different growth stages were calculated. 

C. Random Forest Algorithm 

The random forest is a popular machine learning algorithm 

based on a classification and regression tree (CART). The 

CART represents a decision tree structure in the form of binary 

tree formed by hierarchical organization of training datasets 

under a series of conditions or restrictions. The random forest 

can be used for estimating a categorical variable (classification), 

and also can be used for estimating a continuous variable 

(regression). The random forest regression algorithm has good 

performance in predicting high dimensional datasets and is 

extremely insensitive to noisy datasets [44]. 

The random forest begins with many bootstrap samples that 

are extracted randomly from the original training dataset. The 

regression trees are created by extracting a part of training 

samples through replacement, and some samples can be 

selected repeatedly while some samples are out of bag. A 

regression tree is fitted by a set of the bootstrap samples and 

each node per tree is chosen from a small set of input variables, 

which are selected randomly from the total dataset. The 

estimated value of an observation is calculated through 

averaging all of the trees. 

 The random forest regression algorithm has achieved 

effective results in various remote sensing studies, including 

agricultural monitoring and management applications. In this 

study, to model the relationship between wheat growth 

parameters and wheat yield, random forest algorithm was run 

using the random Forest package (v.4.6-14) in R software 

(v.3.6.1). Two main parameters were defined and optimized in 

the random forest algorithm: (1) the number of trees that was 

created (‘ntree’ parameter; default value is 500 trees), and (2) 

the number of different variables for tree node splitting (‘mtry’ 

parameter; default value is one-third of the total number of 

variables). The random forest algorithm was conducted as 

follows: 

1) Setting proper ntree. For each regression tree, ntree 

bootstrap samples are randomly extracted from the original data 

as the training dataset;  

2) Setting proper mtry. If the feature dimension of samples is 

M, a constant mtry < M needs to be specified, and mtry 

variables are randomly selected from M variables. For each 

node per tree, the best split is chosen among mtry variables. 

3) Each tree is developed to its maximum expansion, and new 

data is estimated by averaging the estimation results of all trees. 

D. The development of CW-RF model 

In this study, we designed four sets of different weather 

parameters, which were obtained from the annual mean weather 

data of four provincial meteorological stations on the North 

China Plain. These weather stations are located in Beijing, 

Luohe (Henan Province), Weifang (Shandong Province) and 

Xuzhou (Jiangsu Province). These four sites are all located in 

the North China Plain with certain representativeness. 

 In addition, we designed five sets of different soil parameters, 

which were selected from typical soil types of five provinces in 

the North China Plain. The five provinces are Beijing, Henan, 

Shandong, Jiangsu and Anhui Province. The soil data in Beijing 

came from field measurements, and Henan Province came from 

local soil records, and Shandong, Anhui and Jiangsu Province 

were from the China Soil Science Database website 

(http://vdb3.soil.csdb.cn/).  

Table Ⅰ 

CULTIVAR PARAMETERS OF WHEAT IN THE CERES-WHEAT MODEL 

 

Parameters Definition Unit range Initial value 

P1V Days required for vernalization at the optimum temperature days 5~65 35 

P1D Photoperiodic response parameter % 0~95 50 

P5 Accumulated temperature at filling stage °C· day 300~800 600 

G1 Kernel number per unit canopy weight at anthesis kernel·g-1 15~30 26 

G2 Standard kernel size under optimum conditions mg 20~65 26 

G3 Standard, non-stressed mature tiller weight g 1~2 1.5 

PHINT Accumulated temperature required for the growth of leaves °C· day 60~100 100 
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Ten sets of different wheat cultivar parameters, which came 

from literature and prior knowledge, seven sets of different 

nitrogen fertilizer parameters, which were 0, 60, 120, 180, 225, 

270, 330 kg/ha, respectively, and three set of different irrigation 

parameters, which were 10, 30, 50 mm, were set in this study. 

These four different types of data were combined and input into 

the DSSAT software (with the CERES-Wheat model 

encapsulated), and a total of 4200 groups of output data are 

produced. 

The Pearson correlation coefficient between these growth 

parameters and simulated yield were analyzed (Table Ⅱ). The 

correlation between both the LAI and LNC and yield were 

significantly higher than the correlation between FPAR and 

yield, and therefore the LAI and LNC were selected as the best 

growth parameters. The strongest correlation between the LAI 

and yield was found in the heading period of wheat, while the 

strongest correlation between the LNC and yield was found in 

the jointing period of wheat. Therefore, the jointing and heading 

period were selected as sensitive growth periods in this study. 

The data distribution of the simulated LAI, LNC, and yield is 

shown in Fig. 6. It shows the simulated data was suitable for 

training the random forest algorithm. 

The simulated LAI and LNC at jointing and heading stages 

and wheat yield data were input into the random forest 

regression algorithm, the CW-RF model was developed. For the 

three stages of random forest algorithm, the parameter values 

(ntree and mtry) were optimized using the simulated training 

dataset. The RMSE of the model and out-of-bag error were used 

to find the values that could best estimate the winter wheat yield. 

The out-of-bag error was lowest when mtry was set to half of 

the total variables. When ntree > 200, RMSE roughly reached 

the minimum and changed smoothly (Fig. 7). The ntree was set 

to 200 to improve the calculation efficiency. According to the 

results, ntree was set to 200, and mtry was set to 2. 

Optimal parameters were used to generate variable 

importance. The importance of variables was evaluated by the 

influence of variables on estimation accuracy, which allowed 

for a quick assessment of the relevance between predictors and 

wheat yield. In this study, percentage increase in mean square 

error (%IncMSE) was used to measure the importance of 

variables (Fig. 8).  The results show that LNC at heading stage 

is the most important explanatory variable in the CW-RF model, 

followed by LAI at heading stage and LAI at jointing stage, and 

finally LNC at jointing stage. 

E. Remote Sensing Retrieval Method 

The LAI of winter wheat in UAV hyperspectral remote 

sensing images was retrieved by the directional second 

derivative (DSD) method [45], while the LNC of winter wheat 

was retrieved based on the novel angular insensitivity 

vegetation index (AIVI) [46]. 

 
Fig. 6. A box-plot of simulated LAI, LNC, and wheat yield. 

 
Fig. 7. The association between RMSE and ntree used in random forest. 

 
Fig. 8. Variable importance plot generated by the random forest algorithm. 

Table Ⅱ 

CORRELATIONS BETWEEN WHEAT YIELD AND GROWTH PARAMETERS IN THE DIFFERENT GROWTH STAGES 

 

Parameter Tilling Jointing Flagging Heading Flowering Filling Maturing 

LAI 0.1375 0.7446 0.7263 0.7353 0.6693 0.7332 0.7249 

LNC 0.1699 0.6979 0.7586 0.8185 0.7768 0.8052 0.8067 

FPAR 0.1557 0.2130 0.3162 0.3885 0.3621 0.3938 0.3813 
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The DSD is an algorithm that can effectively eliminate the 

soil background effect and bi-direction effect (view direction 

and solar direction), and then retrieve the LAI. The spectrum 

analysis of leaf and soil indicated that the DSD value of leaf 𝜌
𝑣
′′ 

was much larger than that of the soil spectrum 𝜌
𝑔
′′  within the 

0.68~0.71 and 0.73~0.75 µm bands. When 𝜌
𝑣
′′ ≫ 𝜌

𝑔
′′ , the second 

derivative of reflectance for the object 𝜌′′ can be expressed as: 

 𝜌′′

𝜌𝑣
′′

= 1 − [1 −
𝐸𝑑

𝜇0𝐹0 + 𝐸𝑑

 (1

− 𝑒
−𝜆0

𝐺𝑣
𝜇𝑣

 (1−𝛤(𝛷))𝐿𝐴𝐼
)]𝑒

−𝜆0
𝐺𝑣
𝜇𝑣

𝐿𝐴𝐼𝛤(𝛷)
 

(3) 

 where 𝐺𝑣 is the 𝐺 function of the view direction; 𝜇
𝑣

= 𝑐𝑜𝑠𝜃𝑣, 

𝜃𝑣  is the viewing zenith angle;  λ0  is the Nilson parameter,  

which is used to describe the clumping effect of foliage; 𝛤(𝛷) 

is an empirical function used to describe the hot-spot effect; 

𝜇
0
𝐹0 is the direct irradiance of the sun, and 𝐸𝑑 is the diffuse 

irradiance of the atmosphere. When 𝛷 = 0 and 𝛤(𝛷) = 1, if 

b = 𝜆0𝐺𝑣/𝜇𝑣, the expression can be simplified as follows: 

 𝜌′′

𝜌𝑣
′′

= 1 − 𝑒−𝑏𝐿𝐴𝐼 (4) 

Equation (4) shows the approximate correlation between the 

second derivative and the LAI. Based on this equation, the 

winter wheat LAI was retrieved rapidly and accurately, 

removing the angle and soil background effects. 

In this study, the AIVI was chosen to retrieve LNC [46]. The 

AIVI is not sensitive to angle and has a strong correlation with 

LNC of winter wheat. Based on red-edge, blue, and green bands, 

AIVI overcomes the influence of different experimental 

conditions and view zenith angles. The results showed that the 

AIVI had a stronger association with LNC compared to 

traditional vegetation indices, suggesting that the linear 

relationship between AIVI and LNC would be more stable and 

accurate. The AIVI is expressed as follows: 
 

AIVI =
𝑅445 × (𝑅720 + 𝑅735) − 𝑅573 ×  (𝑅720 − 𝑅735)

𝑅720 ×  (𝑅573 + 𝑅445)
 (5) 

where 𝑅𝑖 is reflectance at 𝑖 wavelength (nm). 

F. Model Validation 

The accuracy verification mainly consisted of two indexes, 

the mean absolute percent error (MAPE, %) and the root mean 

squared error (RMSE). The MAPE and RMSE were calculated 

using the following formula: 

 
MAPE = ∑ |

𝑦̂ − 𝑦

𝑦
| ×

100

𝑚

𝑚

𝑖=1

 (6) 

 

RMSE = √
1

𝑚
∑  (𝑦̂ − 𝑦)2

𝑚

𝑖=1

 (7) 

where 𝑦̂ represents estimated value, 𝑦 represents measured 

value, and 𝑚 is the number of samples. 

Fig. 9 shows the framework for winter wheat yield estimation 

in this study. The algorithm framework mainly includes the 

development of CW-RF model, crop growth parameters 

retrieval and model validation. 

 
Fig. 9. The framework for the development of CW-RF model, crop growth parameters retrieval and model validation. 
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IV. RESULTS 

A. Retrieval Results 

1) Wheat LAI Retrieved from UAV Hyperspectral Data: The 

pixels of the UAV-based hyperspectral images were resampled 

to 1 m. The DSD method was applied to the UAV hyperspectral 

images when parameter b in simplified formula approximately 

was 0.5 [45], inversion maps of wheat LAI during the jointing 

and heading stage were obtained (Fig. 10). 

It can be seen from the ridges between the plots that the soil 

information was mostly removed and the vegetation 

information was retained. Each plot was basically covered by 

winter wheat and the wheat LAI varied from 0 to 4. In addition, 

the wheat LAI of each plot was obtained by averaging the LAI 

of each pixel in the plot. 

The measured LAI of 40 field plots were all used to validate 

the accuracy of wheat LAI retrieval. A comparison of the LAI 

retrieval and measured values are shown in Fig. 11. In both the 

jointing stage and heading stage of the wheat, the scattered 

points were evenly distributed around the 1:1 line, the RMSE 

were 6.27% and 9.21% respectively, and the MAPE were 2.62% 

and 3.85% respectively. This showed that the retrieved LAI 

values were close to the measured values, which indicated the 

 
(a)                                                                      (b) 

Fig. 10. The LAI spatial distribution map retrieved from UAV-based hyperspectral data. (a) Jointing stage. (b) Heading stage. 

 
(a)                                                                                                                       (b) 

Fig. 11. Comparison between the retrieved and measured LAI at the jointing and heading stages. (a) Jointing stage. (b) Heading stage. 
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reliability of the DSD algorithm. 

2) Wheat LNC Retrieved from UAV Hyperspectral Data: The 

pixels of UAV-based hyperspectral images were resampled to 

1 m, and the AIVI was calculated from the UAV hyperspectral 

images at the jointing and heading stages of wheat.  

Due to the small number of measured samples, the leave-one-

out cross validation was applied in LNC retrieval. One 

measured sample was left for validation at a time, and the 

remaining measured samples were used to calibrate the LNC 

model in one training. According to the measured LNC and 

AIVI of the corresponding pixels, the relationship between the 

wheat LNC and AIVI was obtained by linear regression. The 

validation results were combined into a complete inversion map, 

and Fig.12 showed the retrieved wheat LNC during the jointing 

and heading stages. 

The LNC retrieval results also retained vegetation 

information and eliminated soil information by setting 

thresholds for the AIVI. Fig. 12 shows that the wheat LNC 

varied from 0% to 5%. The wheat LNC of each plot was 

obtained by averaging the LNC of each pixel in the plot. A 

comparison of the results of the LNC retrieval and measured 

values are shown in Fig. 13. The RMSE at the jointing and 

heading stages of wheat were 12.17% and 13.64% respectively, 

and MAPE were 3.05% and 3.07% respectively, which 

 
(a)                                                                      (b) 

Fig. 12. The LNC spatial distribution map retrieved from UAV-based hyperspectral data. (a) Jointing stage. (b) Heading stage. 

 
(a)                                                                                                                  (b) 

Fig. 13. Comparison between the retrieved and measured LNC at the jointing and heading stages. (a) Jointing stage. (b) Heading stage. 
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confirmed the reliability of winter wheat LNC retrieval using 

AIVI method. 

B. Estimated Yield Results  

Based on the retrieval values of winter wheat LAI and LNC 

in each plot, the estimated yield in each plot was acquired using 

the CW-RF model. Fig. 14 shows a spatial distribution map of 

the measured yield, estimated yield, and error percentage, 

respectively. It can be seen that the absolute error of most plots 

was less than 10%. Fig. 15 shows the comparison of estimated 

and measured yield. According to the statistical analysis, the 

MAPE was 9.36% and RMSE was 1008.08 kg/ha, which 

showed that the model established in this study performed well 

and was capable of plot scale yield estimation. 

V. DISCUSSION 

A. Error Analysis 

According to the concept of CW-RF model, crop growth 

model simulation, sample representation and observation are 

three main aspects that affect the uncertainties of crop yield 

estimation [47]. Although the crop growth models (e.g. the 

CERES-Wheat model) have robust physical and biological 

explanations for specific crop yield, the bias of these models 

may be increased due to the large uncertainties in the spatial 

distribution of weather and soil conditions, plant characteristics, 

and field management [48]. The uncertainties of input data may 

be transferred to the model simulation results [49]. Therefore, 

it is necessary to analyze and summarize the uncertainties of the 

CERES-Wheat model. 

The simplification of the actual growth process of winter 

wheat, the driving parameters given by experience and prior 

knowledge, and the regional heterogeneity of some initial 

conditions, lead to large uncertainties in simulation results of 

the CERES-Wheat model. Especially in some extreme weather 

and crop growth conditions, the simulation results deviate 

greatly from the reality of crop growth. Xiong [50] pointed out 

that the CERES-Wheat model could not reflect the effects of 

diseases, pests and weeds, and could not simulate satisfactory 

results under meteorological disaster and extreme environment 

stress situation. In addition, the uncertainties caused by spatial 

heterogeneity of driving parameters are aggravated when crop 

growth models are applied to yield estimation in regional scale. 

Observations can provide relatively real growth conditions of 

crops, and integrating the advantages of crop growth models 

and observations reduce the uncertainties of yield estimation. 

Remote sensing provides larger range of observations 

compared to the site scale, which can reduce the uncertainties 

 
(a)                                                                                (b)                                                                                 (c) 

Fig. 14. The yield spatial distribution map. (a) Measured yield. (b) Estimated yield. (c) Error percentage. 

 
Fig. 15. The relationship between measured and estimated winter wheat yield. 
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from spatial heterogeneity. Therefore, observation data from 

remote sensing is currently widely used in crop growth models 

for yield estimation, and most of studies on the uncertainty of 

the crop growth model were focus on the model input variables 

which were closely related to remote sensing [51]. Li et al. [52] 

found that the higher crop parameters retrieval accuracy, the 

smaller uncertainties of crop growth models and yield 

estimation error. Therefore, accurate retrieval of crop 

parameters is a necessary guarantee for crop growth models. 

Since the data source of the CW-RF model was the 

simulation results of the CERES-Wheat model, the simulation 

errors of the CERES-Wheat model could be transferred to the 

CW-RF model. In order to deal with these problems, we hope 

to introduce more field measurements in the future research, 

which has two benefits: (1) the field measurements could be 

used as the training data of the CW-RF model to reduce the 

simulation errors and uncertainties brought by the CERES-

Wheat model; (2) the field measurements could be used to 

calibrate the CERES-Wheat model to reduce the simulation 

error and uncertainties. 

UAV-based retrieval LAI and LNC were used as the input of 

the CW-RF model, the retrieval accuracy directly affected the 

accuracy of CW-RF model for yield estimation. Although UAV 

operation was strictly in accordance with the standards during 

the stage of hyperspectral image acquisition, retrieval errors 

were still unavoidable due to uncertain factors such as 

atmospheric conditions and mixed pixels. The influence of 

parameters retrieval error on the CW-RF model was further 

quantitatively analyzed.  Additional 5% and 10% random 

MAPE were added to the remote sensed LAI and LNC of winter 

wheat at the jointing and heading stages, respectively. The 

RMSE of the LAI and LNC were 8.81% and 15.37% under 5% 

random MAPE, and 13.72% and 22.83% under 10% random 

MAPE, respectively. A total of eight groups of data with 

random errors were generated and input into the CW-RF model. 

A comparison of the results was presented in Table Ⅲ. The 

results showed that with an increase in the LAI and LNC 

retrieval error, the MAPE and RMSE of the CW-RF model also 

increased, and the accuracy of CW-RF model decreased, 

demonstrating that the accuracy of the remote sensed LAI and 

LNC was essential for ensuring the estimation accuracy of the 

CW-RF model. The importance of the UAV hyperspectral 

remote sensing retrieval accuracy to the CW-RF model was also 

indicated. Based on a standard MAPE of less than 20% and 

RMSE of less than 1500kg/ha, we believed that the accuracy of 

the CW-RF model could be guaranteed when the MAPE and 

RMSE of the remote sensed LAI were less than 10% and 

13.72%, respectively, and the MAPE and RMSE of the LNC 

was less than 5% and 15.37%, respectively.  

In addition, the empirical methods for the LAI and LNC 

retrieval may dilute transferability of the CW-RF model and 

also affect the accuracy. The concise and physical model to 

estimate LAI and LNC from UAV-based hyperspectral data 

should be recommended to avoid the effect of solar-sensor 

BRDF and background reflectance variation. 

The selection of the growth period has a very important 

influence on the accuracy of winter wheat yield estimation 

models [53]. The jointing and flagging stages are the key 

periods for determining the number of ears and grains of winter 

wheat, while the heading and filling stages are the key periods 

determining the final grain weight. The CERES-Wheat model 

simulation results showed that the LAI and LNC at the jointing 

and heading stages had the highest correlation with yield, 

followed by the flagging and filling stages, but the difference 

was not significant. The results coincided with the previous 

study by Yue et al. [54]. The study reported that during the later 

Table Ⅲ 

THE MAPE AND RMSE OF THE CW-RF MODEL UNDER THE DIFFERENT MAPE ERROR AND RMSE ERROR OF PARAMETERS 

 

LAI LNC CW-RF model 

MAPE (%) RMSE (%) MAPE (%) RMSE (%) MAPE (%) RMSE (kg/ha) 

0 0 5 15.37 12.20 985.05 

0 0 10 22.83 18.76 1297.56 

5 8.81 0 0 8.51 626.30 

5 8.81 5 15.37 15.86 1076.80 

5 8.81 10 22.83 22.67 1707.94 

10 13.72 0 0 11.87 1081.35 

10 13.72 5 15.37 18.17 1270.81 

10 13.72 10 22.83 29.06 2102.11 

 

Table Ⅳ 

THE MAPE AND RMSE VALUES OF THE CW-RF MODEL WHEN MORE GROWTH STAGES WERE ADDED 

 

Growth stages considered in CW-RF model MAPE (%) RMSE (kg/ha) 

Jointing and heading stages 9.36 1008.08 

Jointing, flagging and heading stages 8.83 972.14 

Jointing, heading and flowering stages 9.16 996.46 

Jointing, flagging, heading and flowering stages 8.98 985.83 
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stages of crop growth, the chlorophyll content of leaves 

decreases, and the correlation between crop growth parameters 

and dry matter accumulation decreases. The selection of growth 

periods may have an impact on the retrieval results, therefore 

we added more growth periods into the CW-RF model. The 

MAPE and RMSE were calculated after adding the flagging and 

flowering stages based on the jointing and heading stages in the 

CW-RF model (Table Ⅳ). 

The results showed that compared with the jointing and 

heading stages in the CW-RF model (MAPE = 9.36%, RMSE 

= 1008.08 kg/ha), adding one or more of the flagging and 

flowering stages would slightly improve the estimation 

accuracy, which was consistent with the conclusion that the 

accuracy of crop yield estimation can be improved by using 

multi-temporal data in some studies [2], [8], [55]. Considering 

the cost of UAV flights and the time requirements for earlier 

yield estimation for agricultural decision-making, the use of the 

jointing and heading stages were identified as a tradeoff for 

yield estimation in the CW-RF model. 

B. Applicability of the CW-RF Model  

In this study, the CW-RF model was used to estimate the 

wheat yield. Hyperspectral remote sensing data collected by 

UAV and available from the National Precision Agriculture 

Research and Demonstration Base in Xiaotangshan, Beijing 

(116°23′50′′E, 39°54′59′′N, located in the North China Plain) 

was used to verify the applicability of the model. The data was 

acquired in 2018, and the UAV type, hyperspectral sensor type, 

data type, and processing workflow were same as those used in 

this study in Luohe. 

Several prevailing winter wheat yield estimation models 

based on a statistical correlation analysis [2], [56], [57] were 

selected for comparison with the CW-RF model. These 

empirical models were based on the relationship between wheat 

yield and remote sensed LAI, single-growth period vegetation 

index, and multi-growth periods vegetation index, respectively. 

LAI was obtained based on the UAV hyperspectral images 

during the wheat heading period according to Ren et al. [56], 

and NDVI was selected as the vegetation index for modeling. 

The wavelength of red band used to calculate NDVI was 650 

nm, and the wavelength of near-infrared band was 857 nm. The 

calculation of single-growth period NDVI was based on the 

images of wheat heading stage according to Reyniers et al. [57], 

while the multi-growth period NDVI was based on the images 

of wheat jointing and heading stages according to Wang et al. 

[2]. The linear relationships among these models and their 

RMSE and MAPE values are shown in Table Ⅴ. 

These empirical statistical models are easy to implement and 

have a high calculation efficiency, but they lack the ability to 

describe physical mechanisms. Taking the empirical model 1 in 

Table 5 as an example. The RMSE of the model built in Luohe 

was 1025.42 kg/ha, and the MAPE is 9.74%. The RMSE of the 

model directly applied to Xiaotangshan is 2112.99 kg/ha, the 

MAPE is 34.03%, the RMSE has increased by 106.06%, and 

Table Ⅴ 

COMPARISON BETWEEN PREVIOUS STATISTICAL MODELS AND THE MODEL USED IN THIS STUDY 

 

Model Data source Linear relation 
Luohe XiaoTangshan 

RMSE (kg/ha) MAPE (%) RMSE (kg/ha) MAPE (%) 

CW-RF CERES-Wheat Non-linear 1008.08 9.36 841.36 13.64 

Model1 
Luohe Yield=11256×LAI-12971 1025.42 9.74 2112.99 34.03 

XiaoTangshan Yield=12770×LAI-17775 2205.08 20.11 1428.08 18.65 

Model2 
Luohe Yield=33759×NDVI-19108 1283.52 10.62 1869.77 22.47 

XiaoTangshan Yield=22933×NDVI-11971 2397.25 20.14 1689.49 19.34 

Model3 

Luohe 
Yield=NDVIjoint×37822.74-

NDVIheading×6564.65-12029.9 
1020.24 9.68 1617.60 20.60 

XiaoTangshan 
Yield=NDVIjoint×30254.15+ 

NDVIheading×10659.88-21197.3 
1071.39 10.16 1129.97 16.36 

 

Model1: Used for establishing the relationship between wheat yield and remote sensed LAI. 

Model2: Used for establishing the relationship between wheat yield and the single-growth period vegetation index. 

Model3: Used for establishing the relationship between wheat yield and the multi-growth periods vegetation index. 

Table Ⅵ 

COMPARISON BETWEEN UAV-BASED HYPERSPECTRAL AND MULTISPECTRAL DATA 

 

Crop growth parameter Spectral types 
Jointing stage Heading stage 

RMSE (%) MAPE (%) RMSE (%) MAPE (%) 

LAI 
multispectral 6.81 2.81 9.86 4.06 

hyperspectral 6.27 2.62 9.21 3.85 

LNC 
multispectral 15.38 4.11 15.82 3.66 

hyperspectral 12.17 3.05 13.64 3.07 
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the MAPE has increased by 249.38%. Similar situations also 

appeared in several other empirical models. It can be deduced 

that the previous statistical models tend to be applicable locally. 

In this study, the yield estimation model had a high accuracy in 

both Luohe and Xiaotangshan, and performed well in these two 

areas. The input data of the CW-RF model originated from the 

CERES-Wheat model, which can reflect a series of 

physiological and biochemical processes of crops, and it was 

not limited by empirical statistics.  

The spatial scale of the CERES-Wheat model was consistent 

with the field plot scale used in this study. This matching of 

scale ensured that the yield estimation model trained by 

simulated data was suitable for UAV remote sensing without 

assimilation.  

In theory, the idea of UAV-based CW-RF model in this study 

could be applied to satellite data, but scale suitability problem 

still existed when the CW-RF model was directly transferred to 

coarse resolution satellite data. It should be further explored 

how the CW-RF models and remote sensing retrieval methods 

in the study could adapt to high-resolution satellite data in the 

future.  

In addition, as a representative integrated learning technique, 

the random forest algorithm used for modeling in this study was 

inclusive of all the samples. The few outliers and missing values 

did not affect the results, which also ensured the stability of the 

model. Thus, the CW-RF model has a wide applicability and is 

considered to perform well for winter wheat yield estimation in 

the North China Plain. 

C. Advantages of Hyperspectral Data 

With the continuous development of hyperspectral 

technology, the application of hyperspectral remote sensing in 

precision agriculture has become an area of active research. 

Hyperspectral data can accurately describe the spectral details 

and provide abundant spectral information. Based on sensitive 

band analysis, vegetation index construction, and red-edge 

parameter analysis methods, some progress has been made in 

the retrieval of crop growth parameters, such as the LAI [58], 

nitrogen content [59] and yield [60]. Some previously published 

results [61], [62] indicated that hyperspectral data can improve 

the inversion accuracy of crop growth parameters compared 

with multispectral data, but a few studies like [63] have come 

to the opposite conclusion. Liu et al. [58] believed that this was 

due to the low signal-to-noise ratio of sensors, the low spatial 

resolution of the remote sensing, and the adoption of methods 

such as vegetation indexes that failed to reflect the advantages 

of hyperspectral data. 

For the UAV platform, whether the hyperspectral data can 

improve the retrieval accuracy is worth exploring. The RMSE 

and MAPE of the retrieved LAI and LNC with hyperspectral 

and multispectral data is shown in Table Ⅵ. The multispectral 

data was acquired by convoluting hyperspectral data with the 

spectral response function of the Pika L sensor, and vegetation 

indices such as the NDVI, Medium Resolution Imaging 

Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI), 

and RED-EDGE NDVI [64] were calculated by multispectral 

data. To obtain the LAI and LNC, empirical linear relationships 

between the LAI and LNC of winter wheat and these vegetation 

indices were established, which were based on local training, 

without considering the bidirectional reflectance distribution 

function (BRDF) characteristics of the canopy and background. 

The results showed that the precision of the LAI and LNC 

retrieved from hyperspectral data was higher than that retrieved 

from multispectral data (Table VI). The DSD method for LAI 

retrieval made full use of the advantages of the red-edge band 

in hyperspectral data, and effectively restrained the influence of 

soil background noise. The selection and combination of 

sensitive bands of AIVI for LNC retrieval was reliant on the 

hyperspectral data. In addition, the high spatial resolution and 

stability of the UAV platform also improved the stability of 

hyperspectral data. According to previous discussion, the 

accuracy of remote sensing data directly affected the accuracy 

of the CW-RF model, and this effect was positively correlated. 

The spectral resolution of the hyperspectral sensor on the UAV 

had the potential to improve the wheat LAI and LNC estimation 

accuracy, and then the accuracy of CW-RF model may be 

improved, which required further study. 

VI. CONCLUSIONS 

Estimating winter wheat yield early and accurately at field 

plot scale is of great significance for field management and 

agricultural operation. In this study, a winter wheat yield 

estimation model, the CW-RF model, was established based on 

the CERES-Wheat model simulation data using the random 

forest regression algorithm. A total of 4,200 groups of samples 

were simulated using the CERES-Wheat model, involving four 

different weather parameters, five different soil parameters, 10 

different wheat cultivars, seven different nitrogen fertilizer 

parameters and three irrigation parameters that were based on 

the current situation in the North China Plain. The jointing and 

heading stages were identified as the two key growth periods, 

and the LAI and LNC were chosen as the main growth 

parameters for winter wheat yield estimation. Therefore, the 

LAI and LNC of winter wheat during the jointing and heading 

stages retrieved from UAV hyperspectral images were input 

into the CW-RF model to estimate winter wheat yield.  

Field validation shows that the CW-RF model has a high 

accuracy and could provide an accurate yield estimation at the 

field plot scale. The CERES-Wheat model simulation could 

solve the problem of few samples in the application of random 

forest algorithm for crop yield estimation, and could also ensure 

estimation accuracy. The model performed well in two typical 

areas of the North China Plain, Luohe (Henan) and 

Xiaotangshan (Beijing). Compared with the traditional winter 

wheat yield estimation model, the CW-RF model owns a more 

general applicability. More UAV flights and ground 

measurement experiments will be conducted in other locations 

to confirm the applicability of the model to the North China 

Plain. 

The prior knowledge and empirical methods for the LAI and 

LNC retrieval may dilute the transferability of the model and 

reduce the physical interpretability of the CW-RF model. The 

quantitatively remote sensed models for LAI and LNC deserve 

future study. 
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 As the simulation errors and uncertainty of the CERES-

Wheat model could be transferred to the CW-RF model, and 

this effect was positively correlated, more field measurements 

should be introduced into the CW-RF model to reduce the 

errors and uncertainties. In addition, simulation and analysis 

results showed that the UAV hyperspectral data could 

significantly improve the winter wheat LAI and LNC inversion 

accuracy, and further improve the accuracy of winter wheat 

yield estimation. 
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